当前位置:文档之家› 3导数的综合问题

3导数的综合问题

3导数的综合问题
3导数的综合问题

导数的综合问题

【知识点精讲】

综合问题题型:

1.比较大小、证明不等式;

2.单峰函数的最值问题;

3.曲线的斜率、物体的运动速度问题。

【例题选讲】

例1 设x>-2,n∈N*,比较(1+x)n与1+nx的大小.

优化设计P217典例剖析例1,解答略。

例2 (2000年全国)设函数f(x)=ax

2,其中a>0,求a的

+1

x-

范围,使函数f(x)在[)

,0上是单调函数。

+∞

优化设计P217典例剖析例2,解答略。

例3 (2004年天津,理20)已知函数f(x)= ax3+bx2-3x在x=±1时取得极值.

(1)讨论f(1)和f(-1)是函数f(x)的极大值还是极小值;

(2)过点A(0,16)作曲线y=f(x)的切线,求此切线方程。

优化设计P217典例剖析例3,解答略。

例 4 用总长的钢条制作一个长方体容器的框架,如果所制作容器

的底面的一边比另一边长,那么高为多少时容器的容积最大并求出它的最大容积。

优化设计P218典例剖析例4,解答略。

【作业布置】

优化设计

高考数学(理)配套文档 专题3 函数与导数 第14练 Word版含解析

第练函数的极值与最值 [题型分析·高考展望]本部分内容为导数在研究函数中的一个重要应用,在高考中也是重点考查的内容,多在解答题中的某一问中考查,要求熟练掌握函数极值与极值点的概念及判断方法,极值和最值的关系. 体验高考 .(·四川改编)已知为函数()=-的极小值点,则等于. 答案 解析∵()=-,∴′()=-, 令′()=,则=-,=. 当∈(-∞,-),(,+∞)时,′()>,则()单调递增; 当∈(-)时,′()<,则()单调递减, ∴()的极小值点为=. .(·课标全国甲)()讨论函数()=的单调性,并证明当>时,(-)++>; ()证明:当∈[)时,函数()=(>)有最小值.设()的最小值为(),求函数()的值域. ()解()的定义域为(-∞,-)∪(-,+∞). ′()==≥, 当且仅当=时,′()=, 所以()在(-∞,-),(-,+∞)上单调递增. 所以当∈(,+∞)时,()>()=-. 所以(-)>-(+),即(-)++>. ()证明′()==(()+). 由()知,()+单调递增,对任意∈[),()+=-<,()+=≥.

因此,存在唯一∈( ],使得()+=, 即′()=. 当<<时,()+<,′()<,()单调递减; 当>时,()+>,′()>,()单调递增. 因此()在=处取得最小值,最小值为()===. 于是()=. 由′=>,得=单调递增. 所以,由∈(], 得=<()=≤=. 因为单调递增,对任意λ∈,存在唯一的∈(],=-()∈[),使得()=λ. 所以()的值域是. 综上,当∈[)时,()有最小值(),()的值域是. .(·安徽)设函数()=-+. ()讨论函数()在内的单调性并判断有无极值,有极值时求出极值;()记()=-+,求函数()-()在上的最大值; ()在()中,取==,求=-满足≤时的最大值. 解()()=-+ =(-)+,-<<. [( )]′=(-),-<<. 因为-<<,所以>,-<<. ①≤-,∈时,函数()单调递增,无极值. ②≥,∈时,函数()单调递减,无极值. ③对于-<<,在内存在唯一的,

函数与导数专题试卷(含答案)

高三数学函数与导数专题试卷 说明:1.本卷分第Ⅰ卷(选择题),第Ⅱ卷(填空题与解答题),第ⅠⅡ卷的答案写在答题卷的答案纸上,学生只要交答题卷. 第Ⅰ卷 一.选择题(10小题,每小题5分,共50分) (4)()f x f x +=,当(0,2)x ∈时,()2f x x =+,则(7)f =( ) A . 3 B . 3- C . D . 1- 2.设A ={x ||x |≤3},B ={y |y =-x 2+t },若A ∩B =?,则实数t 的取值范围是( ) A .t <-3 B .t ≤-3 C .t >3 D .t ≥3 3.设0.3222,0.3,log (0.3)(1)x a b c x x ===+>,则,,a b c 的大小关系是 ( ) A .a b c << B .b a c << C .c b a << D .b c a << 4.函数x x f +=11)(的图像大致是( ) 5.已知直线ln y kx y x ==是的切线,则k 的值为( ) A. e B. e - C. 1e D. 1e - 6.已知条件p :x 2+x-2>0,条件q :a x >,若q 是p 的充分不必要条件,则a 的取值范围可以是( ) A .1≥a B .1≤a C .1-≥a D.3-≤a 7.函数3()2f x x ax =+-在区间(1,)+∞上是增函数,则a 的取值范围是( ) A. [3,)+∞ B. [3,)-+∞ C. (3,)-+∞ D. (,3)-∞- 8. 已知函数f (x )=log 2(x 2-2x -3),则使f (x )为减函数的区间是( ) A .(-∞,-1) B .(-1,0) C .(1,2) D .(-3,-1)

第三章 导数及其应用

第三章 导数及其应用 第一节导数的概念及运算、定积分 1.导数的概念 (1)函数y =f (x )在x =x 0处的导数:函数y =f (x )在x =x 0处的瞬时变化率li m Δx →0 Δy Δx =li m Δx →0 f (x 0+Δx )-f (x 0)Δx ? 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′x =x 0,即f ′(x 0)=li m Δx →0 Δy Δx =li m Δx →0 f (x 0+Δx )-f (x 0)Δx . 函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”. (2)导数的几何意义:函数f (x )在x =x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)?处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -y 0=f ′(x 0)(x -x 0). ?曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,斜率为k =f ′(x 0)的切线,是唯一的一条切线. (3)函数f (x )的导函数:称函数f ′(x )=li m Δx →0 f (x +Δx )-f (x ) Δx 为f (x )的导函数. (4)f ′(x )是一个函数,f ′(x 0)是函数f ′(x )在x 0处的函数值(常数),[f ′(x 0)]′=0. 2.基本初等函数的导数公式

导数的综合应用 公开课教案

§3.4 导数的综合应用 基础知识 自主学习 要点梳理 1.利用导数研究函数单调性的步骤 (1)求导数 )(' x f ; (2)在函数)(x f 的定义域内解不等式)('x f >0或)(' x f <0; (3)根据(2)的结果确定函数)(x f 的单调区间 2.求可导函数极值的步骤 (1)确定函数的定义域;(2)求导数 )('x f ;(3)解方程)(' x f =0,求 出函数定义域内的所有根;(4)列表检验)('x f 在)(' x f =0的根x 0 左右两侧值的符号,如果左正右负,那么)(x f 在x 0 处取极大值,如果左负右正,那么)(x f 在x 0 处取极小值. 3.求函数f (x)在闭区间[a ,b]内的最大值与最小值 (1)确定函数 )(x f 在闭区间[a ,b]内连续、可导; (2)求函数)(x f 在开区间(a ,b)内的极值; (3)求函数)(x f 在[a,b]端点处的函数值f (a),f (b);

(4)比较函数 )(x f 的各极值与f (a),f (b)的大小,其中最大的一个是最 大值,最小的一个是最小值. 4.利用导数解决实际生活中的优化问题 (1)分析实际问题中各变量之间的关系,建立实际问 题的数学模型,写出相应的函数关系式y =)(x f ; (2)求导数 )(' x f ,解方程)(' x f =0; (3)判断使)(' x f =0的点是极大值点还是极小值点; (4)确定函数的最大值或最小值,还原到实际问题中 作答.一般地,对于实际问题,若函数在给定的定 义域内只有一个极值点,那么该点也是最值点. 基础自测 1.在平面直角坐标系xOy 中,点P 在曲线C :y =x 3-10x +3上,且在第二象限内,已知曲线C 在点P 处的切线斜率为2,则点P 的坐标为________. 2.若 )(x f =x 3 +3ax 2 +3(a +2)x +1有极大值和极小值,则a 的取值范围为 __________________________. 3.若函数 )(x f =x +asin x 在R 上递增,则实数a 的取值范围为 4.设a ∈R ,若函数y =e ax +3x ,x ∈R 有大于零的极值点,则( )

(完整版)函数与导数专题(含高考试题)

函数与导数专题1.在解题中常用的有关结论(需要熟记):

考点一:导数几何意义: 角度一 求切线方程 1.(2014·洛阳统考)已知函数f (x )=3x +cos 2x +sin 2x ,a =f ′? ?? ?? π4,f ′(x )是f (x ) 的导函数,则过曲线y =x 3上一点P (a ,b )的切线方程为( ) A .3x -y -2=0 B .4x -3y +1=0 C .3x -y -2=0或3x -4y +1=0 D .3x -y -2=0或4x -3y +1=0 解析:选A 由f (x )=3x +cos 2x +sin 2x 得f ′(x )=3-2sin 2x +2cos 2x ,则a = f ′? ?? ??π4=3-2sin π2+2cos π2=1.由y =x 3得y ′=3x 2,过曲线y =x 3上一点P (a ,b )的切线的斜率k =3a 2=3×12=3.又b =a 3,则b =1,所以切点P 的坐标为(1,1),故过曲线y =x 3上的点P 的切线方程为y -1=3(x -1),即3x -y -2=0. 角度二 求切点坐标 2.(2013·辽宁五校第二次联考)曲线y =3ln x +x +2在点P 0处的切线方程为4x -y -1=0,则点P 0的坐标是( ) A .(0,1) B .(1,-1) C .(1,3) D .(1,0) 解析:选C 由题意知y ′=3 x +1=4,解得x =1,此时4×1-y -1=0,解得y =3,∴点P 0的坐标是(1,3). 角度三 求参数的值 3.已知f (x )=ln x ,g (x )=12x 2+mx +7 2(m <0),直线l 与函数f (x ),g (x )的图像都相切,且与f (x )图像的切点为(1,f (1)),则m 等于( )

2015高考复习专题五 函数与导数 含近年高考试题

2015专题五:函数与导数 在解题中常用的有关结论(需要熟记): (1)曲线()y f x =在0x x =处的切线的斜率等于0()f x ',切线方程为000()()()y f x x x f x '=-+ (2)若可导函数()y f x =在0x x =处取得极值,则0()0f x '=。反之,不成立。 (3)对于可导函数()f x ,不等式()f x '0>0<()的解集决定函数()f x 的递增(减)区间。 (4)函数()f x 在区间I 上递增(减)的充要条件是:x I ?∈()f x '0≥(0)≤恒成立 (5)函数()f x 在区间I 上不单调等价于()f x 在区间I 上有极值,则可等价转化为方程 ()0f x '=在区间I 上有实根且为非二重根。 (若()f x '为二次函数且I=R ,则有0?>)。 (6)()f x 在区间I 上无极值等价于()f x 在区间在上是单调函数,进而得到()f x '0≥或 ()f x '0≤在I 上恒成立 (7)若x I ?∈,()f x 0>恒成立,则min ()f x 0>; 若x I ?∈,()f x 0<恒成立,则max ()f x 0< (8)若0x I ?∈,使得0()f x 0>,则max ()f x 0>;若0x I ?∈,使得0()f x 0<,则min ()f x 0<. (9)设()f x 与()g x 的定义域的交集为D 若x ?∈D ()()f x g x >恒成立则有[]min ()()0f x g x -> (10)若对11x I ?∈、22x I ∈,12()()f x g x >恒成立,则min max ()()f x g x >. 若对11x I ?∈,22x I ?∈,使得12()()f x g x >,则min min ()()f x g x >. 若对11x I ?∈,22x I ?∈,使得12()()f x g x <,则max max ()()f x g x <. (11)已知()f x 在区间1I 上的值域为A,,()g x 在区间2I 上值域为B , 若对11x I ?∈,22x I ?∈,使得1()f x =2()g x 成立,则A B ?。 (12)若三次函数f(x)有三个零点,则方程()0f x '=有两个不等实根12x x 、,且极大值大 于0,极小值小于0. (13)证题中常用的不等式: ① ln 1(0)x x x ≤->② ln +1(1)x x x ≤>-()③ 1x e x ≥+ ④ 1x e x -≥-⑤ ln 1 (1)12 x x x x -<>+⑥ 22 ln 11(0)22x x x x <->

【精品】(数学三)第3讲导数应用

第三讲导数的应用(解答) 一.内容提要 1、三个微分中值定理:罗尔定理(用来证与某函数的导数有关的方程根的存在性,注意辅助函数的构造、与零点定理的异同);拉格朗日定理(可用来证不等式,从函数的导数的性质来说明函数本身的性质);柯西定理(注意有两个函数,这一点有时在解题时是一个提示)。 2、单调性;应用(证不等式,根的唯一性)。 3、极值、最值:极值的定义,求法(先求驻点及不可导点,再用第一或第二充分条件判别);第二充分条件的扩充;应用(证不等式,根的唯性);最值的求法与应用题. 4、曲线的凹凸性与拐点(注意曲线方程的不同给法)。 5、泰勒公式(怎么展开,某项系数的求法,余项的写法)及应用(证不等式;求 极限等)。 6、函数作图与曲线的渐近线的求法。 水平渐近线:则是水平渐近线。

铅垂渐近线:,则是铅垂渐近线。 斜渐近线:,则是斜渐近线。 考试要求: *理解罗尔(Rolle)定理.拉格朗日(Lagrange)中值定理.了解泰勒定理.柯西(Cauchy)中值定理,掌握这四个定理的简单应用. *会用洛必达法则求极限. *.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用. *.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点和渐近线. *.会描述简单函数的图形. 二.常考知识点 1、洛必达法则求极限.

2、利用导数确定函数的性质(单调性、极值、凹凸性、拐点等),函数可以是显式、隐式、参数方程形式)。 3、求曲线的渐近线(水平、铅垂、斜渐近线)。 4、利用导数方法,求实际问题中的最大、小值问题。

第1讲导数的综合应用

第1讲 导数的综合应用 [最新考纲] 1.利用导数研究函数的单调性、极(最)值,并会解决与之有关的方程(不等式)问题; 2.会利用导数解决某些简单的实际问题. 知 识 梳 理 1.生活中的优化问题 通常求利润最大、用料最省、效率最高等问题称为优化问题,一般地,对于实际问题,若函数在给定的定义域内只有一个极值点,那么该点也是最值点. 2.利用导数解决生活中的优化问题的一般步骤 3.导数在研究方程(不等式)中的应用 研究函数的单调性和极(最)值等离不开方程与不等式;反过来方程的根的个数、不等式的证明、不等式恒成立求参数等,又可转化为函数的单调性、极值与最值的问题,利用导数进行研究. 辨 析 感 悟 1.函数最值与不等式(方程)的关系 (1)(教材习题改编)对任意x >0,ax 2+(3a -1)x +a ≥0恒成立的充要条件是a ∈???? ?? 15,+∞.(√) (2)(2011·辽宁卷改编)已知函数f (x )=e x -2x +a 有零点,则a 的取值范围是(-∞,2ln 2-2].(√) 2.关于实际应用问题 (3)实际问题中函数定义域要由实际问题的意义和函数解析式共同确定.(√) (4)若实际问题中函数定义域是开区间,则不存在最优解.(×) (5)(2014·鹰潭模拟改编)已知某生产厂家的年利润y (单位:万元)与年产量x (单

位:万件)的函数关系式为y=-1 3x 3+81x-234,则使该生产厂家获取最大年利润 的年产量为9万件.(√) [感悟·提升] 1.两个转化 一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用; 二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理,如(2). 2.两点注意 一是注意实际问题中函数定义域,由实际问题的意义和解析式共同确定,如(3). 二是在实际问题中,如果函数在区间内只有一个极值点,那么可直接根据实际意义判定是最大值还是最小值,如(4);若在开区间内有极值,则一定有最优解. 考点一导数与生活中的优化问题 【例1】(2013·重庆卷)某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h米,体积为V立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12 000π元(π为圆周率). (1)将V表示成r的函数V(r),并求该函数的定义域; (2)讨论函数V(r)的单调性,并确定r和h为何值时该蓄水池的体积最大. 解(1)因为蓄水池侧面的总成本为100·2πrh=200πrh元,底面的总成本为160πr2元. 所以蓄水池的总成本为(200πrh+160πr2)元. 又根据题意得200πrh+160πr2=12 000π, 所以h=1 5r(300-4r 2), 从而V(r)=πr2h=π 5(300r-4r 3).

2020-2021学年高三数学一轮复习知识点专题3-3 函数与导数的综合应用(1)

2020-2021学年高考数学一轮复习 专题3.3 函数与导数的综合应用 【考情分析】 1.利用导数研究函数的单调性、极(最)值,并会解决与之有关的方程(不等式)问题; 2.会利用导数解决某些简单的实际问题。 【典型题分析】 高频考点一 利用导数证明不等式 例1.【2020·江苏卷】已知关于x 的函数(),()y f x y g x ==与()(,)h x kx b k b =+∈R 在区间D 上恒有()()()f x h x g x ≥≥. (1)若()()22 2 2()f x x x g x x x D =+=-+=∞-∞+,,, ,求h (x )的表达式; (2)若2 1 ln ,()()()(0) x x g k x h kx k D f x x x =-+==-=+∞,,, ,求k 的取值范围; (3)若() 422342 () 2() (48 () 4 3 02 f x x x g x x h x t t x t t t =-=-=--+<≤,,, [] , D m n =???, 求证:n m - 【解析】(1)由条件()()()f x h x g x ≥≥,得222 2x x kx b x x +≥+≥-+, 取0x =,得00b ≥≥,所以0b =. 由22x x kx +≥,得2 2 ()0x k x +-≥,此式对一切(,)x ∈-∞+∞恒成立, 所以22 0()k -≤,则2k =,此时222x x x ≥-+恒成立, 所以()2h x x =. (2) 1 ln ,()()()()0,h g x k x x x x -=--∈+∞. 令() 1ln u x x x =--,则1 ()1,u'x x =-令()=0u'x ,得1x =. 所以min () 0(1)u x u ==.则1ln x x -≥恒成立, 所以当且仅当0k ≥时,()()f x g x ≥恒成立. 另一方面,()()f x h x ≥恒成立,即21x x kx k -+≥-恒成立,

第4讲 导数的综合应用

第4讲 导数的综合应用 高考定位 在高考压轴题中,函数与方程、不等式的交汇是考查的热点,常以指数函数、对数函数为载体考查函数的零点(方程的根)、比较大小、不等式证明、不等式恒成立与能成立问题. 真 题 感 悟 1.(2020·全国Ⅲ卷)设函数f (x )=x 3+bx +c ,曲线y =f (x )在点? ???? 12,f ? ????12处的切线与y 轴垂直. (1)求b ; (2)若f (x )有一个绝对值不大于1的零点,证明:f (x )所有零点的绝对值都不大于1. (1)解 f ′(x )=3x 2+b . 依题意得f ′? ?? ?? 12=0,即34+b =0,故b =-34. (2)证明 由(1)知f (x )=x 3-34x +c ,f ′(x )=3x 2-34.令f ′(x )=0,解得x =-12或x =1 2. f ′(x )与f (x )的情况为: 因为f (1)=f ? ???? -12=c +14, 所以当c <-1 4时,f (x )只有大于1的零点. 因为f (-1)=f ? ???? 12=c -14, 所以当c >1 4时,f (x )只有小于-1的零点. 由题设可知-14≤c ≤1 4. 当c =-14时,f (x )只有两个零点-1 2和1.

当c =14时,f (x )只有两个零点-1和12. 当-140; 当x ∈? ?? ?? π2,π时,g ′(x )<0, 所以g (x )在? ????0,π2上单调递增,在? ???? π2,π上单调递减. 又g (0)=0,g ? ???? π2>0,g (π)=-2, 故g (x )在(0,π)存在唯一零点. 所以f ′(x )在区间(0,π)存在唯一零点. (2)解 由题设知f (π)≥a π,f (π)=0,可得a ≤0. 由(1)知,f ′(x )在(0,π)只有一个零点,设为x 0,且当x ∈(0,x 0)时,f ′(x )>0;当x ∈(x 0,π)时,f ′(x )<0,所以f (x )在(0,x 0)上单调递增,在(x 0,π)上单调递减. 又f (0)=0,f (π)=0,所以当x ∈[0,π]时,f (x )≥0. 又当a ≤0,x ∈[0,π]时,ax ≤0,故f (x )≥ax . 因此,a 的取值范围是(-∞,0]. 考 点 整 合 1.利用导数研究函数的零点 函数的零点、方程的实根、函数图象与x 轴的交点的横坐标是三个等价的概念,解决这类问题可以通过函数的单调性、极值与最值,画出函数图象的变化趋势,数形结合求解.

《创新设计》2014届高考第三篇 第3讲 导数的应用(二)

第3讲导数的应用(二) A级基础演练(时间:30分钟满分:55分) 一、选择题(每小题5分,共20分) 1.(2013·北京东城模拟)函数f(x)的定义域为开区间 (a,b),导函数f′(x)在(a,b)内的图象如图所示, 则函数f(x)在开区间(a,b)内有极小值点(). A.1个B.2个C.3个D.4个 答案 A 2.(2013·苏州一中月考)已知函数f(x)=x3+ax2+(a+6)x+1有极大值和极小值,则实数a的取值范围是().A.(-1,2) B.(-∞,-3)∪(6,+∞) C.(-3,6) D.(-∞,-1)∪(2,+∞) 解析f′(x)=3x2+2ax+(a+6),因为函数有极大值和极小值,所以f′(x)=0有两个不相等的实数根,所以Δ=4a2-4×3(a+6)>0,解得a<-3或a> 6. 答案 B 3.(2013·抚顺质检)函数y=ln2x x的极小值为 (). A.4 e2B.0 C.2 e D.1 解析函数的定义域为(0,+∞), y′=2ln x-ln2x x2= -ln x(ln x-2) x2. 函数y′与y随x变化情况如下:

则当x =1时函数y =ln x x 取到极小值0. 答案 B 4.(2013·南京模拟)设f (x )是一个三次函数,f ′(x )为其导函数,如图所示的是y =x ·f ′(x )的图象的一部分,则f (x )的极大值与极小值分别是 ( ). A .f (1)与f (-1) B .f (-1)与f (1) C .f (-2)与f (2) D .f (2)与f (-2) 解析 由图象知f ′(2)=f ′(-2)=0.∵x >2时,y =x ·f ′(x )>0,∴f ′(x )>0,∴y =f (x )在(2,+∞)上单调递增;同理f (x )在(-∞,-2)上单调递增,在(-2,2)上单调递减, ∴y =f (x )的极大值为f (-2),极小值为f (2),故选C. 答案 C 二、填空题(每小题5分,共10分) 5.已知函数y =f (x )=x 3+3ax 2+3bx +c 在x =2处有极值,其图象在x =1处的切线平行于直线6x +2y +5=0,则f (x )极大值与极小值之差为________. 解析 ∵y ′=3x 2+6ax +3b , ??? 3×22 +6a ×2+3b =0,3×12 +6a +3b =-3???? a =-1, b =0. ∴y ′=3x 2-6x ,令3x 2-6x =0,则x =0或x =2. ∴f (x )极大值-f (x )极小值=f (0)-f (2)=4. 答案 4 6.已知函数f (x )=? ?? -x 2+6x +e 2 -5e -2,x ≤e , x -2ln x ,x >e (其中e 为自然对数的底数, 且e ≈2.718).若f (6-a 2)>f (a ),则实数a 的取值范围是________. 解析 ∵f ′(x )=? ??? ? -2x +6,x ≤e ,1-2 x ,x >e ,当x ≤e 时,f ′(x )=6-2x =2(3-x )>0,

2019届高考数学专题二函数与导数第3讲导数的综合应用教案理

第3讲导数的综合应用 1.(2018·全国Ⅱ卷,理21)已知函数f(x)=e x-ax 2. (1)若a=1,证明:当x≥0时,f(x)≥1; (2)若f(x)在(0,+∞)只有一个零点,求a. (1)证明:当a=1时,f(x)≥1等价于(x2+1)e-x-1≤0. 设函数g(x)=(x2+1)e-x-1, 则g'(x)=-(x2-2x+1)·e-x=-(x-1)2e-x. 当x≠1时,g'(x)<0, 所以g(x)在(0,+∞)上单调递减. 而g(0)=0,故当x≥0时,g(x)≤0, 即f(x)≥1. (2)解:设函数h(x)=1-ax2e-x. f(x)在(0,+∞)上只有一个零点等价于h(x)在(0,+∞)上只有一个零点. (ⅰ)当a≤0时,h(x)>0,h(x)没有零点; (ⅱ)当a>0时,h'(x)=ax(x-2)e-x. 当x∈(0,2)时,h'(x)<0; 当x∈(2,+∞)时,h'(x)>0. 所以h(x)在(0,2)上单调递减,在(2,+∞)上单调递增. 故h(2)=1-是h(x)在(0,+∞)上的最小值. ①若h(2)>0,即a<,h(x)在(0,+∞)上没有零点. ②若h(2)=0,即a=,h(x)在(0,+∞)上只有一个零点. ③若h(2)<0,即a>, 因为h(0)=1, 所以h(x)在(0,2)上有一个零点; 由(1)知,当x>0时,e x>x2,

所以h(4a)=1-=1->1- =1->0, 故h(x)在(2,4a)上有一个零点. 因此h(x)在(0,+∞)上有两个零点. 综上,当f(x)在(0,+∞)上只有一个零点时,a=. 2.(2017·全国Ⅲ卷,理21)已知函数f(x)=x-1-aln x. (1)若f(x)≥0,求a的值; (2)设m为整数,且对于任意正整数n,1+1+…1+0,由f'(x)=1-=知, 当x∈(0,a)时,f'(x)<0; 当x∈(a,+∞)时,f'(x)>0, 所以f(x)在(0,a)上单调递减,在(a,+∞)上单调递增, 故x=a是f(x)在(0,+∞)的最小值点. 由于f(1)=0,所以当且仅当a=1时,f(x)≥0. 故a=1. (2)由(1)知当x∈(1,+∞)时,x-1-ln x>0. 令x=1+,得ln1+<. 从而ln1++ln1++…+ln1+<++…+=1-<1. 故1+1+…1+2,

高三函数与导数专题含答案

函数与导数(理科数学) 1、对于R 上的可导函数()f x ,若满足/(1)()0x f x -≥,则必有(C ) A .(0)(2)2(1)f f f +< B .(0)(2)2(1)f f f +≤ C .(0)(2)2(1)f f f +≥ D .(0)(2)2(1)f f f +> 2、()f x 是定义在(0,)+∞上的非负可导函数,且满足/ ()()0xf x f x -≤对任意正数,a b .若a b <则必有( C ) A.()()af a f b ≤ B.()()bf b f a ≤ C.()()af b bf a ≤ D.()()bf a af b ≤ 3、()f x 是定义在(0,)+∞上的非负可导函数,且满足/()()0xf x f x +≤对任意正数,a b .若a b <则必有( C ) A 、()()af a f b ≤ B 、()()bf b f a ≤ C 、()()af b bf a ≤ D 、()()bf a af b ≤ 4、记{}???>≤=q p q q p p q p 当当.,,min .若函数? ?????+=x x x f 241log ,log 3min )(, 则函数)(x f 的解析式_______________.2)(+≤++x x x x x x 241224 141log log 3, log log log 3,log 3 3分 解x x 24 1log log 3=+得4=x .又函数x y 4 11log 3+=在),0(+∞内递减,x y 22log =在),0(+∞内递增,所 以当40<+;当4≥x 时,x x 24 1log log 3≤+. 所以?? ? ??≥+<<=4,log 34 0,log )(41 2x x x x x f . (2)2)(<

【高考精品复习】第三篇 导数及其应用 第3讲 导数的应用(二)

第3讲导数的应用(二) 【高考会这样考】 1.利用导数求函数的极值. 2.利用导数求函数闭区间上的最值. 3.利用导数解决某些实际问题. 【复习指导】 本讲复习时,应注重导数在研究函数极值与最值中的工具性作用,会将一些实际问题抽象为数学模型,从而用导数去解决.复习中要注意等价转化、分类讨论等数学思想的应用. 基础梳理 1.函数的极值 (1)判断f(x0)是极值的方法 一般地,当函数f(x)在点x0处连续时, ①如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值; ②如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值. (2)求可导函数极值的步骤 ①求f′(x); ②求方程f′(x)=0的根; ③检查f′(x)在方程f′(x)=0的根左右值的符号.如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值,如果左右两侧符号一样,那么这个根不是极值点. 2.函数的最值 (1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值. (2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.(3)设函数f(x)在[a,b]上连续,在(a,b)内可导,求f(x)在[a,b]上的最大值和最小值的步骤如下: ①求f(x)在(a,b)内的极值;

②将f (x )的各极值与f (a ),f (b )比较,其中最大的一个是最大值,最小的一个是最小值. 3.利用导数解决生活中的优化问题的一般步骤 (1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系式y =f (x ); (2)求函数的导数f ′(x ),解方程f ′(x )=0; (3)比较函数在区间端点和f ′(x )=0的点的函数值的大小,最大(小)者为最大(小)值; (4)回归实际问题作答. 两个注意 (1)注意实际问题中函数定义域的确定. (2)在实际问题中,如果函数在区间内只有一个极值点,那么只要根据实际意义判定最大值还是最小值即可,不必再与端点的函数值比较. 三个防范 (1)求函数最值时,不可想当然地认为极值点就是最值点,要通过认真比较才能下结论;另外注意函数最值是个“整体”概念,而极值是个“局部”概念. (2)f ′(x 0)=0是y =f (x )在x =x 0取极值的既不充分也不必要条件. 如①y =|x |在x =0处取得极小值,但在x =0处不可导; ②f (x )=x 3,f ′(0)=0,但x =0不是f (x )=x 3的极值点. (3)若y =f (x )可导,则f ′(x 0)=0是f (x )在x =x 0处取极值的必要条件. 双基自测 1.(2011·福建)若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,则ab 的最大值等于( ). A .2 B .3 C .6 D .9 解析 f ′(x )=12x 2-2ax -2b ,由函数f (x )在x =1处有极值,可知函数f (x )在x =1处的导数值为零,12-2a -2b =0,所以a +b =6,由题意知a ,b 都是正实数,所以ab ≤? ????a +b 22=? ????622 =9,当且仅当a =b =3时取到等号. 答案 D

专题三导数及其应用

专题三 导数及其应用 第八讲 导数的综合应用 2019年 1(2019天津理8)已知a ∈R ,设函数222,1, ()ln ,1,x ax a x f x x a x x ?-+=?->??若关于x 的不等式 ()0f x …在R 上恒成立,则a 的取值范围为 A.[]0,1 B.[]0,2 C.[]0,e D.[]1,e 2.(2019全国Ⅲ理20)已知函数32()2f x x ax b =-+. (1)讨论()f x 的单调性; (2)是否存在 ,a b ,使得()f x 在区间[0,1]的最小值为1-且最大值为1?若存在,求 出,a b 的所有值;若不存在,说明理由. 3.(2019浙江22)已知实数0a ≠ ,设函数()=ln 0.f x a x x > (1)当3 4 a =- 时,求函数()f x 的单调区间; (2)对任意2 1[ ,)e x ∈+∞ 均有()f x ≤ 求a 的取值范围. 注:e=2.71828…为自然对数的底数. 4.(2019全国Ⅰ理20)已知函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明: (1)()f x '在区间(1,)2 π -存在唯一极大值点; (2)()f x 有且仅有2个零点. 5.(2019全国Ⅱ理20)已知函数()1 1 ln x f x x x -=- +. (1)讨论f (x )的单调性,并证明f (x )有且仅有两个零点; (2)设x 0是f (x )的一个零点,证明曲线y =ln x 在点A (x 0,ln x 0)处的切线也是曲线e x y =的 切线. 6.(2019江苏19)设函数()()()(),,,f x x a x b x c a b c =---∈R 、()f 'x 为f (x )的导函数.

函数与导数专题试卷(含答案)

函数与导数专题试卷(含答案)

高三年数学函数专题试卷第2页(共4页)

高三年数学函数专题试卷第3页(共4页)

高三年数学函数专题试卷第4页(共4页)

高三年数学函数专题试卷第5页(共4页) x ,y ∈S ,必有xy ∈S ”,则当??? a =1, b 2=1, c 2=b ,时,求b +c + d 的值 17.(13分) 设()y f x =是二次函数,方程()0f x =有两个相等实根,且()22f x x '=+,求()f x 的表达式. 18.(13分)已知函数2lg(43)y x x =--定义域为M ,求x M ∈时,函数2()24x x f x +=-的值域. 19.(13分)已知集合A ={y |y 2-(a 2+a +1)y +a (a 2+1)>0},B =???? ??y |y =12x 2-x +52,0≤x ≤3. 求:(1)若A ∩B =?,求a 的取值范围; (2)当a 取使不等式x 2+1≥ax 恒成立的a 的最小值时,求(?R A )∩B .

高三年数学函数专题试卷第6页(共4页) 20.(14分) 已知函数2()ln f x a x b x =?+?在点(1,(1))f 处的切线方程为10.x y --= (Ⅰ)求()f x 的表达式; (Ⅱ)若()f x 满足()()f x g x ≥恒成立,则称()()f x g x 是的一个“上界函数”, 如果函数)(x f 为x x t x g ln )(-=(t 为实数)的一个“上界函数”,求t 的取值范围. 21.(14分)已知函数12||)(2-+-=a x ax x f (a 为实常数). (1)若1=a ,作函数)(x f 的图像; (2)设)(x f 在区间]2,1[上的最小值为)(a g ,求)(a g 的表达式; (3)设x x f x h )()(= ,若函数)(x h 在区间]2,1[上是增函数,求实数a 的取值范围.

专题三导数及其应用第八讲导数的综合应用

专题三导数及其应用 第八讲导数的综合应用 、选择题 (2017新课标n )若x = —2是函数f (X )=(x 2 +ax —1)e x /的极值点,则 f (X )=(x 2 +ax -1)e x 的极小值为 像可能是 AV V x C. (2016全国I )函数y=2x 2 —e 凶在[22]的图像大致为 1. 2. A . -1 B . (2017浙江)函数 —2/ C. 5e' y = f (X )的导函数y = f '(X )的图像如图所示,则函数 y = f (X )的图 3. O X

(2015 四川)如果函数 f (x )=1(m -2)x 2 +(n -8)x +1(m >0, n >0)在区间[g , 2] 单调递减,那么mn 的最大值为 (2015新课标n )设函数f'(x )是奇函数f (x )(x 亡R )的导函数,f (-1) = 0,当 x>0时, xf '(X )— f (X )cO ,则使得f (X )>0成立的x 的取值范围是 A .(二,T U(0,1) B. (T ,0)U(1,址) c. c ,_1划(—1,0) D. (0,1U(H (2015新课标I )设函数f (X )=eX (2x-1)-ax +a ,其中a v 1,若存在唯一的整数 x 0, 使得f (x 。)€0,则a 的取值范围是 r 3 八 「3 3、 「3 3、 r 3 八 A.[一石1 )B . ^2e , 4) C . [ 2e ,4) D .[才) (2014新课标n )若函数 f (x )=kx —I nx 在区间(1,+处)单调递增,则k 的取值范围是 A .(二,—2】 B .(亠1】 C. 〔2,兄)D . t 1,-^ (2014陕西)如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连续(相切) 已知环湖弯曲路段为某三次函数图像的一部分,则该函数的解析式为 4. A. 16 B . 18 C. 25 81 D.— 5. 6. 7.

专题03 函数与导数(解析版)

专题03 函数与导数 1.(2020?北京卷)已知函数()21x f x x =--,则不等式()0f x >的解集是( ). A . (1,1)- B . (,1)(1,)-∞-+∞ C . (0,1) D . (,0)(1,)-∞?+∞ 【答案】D 【解析】作出函数2x y =和1y x =+的图象,观察图象可得结果. 【详解】因为()21x f x x =--,所以()0f x >等价于21x x >+, 在同一直角坐标系中作出2x y =和1y x =+的图象如图: 两函数图象的交点坐标为(0,1),(1,2),不等式21x x >+的解为0x <或1x >. 所以不等式()0f x >的解集为:()(),01,-∞?+∞.故选:D. 【点睛】本题考查了图象法解不等式,属于基础题. 2.(2020?北京卷)函数1 ()ln 1 f x x x =++的定义域是____________. 【答案】(0,)+∞ 【解析】根据分母不为零、真数大于零列不等式组,解得结果. 【详解】由题意得0 10 x x >?? +≠?,0x ∴>故答案为:(0,)+∞ 【点睛】本题考查函数定义域,考查基本分析求解能力,属基础题. 3.(2020?北京卷)已知函数2 ()12f x x =-. (Ⅰ)求曲线()y f x =的斜率等于2-的切线方程; (Ⅱ)设曲线()y f x =在点(,())t f t 处的切线与坐标轴围成的三角形的面积为()S t ,求()S t 的最小值. 【答案】(Ⅰ)2130x y +-=,(Ⅱ)32.

【解析】(Ⅰ)根据导数的几何意义可得切点的坐标,然后由点斜式可得结果; (Ⅱ)根据导数的几何意义求出切线方程,再得到切线在坐标轴上的截距,进一步得到三角形的面积,最后利用导数可求得最值. 【详解】(Ⅰ)因为()212f x x =-,所以()2f x x '=-, 设切点为()00,12x x -,则022x -=-,即01x =,所以切点为()1,11, 由点斜式可得切线方程:()1121y x -=--,即2130x y +-=. (Ⅱ)显然0t ≠, 因为()y f x =在点( )2 ,12t t -处的切线方程为:()()2 122y t t x t --=--, 令0x =,得2 12y t =+,令0y =,得2122t x t +=,所以()S t =()221121222||t t t +?+?, 不妨设0t >(0t <时,结果一样),则()423241441144 (24)44t t S t t t t t ++==++, 所以()S t '=422 2211443(848)(324)44t t t t t +-+-=222 22 3(4)(12)3(2)(2)(12)44t t t t t t t -+-++== , 由()0S t '>,得2t >,由()0S t '<,得02t <<, 所以()S t 在()0,2上递减,在()2,+∞上递增,所以2t =时,()S t 取得极小值, 也是最小值为()1616 2328 S ?= =. 【点睛】本题考查了利用导数的几何意义求切线方程,考查了利用导数求函数的最值,属于中档题. 4.(2020?全国1卷)函数43()2f x x x =-的图像在点(1 (1))f ,处的切线方程为( ) A. 21y x =-- B. 21y x =-+ C. 23y x =- D. 21y x =+ 【答案】B 【解析】求得函数()y f x =的导数()f x ',计算出()1f 和()1f '的值,可得出所求切线的点斜式方程,化简即可. 【详解】 ()432f x x x =-,()3246f x x x '∴=-,()11f ∴=-,()12f '=-,

相关主题
文本预览
相关文档 最新文档