当前位置:文档之家› 直热式和循环式空气源热泵热水机对比分析

直热式和循环式空气源热泵热水机对比分析

直热式和循环式空气源热泵热水机对比分析
直热式和循环式空气源热泵热水机对比分析

直热式与循环式空气源热泵热水机对比分析

机组原理:

芬尼克兹(PHNIX)热泵运用逆卡诺原理,以极少的电能,吸收空气中大量的低温热能通过压缩机的压缩变为高温热能来加热热水(图1),所以它能耗低、效率高、速度快、安全性好、环保性强,源源不断的供应热水。作空气源热泵工作原理图为热水系统它具有无以比拟的优点。空气源热泵热水机组遵循能量守恒定律和热力学第2定律,运用热泵的原理,只需要消耗一小部分的机械功(电能),将处于低温环境下的热量去加热制取高温的热水。它的原理与空调雷同。

图1

芬尼克兹(PHNIX)机组特点——直热式空气源热泵热水机组与循环式热泵机组特点比较

直热式:

芬尼克兹(PHNIX)直热式空气源热泵热水机组,自来水直接进机组(图2、3),低温自来水直接吸收高温冷媒的热量,使冷媒得到充分冷却,系统高压压力降低,压缩机克服系统压力所消耗的电能比较少 ,机组运行效率高.由于直热式的进水永远是常温,压缩机的排气温度变化不大,对压缩机的冲击较小能起到保护压缩机的作用,从而延长压缩机的寿命。

循环式:

循环式空气源热泵热水机组,该机组的补水是先补进保温水箱,然后经过循环泵进入机组加热,它的进水温度不断的再改变,压缩机的排气温度和排气压力也不停的在变,势必会对压缩机造成冲击,特别是水箱相对高温热水进行循环加热的时候,对压缩机冲击很大。因为,冷媒没有充分冷却,系统长期处于高压状态,压缩机克服系统压力所消耗的电能比较多,压缩机的寿命会缩短。

所谓循环式空气源热泵热水机,指的就是被加热的水反复多次循环才能被加热到设定的温度;直热式空气源热泵热水机,指的是被加热的水循环一次就被加热到设

定的目标温度;该技术区别于传统的需要反复多次进出空气源热泵热水机加热才能达到设定温度的循环式空气能热泵。其特点是:1、由于被加热的水是一次性就被加热到设定的热水温度,对于用户来说用水舒适性得到可靠的保证,不会因为在用水过程中水温变化影响用水的舒适性。

图2

图3

芬尼克兹(PHNIX)直热式特点:

1、芬尼克兹(PHNIX)直热式热水机采用了先进的水路控制系统,使用了进出水感温头和电子流量计,通过出水温度来控制水路上的电动阀来调节水流量,从而达到自主的控制出水温度的要求。这样水温控制精确,方便调节水温。保证系统安全。

2、机组采用先进的除霜模式,机组使用了进出水感温头和电子流量计,机组控制器可以时时计算出机组组制热能力,根据结霜的多少与能力衰减的关系,可以智能的判断机组结霜情况,从而判断是否进行除霜。保证的有霜除霜,无霜不除,这样与传统的除霜模式相比,减少了误除霜,减小的因误除霜的热量损失。

3、效率高、使用温度范围广

直热式空气源热泵热水机组在标准工况下能效比达到4.3以上,即使在环境温度低于0℃,机组一样可以稳定高效运行。

4、安装简单

当您选择PHNIX直热式空气源热泵热水器后,只要安装完毕,即可开机使用,从而大大降低了您安装的人工、材料等昂贵的费用。

5、智能控制、使用方便

PHNIX直热式空气源热泵热水器采用微电脑智能控制,安装完毕后,您只要轻轻按动开关键,机组即可根据您的使用情况智能控制开、停,使用起来,您就像使用日光灯一样简单方便,同时,您不必配备专业人员进行机组运行管理,也减少了您的运行费用。

6、可选择控制模式、使您的费用降至最低

考虑到不同使用场合对机组的运行有不同要求,PHNIX直热式空气源热泵热水器配备了自动和定时两种不同的控制模式供您选择,如果您使用在宾馆、酒店等全天需要热水供应的场合,您只要选择自动模式,其他一切问题交给我们的微电脑解决,如果您用在学校、员工宿舍等阶段性用水场合,那么您只要选择定时模式,机组就会定时开启为您准备好您所需要的热水,即可免除了您忘记开机而没水用的后顾之忧,又可在不需要的时间停机,减少您不必要的费用。

7、记忆功能使您一劳永逸

城市供电系统突然断电,这是您始料未及而又无能为力的。别担心,PHNIX直热式空气源热泵热水器的记忆功能会在供电系统断电或者其他因素引起的主机非法关机时记录主机此刻的工作模式和状态,并在下次上电或重新开机时,自动运行所记录的工作模式和状态,减少了您重新设置参数的麻烦,使您真正做到一劳永逸。

8、集中控制为您分忧

当你有多台主机使用的时候,不用担心它们会各自工作而不受控制,因为PHNIX

直热式空气源热泵热水器可以通过设置控制一台主机而控制其它子机,这样您使用起来就像使用单台机一样简单方便了。

在环保要求越来越高的今天,燃煤、燃气、燃油热水锅炉正慢慢被限制使用,电锅炉由于效率较低使得您的费用据高不下,同样太阳能热水器受天气影响较大,普通空气源热泵热水器水温不能满足您的要求。直热式空气源空气源空气源空气源热泵热水机组是您热水锅炉产品的理想替代品。

循环加热式空气源热泵热水机存在的问题:

循环加热式空气源热泵热水机由于机组本身的先天不足,决定了它存在着一定的问题循环加热式空气源热泵热水机补水直接补到保温水箱中,再通过机组循环加热使水温达到使用要求,这就造成机组刚开启时,水箱水温很低,随着机组的运行水温逐渐升高,直到水温达到使用要求,从而增加了客户使用前等待的宝贵时间;另外,当出现用水量比较集中时,水箱水位迅速下降,为保证水位要求,自来水迅速补进水箱,与水箱中的高温水混合,使得水箱水温迅速下降,从而导致了客户使用过程中水温越来越低的状况,影响使用的舒适性。

空气能热泵中央空调与传统中央空调对比

空气能热泵中央空调与传统中央空调对比 地源热泵中|央空调与传统中|央空调对比:环境保护 从土壤源热泵的整个运行原理来看,土壤源热泵系统实际是真正意义的绿色环保空调,不管是冬季还是夏季的运行,都不会对建筑外大气环境造成不良影响。而普通中|央空调系统,将废热气或水蒸气排向室外环境,无一例外的都对环境造成了极大的污染。以地球表面浅层地热资源作为冷热源,利|用清洁的、近乎无限可再生的能源,符合可持续发展的战略要求。 地源热泵中|央空调与传统中|央空调对比:运行效率 对于普通中|央空调系统,不管是采用风冷热泵机组还是采用冷却塔的冷水机组,无一例外的要受外界天气条件的限|制,即空调区越需要供冷或供热时,主机的供冷量或供热量就越不足,即运行效率下降,这在夏热冬冷地区的使用就受到了影响。而土壤源热泵机组与外界的换热是通|过大地,而大地的温度很稳定,不受外界空气的变化而影响运行效率,因此,土壤源热泵的运行效率是最高的。 地源热泵中|央空调与传统中|央空调对比:经济方面 地源热泵系统还可以集采暖、空调制冷和提|供生活热水于一体。一套热泵系统可以替换原有的供热锅炉、制冷空调和生活热水加热的三套装置或系统,从而减少使用成本,十分经济。 地源热泵中|央空调与传统中|央空调对比:运行费用 地源热泵系统在运行中的节能特点也是显而易见的:通常地源热泵消耗1kW的能量,用户可以得到4kW以上的热量或冷量,其制冷、制热系数可达4以上,与传统的空气源热泵相比,要高出40%,其运行费用为普通中|央空调的50%~60%。达到相同的制冷制热效率,土壤源热泵主机的输入功率较小,即为业主提|供了较低运行费的空调系统,在全年时间使用空调的场所,这种效果尤为明显。锅炉只能将70%~90%的燃料内能为热量,因此地源热泵要比电锅炉加热节省三分之二以上的电能,比燃料锅炉节省约二分之一的能量。 地源热泵中|央空调与传统中|央空调对比:主机设置 对于普通中|央空调系统,若设置风冷热泵机组进行冷热空调,则风冷热泵主机的设置必须要与外界通风良好,要么设置于屋顶,要么设置于地面,这对别墅空调受限就更严重。而土壤源热泵主机的设置就非常灵活,可以设置在建筑物的任何位置,而不受考虑位置设置的限|制。若设置冷水机组+锅炉进行冷热空调,冷却塔和锅炉的位置就更受限|制。因此,就主机的设置而言,地源热泵系统的主机设置是非常灵活的。 地源热泵中|央空调与传统中|央空调对比:系统简单 一机多用,节约设备用房,应用范围广。地源热泵可供暖、空调,还可用于生活热水供应系统,一套系统可替代锅炉加空调的两套系统,因此一机多用,节省了建筑空间及设备的初投资,机组紧凑,节省设备用房空间,由此而产生的经济效益相当可观。 地源热泵中|央空调与传统中|央空调对比:无需除霜 大地土壤温度一年四季相对保持恒定,冬季也能保持在15℃以上,埋地换热器不会结霜,可节省因结霜、除霜而消耗的能量。 通|过详细对比,我们很容易发现地源热泵中|央空调优势非常明显,从这里我们也可以看出,为什么政|府会大力推|广地源热泵系统,地源热泵的普及不仅关系到家庭用户的切身利益,也很大程度上降低建筑能耗,缓解环境能源压力,优化生态环境。绿邦积极响应政|府号召,一直倡导舒适健康、节能环保的室内舒适家居生活,已经成功安装多套家用地源热泵系统。 传统热水器以燃气、电和太阳能为主。燃气热水器安全性较差,燃|烧不充分和水压不

如何使空气能热泵热水器运行更节能、省钱

如何使空气能热泵热水器运行更节能、省钱 在十几年的推广应用中,商用空气能热泵热水器应用在酒店、宾馆、学校、医院等用水量大的地方突显成效,主机的工作时间多数达到总时数50%以上,性价比合理体现。在黄河流域以南地域的不完统计,一般对用户的保证为全年平均每吨水用电在13度,与其它常规能源比有明显的优势。 实际应用中主要是大循环加热方式、定温放水加热方式、直接过水加热方式和静止加热方式四种,以上四种加热方式分别就应用效果简要分析。 大循环加热方式的特点是系统简单,施工方便、投资小,适用于集中用水的场合,一箱水用完,再放满水进行加热,是节能明显的方案。如果是连续用水随时补水就会因温差加热控制主机启动长期工作在高温段40-55度,是系统工作COP值最低的温区,没有明显的节能效果,这类用户的结论是空气能不节能,等于花高价买了电锅炉。所以大循环加热方式在连续用水的工作环境,不可采用。 定温放水实际上是把加热水箱和储热水箱分开的制水和用水分开的加热系统,加热水箱可以是内置盘管的静止加热方式,也可以是循环加热方式。当加热箱小水箱的水达到了设定的温度就向储热水箱大水箱中放水;当大水箱中满水时,小水箱继续加热作补水储备,也就是说大水箱必须有容积满足小水箱的容积,同时小水箱水达到设定温度值二个条件才可以。这种加热方式充分分挥了热泵的优势,从自来水的初始水温加热到设定水温平均能效最高。我们曾多次提到空气源热泵是泳池加热的首选,泳池水要求26度,空气源热泵在标准工况下进行恒温加热,5度左右温差恒温加热能效可达到8。所以定温放水加热方式是空气能热泵热水器系统最节能的最可靠的加热方式。这种方式系统比大循环复杂,控制上要求较高、成本稍高,但高出的初投资和节能效果上比是最合理的。 直出水机在稳定的自来水压力和较高的环境中况下直出设定温度热水的空气能热水系统,一种采用电子控制电动阀变化开启度的方法变化出水量,保证出水温度的方法;另一种是通过主机系统工作变化,采样后传送给比例阀变化开启度变化出水量保证出水温度的方法,该系统对自来水的压力,环境温度敏感。气温变化对出水量影响很大,所以要按当地最低温时产水量选择热泵机组,自来水压力不稳定的地区不宜选用。这类机型多适用于我国南方。北方地区有霜冻区域不宜选用。长时间连续工作易结霜,用水温度质量要求高,管路做回水加热恒温的不宜选用。 静止加热方式类似于目前常见的家用型热水器,但是多数为开式非承压水箱,这部分可以用于定温放水的小水箱部分作加热水箱,也可以直接对储热水箱大水箱进行加热。这种方式的出现是因为有些地区水质较差或选用地下水,造成对主机加热部分换热器的堵塞,很难清洗,采用这种开式加热方式方便清洗,甚至可以更换加热器,解决了水质差,地下水区域的空气能热水器的应用难题。 以上四种方式尽管定温放水加热方式节能适用,但是如果巧妙的进行系统管理会出现节能奇迹。 工程上为了保证供水经常采用超大容量蓄水法,就是正常用水量10吨储备15-20吨。

(完整版)直热式和循环式对比分析

直热式与循环式对比分析 机组原理: 芬尼克兹(PHNIX)热泵运用逆卡诺原理,以极少的电能,吸收 空气中大量的低温热能通过压缩机的压缩变为高温热能来加热热水,所以它能耗低、效率高、速度快、安全性好、环保性强,源源不断的供应热水。作空气源热泵工作原理图为热水系统它具有无以比拟的优点。热泵热水机组遵循能量守恒定律和热力学第2定律,运用热泵的原理,只需要消耗一小部分的机械功(电能),将处于低温环境下的热量去加热制取高温的热水。它的原理与空调雷同。 芬尼克兹(PHNIX)机组特点——直热式热泵热水机组与循环式热泵机组特点比较 直热式: 芬尼克兹(PHNIX)直热式热泵热水机组,自来水直接进机组,低温自来水直接吸收高温冷媒的热量,使冷媒得到充分冷却,系统高压压力降低,压缩机克服系统压力所消耗的电能比较少 ,机组运行效率高.由于直热式的进水永远是常温,压缩机的排气温度变化不大,对压缩机的冲击较小能起到保护压缩机的作用,从而延长压缩机的寿命。 循环式: 循环式热泵热水机组,该机组的补水是先补进保温水箱,然后经过循环泵进入机组加热,它的进水温度不断的再改变,压缩机的排气温度和排气压力也不停的在变,势必会对压缩机造成冲击,特别是水箱相对高温热水进行循环加热的时候,对压缩机冲击很大。因为,冷媒没有充分冷却,系统长期处于高压状态,压缩机克服系统压力所消耗的电能比较多,压缩机的寿命会缩短。 所谓循环式空气能热泵热水机,指的就是被加热的水反复多次循环才能被加热到设定的温度;直热式空气能热泵,指的是被加热的水循环一次就被加热到设定的目标温度;该技术区别于传统的需要反复多次进出空气能热泵加热才能达到设定温度的循环式空气能热泵。其特点是:1、由于被加热的水是一次性就被加热到设定的热水温度,对于用户来说用水舒适性得到可靠的保证,不会因为在用水过程中水温变化影响用水的舒适性。 芬尼克兹(PHNIX)直热式特点: 1、芬尼克兹(PHNIX)直热式热水机采用了先进的水路控制系统,使用了进出水感温头和电子流量计,通过出水温度来控制水路上的电动阀来调节水流量,从而达到自主的控制出水温度的要求。这样水温控制精确,方便调节水温。保证系统安全。

生能空气源方案样本

方案提供单位: 浙江正理电子电气有限公司联系人: 黄建生 联系电话 :

目录 第一章项目概况................................... - 6 -第二章方案设计简介............................... - 7 - 2.1 系统原理图 ................................ - 7 - 2.2 整体方案说明............................... - 7 - 2.3 报价方案 .................................. - 7 - 2.4 该方案的经济效益........................... - 8 -第三章设计依据及标准............................ - 10 -第四章设计计算参数.............................. - 10 - 4.1 机组额定工作参数.......................... - 10 - 4.2 工程设计计算参数.......................... - 11 -第五章卫生热水系统设计.......................... - 11 -第六章酒店卫生热水系统设计….…................. - 12 - 6.1 热泵机组运行时间确定...................... - 12 - 6.2 日耗热量的确定............................ - 12 - 6.3 设备选型 ................................. - 13 - 6.3.1 冬季最冷工况下( -2.4℃) 设备选型........ - 13 - 6.3.2 冬季平均工况下( 4.2℃) 运行时间校核..... - 14 - 6.3.3 年平均工况下( 1 7.5℃) 运行时间校核...... - 14 - 6.3.3 夏季工况下( 29.7℃) 运行时间校核........ - 15 -

常见的热泵热水系统

常见的热泵热水系统暖通南社2019-06-14 08:01:00 热泵热水机组热水供应系统的组成: 热水制备系统(第一循环系统): 热水供应系统(第二循环系统):

热水制备系统按水箱的蓄热方式可分为两种: 单水箱系统:设一台满足日用水总量的热水箱,适用于定时集中供水的场所。 双(多)水箱系统:是在热水供应系统中设有多个水箱:一台加热水箱(小容积),几台蓄热水箱(大容积)。适用于宾馆、饭店等需要24小时提供热水的场所。 选择位置: 1.安装位置要有足够空间; 2.安装位置应尽量远离生活、工作区; 3.机组安装室外,要做好防风防雨设施; 4.机组安装时应注意风向; 5.机组安装位置要便于排水。 热泵热水系统设计要求:

1.机组安装要找平找正,固定在建筑物的高层或地面基础上,基础负荷应满足要求,基础高度不小100mm。 2.机组用地脚螺栓固定,安装时必须采取减振措施。 3.用户侧水系统管路材料可以选择:镀锌焊接钢管、无缝管、紫铜管、不锈钢管、铝塑管、PP-R管。 4.为防止震动的传播,连接机组的水管要加装橡胶软接头,使用软性护线管。 5.水系统管路应当选用优质的保温材料,保温厚度视当地环境和保温材料的保温性能而定。 6.设备、管道、阀门、仪表的安装,要符合相关安装规范,要便于检修;管道支架要符合相应材质、型号强度要求。 7.在水系统的凸出部位及最高位置应安装自动排气阀;水系统管路的最低处应设置排水(排污)阀。 8.热泵热水机组用户侧生活用水,要符合《生活饮用水卫生标准》,严禁直接使用地下水、河水、湖水等未经处理过的水源;不符合要求的水源必须安装水处理设施。 9.为防止杂质进入机组发生堵塞,机组进水管路必须安装过滤器,要便于清洗。 10.在机组的进出水管上,应分别安装直读式温度计和压力表,室外安装要采取防冻措施,在生活用水水源处加装水表,以便观察和分析系统、机组的运行情况。 11.机组安装时,在水系统进出水口合适位置分别预留系统清洗口,便于对系统定期检查和清洗。 12.为保证机组正常工作,在名义工况下水系统的水流量和流速,必须满足进出水温差不高于5℃。 13.机组安装完毕后,水系统必须进行清洗和水压试验。 开式水箱热水系统:

空气源热泵与模块机对比

空气源热泵与模块机做中央空调、热水机的对比 一.节能 (1)热水 如果酒店一天需用40吨水,空气源热泵与65模块机费用对比:制40吨热水所需热量为: Q=CM△T=1Kcal/kg.℃*40T*1000Kg/T*(55-15)℃=1600000Kcal 1600000Kcal÷860 Kcal/(KW·h)=1860.5(KW·h) 空气源RSJ-380/S-820-C费用: 1860.5(KW·h)÷38.5KW×9.1KW=440(KW.h) 65模块机费用: 1860.5(KW·h)÷69KW×18.8KW=507(KW.h) 空气源RSJ-380/S-820-C比65模块机每天可以节约费用 507(KW.h)-440(KW.h)=67(KW.h) 虽然65模块机夏季可以得到热水,但春秋冬三季,比空气源费电,二者一年的热水费用总体相差无几。 (2)中央空调 我们现在中央空调配置是6台RSJ-1800/MS-820-B,制热量是152KW×6=912KW;制冷量是142KW×6=852KW 如果同样配置用130模块机制热需要:912KW÷138KW=6.6台;制冷需要852KW÷130KW=6.6台 就是说配置相同的情况下,RSJ-1800/MS-820-B节约了一台主机,每年都可以节约一台130模块机的运行费用.

二.寿命 空气源热泵设计一年四季可以用,而模块设计是一年使用两季,冬夏二季。从热水方面来说,模块机由一年用两季改成一年用四季,寿命会降低;中央空调方面,空气源热泵由一年365天使用改为一年使用两季,使用年数会增加,比模块机要长。 三.效果 梧桐树酒店按四星标准打造,热水、空调都要让顾客感到舒适,力求达到顾客满意。两者相比让顾客感受也有不同。 一是热水方面,当酒店接待大规模会议时,会出现集中用热水的情况。如果顾客在很短的时间内用去四分之一热水时,两个系统的差别就是显示出来。模块机热水系统是直接往水箱内补冷水,水箱整体水温会下降,而此时正在洗澡的客人会感到水温慢慢变凉,有可能导致顾客投诉。而空气热水机直接往水箱内补的是55度的热水,对水箱温度不会产生影响。 二是中央空调方面,我们用的风机盘管多,这样热风或冷风分面均匀,顾客到什么地方感觉温度一样,整体感觉舒服。 四.机组配置 我们在系统上加入了软节,控制铜阀,当一个风盘出现问题时,关闭铜阀进行维修,不会影响其它风盘使用。

空气源热泵热水器的原理和发展史

空气源热泵热水器的原理和发展史 追溯其渊源,空气能热水器应该算是个舶来品。空气源热泵技术1924年就已在国外发明。然而在很长的一段时间里并没有被人类充分地认识和运用。直到20世纪60年代,世界能源危机爆发以后才受到充分的重视,所以此后世界各国纷纷加大了研发力度,进一步推广了热泵技术,使得目前热泵技术已经比较广泛地使用。20世纪70年代初期,由于"能源危机"的出现,热泵又以其回收低温废热,节约能源的特点,在产品经过改进后,更受到了人们的青睐。比如美国,热泵的产量从1971年的8.2万套/年猛增至1976年的30万套/年,1977年再次跃升为50万套/年,而此时日本后来居上,年产量更超过50万套。目前热泵市场每年都在成倍增长,发展势头相当迅猛。在欧美大多数发达国家,如澳大利亚、英国、法国、北欧及南欧的一些国家,热泵产品已经进入了大多数家庭,而在我国的毗邻国家如新加坡、马来西亚等也是热泵热水器使用比较普遍的国家。 相对来说,空气源热泵热水器在我国起步则比较晚,国内厂商关注该产品也是近几年的事情。由于前期在产品的导入时,市场培育不够,因而无论是从技术还是从产品上来看均还处在初级发展阶段。而这两年来,在各方面能源紧缺的情况下,空气源热泵热水器逐渐被广大厂商重视起来,尤其是近两年来有了比较大的增长,单就生产企业也由屈指可数的几家突飞猛进爆涨到目前的几十家甚至近百家。还有一些手工作坊或者纯粹靠贴牌组装而卖产品的则更加不在少数。而04年进入的数家空调企业更加壮大了这一队伍的规模。

总体来说,就目前而言,国外的空气源热泵热水器市场已经相当成熟,在发达国家使用的比例有的高达70%,比如在新加坡、欧美的一些国家等。就是在中国的香港和台湾地区也有将近50%的推广使用力度。只是受国内消费和经济发展规律的影响,空气源热泵热水器也是在近4年才被引进并在小范围内推广使用,而且是集中在经济发达的两个三角洲地区。据市场的统计数据来看,虽然该产品在国内上市只有短短几年时间,但是增长的速度却非常快。2002年时,它的销售额还不到1000万元,但是到2003年,它已达到了3000万元,2004年则达到8000万到1个亿。按照预算估计,2005年,热泵产值会超过三个亿。可以说,就象前几年互联网接入时的发展速度一样,整个行业销售增长率将以几何基数增长,市场空间十分巨大。 四、什么是空气源热水器: “空气能”热水器是一种采用空气热能生产热水的热水器。通过电能驱动空气压缩机搬运空气中的热量,通从冷媒的膨胀和压缩实现与水的热交换。它是继燃气热水器、电热水器和太阳能热水器之后的第4代热水器,它综合电热水器和太阳能热水器的优点安全、节能、环保型热水器,可一年三百六十五天全天候运转,制造相同的热水量,使用成本只有电热水器的1/4,燃气热水器的1/3,太阳热水器的1/2。 五、空气源原理: 空气源热水器以制冷剂作为媒介,冷媒吸收了环境空气中的热量后汽化,通过压缩机压缩制热,变成高温高压气体,再经热交换器与水交换热量后,经膨胀阀释放压力,回到低温低压的液化状态,通过制冷剂的不断循环,不断吸收空气中的低品位热量,并将该部分热量转移,来制取热水。 在自然界中,水总由高处流向低处,热量也总是从高温传向低温。但人们可以用水泵把水从低处提升到高处,从而实现水的由低处向高处流动,热泵同样可以把热量从低温传递到高温。所以热泵实质上是一种热量提升装置,热泵的作用是从周围环境中吸取热量,并把它传递给被加热的对象(温度较高的物体),其工作原理与制冷机相同,都是按照逆卡诺循环工作的,所不同的只是工作温度范

05商用B系列直热循环型热泵热水机组

05商用B系列直热循环型热泵热水机组

第五章商用B系列直热循环型热泵热水机组 一、产品概述 1、产品特点 直热循环型空气源热泵热水机组,采用先进的水路自控系统,冷水进入机组后即被加热到55℃,直接进入储热水箱供用户使用且水箱内水温下降时可以自动循环保温,确保水箱内热水温度。机组在-7~43℃范围内,一年四季全天候工作,不受阴雨等恶劣天气影响,被广泛应用于宾馆、工厂、公寓、别墅、发廊、浴足、泳池等各种需要生活用水的场所。

模块化设计,有12kW、20kW、39kW三种冷量的模块可选。通过组合1~16个相同或不同的单元模块,可形成制热量在12~624kW范围的系列产品,满足不同工程的需要。 ●出水温度高 采用先进的水路控制系统,出水温度高,出厂时设定在55℃,最高出水温度可达60℃。 ●产水迅速,开机就有热水 直热型设计,冷水进入后即被加热到可使用的温度,开机就有热水,产水量大而且迅速。 ●能效比高 能效比高,平均能效达4.5以上,最高达5.8,同等能耗下的产水量远远高于其他热水装置。 ●运行安全、可靠 采用热泵方式制取生活热水,区别于使用电或者燃料直接加热热水的方式,消除了传统热水器具有的易燃、易爆、煤气中毒、触电等危险;且先进的微电脑控制系统,保护功能齐全,从根本上杜绝了漏电、干烧、超高温等安全隐患。 - 22 -

经专家反复研究实验,优化后的设计,结构紧凑美观,控制方便简洁,性能安全可靠,能效领先国际;且关键零部件均采用国际知名品牌,配合本公司精心制作,每台机组出厂前均通过严格的性能测试,保证机组能长期稳定高效运行。 ●控制简洁、方便 微电脑全自动控制,无需专人值守。友好的全中文人机界面,系统状况一目了然,多模块网络化控制,一套系统可以控制多达16台主机,且控制方便简捷,只需轻轻一按,即可产出热水。 ●安装灵活 机组紧凑轻巧,便于运输,无需专用机房,安装灵活;模块化的设计,自由组合,扩展方便;简单的管路系统,维护轻松简便,适合各类工程。 ●环保 采用逆卡诺循环的热泵技术,吸收空气中的热量加热生活用水。在运行过程中没有任何气体排放,属于绿色环保型产品。不会像煤、油、气等矿物燃料那样,在燃烧过程中会污染环境。 - 22 -

空气源热泵热水器国家标准全文

空气源热泵热水器国家标准 中华人民共和国国家质量监督检验检疫总局发布 中国国家标准化管理委员会 前言 本标准附录B为规范性附录、附录A为资料性附录。 本标准由中国机械工业联合会提出。 本标准由全国冷冻空调设备标准化技术委员会(SAC/TC 238)归口。 本标准主要起草单位:广州中宇冷气科技发展有限公司、合肥通用机械研究院、江苏天舒电器有限公司、、广东美的商用空调设备有限公司、合肥通用环境控制技术有限公司。 本标准准参加起草单位:大连冰山集团有限公司、重庆九龙韵新能源发展有限公司、北京同方洁净技术有限公司、广州恒星冷冻机械制造有限公司、艾欧史密斯(中国)热水器有限公司、浙江正理电子电气有限公司、北京华清融利空调科技有限公司、佛山市伊雷斯制冷科技有限公司、劳特斯空调(江苏)有限公司、浙江星星中央空调设备有限公司、泰豪科技股份有限公司、广东申菱空调设备有限公司、上海富田空调冷冻设备有限公司、艾默生环境优化技术(苏州)研发有限公司、(中外合资)滁州扬子必威中央空调有限公司、宁波博浪热能设备有限公司。 本标准主要起草人:覃志成、张秀平、张明圣、王天舒、舒卫民、李柏。 本标准参加起草人:俞乔力、朱勇、刘耀斌、袁博洪、邱步、凌拥军、黄国琦、区志强、丁伟、沙凤岐、黄晓儒、易新文、姚宏雷、文茂华、谢勇、王磊、钟瑜、王玉军、汪吉平。 本标准由全国冷冻空调设备标准化技术委员会负责解释。 本标准是首次制定。 商业或工业用及类似用途的热泵热水机 1、范围 本标准规定了商业或工业用及类似用途的热泵热水机(简称“热水机”)的术语和定义、型式与基本参数、要求、试验方法、检验规则、标志、包装、运输和贮存等。 本标准适用于采用电动机驱动,蒸汽压缩制冷循环,名义制热能力3000W以上,以空气、水为热源,以提供热水为目的热泵热水机,其他用途的热泵热水机也可参照使用。 2、规范性引用文件 下列文件中的条款通过本标准的引用而构成本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准。然而,鼓励根据本标准达成协议的各方研究是否使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 191包装储运图示标志(GB/T191—2000,eqv ISO 780:1997) GB/T 1720 漆膜附着力测定法 GB/T 2423.17电工电子产品基本环境试验规程试验Ka:盐雾试验方法(GB/T 2423.17---1999,eqv IEC60068-2-11:1981) GB/T2828.1计数抽样检验程序第1部分:按接收质量限(AQL)检索的逐批检验抽样计划(GB/T 2828.1—2003,ISO 2859:1999 IDT) GB/T 6388 运输包装收发货标志 GB 8624建筑材料燃烧性能分级方法 GB/T 10870—2001容积式和离心式冷水(热泵)机组性能试验方法 GB/T 13306 标牌 GB/T 13384 机电产品包装通用技术条件 GB/T 17758单元式空气调节机 GB/T 18430.1蒸汽压缩循环冷水(热泵)机组第1部分:工商业用和类似用途的冷水(热泵)机组

空气源热泵与锅炉的对比

空气源热泵与锅炉的对比 一、从投资成本来看 相同产热量的情况小,电锅炉要比空气源热泵稍微便宜一点,但是它需要的电功率要比空气源热泵大3倍作用。 二、从节能性来看 空气源热泵是通过吸收空气中热量,经过压缩机压缩产热的过程,比传统的电节能4倍左右;而电锅炉是直接产热的设备,中间没有经过任何的转换直接产热的过程,所以只能产生90%的热量,节能性空气源热泵比电锅炉节能。 1、空气源热泵常年可以实现1KW可以转化4KW的过程。 2、锅炉只能实现1KW实现0.95KW或者更低的过程。 三、工作原理的差异 1、空气源热泵运转基本原理根据是逆卡循环原理,液态工质首先在蒸腾器内吸收空气中的热量而蒸腾形成蒸汽(汽化),汽化潜热即为所回收热量,然后经压缩机压缩成高温高压气体,进入冷凝器内冷凝成液态(液化)把吸收的热量发给需求的加热的水中,液态工质经胀大阀降压胀大后从头回到胀大阀内,吸收热量蒸腾而完成一个循环,如此往复,不断吸收低温源的热而输出所加热的水中,直接达到预定温度。 2、电锅炉也称电加热锅炉、电热锅炉,望文生义,它是由电加热和相关的电控部件组成的,主要以电加热的形式,向外输出具 有必定热能的蒸汽、高温水或有机热载体的设备。 四、机构上的区别 1、空气源热泵机组比较复杂,主要由压缩机、冷凝器、蒸发器、膨胀阀、四大部件组成。 2、锅的机构比较简单,主要由大功率的电热线和绝缘的壳体组成。 五、安全性的区别 空气源热泵产热过程中,无压力,无漏电的危险,电锅炉产热的过程,主要绝缘的壳体,看是否有漏电的可能,有触电的危险。 六、电功率的要求 空气源热泵需要的电负荷要比电锅炉小1/3,对电网的要求小于传统的电锅炉。 七、功能上的区别 空气源热泵属于空调设备,在使用过程中可以根据用户的需求,实现取暖和制冷功能和日常的生活热水,实现了三合一;而电锅炉比较单一,只能实现取暖功能。 当然,由于投资成本方面的制约,用户得根据自己的经济条件来选取合适自己的取暖产品,由于电锅炉的安全系数比较低,所以在选购的时候,必选选用品

直热式和循环式空气源热泵热水机对比分析

直热式与循环式空气源热泵热水机对比分析 机组原理: 芬尼克兹(PHNIX)热泵运用逆卡诺原理,以极少的电能,吸收空气中大量的低温热能通过压缩机的压缩变为高温热能来加热热水(图1),所以它能耗低、效率高、速度快、安全性好、环保性强,源源不断的供应热水。作空气源热泵工作原理图为热水系统它具有无以比拟的优点。空气源热泵热水机组遵循能量守恒定律和热力学第2定律,运用热泵的原理,只需要消耗一小部分的机械功(电能),将处于低温环境下的热量去加热制取高温的热水。它的原理与空调雷同。 图1 芬尼克兹(PHNIX)机组特点——直热式空气源热泵热水机组与循环式热泵机组特点比较 直热式: 芬尼克兹(PHNIX)直热式空气源热泵热水机组,自来水直接进机组(图2、3),低温自来水直接吸收高温冷媒的热量,使冷媒得到充分冷却,系统高压压力降低,压缩机克服系统压力所消耗的电能比较少 ,机组运行效率高.由于直热式的进水永远是常温,压缩机的排气温度变化不大,对压缩机的冲击较小能起到保护压缩机的作用,从而延长压缩机的寿命。 循环式: 循环式空气源热泵热水机组,该机组的补水是先补进保温水箱,然后经过循环泵进入机组加热,它的进水温度不断的再改变,压缩机的排气温度和排气压力也不停的在变,势必会对压缩机造成冲击,特别是水箱相对高温热水进行循环加热的时候,对压缩机冲击很大。因为,冷媒没有充分冷却,系统长期处于高压状态,压缩机克服系统压力所消耗的电能比较多,压缩机的寿命会缩短。 所谓循环式空气源热泵热水机,指的就是被加热的水反复多次循环才能被加热到设定的温度;直热式空气源热泵热水机,指的是被加热的水循环一次就被加热到设

空气源热泵技术协议

集中供暖项目空气源热泵 技 术 协 议 甲方: 乙方: 2016年9月22日

一、总则 (甲方)与(乙方)经双方友好协商,就集中供暖项目空气源热泵的订货事宜及所涉及的技术问题达成共识,形成以下条款: 1.1本技术协议书适用于集中供暖项目空气源热泵及其附属设备的性能、结构、调试及售后服务等方面。 1.2本技术规范书所提出的是最低限度的技术要求,并未对一切技术细节做出规定,也未充分引述有关标准和规范的条文,乙方应保证提供符合现行技术规范书和现行工业标准的优质产品。 1.3本协议书所使用的标准与乙方所执行的标准所发生矛盾时,按较高标准执行。 1.4签订合同后,甲方保留对本协议书提出补充要求和修改的权利,乙方应予以配合,具体项目和条件由甲乙双方商定。 1.5乙方应严格按照甲方提供的技术资料、进行生产、严格执行甲方所提供的技术资料中的制造规范和检验标准。 1.6乙方负责履行设备制造和交货进度。乙方保证不能因正在履约的其它项目及其他任何原因,而影响到本投标设备按期保质保量的完成与交货。 1.7乙方在设备制造过程中发生侵犯专利权的行为时,

其侵权责任与甲方无关,应由乙方承担相应的责任,并不得影响甲方的利益。 二、技术规范及相关要求 2.1空气源热泵设备技术参数表如下:

2.2供暖系统机组全部正常运行供回水温差不低于8℃,或运行流量在满足8℃温差下能够正常启动机组。 2.3结合基础的承重能力,热泵机组在正常供暖运行情况下,重力负荷不超过0.5T/㎡。 2.4需提供设备具体详细的运行参数及运行曲线,所提供数据必须是设备运行或模拟运行的实际参数,不得为推论值。 2.5在国标工况下制热能效比不低于 3.5,以第三方的检测报告原件为准。 2.6在室外7℃、设备出水温度55℃、进出水温差不小于10℃时,能效比COP不得低于2.8; 在室外-5℃、设备出水温度55℃、进出水温差不小于10℃时,能效比COP不得低于2.4; 在室外-15℃、设备出水温度55℃、进出水温差不小于10℃时,能效比COP不得低于2.1;以上数据需提供国家权威机构检测报告原件或复印件加盖公章,作为设备质量验收依据。 2.7空气源热泵应提供降噪具体措施,降噪后满足《社会生活环境噪声排放标准》噪音标准要求(昼间60分贝,

锅炉和空气热泵成本对比

广东工商职业学院室内泳池加热系统 空气源热泵与锅炉费用对比 一、广东工商职业学院室内比赛池和跳水池设计参数 室内跳水池:25m*25m、水深5.65m-5.85m,总水量3162.5m3,水温28° 室内跳水池:25m*25m、水深5.65m-5.85m,总水量3162.5m3,水温28° 二、设计能源参数表 三空气能热水系统设计 3.1 游泳池能耗计算 根据泳池性质结合上述标准,设计补充水量为总容积的1%。 游泳水容量为6475m3 ;游泳池水表面积为1875m2;每天补充水量为 64.75m3。 3.2 热量计算 游泳池水加热所需热量,应为下列各项耗热量的总和:(《游泳池和水上游乐池给水排水设计规程》CECS14:2002规定) A、水表面蒸发和传导损失的热量; B、池壁和池底传导损失的热量; C、管道的净化水设备损失的热量; D、补充水加热需要的热量。 3.3 详细热量计算过程 (1)水表面蒸发损失热量计算: Qz=a·r(0.0174Vi+0.0229)(Pb-Pc)A(760/B) 式中:Qz——游泳池水表面蒸发损失的热量(kJ/h); A——热量换算系数,a=4.18KJ/Kcal; r——与游泳池水温相等的饱和蒸汽的蒸发汽化潜热(Kcal/kg); Vi——游泳池水面上的风速(m/s)室内0.2~0.5m/s,室外 2~3m/s; Pb——与游泳池水温相等的饱和空气的水蒸汽压力(mmHg); Pc——游泳池的环境空气的水蒸汽压力(mmHg); A——游泳池的水表面面积(㎡); B——当地的大气压力(mmHg);

将数值代入计算得: Qz=a·r(0.0174Vi+0.0229)(Pb-Pc)A(760/B)=4.18×582.5×(0.0174×0.5+0.0 229)×(28.2-17)×1875×760/760=1605540(kJ/h)=446kw/h (1kw/h=3600kJ) (2)游泳池的水表面、池底、池壁、管道和设备等传导所损失的热量,应按游泳池水表面蒸发损失热量的20%计算确定,即: Qc=446×20%=89.2kw/h (1kw/h=3600kJ) (3)游泳池补充水加热所需的热量,按下式计算: Qb= qbr( tr-tb ) Qb——游泳池补充水加热所需的热量(KJ); 热量换算系数,a=4.18KJ/Kcal; Qb——游泳池每日的补充水量(L),qb=64.75m3; r——水的密度(kg/L),r=1kg/L; Tr——游泳池水的温度(℃),tr=28℃; tb——游泳池补充水水温(可参照土壤温度)(℃),tb=10℃; 代入数值计算如下: Qb=qb r( tr- tb )=4.18×64.75×1000×1×(28-10)= (kJ/h)=1354kw/h(1kw/h=3600kJ) (4)游泳池日用总热负荷计算: 将以上各项耗热量相加,即为每天需补充的热量。 ΣQh=(Qz+Qc)×24+Qb=(446+89.2)×24+1354=14201.8kw/h (5) 游泳池一次性冲击负荷(初次充水或换水)计算: 一次性冲击负荷(初次充水或换水),按照换水量以及水温差来计算其总用热负荷和单位(小时)热负荷(机器所需的制热功率)。自来水按水温10℃计算,换水周期根据实际情况设计,则: 一次性冲击负荷:Qzh=[1.1×V×(T2-T1)]÷0.86kwhr 小时热负荷:Pzh=Qzh÷T 式中:V- 游泳池的总容积m3;(V=6475m3) T2- 池水所需温度,℃;(T2=28℃) T1- 平均冷水温度,℃;(T2=10℃) T- 初次加热时间,h;(取T=48小时) 1.1- 考虑在换水周期内的热损失附加值。 代入数值计算如下: Qzh=1.1×6475m3×1×(28-10)℃÷0.86=149075kwh 四、根据上述热量计算结果,测算空气热源泵与燃气锅炉运行成本对比如下(一年按照270天计算):

热泵技术及直热循环式与循环式热泵对比

热泵技术及直热循环式与循环式热泵对比 生活热水供应是人民生活质量提高的必然。热泵热水机组是当前最为节能、环保、安全、可靠的制取生活热水的设备。随着改革、开放,人民的生活有了极大的提高。城里每家每户都有了煤气供应,大大方便了烧热水。以后电热水器、燃气热水器大量进入寻常百姓家,每个家庭用热水有了保证。至于酒店、宾馆等等商业设施,自然必须有集中的热水供应。目前,就连学生宿舍、小区住宅,都纷纷安装上了中央热水系统,保证了人们对于热水的需求,洗脸洗澡,做饭洗菜等都用上了热水,使人们沐浴在一个“温暖、温馨”的天地里。 当前生活热水供应的耗能是很高的,椐统计,城市各类商业建筑生活热水的能耗约为其建筑总能耗的10-40%(其中,写字楼约为2.7%;商场10.7%;饭店31%;医院41.8%);城市民用建筑生活热水能耗约为其建筑总能耗的20-30%。而建筑能耗约占整个社会总能耗的30%,这样折算下来,热水的能耗约为整个社会总能耗的3-4%,根据估算,为满足全国城镇居民生活热水供应(年人均耗用热水25-35 升/日),一年约要耗用相当于1750 亿到2450 亿度电的能量。节能是热水技术发展的永恒主题,高能耗是常规热水技术无法克服的缺点。 热泵技术是一种热能回收技术,使用热泵技术,利用空气中、水中所蕴藏的趋于无限的能量,一年四季都可以将空气中和水中取出的热量来制造热水。利用热泵原理制造的热水机组是一种热效率大于1 的设备。无论是水源热泵或者空气源热泵,都是可以吸取低温水源或空气源的热量,再将这一些热量连同本身所消耗的一部分电能所转化的热量,转送到常温环境条件下去应用。就拿空气源热泵热水机组而言,利用了制冷工质循环过程的“泵”热原理: 少量电能驱动机组进行,单位时间用电量为Q1;机组运行,利用制冷剂的相变从空气中吸收大量热能Q2;冷水进入机组,被加热成高温热水,得到Q3。 根据能量守恒定律:输入能量=输出能量即Q3=Q1+Q2 标准工况下:Q2=3.6Q1,故Q3=Q1+3.6Q1=4.6Q1 性能系数COP=输出能量/输入能量=Q3/Q1=4.6 即相当于消耗1kW的电能得到4.6kW的热能。 其中从空气中吸收的热能Q2是免费的,故公式中“输入能量”不包括Q2。

~~空气源热泵热水机形式对比分析

第11卷 第3 期2011年6月 REFRIGERATION AND AIR -CONDIT IONING 20-23 收稿日期:2010-11-08 作者简介:张剑飞,本科,助理工程师,主要从事制冷与空调方面的研究。 空气源热泵热水机形式对比分析 张剑飞 秦妍 (大连三洋压缩机有限公司) 摘 要 针对使用相同型号压缩机的一次加热式与循环加热式热泵热水机进行试验研究。分别对机组的主要参数如水流量、冷凝温度、蒸发温度、过冷度、吸气过热度进行对比分析,同时对两者运转情况和除霜方式进行简要对比。 关键词 空气源;热泵热水器;一次加热;循环加热;性能 Comparative analysis on the forms of air source heat pump water heater Zhang Jianfei Qin Yan (Dalian SANYO Com pressor Co.,Ltd.) ABSTRACT Studies one -time heating H PWH (heat pump w ater heater)and circulate heating H PWH w ith the same co mpr essor by contrast ex perim ent.M akes a co mpar ative analy sis of main parameters o f the units,such as w ater flo w rate,co ndensing tem pera -tur e,evaporating temper ature,subco oling ,superheat,meanw hile makes a simple com -parison of o peratio n condition and defro sting w ays of tw o units. KEY W ORDS air source;heat pump w ater heater;one -time heating;circulate heating;per -formance 空气源热泵热水机是继锅炉、燃气热水器、电热水器和太阳能热水器之后的第4代热水制取装置。周峰等[1] 给出了几种热水器形式的对比,见表1。从表中可以看出,热泵热水机在多方面都具有明显的优势,在能源供应日益紧张的今天,空气源热泵热水机凭借其高效、节能、环保以及安全等诸多优势势必会成为未来应用的主流。 国外同类产品已经相当成熟,在发达国家的使用比例有的高达70%。在日本其应用已经普及,生活热水工程中有60%~70%使用空气源热泵热水机;在澳大利亚达到30%~40%;在欧洲、美洲也有大量应用[2]。 但是我国引入该技术时间并不长,这一产品的技术成熟度还较差。因此,对热泵热水机产品进行全面、深入的了解,以便更好地设计和应用是非常必要的。笔者针对国内市场广泛应用的2种不同形式的热泵热水机进行对比分析,就影响机组性能的主要参数如水流量、蒸发温度、冷凝温 度、过冷度、过热度等进行比较研究,同时对两者的运行状态和除霜方式进行简单对比。 表1 几种热水器对比 热水器种类空气源热 泵热水器 电热水器 太阳能热水器燃气热水器燃料种类电电 电 天然气有无污染 无无无 有有无危险性无有触电隐患有触电隐患危险是否方便方便较方便不方便较方便燃值860k cal/(kW #h)860k cal/(kW #h )860kcal/(k W #h)9000kcal/m 3热效率370%95%280%70%燃料单价0.5元/千瓦时0.5元/千瓦时0.5元/千瓦时2.0元/米3 120升水的费用/元 0.752.941.01.5年运行费用/元 273.8 1073.1 365 547.5 1 热泵热水机形式介绍1.1 热水机分类 GB/T 21362)20085商业或工业用及类似用途的热泵热水机6中已给出明确的分类,热水机按制热

格力商用循环型空气能热泵热水机组

第四章商用循环型空气能热泵热水机组 一、产品概述 1、产品特点 商用循环型空气能热泵热水机组利用热泵原理,以消耗一部分电能为补偿,通过热力循环,从周围空气中吸取热量,通过压缩机将其输送至冷凝器,将来自水箱内的水循环加热至生活或生产所需要的目标值(30 ~ 58℃可调)。商用循环型空气能热泵热水机组分为单机系列和模块化系列,共有18kW,36kW,65kW 三个基本模块,对于模块化机组,通过组合1 ~ 16 个相同或不同的模块,机组可以形成制热量为18 ~ 1040kW 范围内的系列产品。商用循环型空气能热泵热水机组因其节能,高效,环保而广泛应用于工厂、宾馆、酒楼、医院、美容院、洗衣店、洗浴中心和热水应用量较大的其他场合。 ◆环保节能 机组运行过程中没有任何排放气体,绿色环保。并且运行节能,平均能效达4.5 以上(最高达 5.8)。 ◆安全可靠 完全实现水电分离,消除了传统热水器具有的易燃、易爆、触电、煤气中毒等危险;且先进的微电 脑控制,保护功能齐全,从根本上杜绝了漏电、干烧、超高温等安全隐患。 ◆精心设计 采用名优压缩机, 系统稳定可靠; 电子膨胀阀节流,可调节范围更广更精确; 热水专用套管式冷凝器,适用水质范围广,不易脏堵,机组使用寿命长。 ◆模块化设计,自由组合 格力专利的模块化设计,最多16 台机组自由组合,任意一台机组均可作为主控模块; 组合灵活,拓展性强。 ◆全年全天候制热, 热水温度自由可调 产品环境温度范围为-7 ~ 43℃,满足全年全天候制热,并且热水温度可以根据用户实际使用需求, 从30 ~ 58℃任意可调, 机组运行时温差小, 水温上升平稳,满足不同用户的个性化需求。2、产品命名规则 K F RS - 36 □ S M □ / □ A S 11 10 9 8

空气源热泵热水机组工作原理图

空气源热泵热水机组工作原理图 冷水水源直接进入热水机组入水口,热水机组按设定的温度进行加热,加热后的热水进贮水保温水箱,然后通过循环泵从保温水箱抽水送入系统中。它是吸收空气中的热能,利用电能驱动压缩机工作,把空气中的低品位热能吸收并提升,再传输到热水中。它是以电能来驱动工作,而非电能来制热。燃油锅炉由于燃油的价格高,产生的效能并不高。电资源虽丰富,但用电直接制热的方式不但耗电量大,运行成本高,而且电热管容易损坏。 热泵是通过消耗一部分高品质的能量从低温热源(空气)转移到高温热源(热水)中的一种装置。转移到高温热泵(热水)中的热量QH包括消耗掉的高品质电能W和从低温热源(空气)中吸收的热量QL,根据能量守恒原理及热力学第一定律,有QH=W+QL (1)

(1)式两边同除以W则QH=1+QL ……(2)式中QH为机组所获得的能量,储存于热水中;W为机组所消耗的电能;QL为来自空气中的热量,这部分能量来自于大自然的馈赠,不论环境温度如何变化,它总是以热焓的形式寄存于空气之中,所以热泵是一种高效节能的制热装置。定义能效比(COP)为热泵机组产出的热量与投入的电能之比,即产出投入比COP=QH代入(2)式,即WCOP=1+QL …… (3)WCOP是与低温热源的热力参数相关的函数,对空气源热泵而言,其值随空气的温度、湿度等参数的改变而变化,但无论如何变化,由(3)式可知:显然COP值恒大于1,即热泵的热效率突破了传统加热设备的热效率极限100%,这就是热泵节能的热力学依据。 热泵不是热能的转换而是热量的搬运设备,热泵制热的效率,不受能量的转换效率(100%为其极限)的制约,而是受到逆向卡诺循环效率的制约,其理论上的最高效率为(工作温度+273.15)/高低温差。只要有效降低工作温差就可以提高制热效率。

相关主题
文本预览
相关文档 最新文档