当前位置:文档之家› 风力发电机制动系统的改进设计与智能控制

风力发电机制动系统的改进设计与智能控制

风力发电机制动系统的改进设计与智能控制
风力发电机制动系统的改进设计与智能控制

新型车载便携式风力发电移动电源的设计

新型车载便携式风力发电移动电源的设计 李天然 (东北林业大学机电工程学院, 哈尔滨150040) 摘要: 以清洁能源的利用为设计出发点,针对自驾游途中可能发生的用电短缺现象,提出了一款便携式的风力发电移动电源设计方案。本设计方案利用交通工具在行驶过程中产生的风能进行发电,将机械能转化为电能储存在蓄电池中,并可通过USB接口为随身携带的电子产品进行充电。本设计方案集节能、经济、个性于一身,既方便人们生活,又低碳环保,是一款可行性及可普及性强的绿色产品,为绿色能源的具体应用提供了一定的参照,为新能源产品的设计研究提供了借鉴经验。 关键词: 绿色能源;风力发电;风能;环保 中图分类号: TK89 文献标识码: A 风能是一种清洁、廉价、储量极为丰富的可再生能源,利用风力发电是减少空气污染,缓解能源短缺的有效措施之一[1]。风力发电的原理,是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,促使发电机发电[2]。目前,国内外的风力发电技术已基本成熟,风能市场迅速发展,商业化前景广阔。在大型风力发电机组技术成熟的基础上,小型风力发电装备的设计开发也越来越受人们的重视[3],在很多城市,风力发电路灯已经成为街路两边的风景。同时,随着数字科技的普及,现代人对电子产品愈发依赖,电子产品的电源补充是很多企业和科研单位的产品研发方向。本文正是基于这一发展趋势,利用风力发电技术,对便携式移动电源的设计进行了尝试。 1 设计思路 1.1 设计理念 现代人对手机、数码相机等电子设备愈发依赖,在旅游、户外运动中,经常会遇到电子设备供电不足的无奈状况,便携式充电器“移动电源”能够为这些电子设备提供应急充电[4]。移动电源是一个集储电、升压、充电管理于一体的便携式设备。在使用移动电源之前,要先为移动电源的储电单元完成充电,然后再通过电源转接头为各种电子设备供电。目前市场上主流的移动电源有充电式移动电源和太阳能移动电源两种。 1.2设计定位与分析 近年来,人们对户外运动的热情与日俱增,尤其是驾驶自行车、摩托车这种灵活、个性的出行方式,因其自由化、可选择性和自主性强的特点而备受人们青睐[5]。如电影《转山》中,选择这种旅行方式的人们往往会在野外露营,缺乏为电子设备充电的条件;在雨雪天气下,太阳能移动电源也会失去作用。本文设计定位于此类人群,利用旅行中驾驶自行车、摩托车等交通工具行驶过程中与空气摩擦产生的风能来进行移动电源的设计。 因此,本文设计的产品是一款便携式的,在车辆行驶过程中由风能发电装置进行发电,并将电能储存在蓄电池中,再通过接口为手机、数码相机、摄像机、便携式DVD、PDA、MP3、MP4、GPS、保暖设备、医疗保健设备等充电的新型移动电源。 2 设计方案 2.1设计原理

盘式制动器毕业设计

1.课题研究的目的及意义 汽车的设计与生产涉及到许多领域,其独有的安全性、经济性、舒适性等众多指标,也对设计提出了更高的要求。汽车制动系统是汽车行驶的一个重要主动安全系统,其性能的好坏对汽车的行驶安全有着重要影响。随着汽车的形式速度和路面情况复杂程度的提高,更加需要高性能、长寿命的制动系统。其性能的好坏对汽车的行驶安全有着重要影响,如果此系统不能正常工作,车上的驾驶员和乘客将会受到车祸的伤害。 汽车是现代交通工具中用得最多、最普遍、也是运用得最方便的交通工具。汽车制动系统是汽车底盘上的一个重要系统,它是制约汽车运动的装置,而制动器又是制动系中直接作用制约汽车运动的一个关键装置,是汽车上最重要的安全件。汽车的制动性能直接影响汽车的行驶安全性。随着公路业的迅速发展和车流密度的日益增大,人们对安全性、可靠性的要求越来越高,为保证人身和车辆安全,必须为汽车配备十分可靠的制动系统。 车辆在形式过程中要频繁进行制动操作,由于制动性能的好坏直接关系到交通和人身安全,因此制动性能是车辆非常重要的性能之一,改善汽车的制动性能始终是汽车设计制造和使用部门的重要任务。 现代汽车普遍采用的摩擦式制动器的实际工作性能是整个制动系中最复杂、最不稳定的因素,因此改进制动器机构、解决制约其性能的突出问题具有非常重要的意义。 2.汽车制动器的国内外现状及发展趋势 对制动器的早期研究侧重于试验研究其摩擦特性,随着用户对其制动性能和使用寿命要求的不断提高,有关其基础理论与应用方面的研究也在深入进行。 目前,汽车所用的制动器几乎都是摩擦式的,可分为鼓式和盘式两大类。盘式制动器被普遍使用。但由于为了提高其制动效能而必须加制动增力系统,使其造价较高,故低端车一般还是使用前盘后鼓式。汽车制动过程实际上是一个能量转换过程,它把汽车行驶时产生的动能转换为热能。高速行驶的汽车如果频繁使用制动器,制动器因摩擦会产生大量的热量,使制动器温度急剧升高,如果不能及时的为制动器散热,它的效率就会大大降低,影响制动性能,出现所谓的制动效能热衰退现象。 在中高级轿车上前后轮都已经采用了盘式制动器。不过,时下还有不少经济型轿车采用的还不完全是盘式制动器,而是前盘后鼓式混合制动器(即前轮采用盘式制动器、后轮采用鼓式制动器),这主要是出于成本上的考虑,同时也是因为轿车在紧急制动时,负荷前移,对前轮制动的要求比较高,一般来说前轮用盘式制动器就够了。当然,前后轮都使用盘式制动器是一种趋势。在货车上,盘式制动器也有被采用的,但离完全取代鼓式制动器还有相当长的一段距离。 现代汽车制动器的发展起源于原始的机械控制装置,最原始的制动控制只是驾驶员操纵一组简单的机械装置向制动器施加作用力,那时的汽车重量比较小,速度比较低,机械制动已经能够满足汽车制动的需要,但随着汽车自身重量的增加,助力装置对机械制动器来说越来越显得非常重

风力发电机变桨控制系统培训教材

变桨控制系统培训教材 1. 变桨控制系统概述 变桨轴承 限位开关装 图1 变桨系统 变桨控制系统包括三个主要部件,驱动装置-电机,齿轮箱和变 桨轴承。从额定功率起,通过控制系统将叶片以精细的变桨角度向顺

桨方向转动,实现风机的功率控制。如果一个驱动器发生故障,另两个驱动器可以安全地使风机停机。 变桨控制系统是通过改变叶片迎角,实现功率变化来进行调节的。通过在叶片和轮毂之间安装的变桨驱动电机带动回转轴承转动从而改变叶片迎角,由此控制叶片的升力,以达到控制作用在风轮叶片上的扭矩和功率的目的。在90度迎角时是叶片的工作位置。在风力发电机组正常运行时,叶片向小迎角方向变化而达到限制功率。一般变桨角度范围为0~86度。采用变桨矩调节,风机的启动性好、刹车机构简单,叶片顺桨后风轮转速可以逐渐下降、额定点以前的功率输出饱满、额定点以的输出功率平滑、风轮叶根承受的动、静载荷小。变桨系统作为基本制动系统,可以在额定功率范围内对风机速度进行控制。 变桨控制系统有四个主要任务: 1.通过调整叶片角把风机的电力速度控制在规定风速之上的一 个恒定速度。 2.当安全链被打开时,使用转子作为空气动力制动装置把叶子转 回到羽状位置(安全运行)。 3.调整叶片角以规定的最低风速从风中获得适当的电力。 4.通过衰减风转交互作用引起的震动使风机上的机械载荷极小

化。 2.变桨轴承 变桨驱动装 变桨轴承 图2 变桨轴承和驱动装置 安装位置 变桨轴承安装在轮毂上,通过外圈螺栓把紧。其内齿圈与变桨驱 动装置啮合运动,并与叶片联接。 工作原理 当风向发生变化时,通过变桨驱动电机带动变桨轴承转动从而改

汽车底盘制动系统的改进设计分析

汽车底盘制动系统的改进设计分析 摘要:制动系统可以让汽车按照驾驶员的要求减速,并使车辆在停放过程中更加可靠,所以汽车底盘制动系统是确保行车安全非常重要的一个系统。针对汽车底盘制动系统的功能和作用改进这一系统,希望可以提高汽车底盘制动系统的制动性能,减少安全事故的发生。 关键词:汽车;底盘制动系统;制动性能;改进设计 1 原有汽车底盘制动系统的构成 汽车底盘制动系统主要由四个部分构成,分别是供能装置、传动装置、制动装置和控制装置。其中,供能装置主要为汽车的制动系统提供必要的能源,使汽车制动装置在启动时有充分的能源;传动装置主要是将供能装置产生的能源传送到制动装置中,让制动装置更加顺利地启动;制动装置是底盘制动系统中最重要的装置,包括行车制动、驻车制动、应急制动和辅助制动四个部分;控制装置是对汽车底盘制动系统中各个子系统进行控制的装置。在汽车底盘制动系统中,制动装置最关键的作用是行车制动和驻车制动。这两个作用分别对应的子系统共同使用汽车的制动鼓和刹车片实现汽车制动。车辆正常行驶时,会应用行车制动来控制车辆的制动鼓和刹车片;车辆紧急制动时,就会启动驻车制动系统控制制动鼓和刹车片,保证车辆能够有效制动。但是在紧急制动的过程中,驻车制动的制动力往往太小,不能使车辆及时停止下来,这就需要改进汽车底盘制动系统,提高车辆的制动力。汽车底盘制动系统如图1所示。 1—前制动室;2—制动阀门;3—继动器;4—后制动室; 5—制动回路保护阀;6—制动室储气装置;7—驻车制动控制阀门;8—继动器 图 1 汽车底盘制动系统图 汽车在紧急制动时,控制系统接收到紧急制动信号,驻车制动的阀门就会自动打开,控制系统会通过继动器控制后制动室,使后制动室打开,实现车辆的紧急制动。在紧急制动的过程中,车辆的前制动室是不参与紧急制动的,所以汽车的紧急制动系统不是特别完善。在改进设计汽车底盘制动系统时,要使前制动室也参与到汽车的紧急制动中来,使控制系统通过继动器为前、后制动室共同提供制动信号,提高车辆的紧急制动性能。 2 汽车底盘制动系统改进设计的思路 2.1 改进设计方向 因为原有的底盘制动系统需要通过继动器启动制动室的储气装置,才能启动后制动室,所以在制动的过程中,会存在一定的延时。为了保证制动系统启动的及时性,可以利用电传动的方式来实现制动信号的传递,有效减少车辆紧急制动的延时,提高车辆行驶的安全性。 2.2 改进设计具体要求 在改进设计汽车底盘制动系统时,要保证改进后的制动系统满足我国相关的各项标准,即改进后的制动系统要具有较好的制动性能,制动性能评价指标有坡度制动比和制动距离;可靠性要高,而且要有备用系统对制动器进行辅助控制,以免在主系统失效后,汽车失去紧急制动能力,即使在动力源缺失的情况下,也能保证制动系统的制动性能,保证制动稳定性。

小型风力发电装置的设计

济源职业技术学院 毕业设计 题目小型风力发电装置的设计 系别机电工程系 专业机电一体化 班级 0803班 袁泉 学号 08010315 指导教师高清冉 日期 2010年11月

设计任务书 设计题目: 小型风力发电装置设计 设计要求: 1、了解小型风力发电装置的基本设计原理和用途。 2、熟悉基本绘图软件的使用方法和技巧。 3、使用Solidworks绘画装配图、零件图。 设计进度要求: 第一周:选择课题,勾勒基本的设计思路 第二周:查找与其有关的资料; 第三周:进行螺旋传动的设计和计算; 第四周:进行发电机的设计; 第五周:绘制草图 第六周:完善初稿及草图使其语言更加简练、布局更加合理; 第七周:整理电子稿; 第八周:再次修改论文,进行答辩 指导教师(签名):

摘要 风能是一种无污染、可再生的清洁能源。早在公元前200年,人类就开始利用风能了。提水、碾米、磨面及船的助航都有利用风能的记载。自第一次世界大战之后,丹麦仿造飞机的螺旋桨制造二叶和三叶高速风力发电机发电并网使用直至现在,风力发电机经历了近百年的发展里程。20世纪80年代之后,世界工业发达国家率先研究、快速发展了风力发电机,建设了风电场。现在风力发电机制造成本不断下降,已接近水力发电机的水平,制造及使用技术也日趋成熟。20世纪末,世界每年风电装机容量以近20%的增长速度发展,风电现在已成为世界能源中发展最快的能源。如果在总面积0.6%的地方安装上风力发电机,就能提供全部电力消耗的20%,可以关闭供电能力20%的以燃烧煤、重油等碳氢化合物为燃料而排放SO2、CO2和烟尘对大气和地球环境造成污染和破坏的火电场。 在今后10年,风力发电将成为世界各国重点发展的能源之一,风力发电机的制造业也必将成为新兴的机械制造业。也将带动诸如大型钢管、钢板等冶金行业,发电机制造,电器控制,液压机械,复合材料等行业的发展;势必推动蓄电池向大容量、小体积、高效方向发展势必拓宽微机在风力发电机自动控制方面的应用和发展。风力发电机的发展及其拉动的行业发展将成为数以万计的人创造就业机会。可见,发展风力发电机及风力发电对于发展经济,保护环境,有着重要意义。 我国地域辽阔,风能资源丰富,风能储量达25.3亿MW。1991年国家计委实施了“乘风计划”和“光明工程”,为中国全面发展大、中、小型风力发电机及风力发电创造了条件。至2010年,我国在风能资源丰富地区先后建了249个风电场,总装机容量1546MW,已形成一定的风力发电基础及积累了较丰富的风力发电的经

汽车制动系统-毕业设计(论文)

1 引言汽车制动系的概述 制动系的功用是使汽车以适当的减速度降速行驶直至停车,在下坡行驶时使汽车保持适当的稳定车速,使汽车可靠地停在原地或坡道上。 制动系至少有行车制动装置和驻车制动装置。前者用来保证第一项功能和在不长的坡道上行驶时保证第二项功能,而后者则用来保证第三项功能。 除此之外,有些汽车还设有应急制动和辅助制动装置。 应急制动装置利用机械力源(如强力压缩弹簧)进行制动。在某些采用动力制动或伺服制动的汽车上,一旦发生蓄压装置压力过低等故障时,可用应急制动装置实现汽车制动。同时,在人力控制下它还能兼作驻车制动用。 辅助制动装置可实现汽车下长坡时持续地减速或保持稳定的车速,并减轻或者解除行车制动装置的负荷。 行车制动装置和驻车制动装置,都由制动器和制动驱动机构两部分组成。防止制动时车轮被抱死,有利于提高汽车在制动过程中的方向稳定性和转向操纵能力,缩短制动距离,所以近年来制动防抱死系统(ABS)在汽车上得到很快的发展和应用。此外,含有石棉的摩擦材料,因存在石棉有致癌公害问题已被逐渐淘汰,取而代之的是各种无石棉型材料并相继研制成功[1]。 1.1汽车制动系统的分类 (1) 按制动系统的作用 制动系统可分为行车制动系统、驻车制动系统、应急制动系统及辅助制动系统等。用以使行驶中的汽车降低速度甚至停车的制动系统称为行车制动系统;用以使已停驶的汽车驻留原地不动的制动系统则称为驻车制动系统;在行车制动系统失效的情况下,保证汽车仍能实现减速或停车的制动系统称为应急制动系统;在行车过程中,辅助行车制动系统降低车速或保持车速稳定,但不能将车辆紧急制停的制动系统称为辅助制动系统。上述各制动系统中,行车制动系统和驻车制动系统是每一辆汽车都必须具备的。 (2)按制动操纵能源 制动系统可分为人力制动系统、动力制动系统和伺服制动系统等。以驾驶员的肌体作为唯一制动能源的制动系统称为人力制动系统;完全靠由发动机的动力转化

制动系统匹配设计计算分解

制动系统匹配设计计算 根据AA车型整车开发计划,AA车型制动系统在参考BB轿车底盘制造平台的基础上进行逆向开发设计,管路重新设计。本计算是以选配C发动机为基础。 AA车型的行车制动系统采用液压制动系统。前、后制动器分别为前通风盘式制动器和实心盘式制动器,制动踏板为吊挂式踏板,带真空助力器,制动管路为双回路对角线(X型)布置,采用ABS。驻车制动系统为机械式手动后盘式制动,采用远距离棘轮拉索操纵机构。因AA车型与参考样车BB的整车参数接近,制动系统采用了BB样车制动系统,因此,计算的目的在于校核前/后制动力、最大制动距离、制动踏板力、驻车制动手柄力及驻坡极限倾角。 设计要符合GB 12676-1999《汽车制动系统结构、性能和试验方法》;GB 13594-2003《机动车和挂车防抱制动性能和试验方法》和GB 7258-2004《机动车运行安全技术条件》的要求,其中的踏板力要求≤500N,驻车制动停驻角度为20%(12),驻车制动操纵手柄力≤400N。 制动系统设计的输入条件 整车基本参数见表1,零部件主要参数见表2。 表1 整车基本参数

表2 零部件主要参数制动系统设计计算 1.地面对前、后车轮的法向反作用力 地面对前、后车轮的法向反作用力如图1所示。 图1 制动工况受力简图由图1,对后轮接地点取力矩得:

式中:FZ1(N):地面对前轮的法向反作用力;G(N):汽车重力;b(m):汽车质心至后轴中心线的水平距离;m(kg):汽车质量;hg(m):汽车质心高度;L(m):轴距;(m/s2):汽车减速度。 对前轮接地点取力矩,得: 式中:FZ2(N):地面对后轮的法向反作用力;a(m):汽车质心至前轴中心线的距离。 2.理想前后制动力分配 在附着系数为ψ的路面上,前、后车轮同步抱死的条件是:前、后轮制动器制动力之和等于汽车的地面附着力;并且前、后轮制动器制动力Fm1、Fm2分别等于各自的附着力,即:

制动系统设计手册(NEW)

王工: 总体上写得不错,需要进一步改进的建议如下: 1.主要零部件的典型结构图。 2.分泵、总泵、吊挂助力器和阀等试验验证与试制验证的方法与标准(结合参考上次L 项目验证计划)细化与补充。 3. 分泵、总泵、吊挂助力器和阀的DFMEA分析的主要内容。 3.做到图文并茂,无经验的年轻的设计人员(《设计手册》主要读者)一看就明白。 4.附一典型车型(如L3360奥铃)的制动系统计算书。 储成高 2003.8.23 制动系统的开发和设计 1.系统概述 一般情况下汽车应具备三个最基本的机能,即:行驶机能、转弯机能和停车机能,而其停车机能则是由整车的制动装置来完成的。作为汽车重要组成部分的制动系统,其性能的好坏将直接影响汽车的行驶安全性,也就是说我们希望在轻轻地踩下制动踏板时汽车能很平稳地停止在所要停车的地方,为了达到这一目的,我们必须充分考虑制动系统的控制机构和执行机构的各种性能。 制动系统一般可分为四种,即行车制动系、应急制动系(也称第二制动系)、驻车制动系和辅助制动系统(一般用于山区、矿山下长坡时)。 各种制动系统一般有执行机构和控制机构两个部分组成。其执行机构是产生阻碍车辆的运动或运动趋势的力(制动力)的部件,通常包括制动鼓、制动蹄、制动盘、制动钳和制动轮缸等;其控制机构是为适应所需制动力而进行操纵控制、供能、调节制动力、传递制动能量的部件,一般包括助力器、踏板、制动主缸、储油杯、真空泵、真空罐、比例阀、ABS、制动管路和报警装置等,有的还包括具有压力保护和故障诊断功能的部件。在其控制机构中如果按其制动能量的传输方式制动系统又可分为:机械式、液压式、气压式和电磁式(同时采用两种以上传能方式的制动系统可称为组合式制动系统,如气顶油等)。 制动系统是影响汽车行驶安全性的重要部分,通常其应具备以下功能:可以降低行驶汽

风力发电机简要介绍

风力发电机 是将风能转换为机械功的动力机械,又称风车。广义地说,它是一种以太阳为热源,以大气为工作介质的热能利用发动机。风力发电利用的是自然能源。相对柴油发电要好的多。但是若应急来用的话,还是不如柴油发电机。风力发电不可视为备用电源,但是却可以长期利用。 风力发电的原理,是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。依据目前的风车技术,大约是每秒三公尺的微风速度(微风的程度),便可以开始发电。 风力发电正在世界上形成一股热潮,因为风力发电没有燃料问题,也不会产生辐射或空气污染。

风力发电在芬兰、丹麦等国家很流行;我国也在西部地区大力提倡。小型风力发电系统效率很高,但它不是只由一个发电机头组成的,而是一个有一定科技含量的小系统:风力发电机+充电器+数字逆变器。风力发电机由机头、转体、尾翼、叶片组成。每一部分都很重要,各部分功能为:叶片用来接受风力并通过机头转为电能;尾翼使叶片始终对着来风的方向从而获得最大的风能;转体能使机头灵活地转动以实现尾翼调整方向的功能;机头的转子是永磁体,定子绕组切割磁力线产生电能。 风力发电机因风量不稳定,故其输出的是13~25V变化的交流电,须经充电器整流,再对蓄电瓶充电,使风力发电机产生的电能变成化学能。然后用有保护电路的逆变电源,把电瓶里的化学能转变成交流220V 市电,才能保证稳定使用。 机械连接与功率传递水平轴风机桨叶通过齿轮箱及其高速轴与万能弹性联轴节相连,将转矩传递到发电机的传动轴,此联轴节应按具有很好的吸收阻尼和震动的特性,

表现为吸收适量的径向、轴向和一定角度的偏移,并且联轴器可阻止机械装置的过载。另一种为直驱型风机桨叶不通过齿轮箱直接与电机相连风机电机类型 编辑本段 风力发电机结构 机舱:机舱包容着风力发电机的关键设备,包括齿轮箱、发电机。维护人员可以通过风力发电机塔进入机舱。机舱左端是风力发电机转子,即转子叶片及轴。 转子叶片:捉获风,并将风力传送到转子轴心。现代600千瓦风力发电机上,每个转子叶片的测量长度大约为20M,而且被设计得很象飞机的机翼。 轴心:转子轴心附着在风力发电机的低速轴上。 低速轴:风力发电机的低速轴将转子轴心与齿轮箱连接在一起。在现代600千瓦风力发电机上,转子转速相当慢,大约为19至30转每分钟。轴中有用于液压系统的导管,来激发空气动力闸的运行。

制动系统设计(DOC)

第七章 制动系统匹配与设计 第七章 制动系统设计 制动系是汽车的一个重要的组成部分。它直接影响汽车的行驶安全性。为了保证汽车有良好的制动效能,应该合理地确定汽车的制动性能及制动系结构。 7.1 制动动力学 7.1.1 稳定状态下的加速和制动 加速力和制动力通过轮胎和地表的接触面从车辆传送到路面。惯性力作用于车辆的重心,引起一阵颠簸。在这个过程中当刹车时,前后轮的负载各自增加或减少;而当加速时,情况正好相反。制动和加速的过程只能通过纵向的加速度a x 加以区分。下面,我们先来分析一辆双轴汽车的制动过程。 最终产生结果的前后轮负载ZV F '和Zh F ',在制动过 程中,图7.1随着静止平衡和制动减速的条件而变为: ()l h ma l l l mg F x V ZV --=' (7.1a ) l h ma l l mg F x V Zh +=' (7.1b ) 设作用于前后轴的摩擦系数分别为f V 和f h ,那么制动力为:

V ZV XV f F F '= (7.2a ) h Zh Xh f F F '=' (7.2b ) 图7.1双轴汽车的刹车过程 它们的总和便是作用于车辆上的减速力。 x Xh XV ma F F =+ (7.3) 对于制动过程,f V 和f h 是负的。如果要求两轴上的抓力相等,这种相等使 f V =f h =a x /g ,理想的制动力分配是: )/(])([gl h a l l g ma F x v x XV --= (7.4) )/(][gl h a gl ma F x v x Xh += (7.5) 这是一个抛物线F xh (F xv )和参数a x 的参数表现。在

santana2000轿车制动系统的毕业设计

摘要 国内汽车市场迅速发展,而轿车是汽车发展的方向。然而随着汽车保有量的增加,带来的安全问题也越来越引起人们的注意,而制动系统则是汽车主动安全的重要系统之一。因此,如何开发出高性能的制动系统,为安全行驶提供保障是我们要解决的主要问题。另外,随着汽车市场竞争的加剧,如何缩短产品开发周期、提高设计效率,降低成本等,提高产品的市场竞争力,已经成为企业成功的关键。 本说明书主要介绍了santana2000轿车制动系统的设计。首先介绍了汽车制动系统的发展、结构、分类,并通过对鼓式制动器和盘式制动器的结构及优缺点进行分析。最终确定方案采用液压双回路前盘后鼓式制动器。除此之外,它还介绍了前后制动器、制动主缸的设计计算,主要部件的参数选择及制动管路布置形式等的设计过程。 关键字:制动;鼓式制动器;盘式制动器;液压 附录:

Abstract The rapid development of the domestic vehicle market, saloon car is an important tendency of vehicle. However, with increasing of vehicle, security issues are arising from increasingly attracting attention, the braking system is one of important system of active safety. Therefore, how to design a high-performance braking system, to provide protection for safe driving is the main problem we must solve. In addition, with increasing competition of vehicle market, how to shorten the product development cycle, to improve design efficiency and to lower costs, to improve the market competitiveness of products, and has become a key to success of enterprises. This paper mainly introduces the design of braking system of the santana2000 type of car. Fist of all, braking system’s development, structure and category are shown, and according to the structures, virtues and weakness of drum brake and disc brake, analysis is done. At last, the plan adopting hydroid two-backway brake with front disc and rear drum. Besides, this paper also introduces the designing process of front brake and rear brake, braking cylinder, parameter’s choice of main components braking and channel settings. Key words: braking; brake drum; brake disc; hydroid pressure

风力发电机液压变桨系统简介

风力发电机液压变桨系统简介 全球投入商业运行的兆瓦级以上风力发电机均采用了变桨距技术,变桨距控制与变频技术相配合,提高了风力发电机的发电效率和电能质量,使风力发电机在各种工况下都能够获得最佳的性能,减少风力对风机的冲击,它与变频控制一起构成了兆瓦级变速恒频风力发电机的核心技术。液压变桨系统具有单位体积小、重量轻、动态响应好、转矩大、无需变速机构且技术成熟等优点。本文将对液压变桨系统进行简要的介绍。 风机变桨调节的两种工况 风机的变桨作业大致可分为两种工况,即正常运行时的连续变桨和停止(紧急停止)状态下的全顺桨。风机开始启动时桨叶由90°向0°方向转动以及并网发电时桨叶在0°附近的调节都属于连续变桨。液压变桨系统的连续变桨过程是由液压比例阀控制液压油的流量大小来进行位置和速度控制的。当风机停机或紧急情况时,为了迅速停止风机,桨叶将快速转动到90°,一是让风向与桨叶平行,使桨叶失去迎风面;二是利用桨叶横向拍打空气来进行制动,以达到迅速停机的目的,这个过程叫做全顺桨。液压系统的全顺桨是由电磁阀全导通液压油回路进行快速顺桨控制的。 液压变桨系统 液压变桨系统由电动液压泵作为工作动力,液压油作为传递介质,电磁阀作为控制单元,通过将油缸活塞杆的径向运动变为桨叶的圆周运动来实现桨叶的变桨距。 液压变桨系统的结构 变桨距伺服控制系统的原理图如图1所示。变桨距控制系统由信号给定、比较器、位置(桨距)控制器、速率控制器、D/A转换器、执行机构和反馈回路组成。 图1 控制原理图 液压变桨执行机构的简化原理图如图2所示,它由油箱、液压动力泵、动力单元蓄压器、液压管路、旋转接头、变桨系统蓄压器以及三套独立的变桨装置组成,图中仅画出其中的一套变桨装置。

大学生方程式赛车制动系统设计方案分析

大学生方程式赛车制动系统设计方案分析 摘要:本文介绍了大学生方程式赛车制动的设计,首先介绍了汽车制动系统的设计意义、研究现状以及设计目标,然后对制动系统进行分析与选择,确定方案采用简单人力液压制动双回路前后盘式制动器。最后对制动性能进行了详细分析。 关键词:方程式赛车,制动,盘式制动器 Abstract:This paper mainly introduces the design of breaking system of the Formula Student.First of all,breaking system's development,structure and category are shown.Then analysis and the choice of the braking system are done.At last, the plan adopting hydroid two-back-way brake with front disc and rear disc.Finally,the paper shows analysis of brake performance. Keywords:formula car,braking,braking disc 随着社会的迅速发展和人民生活水平的不断提高,汽车越来越成为现代交通工具中用得最多、最普遍、也运用得最方便的一种。汽车制动系统是汽车底盘上的一个重要系统,它是制约汽车运动的装置。汽车的制动性能直接影响汽车的行驶安全性。现在公路业的迅速发展和车流密度的日益增大,人们对安全性、可靠性的要求越来越高,为保证人身和车辆安全,汽车配备十分可靠的制动系统显得尤为重要。 一、制动系统的设计分析 车辆在形式过程中要频繁进行制动操作,由于制动性能的好坏直接关系到交通和人身安全,因此制动性能是车辆非常重要的性能之一,改善汽车的制动性能始终是汽车设计制造和使用部门的重要任务。当车辆制动时,由于车辆受到与行驶方向相反的外力,所以才导致汽车的速度逐步减小到0,对这一过程中车辆受力情况的分析有助于制动系统的分析和设计,因此制动过程受力情况分析是车辆试验和设计的基础,由于这一过程较为复杂,因此一般在实际中只能建立简化模型分析,通常人们从三个方面来对制动系统进行分析和评价:制动效能:即制动距离与制动减速度;制动效能的恒定性:即热衰退性;制动时汽车方向的稳定性。 二、制动装置的选择分析

汽车制动系统毕业设计

摘要 Formula SAE比赛由美国车辆工程师学会(SAE)于1979年创立,每年在世界各地有600余支大学车队参加各个分站赛,2011年将在中国举办第一届中国大学生方程式赛车,本设计将针对中国赛程规定进行设计。 本说明书主要介绍了大学生方程式赛车制动的设计,首先介绍了汽车制动系统的设计意义、研究现状以及设计目标。然后对制动系统进行方案论证分析与选择,主要包括制动器形式方案分析、制动驱动机构的机构形式选择、液压分路系统的形式选择和液压制动主缸的设计方案,最后确定方案采用简单人力液压制动双回路前后盘式制动器。除此之外,还根据已知的汽车相关参数,通过计算得到了制动器主要参数、前后制动力矩分配系数、制动力矩和制动力以及液压制动驱动机构相关参数。最后对制动性能进行了详细分析。 关键字:制动、盘式制动器、液压

Abstract Formula SAE race was founded in 1979 by the American cars institute of Engineers every year more than 600 teams participate in various races around the world,China will hold the first Formula one for Chinese college students,the design will be for design of the provisions of the Chinese calendar. This paper mainly introduces the design of breaking system of the Formula Student.First of all,breaking system's development,structure and category are shown,and according to the structures,virtues and weakness of drum brake and disc brake analysis is done. At last, the plan adopting hydroid two-backway brake with front disc and rear disc.Besides, this paper also introduces the designing process of front brake and rear break,braking cylinder,parameter's choice of main components braking and channel settings and the analysis of brake performance. Key words:braking,braking disc,hydroid pressure

金龙6800中型客车气压制动系统改进设计

摘要 本次设计主要是对中型客车制动系统结构进行分析的基础上,根据对中型客车制动系统的要求,设计出合理的符合国家标准和行业标准的制动系统。 首先制定出制动系统的结构方案设计计算确定前盘、后鼓式制动器。绘制出了前、后制动器装配图、制动阀装配图、制动管路布置图。最终对设计出的制动系统的各项指标进行评价分析。 通过本次设计的计算结果表明设计出的制动系统是合理的、符合标准的。其满足结构简单、成本低、工作可靠等要求。 关键词:中型客车;制动系统设计;盘式制动器;鼓式制动器;气压系统;

Abstract Based on the structural analysis and the design requirements of n.medium bus braking system, a braking system design is performed in this thesis, according to the national and professional standards. The braking system design starts from determination of the structure scheme. Calculating and determining the main dimension and structural type of the front disc、drum brake,brake master cylinder,and therefore draw the engineering drawings of the front and rear brakes, Brake valve, the diagram of the brake pipelines. The results show the design of braking system is reasonable, consistent with the standards and satisfies the requests such as simple structure and low cost. Key words:Medium-sized passenger car; braking system design; disc brake; drum brake; pneumatic system;

自制小型风力发电装置_

制作:长兴俞晨昱百度ID:风雨战神X 自制小型风力发电装置自然能源的利用是人类永恒的主题,尤其是利用太阳的光和热、风力、水力、波力、地热等。 本文介绍适宜个人动手的小型装置,采用了三个自行车麈电灯的发电机,单个的规格是6V、2.4w,输出低频交流电压。 为了获得发电机的额定输出功率,一般可用齿轮或皮带轮来提高发电机的转速,但这需要大直径的风叶以提高转矩。为简化起见,本制作采用发电机转轴和风叶直接相连,这样风叶直径可小些。为了获得需要的电力,采用三个发电机和三个风叶制成三连的风力发电装置。首先要对自行车摩电灯进行改造.主要是拆除照明灯和锯断摩擦轮壳,暴露出发电机转轴。其余的工作就是金属板材的加工和装配。图1是装置的全貌,图2是尾翼结构图。每个发电机有四片风叶,尺寸为100mmx160mm;固定风叶的连接片尺寸为l8mmxlOOmm,在其长度方向上.从中部将其两端扭曲150倾角。 完成的风力发电装置,在风速为1m/s时就可转动。用家用风扇(最大风速为3m/s,相当于室外树叶摇动的风力)对其试验,单个发电机的输出电压空载为0.8vrms而在15n负载上为0.6vrms。故三个发电机在15Ω负载上为1.8Vm,电流120mA,约0.2W的程度。可以用来为蓄电池充电,但作为实际应用,还要配合整流电路、DC-DC变换电路及功率控制电路,以保证在不同风速下获得适合的充电电流,这部分以后介 绍。

自制便携式水力发电机自驾游来到野外,傍晚时支起帐篷.从车后备箱中取出小型水力发电机放进溪流中,哇!LED照明灯亮起来了!赶快给相机锂电充电吧……下面就介绍这款自制的便携式水力发电机。 发电机采用了自行车专用轮毂发电机,这是一种安装在自行车前轮上的小型发电机,发电机转轴就是车轮的转轴,用于骑行中发电,但它不同于自行车摩电灯。这种发电机的定子是线圈绕组,由磁体构成转子。当磁体随车轮转动时,定子绕组即产生电动势。发电机额定电压6Vm,功率24W(26英寸自行车在15公里/小时速度下的额定参数;若换算成额定转数为2rps,测定负载l5Ω)。 当水流速度为1m/s时,相当于发电机转速为1rDs,此时发电机在15Ω负载上输出电压约3.3V。为了取得较高的电压,采用了两个轮壳发电机同轴安装.一起旋转.见图叶轮的制作:用厚2mm的铝板加工成φ30cm的两个侧板:再用厚Imm铝板加工1mm×12mm、长lOOmm的角铝16根.用来固定叶片;叶片用厚1mm铝板加工成100mmx213mm的矩形,共8 片。叶轮的结构见图2,发电机位于叶轮中心,其转子侧轮壳与φ30cm侧板连接在一起。叶轮支架结构见图3。 两个发电机的输出接成全波倍压整流,电路见图4。下期将介绍利用这一水力发电机电能的通用电源装置。

城市轨道车辆制动系统设计毕业设计(开题报告)

毕业设计(论文) 开题报告 题目跨座式城市单轨交通车辆 制动系统设计 专业城市轨道车辆工程 班级08级城轨1班 学生戴学宇 指导教师赵树恩 重庆交通大学 2012年

1. 选题的目的和意义 随着我国城市化进程的加快,城市交通拥堵、事故频繁、环境污染等交通问题日益成为城市发展的难题。城市轨道交通以其大运量、高速准时、节省空间及能源等特点,已逐渐成为我国城市交通发展的主流。在城市轨道交通系统中,跨坐式单轨交通制式因其路线占地少,可实现大坡度、小曲率线径运行,且线路构造简单、噪声小、乘坐舒适、安全性好等优点而逐渐受到关注。 在我国城市轨道交通迅速发展的同时,其运营安全保障已成为目前面临的重要问题。车辆作为城市轨道交通运输的载体,由于速度快、载客量大、环境复杂,其运行安全状况不容乐观——车辆故障不断出现、事故常有发生,这些故障不但严重的影响到正常运营,一旦引发事故将会带来巨大的人员伤亡和经济损失。制动系统是城市轨道交通车辆的关键系统,直接影响其安全运行,为提高车辆运行的安全性,对制动系统的设计便显得尤为关键。 2.国内外研究现状及分析 基础制动装置是确保城市轨道交通车辆行车安全的措施之一。在分析城市轨道车辆运输特点基础上, 李继山,李和平,严霄蕙(2011)《盘形制动是城市轨道车辆基础制动装置的发展趋势》[1]结合城市轨道车辆基础制动装置具体类型,分析了城市轨道车辆踏面制动与盘形制动的优缺点, 用有限元模拟城轨车辆车轮 踏面温度场及热应力, 表明速度100 km/ h 及以上的城轨列车基础制动不适宜采用踏面制动, 指出盘形制动是城市轨道交通车辆基础制动的发展的必然趋势。丁锋(2004)在《城市轨道交通车辆制动系统的特点及发展趋势》[2]一文中介绍并分析了我国城市轨道交通车辆制动系统的形式、构成、技术特点及发展趋势。吴萌岭,裴玉春,严凯军(2005)在《我国城市轨道车辆制动技术的现状与思考》[3]中较为详细地回顾了我国城市轨道车辆制动系统的发展历程,分析了目前我国新型城市轨道车辆制动系统的特点,并与我国自主研发适用于高速动车组的同类型制动系统作了技术比较。分析了我国自主研发城市轨道车辆制动系统的技术基础,指出国内技术与产品和国外相比存在着系统理念、设计经验和系统可靠性方面的差距,同时指出自主研发城市轨道车辆制动系统存在的问题,并提出了建议。邹金财(2010)《一种轨道车辆空气制动系统优化及仿真》[4]利用Simulationx 仿真软件对工矿窄轨土渣车的空气制动系统的改进前以及改进方案进行仿真,在与试验真实值对比后得到了正确的结论,通过对该空气制动系统优化中仿真手段应用过程的阐述,为机车车辆系统优化方法提供了参考。师蔚,方宇(2010)《城

风力发电机变桨系统

风力发电机变桨系统 1 综述 变桨系统的所有部件都安装在轮毂上。风机正常运行时所有部件都随轮毂以一定的速度旋转。 变桨系统通过控制叶片的角度来控制风轮的转速,进而控制风机的输出功率,并能够通过空气动力制动的方式使风机安全停机。 风机的叶片(根部)通过变桨轴承与轮毂相连,每个叶片都要有自己的相对独立的电控同步的变桨驱动系统。变桨驱动系统通过一个小齿轮与变桨轴承内齿啮合联动。 风机正常运行期间,当风速超过机组额定风速时(风速在12m/s到25m/s之间时),为了控制功率输出变桨角度限定在0度到30度之间(变桨角度根据风速的变化进行自动调整),通过控制叶片的角度使风轮的转速保持恒定。任何情况引起的停机都会使叶片顺桨到90度位置(执行紧急顺桨命令时叶片会顺桨到91度限位位置)。 变桨系统有时需要由备用电池供电进行变桨操作(比如变桨系统的主电源供电失效后),因此变桨系统必须配备备用电池以确保机组发生严重故障或重大事故的情况下可以安全停机(叶片顺桨到91度限位位置)。此外还需要一个冗余限位开关(用于95度限位),在主限位开关(用于91度限位)失效时确保变桨电机的安全制动。 由于机组故障或其他原因而导致备用电源长期没有使用时,风机主控就需要检查备用电池的状态和备用电池供电变桨操作功能的正常性。 每个变桨驱动系统都配有一个绝对值编码器安装在电机的非驱动端(电机尾部),还配有一个冗余的绝对值编码器安装在叶片根部变桨轴承内齿旁,它通过一个小齿轮与变桨轴承内齿啮合联动记录变桨角度。 风机主控接收所有编码器的信号,而变桨系统只应用电机尾部编码器的信号,只有当电机尾部编码器失效时风机主控才会控制变桨系统应用冗余编码器的信号。 2 变浆系统的作用 根据风速的大小自动进行调整叶片与风向之间的夹角实现风轮对风力发电机有一个恒定转速;利用空气动力学原理可以使桨叶顺浆90°与风向平行,使风机停机。 3 主要部件组成

相关主题
文本预览
相关文档 最新文档