当前位置:文档之家› 齿轮加工机床

齿轮加工机床

齿轮加工机床
齿轮加工机床

齿轮加工机床

科技名词定义

中文名称:

齿轮加工机床

英文名称:

gear cutting machine

定义:

用齿轮加工工具加工齿轮齿面或齿条齿面的机床。

应用学科:

(一级学科);切削加工工艺与设备(二级学科);金属切削机床-各种金属切削机床(三级学科)

以上内容由审定公布

百科名片

齿轮加工机床

齿轮加工机床是加工各种圆柱齿轮、锥齿轮和其他带齿零件齿部的机床。齿轮加工机床的品种规格繁多,有加工几毫米直径齿轮的小型机床,加工十几米直径齿轮的大型机床,还有大量生产用的高效机床和加工精密齿轮的高精度机床。齿轮加工机床广泛应用在汽车、拖拉机、机床、工程机械、矿山机械、冶金机械、石油、仪表、飞机和航天器等各种机械制造业中。目录

展开

发展沿革

古代的齿轮是用手工修锉成形的。1540年,意大利的托里亚诺在制造钟表时,制成一台使用旋转锉刀的切齿装置;1783年,法国的勒内制成了使用铣刀的齿轮加工机床,并有切削齿条和内齿轮的附件;1820年前后,英国的怀特制造出第一饶芗庸ぴ仓萋钟帜芗庸ぴ沧冻萋值幕病>哂姓庖恍阅艿幕驳?9世纪后半叶又有发展。

齿轮加工机床

1835年,英国的惠特沃思获得蜗轮的专利;1858年,席勒取得圆柱齿轮滚齿机的专利;以后经多次改进,至1897年德国的普福特制成带差动机构的滚齿机,才圆满解决了加工斜齿轮的问题。在制成齿轮形插齿刀后,美国的费洛斯于1897年制成了。

二十世纪初,由于汽车工业的需要,各种磨齿机相继问世。1930年左右在美国制成剃齿机;1956年制成。60年代以后,现代技术在一些先进的圆柱齿轮加工机床上获得应用,比如在大型机床上采用数字显示指示移动量和切齿深度;在滚齿机、插齿机和磨齿机上采用电子伺服系统和数控系统代替机械传动链和交换齿轮;用设有故障诊断功能的可编程序控制器,控制工作循环和变换切削参数;发展了数字控制非圆齿轮插齿机和适应控制滚齿机;在滚齿机上用电子传感器检测传动链运动误差,并自动反馈补偿误差等。

1884年,美国的比尔格拉姆发明了采用单刨刀按展成法加工的直齿锥齿轮刨齿机;1900年,美国的比尔设计了双刀盘铣削直齿锥齿轮的机床。

由于汽车工业的需要,1905年在美国制造出带有两把刨刀的直齿锥齿轮刨齿机,又于1913年制成弧齿锥齿轮铣齿机;1923年,出现了准渐开线齿锥齿轮铣齿机;30年代研制成能把直齿锥齿轮一次拉削成形的拉齿机,主要用于汽车差动齿轮的制造。

40年代,为适应航空工业的需要,发展了弧齿锥齿轮磨齿机。1944年,瑞士厄利康公司制成延长外摆线齿锥齿轮铣齿机;从50年代起,又发展了用双刀体组合式端面铣刀盘,加工延长外摆线齿锥齿轮的铣齿机。

齿轮加工机床主要分为圆柱齿轮加工机床和锥齿轮加工机床两大类。圆柱齿轮加工机床主要用于加工各种圆柱齿轮、齿条、蜗轮。常用的有滚齿机,插齿机、铣齿机、剃齿机等。

工作原理

齿轮加工机床的种类繁多,构造各异:

成形法

范成法

成形法

要求:刀具的切削刃形状与被切齿轮的齿槽形状相吻合。

优点:机床较简单,可利用通用机床加工。

缺点:1.对于同一模数的齿轮,只要齿数不同,齿廓形状就不相同,需采用不同的成形刀具;

2.加工出来的齿形是近似的,加工精度较低;

3.每加工完一个齿槽后,工件需要周期地分度一次,生产率也较低。

1)滚齿法

母线(渐开线):采用成形法,机床不需要表面成形运动。形成导线(直线):相切法。机床需要两个成形运

动。一个是铣刀的旋转B1,一个铣刀沿齿坯的轴向移动A。两个都是简单运动。铣完一个齿后,铣刀返回原位,齿坯作分度运动——转过360º/z(z是被加工齿轮的齿数),然后再铣下一个齿槽,直至全部齿被铣削完毕。

用单齿廓成形刀具加工齿轮——

用于修配行业中加工精度要求不高的齿轮;

用于重型机器制造业中,以解决缺乏大型齿轮加工机床的问题。

2)铣齿法

采用多齿廓成形刀具时,在一个工作循环中即可加工出全部齿槽,生产率很高,但刀具制造复杂,仅用于大量生产中。

范成法

范成法: 利用齿轮的啮合原理

把齿轮啮合副(齿条——齿轮、齿轮——齿轮)中的一个转化为刀具;另一个转化为工件,并强制刀具和工件作严格的啮合运动而范成切出齿廓。

范成法切齿所用刀具切削刃的形状相当于齿条或齿轮的齿廓,它与被切齿轮的齿数无关。

每一种模数,只需用一把刀具就可以加工各种不同齿数的齿轮;加工时能连续分度,加工精度和生产率一般比较高,应用广泛。

此法必须在专门的齿轮机床上加工,而且机床的调整、刀具的制造和刃磨都比较复杂,一般用于成批大量生产

类型

按照被加工齿轮种类不同,齿轮加工机床可分为两大类:圆柱齿轮加工机床—滚齿机、插齿机、车齿机等

锥齿轮加工机床——加工直齿锥齿轮:刨齿机、铣齿机、拉齿机。加工弧齿锥齿轮:铣齿机。加工齿线形状为延伸渐开线:锥齿轮铣齿机。精加工齿轮齿面:珩齿机、剃齿机和磨齿机。

滚齿机

是用滚刀按展成法粗、精加工直齿、斜齿、人字齿轮和蜗轮等,加工范围广,可达到高精度或高生产率;插齿机是用插齿刀按展成法加工直齿、斜齿齿轮和其他齿形件,主要用于加工多联齿轮和内齿轮;铣齿机是用成形铣刀按分度法加工,主要用于加工特殊齿形的仪表齿轮;剃齿机是用齿轮式剃齿刀精加工齿轮的一种高效机床;磨齿机是用砂轮,精加工淬硬圆柱齿轮或齿轮刀具齿面的高精度机床;珩齿机是利用珩轮与被加工齿轮的自由啮合,消除淬硬齿轮毛刺和其他齿面缺陷的机床;挤齿机是利用高硬度无切削刃的挤轮与工件的自由啮合,将齿面上的微小不平碾光,以提高精度和光洁程度的机床;齿轮倒角机是对内外啮合的滑移齿轮的齿端部倒圆的机床,是生产齿轮变速箱和其他齿轮移换机构不可缺少的加工设备。圆柱齿轮加工机床还包括齿轮热轧机和齿轮冷轧机等。

锥齿加工机床主要用于加工直齿、斜齿、弧齿和延长外摆线齿等锥齿轮的齿部。

直齿锥齿轮刨齿机是以成对刨齿刀按展成法粗、精加工直齿锥齿轮的机床,有的机床还能刨制斜齿锥齿轮,在中小批量生产中应用最广。

双刀盘直齿锥齿轮铣齿机

使用两把刀齿交错的铣刀盘,按展成法铣削同一齿槽中的左右两齿面,生产效率较高,适用于成批生产。由于铣刀盘与工件无齿长方向的相对运动,铣出的齿槽底部呈圆弧形,加工模数和齿宽均受到限制。这种机床也可配以自动上下料装置,实现单机自动化。

直齿锥齿轮拉铣机是在一把大直径的拉铣刀盘的一转中,从实体轮坯上用成形法切出一个齿槽的机床。它是锥齿轮切削加工机床中生产率最高的机床,由于刀具复杂,价格昂贵,而且每种工件都需要专用刀盘,只适用于大批大量生产。机床一般都带有自动上下料装置。

弧齿锥齿轮铣齿机以弧齿锥齿轮铣刀盘,按展成法粗、精加工弧齿锥齿轮和准双曲面齿轮的机床,有精切机、粗切机和拉齿机等变型。

弧齿锥齿轮磨齿机是用于磨削淬硬的弧齿锥齿轮,以提高精度和光洁程度的机床,其结构与弧齿锥齿轮铣齿机相似,但以砂轮代替铣刀盘,并装有砂轮修整器,也可磨削准双曲面齿轮。

延长外摆线齿锥齿轮铣齿机

利用延长外摆线齿锥齿轮铣刀盘,或双刀体组合式端面铣刀盘,按展成法连续分度切齿的机床。切齿时,摇台铣刀盘和工件均作连续旋转运动,同时摇台作进给运动加工一个工件摇台往复一次。铣刀盘和工件的连续旋转使工件获得一定齿数的连续分度,并形成齿长曲线。摇台的旋转和工件的附加运动结合起来,产生展成运动,使工件获得齿形曲线。

准渐开线齿锥齿轮铣齿机用锥度滚刀,按展成法连续分度切齿的机床。切齿时,锥度滚刀首先以大端切削,然后以它较小直径的一端切削,为保证整个切削过程中切削速度一致,机床靠无级变速装置控制滚刀转速在切齿时,摇台、滚刀和工件均作连续旋转运动,加工一个工件,摇台往复一次。摇台和工件的旋转通过差动机构产生展成运动,使工件获得沿齿长为等高的齿形曲线。

锥齿轮加工机床的配套设备有磨削铣刀盘和拉刀盘刀刃的磨刀机,配研成对锥齿轮的研齿机,检验成对锥齿轮啮合接触情况的锥齿轮滚动检查机和防止齿部热处理变形的淬火压床等。

滚齿机的运动分析

应用最广泛的齿轮加工机床,多数是立式。加工:直齿、斜齿的外啮合圆柱齿轮、蜗轮卧式滚齿机,用于仪表工业中加工小模数齿轮和在一般机械制造业中加工轴齿轮、花键轴等。

滚齿原理

由一对交错轴斜齿轮啮合传动原理演变而来将这对啮合传动副中的一个齿轮的齿数减少到几个或一个,螺旋角β增大到很大(即螺旋升角ω很小),它就成了蜗杆。再将蜗杆开槽并铲背,就成为齿轮滚刀。

滚齿原理

齿轮加工机床的应用

齿轮加工机床主要分为圆柱齿轮加工机床和锥齿轮加工机床两大类。圆柱齿轮加工机床主要用于加工各种圆柱齿轮、齿条、蜗轮。常用的有滚齿机,插齿机、铣齿机、剃齿机等。

齿轮加工机床广泛应用在汽车、拖拉机、机床、工程机械、矿山机械、冶金机械、石油、仪表、飞机和航天器等各种机械制造业中。

齿轮加工机床是加工各种圆柱齿轮、锥齿轮和其他带齿零件齿部的机床。齿轮加工机床的品种规格繁多,有加工几毫米直径齿轮的小型机床,加工十几米直径齿轮的大型机床,还有大量生产用的高效机床和加工精密齿轮的高精度机床。

古代的齿轮是用手工修锉成形的。1540年,意大利的托里亚诺在制造钟表时,制成一台使用旋转锉刀的切齿装置;1783年,法国的勒内制成了使用铣刀的齿轮加工机床,并有切削齿条和内齿轮的附件;1820年前后,英国的怀特制造出第一台既能加工圆柱齿轮又能加工圆锥齿轮的机床。具有这一性能的机床到19世纪后半叶又有发展。

40年代,为适应航空工业的需要,发展了弧齿锥齿轮磨齿机。1944年,瑞士厄利康公司制成延长外摆线齿锥齿轮铣齿机;从50年代起,又发展了用双刀体组合式端面铣刀盘,加工延长外摆线齿锥齿轮的铣齿机。

滚齿机是用滚刀按展成法粗、精加工直齿、斜齿、人字齿轮和蜗轮等,加工范围广,可达到高精度或高生产率;插齿机是用插齿刀按展成法加工直齿、斜齿齿轮和其他齿形件,主要用于加工多联齿轮和内齿轮;铣齿机是用成形铣刀按分度法加工,主要用于加工特殊齿形的仪表齿轮;剃齿机是用齿轮式剃齿刀精加工齿轮的一种高效机床;磨齿机是用砂轮,精加工淬硬圆柱齿轮或齿轮刀具齿面的高精度机床;珩齿机是利用珩轮与被加工齿轮的自由啮合,消除淬硬齿轮毛刺和其他齿面缺陷的机床;挤齿机是利用高硬度无切削刃的挤轮与工件的自由啮合,将齿面上的微小不平碾光,以提高精度和光洁程度的机床;齿轮倒角机是对内外啮合的滑移齿轮的齿端部倒圆齿轮加工机床主要分为圆柱齿轮加工机床和锥齿轮加工机床两大类。圆柱齿轮加工机床主要用于加工各种圆柱齿轮、齿条、蜗轮。常用的有滚齿机,插齿机、铣齿机、剃齿机等。

齿轮加工机床与齿轮加工

齿轮加工机床与齿轮加工 图 7-1 成形法加工齿轮 a) 盘状模数铣刀 b) 指状模数铣刀 图 7-2 渐开线形状与基圆关系 齿轮的切削加工,按形成齿形的原理可分为两大类:成形法和展成法。 用成形法加工齿轮时,刀具的齿形与被加工齿轮的齿槽形状相同。其中最常用的是用盘状模数铣刀和指状模数铣刀在铣床上借助

分度装置铣齿轮,如图7-1所示,母线(渐开线)用成形法形成,不需成形运动,导线用相切法形成,需要两个成形运动。 齿轮的齿廓形状决定于基圆的大小(与齿轮的齿数有关),如图7-2所示。由于同一模数的铣刀是按被加工工件齿数范围分号的(表7-1),每一号铣刀的齿形是按该号中最少齿数的齿轮齿形确定的,因此,用这把铣刀铣削同号中其他齿数的齿轮时齿形有误差。用成形法铣齿轮所需运动简单,不需专门的机床,但要用分度头分度,生产效率低。这种方法一般用于单件小批量生产低精度的齿轮。 用展成法加工齿轮时,齿轮表面的渐开线用展成法形成,展成法具有较高的生产效率和加工精度。齿轮加工机床绝大多数采用展成法。 圆柱齿轮的加工方法主要有:滚齿、插齿等。锥齿轮的加工方法主要有:刨齿、铣齿等。精加工齿轮齿面的方法有:磨齿、剃齿、珩齿、研齿等。 表 7-1 模数铣刀加工齿数范围

一、插齿原理和插齿刀 1. 插齿原理及运动分析 插齿机用来加工内、外啮合的圆柱齿轮,尤其适合于加工内齿轮和多联齿轮,这是滚齿机无法加工的。装上附件,插齿机还能加工齿条,但插齿机不能加工蜗轮。 ( 1 )插齿原理及所需的运动 如图 3-7 所示,插齿机加工原理为模拟一对圆柱齿轮的啮合过程,其中一个是工件,另一个是齿轮形刀具——插齿刀,它与被加工齿轮的模数和压力角相同。直齿插齿刀的切削刃在插齿刀前端面上的投影是渐开线,当插齿刀沿其轴线方向往复运动时,切削刃的轨迹象一个直齿圆柱齿轮的齿面,这个假想的齿轮称为“产形”齿轮。插齿机是按展成法加工圆柱齿轮的。 用插齿刀插削直齿圆柱齿轮的运动分析见图 3-7 。

常用刀具材料分类、特点及应用

常用刀具材料分类、特点及应用 刀具材料的切削性能直接影响着生产效率、工件的加工精度、已加工表面质量和加工成本等,所以正确选择刀具材料是设计和选用刀具的重要容之一。 1.刀具材料应具备的性能 金属切削时,刀具切削部分直接和工件及切屑相接触,承受着很大的切削压力和冲击,并受到工件及切屑的剧烈摩擦,产生很高的切削温度,即刀具切削部分是在高温、高压及剧烈摩擦的恶劣条件下工作的。因此,刀具切削部分材料应具备以下基本性能。 1.1 高的硬度和耐磨性 硬度是刀具材料应具备的基本特性。刀具要从工件上切下切屑,其硬度必须比工件材料的硬度大。 耐磨性是材料抵抗磨损的能力。一般来说,刀具材料的硬度越高,耐磨性就越好。组织中硬质点(碳化物、氮化物等)的硬度越高,数量越多,颗粒越小,分布越均匀,则耐磨性越高。但刀具材料的耐磨性实际上不仅取决于它的硬度,而且也和它的化学成分、强度、纤维组织及摩擦区的温度有关。 1.2 足够的强度和韧性 要使刀具在承受很大压力,以及在切削过程常要出现的冲击和振动的条件下工作,而不产生崩刃和折断,刀具材料就必须具有足够的强度和韧性。 1.3 高的耐热性 耐热性是衡量刀具材料切削性能的主要标志。它是指刀具材料在高温下保持硬度、耐磨性、强度和韧性的性能。 1.4 导热性好 刀具材料的导热性越好,切削热越容易从切削区散走,有利于降低切削温度。刀具材料的导热性用热导率表示。热导率大,表示导热性好,切削时产生的热量就容易传散出去,从而降低切削部分的温度,减轻刀具磨损。

1.5 具有良好的工艺性和经济性 既要求刀具材料本身的可切削性能、耐磨性能、热处理性能、焊接性能等要好,且又要资源丰富,价格低廉。 2.常用刀具材料分类、特点及应用 刀具材料可分为工具钢、高速钢、硬质合金、瓷和超硬材料等五大类。常用刀具材料的主要性能及用途见表2-1。

刀具分类

一、刀具分类 刀具材料的种类很多,常用的材料有工具钢、硬质合金、陶瓷和超硬材料四大类。 1、碳素工具钢 碳素工具钢是指碳的质量分数为0.65%~1.35%的优质高碳钢。用做刀具的牌号一般是T10A和T12A。常温硬度60~64HRC。当切削刃热至200~250℃时,其硬度和耐磨性就会迅速下降,从而丧失切削性能。碳素工具钢多用于制造低速手用工具,如锉刀、手用锯条等。 2、合金工具钢 为了改善碳素工具钢的性能,常在其中加入适量合金元素如锰、铬、钨、硅和钒等,从而形成了合金工具钢。常用牌号有9SiCr、GCrl5、CrWMn等。合金工具钢与碳素工具钢相比,其热处理后的硬度相近,而耐热性和耐磨性略高,热处理性也较好。但与高速钢相比,合金工具钢的切削速度和使用寿命又远不如高速钢,使其应用受到很大的限制。因此,合金工具钢一般仅用于取代碳素工具钢,作一些低速、手动刀具,如手用丝锥、手动铰刀、圆板牙、搓丝板等。 3、高速钢 高速钢是一种含钨、铝、铬、钒等合金元素较多的高合金工具钢。高速钢主要优点是具有高的硬度、强度和耐磨性,且耐热性和淬透性良好,其允许的切削速度是碳素工具钢和合金工具钢的两倍以上。高速钢刃磨后切削刃锋利,故又称之为“锋钢”和“白钢”。高速钢是一种综合性能好、应用范围较广的刀具材料,常用来制造结构复杂的刀具,如成形车刀、铣刀、钻头、铰刀。拉刀、齿轮刀具等。 高速钢按其用途和性能不同,可分普通高速钢和高性能高速钢;按其化学成分不同,又可分为钨系高速钢和钨钼系高速钢。 1) 普通高速钢是指加工一般金属材料用的高速钢。常用牌号有W18Cr4V和W6Mo5Cr4V2。 ① W18Cr4V属钨系高速钢,它具有性能稳定,刃磨及热处理工艺控制方便等优点,但因钨价较高,且使用寿命短故使用较少。 ② W6Mo5Cr4V2属钨钼系高速钢,它的碳化物分布均匀,抗弯强度,冲击韧度和高温塑性都比W18Cr4V好,但磨削工艺略差。因其使用寿命长、价格低,故被广泛使用。 2) 高性能高速钢是在普通高速钢中再加入一些合金元素,以进一步提高它的耐热性、耐磨性。其切削速度可达50~lOOm/min。主要用于不锈钢、耐热钢、高强度钢等难加工材料的切削加工。有高钒高速钢和超硬高速钢等。 ①高矾高速钢(W12Cr4V4Mo)由于钒、碳含量的增加提高了耐磨性,刀具寿命比普通高速钢提高2~4倍,但是随着钒含量的提高使其磨削性能变差。故使用较少。 ②超硬高速钢是为了加工一些难以加工的材料而发展起来的。其常温硬度。高温硬度、耐热性和耐磨性都比普通高速钢高,具有良好的综合性能,可以加工

齿轮加工机床

齿轮加工机床 科技名词定义 中文名称: 齿轮加工机床 英文名称: gear cutting machine 定义: 用齿轮加工工具加工齿轮齿面或齿条齿面的机床。 应用学科: (一级学科);切削加工工艺与设备(二级学科);金属切削机床-各种金属切削机床(三级学科) 以上内容由审定公布 百科名片 齿轮加工机床 齿轮加工机床是加工各种圆柱齿轮、锥齿轮和其他带齿零件齿部的机床。齿轮加工机床的品种规格繁多,有加工几毫米直径齿轮的小型机床,加工十几米直径齿轮的大型机床,还有大量生产用的高效机床和加工精密齿轮的高精度机床。齿轮加工机床广泛应用在汽车、拖拉机、机床、工程机械、矿山机械、冶金机械、石油、仪表、飞机和航天器等各种机械制造业中。目录

展开 发展沿革 古代的齿轮是用手工修锉成形的。1540年,意大利的托里亚诺在制造钟表时,制成一台使用旋转锉刀的切齿装置;1783年,法国的勒内制成了使用铣刀的齿轮加工机床,并有切削齿条和内齿轮的附件;1820年前后,英国的怀特制造出第一饶芗庸ぴ仓萋钟帜芗庸ぴ沧冻萋值幕病>哂姓庖恍阅艿幕驳?9世纪后半叶又有发展。 齿轮加工机床 1835年,英国的惠特沃思获得蜗轮的专利;1858年,席勒取得圆柱齿轮滚齿机的专利;以后经多次改进,至1897年德国的普福特制成带差动机构的滚齿机,才圆满解决了加工斜齿轮的问题。在制成齿轮形插齿刀后,美国的费洛斯于1897年制成了。 二十世纪初,由于汽车工业的需要,各种磨齿机相继问世。1930年左右在美国制成剃齿机;1956年制成。60年代以后,现代技术在一些先进的圆柱齿轮加工机床上获得应用,比如在大型机床上采用数字显示指示移动量和切齿深度;在滚齿机、插齿机和磨齿机上采用电子伺服系统和数控系统代替机械传动链和交换齿轮;用设有故障诊断功能的可编程序控制器,控制工作循环和变换切削参数;发展了数字控制非圆齿轮插齿机和适应控制滚齿机;在滚齿机上用电子传感器检测传动链运动误差,并自动反馈补偿误差等。 1884年,美国的比尔格拉姆发明了采用单刨刀按展成法加工的直齿锥齿轮刨齿机;1900年,美国的比尔设计了双刀盘铣削直齿锥齿轮的机床。 由于汽车工业的需要,1905年在美国制造出带有两把刨刀的直齿锥齿轮刨齿机,又于1913年制成弧齿锥齿轮铣齿机;1923年,出现了准渐开线齿锥齿轮铣齿机;30年代研制成能把直齿锥齿轮一次拉削成形的拉齿机,主要用于汽车差动齿轮的制造。 40年代,为适应航空工业的需要,发展了弧齿锥齿轮磨齿机。1944年,瑞士厄利康公司制成延长外摆线齿锥齿轮铣齿机;从50年代起,又发展了用双刀体组合式端面铣刀盘,加工延长外摆线齿锥齿轮的铣齿机。 齿轮加工机床主要分为圆柱齿轮加工机床和锥齿轮加工机床两大类。圆柱齿轮加工机床主要用于加工各种圆柱齿轮、齿条、蜗轮。常用的有滚齿机,插齿机、铣齿机、剃齿机等。

齿轮加工机床

https://www.doczj.com/doc/2b8507828.html,/netclass/netclass6_1.asp 第四节齿轮加工机床 一.齿轮加工机床工作原理 齿轮加工机床是用来加工齿轮轮齿表面的机床。齿轮作为最常用的传动件,广泛应用于各种机械及仪表中,随着现代工业的发展对齿轮制造质量要求越来越高,使齿轮加工设备向高精度、高效率和高自动化的方向发展。 齿轮加工机床的种类很多,构造及加工方法也各不相同。但按齿形形成的原理分类,切削齿轮的方法可分为成形法和展成法两类。 (一)成形法 a) b) 图6-26 成形法加工齿轮 成形法加工齿轮是使用切削刃形状与被切齿轮的齿槽形状完全相符的成形刀具切出齿轮的方法。即由刀具的切削刃形成渐开线母线,再加上一个沿齿坯齿向的直线运动形成所加工齿面。这种方法一般在铣床上用盘铣刀或指形齿轮铣刀铣削齿轮,见图6-26。此外,也可以在刨床或插床上用成形刀具刨、插削齿轮。 成形法加工齿轮是采用单齿廓成形分齿法,即加工完一个齿,退回,工件分度,再加工下一个齿。因此生产率较低而且对于同一模数的齿轮,只要齿数不同,齿廓形状就不同,需采用不同的成形刀具。在实际生产中为了减少成形刀具的数量,每一种模数通常只配有八把刀,各自适应一定的齿数范围,因此加工出的齿形是近似的,加工精度较低。但是这种方法,机床简单,不需要专用设备,适用于单件小批生产及加工精度不高的修理行业。 (二)展成法 展成法加工齿轮是利用齿轮啮合的原理进行的,其切齿过程模拟齿轮副(齿轮一齿条、齿轮—齿轮)的啮合过程。把其中的一个转化为刀具,另一个转化为工件,并强制刀具和工件作严格的啮合运动,被加工工件的齿形表面是在刀具和工件包络过程中由刀具切削刃的位置连续变化而形成的。在展成法加工齿轮中用同一把刀具可以加工相同模数而任意齿数的齿轮。其加工精度和生产率都比较高,在齿轮加工中应用最为广泛。 二. 齿轮加工机床的类型 按照被加工齿轮种类不同,齿轮加工机床可分为圆柱齿轮和锥齿轮加工机床两大类。圆柱齿轮加工机床主要有滚齿机、插齿机等,锥齿轮加工机床有加工直齿锥齿轮的刨齿机、铣齿机、拉齿机和加工弧齿锥齿轮的铣齿机。用来精加工齿轮齿面的机床有珩齿机、剃齿机和磨齿机等。 三.齿轮刀具 (一)齿轮刀具的种类 齿轮刀具是用于加工各种齿轮齿形的刀具。由于齿轮的种类很多,相应地齿轮刀具种类也极其繁多。一般按照齿轮的齿形可分为加工渐开线齿轮刀具和非渐开线齿轮刀具。按照其加工工艺方法则分为成形法和展成法加工用齿轮刀具两大类。 1 .成形法齿轮刀具

齿轮加工机床的传动原理图

滚切直齿圆柱齿轮 图1为滚直齿的传动原理图,图中标“A”为直线运动、标“B”为旋转运动,滚刀、工件、电机、进给传动的丝杠螺母副及刀架均画成示意简图,而菱形小块则是一种可变传动比的换置器官符号。 1、形成母线(渐开线)的运动和传动链 需要滚刀和工件之间的复合运动(图1中B1+B2),称展成运动。由动力源(电机)到刀具主轴的传动链称为外联系传动链,即电机-1-2-iv-3-4-滚刀。由于滚刀的旋转B1是主运动,故这条传动链称为主运动传动链。联系滚刀和工件之间的传动链,称展成传动链。它用以保持B1和B2之间的严格传动比关系,故称内联传动链,设滚刀的头数为K,工件的齿数为Z,则滚刀每转1/K转,工件应转1/Z转。图1中,这条传动链是:滚刀(B1)-4-5-ix- 6-7-工件(B2)。 2、形成导线(直线)的运动和传动链 形成直线导线运动是滚刀的旋转和滚刀(刀架)沿工件轴线方向的竖直进给运动。为了保证加工工件表面粗糙度要求,操作者真正关心的是工件每转时刀架的轴向移动量(mm/r)。因此,进给传动链为:工件-7-8-is-9-10-刀架升降丝杠-刀架。 综上所述,滚切直齿圆柱齿轮所需要的传动链为:两个外链-主运动传动链、进给运动传动链;一个内链-展称运动链。外链的功能是实现执行件的简单运动,或把动力源接通到内链。内链唯一功能是实现执行件之间的复合(严格的传动比关系)运动。 滚切斜齿圆柱齿轮 斜齿圆柱齿轮与直齿圆柱齿轮相比,端面齿廓均为渐开线,但齿长方向不是直线,而是螺旋线。由于斜齿的齿长一般只是大导程螺旋线的一小段,故看上去轮齿是斜着排列。但不可忘记每个斜齿的导线都属于一条螺旋线。 形成母线(渐开线)的运动和传动链与滚切直齿时相同(仅展成传动链中的合成机构有变化)。 由于形成的导线是螺旋线,即刀架的下降运动A和工件的旋转运动B3复合成螺旋运动。此前工件因参与展成运动与具有旋转运动B2,而工件只有一个自由度,所以B2和B3必须合成一个运动之后再传给工件才行,B3称为附加运动。 刀架和工件之间的复合运动保证刀架直线移动一个螺旋线的导程T时,工件的附加转动为一转。这条内链即:刀架-丝杠-12-13-iy-14-15-合成 -6-7-ix-8-9-工件,习惯上称它为差动传动链。当它与另一条内链(展成链)要同时把两个运动传给工件时,将发生干涉。因此,必须在传动系统的恰滚齿机的合成机构是为一差动轮系,图中来自滚刀的运动和来自刀架的运动分别由5、15两点输入合成机构,运动合成后由点6输出,传给工件。当位置设一合成机构,如图2所示。

常用刀具材料分类特点及应用

金属切削原理读书报告 常用刀具材料分类特点及应用 姓名: 班级: 学号: 2014年5月7日

摘要 本文在阅读有关论文和专著的基础上对现阶段常用的刀具材料进行了总结和分析,总结出了碳素工具钢、合金工具钢、高速钢、硬质合金、陶瓷、金刚石、立方碳化硼等刀具材料的特点及应用范围,同时针对几种常见的切削工序中刀具材料的应用做了简单的分析。

目录 摘要 (1) 1刀具材料的发展历史 (2) 2 常用刀具材料及特点 (2) 2.1 碳素工具钢 (2) 2.2 合金工具钢 (3) 2.3 高速钢 (4) 2.4 硬质合金 (5) 2.5 陶瓷 (7) 2.6 超硬材料 (9) 3 刀具材料的典型应用 (10) 3.1 工件材料与刀具材料 (10) 3.2 加工条件与刀具材料 (11) 4 总结 (11) 5 参考文献 (12)

1刀具材料的发展历史[1] 刀具材料的发展在人类的生活、生产中有着很大的重要性。 18世纪中叶, 在欧洲出现了工业革命以后, 切削刀具一直是用碳素工具钢制造, 其成分与现代的T10、T12相近。1865年,英国罗伯特?墨希特发明了合金工具钢,其牌号有9CrSi、CrWMn等。随着对加工效率要求的提高,新的刀具材料在不断更新。1898年,美国机械工程师泰勒和冶金工程师怀特发明了高速钢。进入20世纪,人们不断寻求新型刀具材料。20世纪20年代中期到30年代初,出现了钨钴类和钨钛类硬质合金。然而硬质合金刀具仍不能满足现代高硬度工件材料的超精密加工的要求,于是更新的刀具材料相继出现。20世纪30年代出现了氧化铝陶瓷,后来又有氦化硅陶瓷到50年代和60年代又制造出人造立方氮化硼和人造聚晶金刚石。 总而言之,20世纪中,刀具材料发展的速度比过去快得多,其种类、类型、数量和性能均有大幅度的发展。 2 常用刀具材料及特点 对于金属切削刀具来说,切削过程中要承受很大的压力,同时会与工件、切屑相互接触的表面产生摩擦力,切削产生的热量使得刀具温度上升,产生一定的热应力。因此刀具材料应能满足这样几个要求:高的硬度和耐磨性、足够的强度和韧性、良好的热物理性能和耐热冲击性能、良好的工艺性以及经济性。目前在机械加工中常用的刀具材料有碳素工具钢、合金工具钢、高速钢、硬质合金、陶瓷、金刚石和立方氮化硼等。[2]不同刀具材料的性能有所不同,因此在应根据具体的切削条件选择合适的刀具材料。下面将分别介绍每种刀具材料。 2.1 碳素工具钢 按照GB/T13304《钢分类》第1部分“钢按化学成分分类”,碳素工具钢属于非合金钢。按照标准第2部分“钢按主要质量等级和主要性能及使用特性分类”,碳素工具钢属于特殊质量非合金钢。碳素工具钢牌号及化学成分见表1

常用刀具材料分类、特点、应用及发展

金属切削原理 读书报告 《常用刀具材料分类、特点及应用》 姓名 学号 班级 学院 二○一五年五月

摘要 机械制造工业是制造业最重要的组成之一,它担负着向国民经济的各个部门提供机械装备的任务。我国现代化建设的发展速度在很大程度上要取决于机械制造工业的发展水平,因此,从这个意义上说,机械制造工业的发展水平是关系全局的。机械制造中的加工方法很多,其中材料去除加工精度较高、表面质量较好,有很强的加工适应性,是目前机械制造中应用最广泛的加工方法。材料去除加工时,刀具在工作时,要承受很大的压力。同时,由于切削产生的金属塑性变形以及各部的摩擦,使刀具切削刃上产生很高的温度和受到很大的应力,在这样的条件下,刀具将迅速磨损或破损。因此刀具材料性能应满足;高的硬度和耐磨性、足够的强度和韧性、高的耐热性、良好的热物理性能和耐热冲击性能、良好的工艺性能和经济性等要求。常用的刀具材料有高速钢、硬质合金、涂层刀具以及其他刀具材料包括陶瓷、金刚石和立方氮化硼等。其中陶瓷材料和超硬刀具材料对常规刀具材料的竞争越来越激烈,且所占比重快速增长。随着上述刀具材料的发展,使车削加工的切削速度提高了100多倍,而且新刀具材料出现的周期也越来越短。但在较长时间内,各种刀具材料将仍是相互补充,相互竞争。 关键词:刀具材料性能,刀具材料分类,刀具材料特点,刀具材料应用

目录 引言 (3) 第一章绪论 (3) 1.1金属切削技术的发展概况 (3) 1.2金属切削材料的研究意义 (4) 第二章刀具材料性能 (4) 2.1刀具切削环境 (4) 2.2刀具材料性能要求 (4) 2.3刀具材料主要性能 (6) 第三章刀具材料分类 (7) 3.1高速钢 (7) 3.1.1 普通高速钢 (8) 3.1.2高性能高速钢 (8) 3.1.3粉末冶金高速钢 (9) 3.2硬质合金 (9) 3.2.1钨钴类硬质合金 (10) 3.2.2钨钛钴类硬质合金 (10) 3.2.3钨钛钽(铌)钴类硬质合金 (11) 3.2.4硬质合金的选用 (11) 3.3涂层刀具 (12) 3.4其它刀具材料 (13) 3.4.1陶瓷材料 (13) 3.4.2金刚石 (14) 3.4.3立方氮化硼(简称CBN) (15) 第四章刀具材料发展 (15) 参考文献 (16)

常用刀具材料硬度的比较

第三章 一、选择题 1.31210111下面是关于常用刀具材料硬度的比较,那个选项的论述是正确的(A)A金刚石>CBN>硬质合金>高速钢B金刚石>CBN>高速钢>硬质合金 C金刚石>硬质合金>高速钢>CBN D金刚石>高速钢>硬质合金>CBN 2. 31210122下面属于性质脆、工艺性差的刀具材料是(C) A碳素工具钢 B 合金工具钢 C 金刚石D 硬质合金钢 3. 31210113 目前使用最为广泛的刀具材料是(B) A陶瓷B高速钢和硬质合金 C 碳素工具钢 D CBN 4.31210114 W18Cr4V是:(C) A碳素钢 B 硬质合金钢 C 普通高速钢D 高性能高速钢 5.31210125 W18Cr4V比W6Mo5Cr4V2 好的性能是:(D) A硬度 B 韧性 C 切削性能D可磨性 6.31210116 WC—Co类属于哪一类硬质合金:(A) A YG类 B YT类 C YW类 D YM类 7.31210127 应用于切削一般钢料的硬质合金刀具是(B) A YG类 B YT类 C YW类 D YM类 8.31210128 在加工高温合金(如镍基合金)等难加工材料时,刀具材料可首选:(A) A CBN B 硬质合金 C 金刚石 D 陶瓷 9.31210129 在粗车铸铁时,选用:(B) A YG3 B YG8 C YT5 D YT30 10.3121012A碳素钢、合金钢的连续精加工,应选用:(D) A YG3 B YG8 C YT15 D YT30 11. 3121012B 在连续粗加工、不连续精加工碳素钢时,应选用:(B) A YT5 B YT15 C YT30 D YW2 12.31310121 在数控机床和自动线上,一般采用:(C) A整体式刀具 B 装配式刀具 C 复合式刀具D焊接装配式刀具 13. 32210111 增大前角,下面正确的是:(D) A增大粗糙度 B 增大切削效率 C 切削刃与刀头的强度增大 D 减小切削的变形 14.32210122 对于不同的刀具材料,合理前角(γopt)也不同,硬质合金刀具的γopt (B) 要____ 高速钢刀具的γ opt A大于 B 小于 C 等于 D 都有可能 15 32210113 增大前角可以(B) A减小切削力,导热面积增大B减小切削力,导热面积减小 C增大切削力,导热面积增大D增大切削力,导热面积减小1632210114 下面有关刀具前面的卷屑槽宽度的说法,正确的是:(D) A愈小愈好 B 愈大愈好 C 无所谓 D 根据工件材料和切削用量决定 17 32310111 增大后角(A) A减小摩擦 B 增大摩擦 C 切削刃钝园半径越大 D 刀头强度增强1832310121 加工下面哪种材料时,应该采用较小的后角(C) A工件材料塑性较大B工件材料容易产生加工硬化 C 脆性材料 D 硬而脆的材料

机械加工常用金属材料及特性

机械加工常用金属材料及 特性 This model paper was revised by the Standardization Office on December 10, 2020

简介:1. 45——优质碳素结构钢,是最常用中碳调质钢。主要特征: 最常用中碳调质钢,综合力学性能良好,淬透性低,水淬时易生裂纹。小型件宜采用调质处理,大型件宜采用正火处理。应用举例 1. 45——优质碳素结构钢,是最常用中碳调质钢。 主要特征: 最常用中碳调质钢,综合力学性能良好,淬透性低,水淬时易生裂纹。小型件宜采用调质处理,大型件宜采用正火处理。应用举例: 主要用于制造强度高的运动件,如透平机叶轮、压缩机活塞。轴、齿轮、齿条、蜗杆等。焊接件注意焊前预热,焊后消除应力退火。 2. Q235A(A3钢)——最常用的碳素结构钢。 主要特征: 具有高的塑性、韧性和焊接性能、冷冲压性能,以及一定的强度、好的冷弯性能。应用举例: 广泛用于一般要求的零件和焊接结构。如受力不大的拉杆、连杆、销、轴、螺钉、螺母、套圈、支架、机座、建筑结构、桥梁等。 3. 40Cr——使用最广泛的钢种之一,属合金结构钢。 主要特征: 经调质处理后,具有良好的综合力学性能、低温冲击韧度及低的缺口敏感性,淬透性良好,油冷时可得到较高的疲劳强度,水冷时复杂形状的零件易产生裂纹,冷弯塑性中等,回火或调质后切削加工性好,但焊接性不好,易产生裂纹,焊前应预热到100~150℃,一般在调质状态下使用,还可以进行碳氮共渗和高频表面淬火处理。 应用举例:调质处理后用于制造中速、中载的零件,如机床齿轮、轴、蜗杆、花键轴、顶针套等,调质并高频表面淬火后用于制造表面高硬度、耐磨的零件,如齿轮、轴、主轴、曲轴、心轴、套筒、销子、连杆、螺钉螺母、进气阀等,经淬火及中温回火后用于制造重载、中速冲击的零件,如油泵转子、滑块、齿轮、主轴、套环等,经淬火及低温回

刀具材料应具备的性能及分类 (2)

刀具材料决定刀具切削性能的根本因素,对于加工效率、加工质量、加工成本以及刀具耐用度影响很大。使用碳工具钢作为刀具材料时,切削速度只有10m/min左右;20世纪初出现了高速钢刀具材料,切削速度提高到每分钟几十米;30年代出现了硬质合金,切削速度提高到每分钟一百多米至几百米;当前陶瓷刀具和超硬材料刀具的出现,使切削速度提高到每分钟一千米以上;被加工材料的发展也大大地推动了刀具材料的发展。 一刀具材料应具备的性能 性能优良的刀具材料,是保证刀具高效工作的基本条件。刀具切削部分在强烈摩擦、高压、高温下工作,应具备如下的基本要求。 1.高硬度和高耐磨性 刀具材料的硬度必须高于被加工材料的硬度才能切下金属,是刀具材料必备的基本要求,现有刀具材料硬度都在60HRC以上。刀具材料越硬,其耐磨性越好,但由于切削条件较复杂,材料的耐磨性还决定于它的化学成分和金相组织的稳定性。 2.足够的强度与冲击韧性 强度是指抵抗切削力的作用而不致于刀刃崩碎与刀杆折断所应具备的性能。一般用抗弯强度来表示。 冲击韧性是指刀具材料在间断切削或有冲击的工作条件下保证不崩刃的能力,一般地,硬度越高,冲击韧性越低,材料越脆。硬度和韧性是一对矛盾,也是刀具材料所应克服的一个关键。

3.高耐热性 耐热性又称红硬性,是衡量刀具材料性能的主要指标。它综合反映了刀具材料在高温下保持硬度、耐磨性、强度、抗氧化、抗粘结和抗扩散的能力。 4.良好的工艺性和经济性 为了便于制造,刀具材料应有良好的工艺性,如锻造、热处理及磨削加工性能。当然在制造和选用时应综合考虑经济性。当前超硬材料及涂层刀具材料费用都较贵,但其使用寿命很,在成批大量生产中,分摊到每个零件中的费用反而有所降低。因此在选用时一定要综合考虑。 二常用刀具材料 常用刀具材料有工具钢、高速钢、硬质合金、陶瓷和超硬刀具材料,目前用得最多的为高速钢和硬质合金。 高速钢 高速钢是一种加了较多的钨、铬、钒、相等合金元素的高合金工具钢,有良好的综合性能。其强度和韧性是现有刀具材料中最高的。高速钢的制造工艺简单,容易刃磨成锋利的切削刃;锻造、热处理变形小,目前在复杂的刀具,如麻花钻、丝锥、拉刀、齿轮刀具和成形刀具制造中,仍占有主要地位。 高速钢可分为普通高速钢和高性能高速钢。 普通高速钢,如W18Cr4V广泛用于制造各种复杂刀具。其切削速度一般不太高,切削普通钢料时为40-60m/min。

第四章 齿轮加工机床作业题

第四章 齿轮加工机床 1.分析比较应用范成法与成形法加工圆柱齿轮各有何特点? 答:成形法加工齿轮,要求所用刀具的切削刃形状与被切齿轮的齿槽形状相吻合。例如:在铣床上用盘形或指形齿轮铣刀铣削齿轮,在刨床或插床上用成形刀具刨削或插削齿轮等。通常采用单齿轮成形刀具加工齿轮,它的优点是机床较简单,也可以利用通用机床加工。缺点是对于同一模数的齿轮,只要齿数不同,齿廓形状就不相同,需采用不同的成形刀具;在实际生产中加工精度较低,生产效率也较低。范成法切齿所用刀具切削刃的形状相当于齿条或齿轮的轮廓,它与被切齿轮的齿数无关,因此每一种模数,只需用一把刀具就可以加工各种不同齿数的齿轮。这种方法的加工精度和生产率一般比较高,因而在齿轮加工机床中应用最广。 2.在滚齿机上加工直齿和斜齿圆柱齿轮,大质数直齿圆柱齿轮,用切向发加工蜗轮时,分别需要调整哪几条传动链?画出传动原理图,并说明各传动链的两端件及计算位移是什么? 答:(1)加工直齿圆柱齿轮时,需要调整主运动传动链,范成运动传动链和轴向进给运动传动链。传动原理图见图4-2,其中主运动的传动链的两端件是电动机—滚刀主轴Ⅷ,计算位移是:电动机电n —滚刀主轴(滚刀传动)刀n ;范成运动传动链的两端件是滚刀主轴(滚刀转动)—工作台(工件转动),计算位移是:滚刀主轴转一转时,工件转可k/z 转;轴向进给传动链的两端件是工作台(工件移动),计算位移是:工作台每转一转时,刀架进给F。 (2)加工斜齿圆柱齿轮时,比加工直齿圆柱齿轮时多一条附加运动传动链,其两端件是滚刀刀架(滚刀移动)—(作台工件附加转动),计算位移是:刀架沿工件轴向移动一个螺旋线导程L时,工件应附加转±1转。传动原理图见图4-3。 (3)加工大质数直齿圆柱齿轮时,需要调整主运动传动链,与加工直齿圆柱齿轮相同;范成运动传动链:两端件是工作台,计算位移是:工作台转k/z 转,工作台附加转(k/z —k/0z )转。传动原理图见图4-3(p b )4.用切向法加工蜗轮时,需要调整主运动传动链,范成运动传动链和切入进给运动,见图4—4C ,4—4D 。 3.滚齿机上加工斜齿圆柱齿轮时,工件的范成运动(12B )和附加运动(22B )

常用刀具材料及选用

常用刀具材料及选用 在切削过程中,刀具担负着切除工件上多余金属以形成已加工表面的任务。刀具的切削性能好坏,取决于刀具切削部分的材料、几何参数以及结构的合理性等。刀具材料对刀具寿命、加工生产效率、加工质量以及加工成本都有很大影响,因此必须合理选择。 一、刀具材料应具备的性能刀具在切削时要承受高温、高压、强烈的摩擦、冲击和振动,因此刀具材料必须具备以下性能: 1.高的硬度和耐磨性刀具应具备高的硬度和耐磨性。一般刀具材料的硬度越高,耐磨性越好。其常温硬度一般要求大于60HRC。 2.足够的强度和韧性为承受切削负荷、振动和冲击,刀具材料必须具备足够的强度和韧性。 3.高的热稳定性刀具在高温下工作,要求刀具材料具备高的热稳定性,也称高的耐热性。即刀具材料在高温下硬度、耐磨性、强度和韧性变化很小,仍能保持正常切削。 4.良好的物理特性即刀具材料具备良好的导热性、大的热容量以及优良的热冲击性能。 5.良好的工艺性即刀具材料应具备良好的锻造性、机械加工性和热处理性。 除此之外,要求刀具材料经济性要好。 二、常用刀具材料的性能及选用常用刀具材料的种类和特性刀具材料种类很多,常用的有工具钢(包括碳素工具钢、合金工具钢和高速钢)、硬质合金、陶瓷、金刚石(天然和人造)和立方氮化硼等。碳素工具钢和合金工具钢,因其耐热性很差,目前仅用于手工工具。下面对高速钢、硬质合金、陶瓷及其它超硬刀具材料进行介绍。 1)高速钢高速钢是一种加入了较多的钨、钼、铬、钒等合金元素的高合金工具钢。高速钢有很高的强度,抗弯强度为一般硬质合金的2~3倍;韧性也高,比硬质合金高几十倍。高速钢的硬度在63HRC以上,且有较好的耐热性,在切削温度达到500650°C时,尚能进行切削。高速钢可加工性好,热处理变形较小,目前常用于制造各种复杂刀具(如钻头、丝锥、拉刀、成型刀具、齿轮刀具等)。高速钢刀具可以加工从有色金属到高温合金的各种材料。 表1-2列出了几种常用高速钢的牌号及其主要用途,可供选择时参考。 2)硬质合金硬质合金是用高硬度、高熔点的金属碳化物(如WC、TiC、TaC、NbC等)粉末和金属粘结剂(如Co、Ni、Mo等)经高压成型后,再在高温下烧结而成的粉末冶金制品。硬质合金中的金属碳化物熔点高、硬度高、化学稳定性与热稳定性好,因此,硬质合金的硬度、耐磨性、耐热性都很高,允许的切削速度远高于高速钢,加工效率高且能切削诸如淬火钢等硬材料。硬质合金的不足是与高速钢相比,其抗弯强度较低、脆性较大,抗振动和冲击性能也较差。 硬质合金因其切削性能优良而被广泛用来制作各种刀具。在我国,绝大多数车刀、端铣刀和深孔钻都采用硬质合金制造,目前,在一些较复杂的刀具上,如立铣刀、孔加工刀具等也开始应用硬质合金制造。我国常用的硬质合金牌号及其应用范围见表1-3。 3)陶瓷和超硬刀具材料陶瓷材料比硬质合金具有更高的硬度(91~95HRA)和耐热性,在1200℃的温度下仍能切削,耐磨性和化学惰性好,摩擦系数小,抗粘结和扩散磨损能力强,因而能以更高的速度切削,并可切削难加工的高硬度材料。主要缺点是性脆、抗冲击韧性差,抗弯强度低。

常用刀具材料分类 特点及应用

常用刀具材料分类、特点及应用刀具材料的切削性能直接影响着生产效率、工件的加工精度、已加工表面质量和加工成本等,所以正确选择刀具材料是设计和选用刀具的重要内容之一。 1.刀具材料应具备的性能 金属切削时,刀具切削部分直接和工件及切屑相接触,承受着很大的切削压力和冲击,并受到工件及切屑的剧烈摩擦,产生很高的切削温度,即刀具切削部分是在高温、高压及剧烈摩擦的恶劣条件下工作的。因此,刀具切削部分材料应具备以下基本性能。 1.1 高的硬度和耐磨性 硬度是刀具材料应具备的基本特性。刀具要从工件上切下切屑,其硬度必须比工件材料的硬度大。 耐磨性是材料抵抗磨损的能力。一般来说,刀具材料的硬度越高,耐磨性就越好。组织中硬质点(碳化物、氮化物等)的硬度越高,数量越多,颗粒越小,分布越均匀,则耐磨性越高。但刀具材料的耐磨性实际上不仅取决于它的硬度,而且也和它的化学成分、强度、纤维组织及摩擦区的温度有关。 1.2 足够的强度和韧性 要使刀具在承受很大压力,以及在切削过程中通常要出现的冲击和振动的条件下工作,而不产生崩刃和折断,刀具材料就必须具有足够的强度和韧性。 1.3 高的耐热性 耐热性是衡量刀具材料切削性能的主要标志。它是指刀具材料在高温下保持硬度、耐磨性、强度和韧性的性能。 1.4 导热性好 刀具材料的导热性越好,切削热越容易从切削区散走,有利于降低切削温度。刀具材料的导热性用热导率表示。热导率大,表示导热性好,切削时产生的热量就容易传散出去,从而降低切削部分的温度,减轻刀具磨损。

1.5 具有良好的工艺性和经济性 既要求刀具材料本身的可切削性能、耐磨性能、热处理性能、焊接性能等要好,且又要资源丰富,价格低廉。 2.常用刀具材料分类、特点及应用 刀具材料可分为工具钢、高速钢、硬质合金、陶瓷和超硬材料等五大类。常用刀具材料的主要性能及用途见表2-1。

刀具材料应具备的性能及常用材料

刀具材料应具备的性能及常用材料 刀具材料是决定刀具切削性能的根本因素,对于加工效率、加工质量、加工成本以及刀具耐用度影响很大。使用碳工具钢作为刀具材料时,切削速度只有10m/min左右;20世纪初出现了高速钢刀具材料,切削速度提高到每分钟几十米;30年代出现了硬质合金,切削速度提高到每分钟一百多米至几百米;当前陶瓷刀具和超硬材料刀具的出现,使切削速度提高到每分钟一千米以上;被加工材料的发展也大大地推动了刀具材料的发展。一刀具材料应具备的性能 性能优良的刀具材料,是保证刀具高效工作的基本条件。刀具切削部分在强烈摩擦、高压、高温下工作,应具备如下的基本要求。 高硬度和高耐磨性 刀具材料的硬度必须高于被加工材料的硬度才能切下金属,这是刀具材料必备的基本要求,现有刀具材料硬度都在60HRC以上。刀具材料越硬,其耐磨性越好,但由于切削条件较复杂,材料的耐磨性还决定于它的化学成分和金相组织的稳定性。 足够的强度与冲击韧性 强度是指抵抗切削力的作用而不致于刀刃崩碎与刀杆折断所应具备的性能。一般用抗弯强度来表示。 冲击韧性是指刀具材料在间断切削或有冲击的工作条件下保证不崩刃的能力,一般地,硬度越高,冲击韧性越低,材料越脆。硬度和韧性是一对矛盾,也是刀具材料所应克服的一个关键。 高耐热性

耐热性又称红硬性,是衡量刀具材料性能的主要指标。它综合反映了刀具材料在高温下保持硬度、耐磨性、强度、抗氧化、抗粘结和抗扩散的能力。 良好的工艺性和经济性 为了便于制造,刀具材料应有良好的工艺性,如锻造、热处理及磨削加工性能。当然在制造和选用时应综合考虑经济性。当前超硬材料及涂层刀具材料费用都较贵,但其使用寿命很长,在成批大量生产中,分摊到每个零件中的费用反而有所降低。因此在选用时一定要综合考虑。 二常用刀具材料 常用刀具材料有工具钢、高速钢、硬质合金、陶瓷和超硬刀具材料,目前用得最多的为高速钢和硬质合金。 高速钢 高速钢是一种加人了较多的钨、铬、钒、相等合金元素的高合金工具钢,有良好的综合性能。其强度和韧性是现有刀具材料中最高的。高速钢的制造工艺简单,容易刃磨成锋利的切削刃;锻造、热处理变形小,目前在复杂的刀具,如麻花钻、丝锥、拉刀、齿轮刀具和成形刀具制造中,仍占有主要地位。 高速钢可分为普通高速钢和高性能高速钢。 普通高速钢,如W18Cr4V广泛用于制造各种复杂刀具。其切削速度一般不太高,切削普通钢料时为40-60m/min。 高性能高速钢,如W12Cr4V4Mo是在普通高速钢中再增加一些含碳量、含钒量及添加钴、铝等元素冶炼而成的。它的耐用度为普通高速钢的

常用的金属材料及其特性

常用金属材料及其特性 1、45——优质碳素结构钢,是最常用中碳调质钢 主要特征: 最常用中碳调质钢,综合力学性能良好,淬透性低,水淬时易生裂纹。小型件宜采用调质处理,大型件宜采用正火处理。应用举例: 主要用于制造强度高的运动件,如透平机叶轮、压缩机活塞。轴、齿轮、齿条、蜗杆等。焊接件注意焊前预热,焊后消除应力退火。 2、Q235A(A3钢)——最常用的碳素结构钢 主要特征: 具有高的塑性、韧性和焊接性能、冷冲压性能,以及一定的强度、好的冷弯性能。应用举例: 广泛用于一般要求的零件和焊接结构。如受力不大的拉杆、连杆、销、轴、螺钉、螺母、套圈、支架、机座、建筑结构、桥梁等。 3、40Cr——使用最广泛的钢种之一,属合金结构钢 主要特征: 经调质处理后,具有良好的综合力学性能、低温冲击韧度及低的缺口敏感性,淬透性良好,油冷时可得到较高的疲劳强度,水冷时复杂形状的零件易产生裂纹,冷弯塑性中等,回火或调质后切削加工性好,但焊接性不好,易产生裂纹,焊前应预热到100~150℃,一般在调质状态下使用,还可以进行碳氮共渗和高频表面淬火处理。应用举例:调质处理后用于制造中速、中载的零件,如机床齿轮、轴、蜗杆、花键轴、顶针套等,调质并高频表面淬火后用于制造表面高硬度、耐磨的零件,如齿轮、轴、主轴、曲轴、心轴、套筒、销子、连杆、螺钉螺母、进气阀等,经淬火及中温回火后用于制造重载、中速冲击的零件,如油泵转子、滑块、齿轮、主轴、套环等,经淬火及低温回火后用于制造重载、低冲击、耐磨的零件,如蜗杆、主轴、轴、套环等,碳氮共渗处即后制造尺寸较大、低温冲击韧度较高的传动零件,如轴、齿轮等。

4、HT150——灰铸铁 应用举例:齿轮箱体,机床床身,箱体,液压缸,泵体,阀体,飞轮,气缸盖,带轮,轴承盖等。 5、35——各种标准件、紧固件的常用材料 主要特征: 强度适当,塑性较好,冷塑性高,焊接性尚可。冷态下可局部镦粗和拉丝。淬透性低,正火或调质后使用应用举例: 适于制造小截面零件,可承受较大载荷的零件:如曲轴、杠杆、连杆、钩环等,各种标准件、紧固件。 6、65Mn——常用的弹簧钢 应用举例:小尺寸各种扁、圆弹簧、座垫弹簧、弹簧发条, 也可制做弹簧环、气门簧、离合器簧片、刹车弹簧、冷卷螺旋弹簧,卡簧等。 7、0Cr18Ni9——最常用的不锈钢(美国钢号304,日本钢号SUS304) 特性和应用: 作为不锈耐热钢使用最广泛,如食品用设备,一般化工设备,原于能工业用设备。 8、Cr12——常用的冷作模具钢(美国钢号D3,日本钢号SKD1) 特性和应用: Cr12钢是一种应用广泛的冷作模具钢,属高 碳高铬类型的莱氏体钢。该钢具有较好的淬透性和良好的耐磨性;由于Cr12钢碳含量高达2.3%,所以冲击韧度较差、易脆裂,而且容易形成不均匀的共晶碳化物;Cr12钢由于具有良好的耐磨性,多用于制造受冲击负荷较小的要求高耐磨的冷冲模、冲头、下料模、冷镦模、冷挤压模的冲头和凹模、钻套、量规、拉丝模、压印模、搓丝板、拉深模以及粉末冶金用冷压模等。

常用金属材料及特性

机械加工常用金属材料及特性 1. 45——优质碳素结构钢,是最常用中碳调质钢。 主要特征: 最常用中碳调质钢,综合力学性能良好,淬透性低,水淬时易生裂纹。小型件宜采用调质处理,大型件宜采用正火处理。应用举例: 主要用于制造强度高的运动件,如透平机叶轮、压缩机活塞。轴、齿轮、齿条、蜗杆等。焊接件注意焊前预热,焊后消除应力退火。 2. Q235A(A3钢)——最常用的碳素结构钢。 主要特征: 具有高的塑性、韧性和焊接性能、冷冲压性能,以及一定的强度、好的冷弯性能。应用举例: 广泛用于一般要求的零件和焊接结构。如受力不大的拉杆、连杆、销、轴、螺钉、螺母、套圈、支架、机座、建筑结构、桥梁等。 3. 40Cr——使用最广泛的钢种之一,属合金结构钢。 主要特征: 经调质处理后,具有良好的综合力学性能、低温冲击韧度及低的缺口敏感性,淬透性良好,油冷时可得到较高的疲劳强度,水冷时复杂形状的零件易产生裂纹,冷弯塑性中等,回火或调质后切削加工性好,但焊接性不好,易产生裂纹,焊前应预热到100~150℃,一般在调质状态下使用,还可以进行碳氮共渗和高频表面淬火处理。 应用举例:调质处理后用于制造中速、中载的零件,如机床齿轮、轴、蜗杆、花键轴、顶针套等,调质并高频表面淬火后用于制造表面高硬度、耐磨的零件,如齿轮、轴、主轴、曲轴、心轴、套筒、销子、连杆、螺钉螺母、进气阀等,经淬火及中温回火后用于制造重载、中速冲击的零件,如油泵转子、滑块、齿轮、主轴、套环等,经淬火及低温回火后用于制造重载、低冲击、耐磨的零件,如蜗杆、主轴、轴、套环等,碳氮共渗处即后制造尺寸较大、低温冲击韧度较高的传动零件,如轴、齿轮等。 4. HT150——灰铸铁应用举例:齿轮箱体,机床床身,箱体,液压缸,泵体,阀体,飞轮,气缸盖,带轮,轴承盖等 5. 35——各种标准件、紧固件的常用材料 主要特征: 强度适当,塑性较好,冷塑性高,焊接性尚可。冷态下可局部镦粗和拉丝。淬透性低,正火或调质后使用应用举例: 适于制造小截面零件,可承受较大载荷的零件:如曲轴、杠杆、连杆、钩环等,各种标准件、紧固件 6. 65Mn——常用的弹簧钢应用举例:小尺寸各种扁、圆弹簧、座垫弹簧、弹簧发条,也可制做弹簧环、气门簧、离合器簧片、刹车弹簧、冷卷螺旋弹簧,卡簧等。 7. 0Cr18Ni9——最常用的不锈钢(美国钢号304,日本钢号SUS304)特性和应用: 作为不锈耐热钢使用最广泛,如食品用设备,一般化工设备,原于能工业用设备 8. Cr12——常用的冷作模具钢(美国钢号D3,日本钢号SKD1) 特性和应用: Cr12钢是一种应用广泛的冷作模具钢,属高碳高铬类型的莱氏体钢。该钢具有较好的淬透性和良好的耐磨性;由于Cr12钢碳含量高达2.3%,所以冲击韧度较差、易脆裂,而且容易形成不均匀的共晶碳化物;Cr12钢由于具有良好的耐磨性,多用于制造受冲击负荷较小的要求高耐磨的冷冲模、冲头、下料模、冷镦模、冷挤压模的冲头和凹模、钻套、量规、拉丝模、压印模、搓丝板、拉深模以及粉末冶金用冷压模等 9. DC53——常用的日本进口冷作模具钢特性和应用: 高强韧性冷作模具钢,日本大同特殊钢(株)厂家钢号。高温回火后具有高硬度、高韧性,线切割性良好。用于精密冷冲压模、拉伸模、搓丝模、冷冲裁模、冲头等10、SM45——普通碳素塑料模具钢(日本钢号S45C) 10. DCCr12MoV——耐磨铬钢国产.较Cr12钢含碳量低,且加入了Mo和V,碳化物不均匀有所改善,MO能减轻碳化物偏析并提高淬透性,V能细化晶粒增加韧性.此钢有高淬透性,截面在400mm以下可以完全淬透,在300~400℃仍可保持良好的硬度和耐磨性,较Cr12有高的韧性,淬火时体积变化小,又有高的耐磨性和良好的综合机械性能.所以可以制造截面大,形状复杂,经受较大冲击的各种模具,例如普通拉伸模,冲孔凹模,冲模,落料模,切边模,滚边模,拉丝模,冷挤压模,冷切剪刀,圆锯,标准工具,量具等。 11. SKD11——韧性铬钢.日本日立株式生产.在技术上改善钢中的铸造组织,细化了晶粒.较Cr12mov的韧性和耐磨性有所提高.延长了模具的使用寿命.

相关主题
文本预览
相关文档 最新文档