当前位置:文档之家› 给水全程控制系统设计

给水全程控制系统设计

给水全程控制系统设计
给水全程控制系统设计

300MW机组给水全程控制系统设计

摘要

本文在讨论给水调节系统的被控对象动态特性、热工测量信号、调节机构特性的基础上,分析了三冲量给水控制系统的结构及工作原理,提出了实现单元制给水全程控制系统应考虑的问题及控制方案。随着锅炉朝大容量、高参数发展,给水系统采用自动控制系统是必不可少的,它可以减轻运行人员的劳动强度,保证锅炉的安全运行。对于大容量高参数锅炉,其给水系统是非常复杂和完善的。针对目前发电厂给水系统的现状及其存在的问题,结合发电厂300MW 机组配置,发电厂300MW 机组给水全程调节系统的构成原理和控制功能,分析了系统的总体结构、工作原理、控制过程、系统切换方式、控制逻辑、调试及参数整定原则。

关键词:给水全程,给水控制,控制系统,汽包水位,自动调节

沈阳工程学院课程设计论文

Abstract

Based on the discussion of the feed water regulating system controlled object dynamic characteristic, thermal measurement signals, adjusting mechanism on the basis of analysis of the characteristics, structure and working principle of the three element feed-water control system, is proposed to realize the unit water supply problems should be considered in system and control scheme of the whole control. With the large capacity, high parameter boiler towards development, water supply systems using automatic control system is essential way, it can reduce the labor intensity of the operation personnel, to ensure the safe operation of the boiler. For the large capacity and high parameters of the boiler, the water supply system is very complex and perfect. In view of the present situation of water supply system of power plant and its existing problems, combined with the configuration of 300MW power plant, the whole feed water regulating system for 300MW unit of power plant construction principle and control function, analysis of the overall structure, working principle, control process, the system switching mode, control logic, debugging and tuning principle.

Key Words feed water, feed water control, control system, drum water level, automatic regulation

300MW机组给水全程控制系统设计

目录

摘要 ............................................................................................................................................... I Abstract ............................................................................................................................................. I I 引言.........................................................................................................................................- 1 -

1 汽包水位全程控制的介绍.......................................................................................................-

2 -

2 给水控制对象的动态特性.......................................................................................................-

3 -

2.1 给水流量扰动下水位的动态特性................................................................................- 3 -

2.1.1 给水流量扰动下水位的动态特性.....................................................................- 3 -

2.1.2 蒸汽流量扰动下水位的动态特性.....................................................................- 4 -

2.1.3 炉膛热负荷扰动下水位的动态特性.................................................................- 5 -

3 热工测量信号...........................................................................................................................- 6 -

3.1 水位信号........................................................................................................................- 6 -

3.2 蒸汽流量信号................................................................................................................- 7 -

3.3 给水流量信号................................................................................................................- 7 -

4 调节阀和调速泵的特性...........................................................................................................- 9 -

4.1调节阀门的静特性.........................................................................................................- 9 -

4.2调速泵的安全特性.........................................................................................................- 9 -

5 控制过程分析........................................................................................................................ - 11 -

5.1水位调节主回路及电动给水泵跟随系统.................................................................. - 11 -

5.2汽动给水泵副回路控制系统...................................................................................... - 11 -

5.3锅炉单冲量三冲量无扰切换和汽泵转速控制系统.................................................. - 12 -

5.4流量测量信号.............................................................................................................. - 13 -

5.5旁路辅助及保护回路.................................................................................................. - 14 -

5.6汽包水位自动失灵切手动保护.................................................................................. - 15 - 结论 ............................................................................................................................................- 17 - 致谢 ........................................................................................................................................... - 18 - 参考文献.................................................................................................................................... - 19 -

300MW机组给水全程控制系统设计

引言

汽包锅炉给水自动调节的任务就是在机组带负荷运行的整个工况下,自动控制锅炉的给水流量,使其适应锅炉的蒸发量,维持汽包水位在规定的范围内变化。汽包水位过高,会影响到汽包内汽水分离装置的正常工作,使出口蒸汽含水过多而使过热器结垢,容易造成过热器损坏,同时汽包出口蒸汽中含水过多,也会使过热器的温度急剧变化,直接影响机组的安全经济运行;汽包水位过低,则可能破坏锅炉的水循环系统,造成水冷壁管破裂。因而,保持汽包水位正常是保证锅炉和汽轮机安全经济运行的必要条件,然而,汽包水位又是锅炉运行中变化最频繁的参数,故给水流量的调节操作也是运行中最频繁的操作,锅炉给水自动调节是十分重要的调节系统。

在锅炉的启停过程中,给水控制十分重要,因此在大型机组中,汽包水位的全程控制系统被首先采用。汽包水位是锅炉安全、稳定、经济运行的一个非常重要的监控参数,维持汽包水位正常是保持汽轮机和锅炉安全运行的重要条件。水位高低反映了汽包内工质流入量与流出量的平衡关系,也就是锅炉蒸汽负荷与给水量之间的平衡关系。负荷变化必然引起汽包水位波动,这就需要通过调节给水流量使之与变化后的蒸汽负荷相适应来维持水位在给定的范围内。汽包锅炉给水自动调节的任务就是在机组带负荷运行的整个工况下,自动控制锅炉的给水流量,使其适应锅炉的蒸发量,维持汽包水位在规定的范围内变化。

大型机组的控制与运行管理相当复杂,尤其是当机组承担调峰任务时,负荷波动频繁,而且机组的启停次数相应增加。这时,运行人员要依靠自动化系统的功能,保证机组的安全运行。因此,大容量发电机组要求具有在不同负荷和工况下,都能充分发挥控制作用的自动调节系统,这就产生了全程调节系统。所谓全程调节系统是指在机组启停过程和正常运行的全过程都能实现自动调节的调节系统。给水全程控制是现代控制理论发展的必然趋势,它最大程度地节省锅炉从点火升压到带满负荷及至事故状态下紧急停炉的繁杂操作,可以实现对汽包水位有一个高速度、高稳定性的控制过程,提高系统的调节品质。

沈阳工程学院课程设计论文

1 汽包水位全程控制的介绍

目前,大型火电单元机组都采用机、炉的联合启动的方式,锅炉、汽轮机按照启动曲线要求进行滑参数启动。具有中间再热的单元机组多采用定压法进行滑参数启动。随着机组容量的增大、参数的提高,在启动和停机过程中需要监视和操作的项目增多,操作的频率也增高,采用人工调节已不适应生产要求,而必须在启、停过程中也实现自动控制。所谓全程控制系统是指机组在启停过程和正常运行时均能实现自动控制的系统。全程控制是相对常规控制系统而言的,全程控制包括启停控制和正常运行工况下控制两方面的内容。常规控制系统一般只适用于机组带大负荷工况下运行,在启停过程或低负荷工况下,一般要用手动进行控制,而全程控制系统能使机组在启动、停机、不同负荷工况下自动运行。以给水控制系统为例,常规串级三冲量给水系统只能在负荷达到额定负荷70%时,才能投入自动,在此以前全部为手动操作,而全程给水系统从锅炉点火启动开始便可以投入自动。

300MW机组给水全程控制系统设计

2 给水控制对象的动态特性

2.1 给水流量扰动下水位的动态特性

汽包水位是由汽包中的储水量和水面下的汽泡容积决定的,因此凡是引起汽包中储水量变化和水面下的汽泡容积变化的各种因素都是给水控制对象的扰动。其中主要的扰动有:给水流量W、锅炉蒸发量D、汽包压力Pb、炉膛热负荷等。给水控制对象的动态特性是指上述引起水位变化的各种扰动与汽包水位间的动态关系。

汽包水位动态特性较为复杂,一是对汽包水位扰动有四个来源,二是“虚假水位”问题的存在,特别是后一个问题使得人们设计出“三冲量”给水控制系统。了解、掌握汽包水位动态特性是保证给水自动控制系统顺利投入的基本要求。

2.1.1 给水流量扰动下水位的动态特性

给水流量是调节机构所改变的控制量,给水流量扰动是来自控制侧的扰动,又称内扰。给水流量扰动下水位的阶跃响应曲线如图2.1 所示。当给水流量阶跃增加ΔW 后,水位H 的变化如图中曲线H 所示。水位控制对象的动态特性表现为有惯性的无自平衡能力的特点。当给水流量突然增加后,给水流量虽然大于蒸汽流量,但由于给水温度低于汽包内饱和水的温度,给水吸收了原有饱和水中的部分热量使水面下汽泡容积减少,实际水位响应曲线可视为由H1 和H2 两条曲线叠加而成,所以扰动初期水位不会立即升高。当水面下汽泡容积的变化过程逐渐平衡,水位就反应出由于汽包中储水量的增加而逐渐上升的趋势,最后当水面下汽泡容积不再变化时,由于进、出工质流量不平衡,水位将以一定的速度直线上升。

图2.1.1 给水流量阶跃扰动下水位响应曲线

沈阳工程学院课程设计论文

2.1.2 蒸汽流量扰动下水位的动态特性

蒸汽流量扰动主要来自汽轮发电机组的负荷变化,属外部扰动。在蒸汽流量D 扰动下水位变化的阶跃响应曲线如图2.2 所示。当蒸汽流量突然阶跃增大时,由于汽包水位对象是无自平衡能力的,这时水位应下降,如图2.2 中H1 曲线所示。但当锅炉蒸发量突然增加时,汽包水下面的汽泡容积也迅速增大,即锅炉的蒸发强度增加,从而使水位升高,因蒸发强度的增加是有一定限度的,故汽泡容积增大而引起的水位变化可用惯性环节特性来描述,如图2.1.2 中H2 曲线所示。实际的水位变化曲线H 则为H1 和H2 的合成。由图2.2 可以看出,当锅炉蒸汽负荷变化时,汽包水位的变化具有特殊的形式:在负荷突然增加时,虽然锅炉的给水流量小于蒸发量,但开始阶段的水位不仅不下降,反而迅速上升(反之,在负荷突然减少时,水位反而先下降),这种现象称为“虚假水位”现象。这是因为在负荷变化的初期阶段,水面下汽泡的体积变化很快,它对水位的变化起主要影响作用的缘故,因此水位随汽泡体积增大而上升。只有当汽泡体积与负荷适应而不再变化时,水位的变化就仅由物质平衡关系来决定,这时水位就随负荷增大而下降,呈无自平衡特性。

虚假水位现象与锅炉参数及蒸汽负荷变化大小有关,对于100~670t/h 中、高压锅炉,当负荷阶跃变化10%时,虚假水位可达30~40mm。

图2.1.2 蒸气流量阶跃扰动下水位响应曲线

300MW机组给水全程控制系统设计

2.1.3 炉膛热负荷扰动下水位的动态特性

当燃料量扰动时,例如燃料量增加使炉膛热负荷增强,从而使锅炉蒸发强度增大。若此时汽轮机负荷未增加,则汽轮机侧调节阀开度不变。随着炉膛热负荷的增大,锅炉出口压力提高,蒸汽流量也相应增加,这样蒸汽流量大于给水流量,水位应该下降。但是蒸发强度增大同样也使水面下汽泡容积增大,因此也会出现虚假水位现象。燃料量扰动下的水位阶跃响应曲线如图2.1.3 所示,由图可以看出,这种扰动下的“虚假水位”现象不太严重,这是因为蒸汽流量增加的同时汽压也增大了,因而使汽泡体积的增加比蒸汽流量扰动时要小,从而使水位上升幅度较小。另外,由于蒸发量随燃料量的增加有惯性和时滞,如图2.3 虚线所示,这就导致迟延时间τ较长。对汽包水位的第四种扰动是汽包压力的变化,汽包压力对汽包水位的影响是通过汽包内部汽水系统在压力升高时“自凝结过程”和压力降低时的“自蒸发”过程起作用的。

图2.1.2 燃烧量阶跃扰动下水位响应曲线

上述四种扰动在锅炉运行中都可能经常发生,给水流量扰动作为内部扰动,汽包水位对其响应的动态参数(τ、ε)是给水控制系统调节器参数整定的依据。蒸汽流量D、燃料量B 和汽包压力Pb 扰动作为外部扰动,会造成水位波动。蒸汽流量D 和燃料量B 的变化是产生“虚假水位”的根源。所以在给水控制系统里常常引入D、B 信号作为前馈信号,以改善外部扰动时的控制品质,而这也是目前大型锅炉给水控制系统采用三冲量或多冲量的根本原因。

沈阳工程学院课程设计论文

3 热工测量信号

锅炉从启动到正常运行的过程中,蒸汽参数和负荷在很大范围内变化,这就使水位、给水流量和蒸汽流量测量的准确性受到影响。为了实现给水全程自动控制,必须对这些测量信号自动进行压力、温度校正(补偿)。在实际应用时,补偿公式中一些参数的确定要依据理论计算及现场调试综合求取,通过动态补偿回路确保上述信号在负荷变化时的精度。

3.1 水位信号

由于汽包中饱和水和饱和蒸汽的密度随压力变化,因而影响水位测量的准确性。这里拟考虑采用电气校正回路进行压力校正,即在差压变送器后引入校正回路。

图3.1燃烧量阶跃扰动下水位响应曲线

式子中:△P为平衡容器输出的差压,ρc,ρw,ρs分别是平衡容器内水的密度,汽包内饱和水的密度,汽包内饱和蒸汽的密度。

300MW机组给水全程控制系统设计

当L、A 一定时,水位h 是差压和汽、水密度的函数。密度c . 与环境温度有关,一般可取60℃时水的密度。在锅炉启动过程中,水温稍有增加,但同时由于压力也升高,两种因素对c . 的影响基本上可抵消,即可近似地认为c . 是恒值。而饱和水和饱和蒸汽的密度w . 和s . 均为汽包压力的函数。

根据上式,即可实现水位的压力自动校正功能。

3.2 蒸汽流量信号

过热蒸汽流量测量通常采用标准喷嘴,这种喷嘴基本上是按定压运行额定工况的参数设计,在该参数下运行时,测量精度是较高的。但在全程控制时,运行工况不能基本固定。当被测过热蒸汽的压力和温度偏离设计值时,蒸汽的密度变化很大,这就会给流量测量造成误差,所以要进行压力和温度的校正。一般可以按下列经验公式进行校正:

式子中,D-过热蒸汽的流量,P-过热蒸汽的压力,T-过热蒸汽的温度,△P-节流件差压,K-流量系数。

为了避免高温高压节流元件因磨损带来的误差,美国Leeds & Northrup 公司提出了用汽机调节级压力P1 的温度补偿信号来代替蒸汽流量信号,如图3.3 所示。实验证明,这种方法是准确和行之有效的。

3.3 给水流量信号

计算和试验结果表明:当给水温度为100℃不变,压力在0.196~19.6MPa 范围变化时,给水流量的测量误差为0.47%;若给水压力为19.6MPa 不变,给水温度在100~290℃范围内变化时,给水流量的测量误差为13%。所以,对给水流量测量信号可以只采用温度校正,如图3.3所示。若给水温度变化不大,则可不必对给水流量测量信号进行校正。

沈阳工程学院课程设计论文

图3.3 用P1代替蒸汽流量信号及给水流量温度矫正

300MW机组给水全程控制系统设计

4 调节阀和调速泵的特性

当机组容量很大时,用调节门的开度控制给水流量时,因给水调节门的节流而造成的能量损耗也随之增大。而且高压水流对调节阀的冲击也不可忽视。为了降低损耗提高机组的效率,延长设备的使用寿命,往往采用调节给水泵的转速的方法来控制给水流量。或者低负荷时用调节门控制给水量,高负荷时用泵的速度控制。因此有必要对调节阀门的静特性和调速泵的安全特性进行了解。

4.1调节阀门的静特性

调节阀静特性的好坏直接影响到控制系统的调节品质。一般控制系统对阀门静特性的要求主要体现在以下六个方面[23]。在条件允许的情况下应进行调节阀静特性试验,以保证控制系统能正常投入运行。

⑴最大流量:在调节阀门全开时,其流量应满足额定负荷的要求,并应具有10%~30%的裕量;

⑵漏流量:调节阀门全关时,其漏流量一般应要求小于调节门最大流量的10%;

⑶线性工作段:一般要求调节阀门特性曲线的线性工作段应大于全行程的70%;

⑷线性比:在调节阀开度为15%~85%的范围内,最大斜率与最小斜率之比不超过2;

⑸回程误差:一般应小于最大流量的3%;

⑹饱和区:流量变化的饱和区应出现在开度85%以上的范围内。

4.2调速泵的安全特性

现代大型单元机组从考虑节能及经济性角度出发都采用变速泵来控制给水流量。300MW 以下的单元机组多采用电动变速泵作主给水泵,通过调整液力联轴器的勺管位置来调节泵的转速。300MW 以上的单元机组多采用汽动变速泵作主给水泵,再配置多台电动变速泵作启动给水泵并作为系统的备用泵使用。无论使用哪种变速泵,在给水系统全过程运行中,保证给水泵总是工作在安全工作区内,始终是一个重要问题。

变速给水泵的安全工作区可在泵的流量-压力特性曲线上表示出来,如图4.2 所示。变速泵的安全工作区由六条曲线围成:泵的最高转速曲线Nmax 和最低转速曲线Nmin;泵的上限特性曲线Qmin 和下限特性曲线Qmax;泵出口最高压力Pmax 和最低压力线Pmin。

沈阳工程学院课程设计论文

图3.3 变速泵的流量-压力特性曲线

若泵的工作点在上限特性之外,则给水流量太小,将使泵的冷却水量不够而引起泵的汽蚀,甚至振动;若泵的工作在下限特性之外,则泵的流量太大,将使泵的工作效率降低。此外,变速泵的运行还必须满足锅炉安全运行的要求,即泵出口压力(给水压力)不得高于锅炉正常运行的最高给水压力Pmax 且不得低于最低给水压力Pmin。因此,采用变速泵的给水全程控制系统,在控制给水流量过程中,必须保证泵的工作点落在安全区域内。

防止出现这种情况,最有效的措施是低负荷时增加给水泵的流量。目前采取的办法是在泵的出口至除氧器之间安装再循环管道,当泵的流量低于设定的最小流量时,再循环门自动开启,增加泵体内的流量,让一部分水回到除氧器中,从而使低负荷阶段的给水泵工作点也在上限特性曲线之内,随着机组负荷的增加,给水流量也增大,当泵的流量高于设定的最大流量时,再循环门将自动关闭。

300MW机组给水全程控制系统设计

5 控制过程分析

5.1水位调节主回路及电动给水泵跟随系统

汽包水位主要由汽包的给水和汽包的蒸发组成,汽包的水位的调节主要由给水泵的转速来调整给水流量,给水流量属于副回路可以消除汽轮机负荷和锅炉负荷产生的压力的变化对给水流量的扰动。

图5.1 水位调节主回路及电泵给水跟随副回路

图5.2中气压补偿后汽包水位反馈与设定值比较作为主调节器PI的两个输入。反馈来的调速级的压力输入PI调节器作为辅助控制,调速级的压力受阀门的开度的影响保证水泵工作在安全工作区。省煤器前的给水流量包含进入汽包的给水和过热器减温器的给水。所以省煤器前的给水作为总的给水能比较精确的得出汽包的给水流量,而不用考虑给水泵的压力变化,过热后水中含有气泡的误差。省煤器的给水作为控制水位的最最要的参数,调速级压力主要保护水泵安全和给回的品质。

5.2汽动给水泵副回路控制系统

汽泵作为给水可以提高发电效率,汽泵直接将内能转化为机械能,所以比电动给水泵效率高很多,但在启动时锅炉汽压低,所以仅启动和停机时用电动给水泵给水,同时电动给水泵作为汽动给回泵的备用给水也增加系统的可靠性。一般负荷超过30%时都用汽泵。

沈阳工程学院课程设计论文

图5.2 汽动给水副回路系统

汽动给水泵的调节与电动给水泵类似,有手自动无扰切换调节阀信号上下限幅,调节阀失灵信号,流量品质检测,汽泵大偏差和差流量品质自动切换到到手动。由图可知自动调节自动切手动可能是自动调节器失灵,自动调节品质差时或调节阀失灵都会触发自动切手动。

5.3锅炉单冲量三冲量无扰切换和汽泵转速控制系统

锅炉的启动时要从单冲量自动的无扰切换到三冲量给水调剂系统,还包括在单冲量和三冲量手制动切换的跟踪。汽泵可以作为自动跟踪的执行器,也可以作为手动远程调速当自动失灵或自动品质较差时。

300MW机组给水全程控制系统设计

图5.3 给水单冲量与三冲量无扰切换与汽动给水泵转速控制

由图5.4可以知道当主汽流量小于X%时是单冲量,没有手动时,三冲量跟踪单冲量。当流量大于X%时,单冲量跟踪三冲量,形成了单冲量与三冲量的无扰切换。汽动给水泵的转速可以远程调速,也可以作为控制水位的主要执行器。

5.4流量测量信号

给水泵的水和省煤器入口的水都是未饱和水,影响测量的最大的因素是温度,所以给水泵出口流量和省煤器入口流量都是有温度补偿的。

沈阳工程学院课程设计论文

图5.4 给水流量测量信号

省煤器前的给水一部分进入汽包作为水冷壁的减温水,另一部分作为过热器的减温水。所以省煤器入口给水流量是锅炉的最终负荷。省煤器入口的水流量在启动时还会有一部分水作为锅炉的排污直接排出。大选小选器对主给水的温度和压力品质监控,当主给水流量坏品质时,自动品质差,切换到手动状态。

5.5旁路辅助及保护回路

汽包的水位因为水冷壁带气泡的因素所以受压力变化影响较大所以水位用压力补偿,来提高水位的测量精度。当发生主蒸汽流量过小时

300MW机组给水全程控制系统设计

图5.5 给水流量测量信号

汽包水位采用大选小选器,去掉最小和最大的误差较大,防止有一个水位或气压系统损坏影响整个锅炉的控制品质。当汽包水位偏差大时,会认为自动调节器失败,自动切换到手动状态。当调节阀位置偏差大时发出调节阀失灵信号。当自动调节品质差时,旁路调节阀手动可以降低系统参数起保护作用。当低负荷运行时旁路回路可以保证水泵工作在安全经济区范围。

5.6汽包水位自动失灵切手动保护

如果一些设备故障或测量参数误差较大时,自动控制程序可能控制品质变差,或不能很好控制水位,就需要将自动调节自动切换到手动调节。

沈阳工程学院课程设计论文

图5.6 汽包水位自动手动切换

当电泵的自动参数变坏时,系统将自动切到手动控制电泵。当A或B汽泵的控制品质变坏时将A或B汽泵切换到手动状态。当汽包水位或省煤器入口水的参数品质变坏时,将所有给水泵切换到手动调节状态,并实现手动到自动之间切换的无扰切换。

基于 PLC 和变频器控制的恒压供水系统设计

基于 PLC 和变频器控制的恒压供水系统设计 赵华军钟波 (广州铁路职业技术学院) 摘要:文章介绍一种基于三菱PLC 和变频器控制恒压供水系统,详细地介绍了硬件的构成和控制流程。系 统较好地解决高层建筑、工业等恒压供水需求。系统具有节能、工作可靠、自动控制程度高、经济易配置等优点。 关键词:变频器;PID;PLC;恒压供水 1 引言 目前,在城市供水系统中,还有很多高楼、生活 小区、边郊企业等采用高位水塔供水方式。这样,由 于用水量具有很大随机性,常常出现在用水高峰时供 水量很小甚至没有水用的问题;且采用高位水塔,很 容易造成自来水的二次污染问题。针对这一情况,本 文设计了一套基于变频器内置PID 功能的恒压供水 系统,采用了PLC 控制及交流变频调速技术对传统 水塔供水系统的技术改造。该系统根据用水量的变 化,经过压力传感器将水压变化情况反馈给系统,使 得系统能自动调节变频器输出频率,从而控制水泵转 速,调节输出数量,使得水量变化时可保持水压恒定; 可取代高位水塔或直接水泵加压供水方式,为城市供 水系统的建设提出了一条极具推广、应用的新途径[1]。 2 工作原理 本文采用的变频器是三菱FR-A540,该变频器内 置PID 控制功能;供水系统方案如图1 所示。 将通往用户供水管中的压力变化经传感器采集 到变频器,与变频器中的设定值进行比 较,根据变频器内置的PID 功能,进行数 据处理,将数据处理的结果以运行频率的 形式进行输出[2]。 当供水的压力低于设定压力,变频器 就会将运行频率升高,反之则降低,且可 根据压力变化的快慢进行差分调节。由于 本系统采取了负反馈,当压力在上升到接 近设定值时,反馈值接近设定值,偏差减小,PID 运算会自动减小执行量,从而降低变频器输 出频率的波动,进而稳定压力。 在水网中的用水量增大时,会出现“变频泵” 效率不够的情况,这时就需要增加水泵参与供水,通 过PLC 控制的交流接触器组负责水泵的切换工作; PLC 是通过检测变频器频率输出的上下限信号,来判 断变频器的工作频率,从而控制接触器组是否应该增 加或减小水泵的工作数量。

300MW火电机组给水控制系统的设计

目录 1选题背景 (2) 1.1引言 (2) 1.2设计目的及要求 (2) 2方案论证 (3) 2.1方案一 (3) 2.2方案二 (4) 3过程论述 (5) 3.1总体设计 (5) 3.2详细设计 (6) 3.2.1信号的测量部分 (6) 3.2.2单冲量控制方式 (10) 3.2.3串级三冲量控制方式 (11) 3.3信号监测 (12) 3.3.1给水旁路调节阀控制强制切到手动 (12) 3.3.2电动给水泵强制切到手动 (13) 3.3.3汽动给水泵强制切到手动 (13) 3.4工作方式 (13) 3.5切换与跟踪 (13) 3.5.1切换 (13) 3.5.2跟踪 (14) 3.6控制器选型 (14) 4结论 (14) 5课程设计心得体会 (15) 6参考文献 (15)

1选题背景: 1.1引言 火电厂在我国电力工业中占有主要地位,大型火力发电机组具有效率高,投资省,自动化水平高等优点,在国内外发展很快,如今随着科技的进步,大型火力发电厂地位显得尤为重要。但由于其内部设备组成很多,工艺流程的复杂,管道纵横交错,有上千个参数需要监视、操作和控制,这就需要有先进的自动化设备和控制系统使之正常运行,并且电能生产要求高度的安全可靠和经济性。大型发电单元机组是一个以锅炉,高压和中、低压汽轮机和发电机为主体的整体。锅炉作为电厂中的一个重要设备,起着重要的作用,根据生产流程又可以分为燃烧系统和汽水系统。其中,汽包锅炉给水及水位的调节已经完全采用自动的方式加以控制。给水全程控制系统是一个能在锅炉启动、停炉、低负荷以及在机组发生某些重大事故等各种不同的工况下,都能实现给水自动控制的系统而且从一种控制状态到另一种控制状态的判断、转换、故障检测也常常靠系统本身自动完成。 1.2设计目的及要求 本次课程设计的要求是根据大型火电机组的生产实际设计出功能较为全面的300 MW火电机组全程给水控制系统,该控制系统的设计任务是使给水量与锅炉的蒸发量相适应,维持汽包水位在规定的范围内。 设计要求: (1)设计功能基本全面的全程给水控制系统,要求图纸采用SAMA标准图例,系统布局规范。 (2)参考输入参数:汽包水位、汽包压力、给水流量、给水温度、汽机第一级压力、主汽温度、过热减温水流量等信号。 (3)参考输出参数: A、B汽动泵转速、电动给水泵转速、给水旁路调节阀开度。 (4)信号准确性:考虑汽包水位、给水流量和蒸汽流量等信号的修正。 (5)信号监测与报警:重要信号需要监测与报警,同时注意信号的可靠性,

300MW火电机组给水控制系统的设计

目录 1选题背景 (2) 引言 (2) 设计目的及要求 (2) 2方案论证 (3) 方案一 (3) 方案二 (4) 3过程论述 (5) ^ 总体设计 (5) 详细设计 (6) 信号的测量部分 (6) 单冲量控制方式 (10) 串级三冲量控制方式 (11) 信号监测 (12) 给水旁路调节阀控制强制切到手动 (12) 电动给水泵强制切到手动 (13) ) 汽动给水泵强制切到手动 (13) 工作方式 (13) 切换与跟踪 (13) 切换 (13) 跟踪 (14) 控制器选型 (14) 4结论 (14) 5课程设计心得体会 (15) } 6参考文献 (15) 《

1选题背景: 引言 - 火电厂在我国电力工业中占有主要地位,大型火力发电机组具有效率高,投资省,自动化水平高等优点,在国内外发展很快,如今随着科技的进步,大型火力发电厂地位显得尤为重要。但由于其内部设备组成很多,工艺流程的复杂,管道纵横交错,有上千个参数需要监视、操作和控制,这就需要有先进的自动化设备和控制系统使之正常运行,并且电能生产要求高度的安全可靠和经济性。大型发电单元机组是一个以锅炉,高压和中、低压汽轮机和发电机为主体的整体。锅炉作为电厂中的一个重要设备,起着重要的作用,根据生产流程又可以分为燃烧系统和汽水系统。其中,汽包锅炉给水及水位的调节已经完全采用自动的方式加以控制。给水全程控制系统是一个能在锅炉启动、停炉、低负荷以及在机组发生某些重大事故等各种不同的工况下,都能实现给水自动控制的系统而且从一种控制状态到另一种控制状态的判断、转换、故障检测也常常靠系统本身自动完成。 设计目的及要求 本次课程设计的要求是根据大型火电机组的生产实际设计出功能较为全面的300 MW火电机组全程给水控制系统,该控制系统的设计任务是使给水量与锅炉的蒸发量相适应,维持汽包水位在规定的范围内。 设计要求: (1)设计功能基本全面的全程给水控制系统,要求图纸采用SAMA标准图例,系统布局规范。 (2)参考输入参数:汽包水位、汽包压力、给水流量、给水温度、汽机第一级压力、主汽温度、过热减温水流量等信号。

锅炉控制系统的组态设计

; 济南铁道职业技术学院 电气工程系 毕业设计指导书 课题名称: 锅炉控制系统的组态设计《 专业电气自动化 班级电气0831 姓名 cmy ~ 设计日期至 指导教师 ly ? 2010、11

济南铁道职业技术学院电气工程系 毕业设计指导书 2010、11 一、设计课题: ! 锅炉控制系统的组态设计 锅炉设备是工业生产中典型的控制对象,而组态控制技术是当今自动化系统应用广泛的技术之一。本课题采用组态王组态软件设计上位机监控画面,实时监控液位参数,并采用实时趋势曲线显示液位的实时变化。由此组成一个简单的液位控制系统。 二、设计目的: 通过本课题的设计,培养学生利用组态软件、PLC设计控制系统的能力,理解、掌握工业中最常用的PID控制算法,有利于进一步加深《自动控制原理》、《组态软件》和《过程控制》等课程的理解,为今后工作打好基础。 三、设计内容: 掌握锅炉生产工艺,实现锅炉自动控制的手段,利用“组态王”软件做出上位机监控程序,具体有主监控画面、实时曲线、历史曲线;掌握PID参数调整方法。 — 四、设计要求及方法步骤: 1.设计要求: (1)监控系统要有主监控画面和各分系统的控制画面,包括实时曲线、历史曲线和报表等。 (2)各控制画面要有手/自动切换。

(3)掌握PID控制算法。 2.运用的相关知识 (1)组态控制技术。 (2)过程控制技术。 ~ 3.设计步骤: (1)熟悉、掌握锅炉的生产工艺。 (2)设计各分系统的控制方案。 (3)构思系统主监控画面和分画面,包括实时曲线、历史曲线和报表等。 (4)编写设计论文。 五、设计时间的安排: 熟悉题目、准备资料 1周 @ 锅炉控制系统的工艺了解 1周 监控画面的设计 2周 控制算法的编制和系统调试 3周 论文的编写 2周 准备毕业设计答辩 1周 六、成绩的考核 在规定时间内,学生完成全部的设计工作,包括相关资料的整理,然后提交给指导教师,指导教师审阅学生设计的全部资料并初步通过后,学生方可进入毕业答辩环节,若不符合设计要求,指导教师有权要求学生重做。 … 答辩时,设计者首先对自己的设计进行10分钟左右的讲解,然后进行答辩,时间一般为30分钟。 成绩根据学生平时的理论基础、设计水平、论文质量和答辩的情况综合考虑而定。 成绩按优秀、良好、中、及格、不及格五个等级进行评定。

给水全程控制系统设计

《给水全程控制系统》设计 专业:自动化 班级:B120410 学号:B12041014 姓名:陈修鹤

本文在讨论给水调节系统的被控对象动态特性、热工测量信号、调节机构特性的基础上,分析了三冲量给水控制系统的结构及工作原理,提出了实现单元制给水全程控制系统应考虑的问题及控制方案。随着锅炉朝大容量、高参数发展,给水系统采用自动控制系统是必不可少的,它可以减轻运行人员的劳动强度,保证锅炉的安全运行。对于大容量高参数锅炉,其给水系统是非常复杂和完善的。针对目前发电厂给水系统的现状及其存在的问题,结合发电厂300MW 机组配置,发电厂300MW 机组给水全程调节系统的构成原理和控制功能,分析了系统的总体结构、工作原理、控制过程、系统切换方式、控制逻辑、调试及参数整定原则。 关键词:给水全程,给水控制,控制系统,汽包水位,自动调节

摘要............................................................................................................................. I 第一章汽包水位全程控制的介绍 (1) 第二章给水控制对象的动态特性 (2) 2.1 给水流量扰动下水位的动态特性 (2) 2.1.1 给水流量扰动下水位的动态特性 (2) 2.1.2 蒸汽流量扰动下水位的动态特性 (2) 2.1.3 炉膛热负荷扰动下水位的动态特性 (3) 第三章热工测量信号 (5) 3.1 水位信号 (5) 3.2 蒸汽流量信号 (6) 3.3 给水流量信号 (6) 第四章调节阀和调速泵的特性 (7) 4.1调节阀门的静特性 (7) 4.2调速泵的安全特性 (7) 第五章控制过程分析 (9) 5.1水位调节主回路及电动给水泵跟随系统 (9) 5.2汽动给水泵副回路控制系统 (9) 5.3锅炉单冲量三冲量无扰切换和汽泵转速控制系统 (10) 5.4流量测量信号 (11) 5.5旁路辅助及保护回路 (12) 5.6汽包水位自动失灵切手动保护 (13) 结论 (15) 参考文献 (16)

火电厂给水控制系统仿真

第一章绪论 1.1 课题的研究背景及意义 火力发电厂在我国电力工业中占有主要的地位,是我国的重点能源工业之一。大型火力发电具有效率高、投资省、自动化水平高等优点,在国内外发展快。随着电力需求的日益增长,以及能源和环保的要求,我国的火电建设开始向大容量、高参数的大型机组靠拢。但是,火电机组越大,其设备结构就越复杂,自动化程度也要求越高。 给水控制系统是火电厂非常重要的控制子系统。汽包水位是锅炉安全运行的重要参数,同时他还是衡量锅炉汽水系统物质是否平衡的标志。 随着机组容量的增大,运行参数的不断提高,对汽包水位的的控制品质要求也会越高,为了机组的安全、经济运行,需要采用设计更合理、功能更完善的控制系统,给水自动控制系统可以大大减轻人员的劳动强度,汽包水位的稳定性也得到极大的提高,保障了几组的安全、稳定运行。 为了实现电能生产的“高效‘洁净、经济、可靠、安全”的要求,火电厂汽轮机的参数经历了低压、中压、高压、超高压、亚临界和超临界参数的发张阶段,目前正向超临界参数的方向发展。 1.2 国内外的发展状况 我国自上世纪80 年代引进亚临界火电机组技术以来,虽在改进、优化和发展取得一定的经验,并使300MW、600MV的亚临界火电机组成为我国火力发电的主力机组,但这种亚临界机组依然存在重大问题,这已成为制约我国电力工业发展的瓶颈。因此,借鉴国际上最先进的技术,研究并发展600MW~1000M超临界火电机组,是提高电机机组的热效率,实现节能降耗和改善环保状况的有效途径。 随着火电机组的参数的提高,水的饱和温度相应提高,气化潜热减少;当压力提高倒22.115MPa时,气化潜热为零,气和水的密度差也等于零,该压力成为临界压力。在临界点时,饱和水与饱和蒸汽之间不再有汽、水共存的两相区存在。当机组工作参数高于这一临界状态参数时,称之为超临界机组。对蒸汽动力装置循环的理论分析表明,提高循环蒸汽的初始参数和降低循环的终结参数都可以提高循环的热效率。实际上,蒸

智能给水【控制专区】器设计

智能给水控制器设计 引言 随着经济的快速发展和城市高层建筑的不断涌现,人们对供水质量和供水系统可靠性的要求不断提高,加上目前能源紧缺对节能的要求,因此利用先进的电子测控技术和自动化控制技术,设计高性能、高可靠性、低成本、低能耗,以及能适用不同领域的恒压供水系统也就成为必然趋势。随着近年来变频调速技术的飞速进步,变频恒压供水也在其基础上慢慢发展起来,并成为一种新兴的现代化供水技术。 目前,国外的恒压供水工程设计都采用一台变频器只带一台水泵机组的方式,几乎没有用一台变频器拖动多台水泵机组运行的情况,这种方式不但投资成本较高,且功能单一。 为此设计了在变频调速控制系统中加入基于C8051F410的单片机系统,构成了功能更强的复合控制系统,它不但克服了以上缺点,而且具有安装调试方便,功能全面,可靠性高。抗干扰能力强等优点,且可以广泛应用于工业生产、社会生活的各个领域。 1 控制原理 在恒压供水系统中,安装于管网的远传压力表提供水压力信号,并经过光电隔离和电压转换电路,传送给系统的中心控制器,控制器将采集到的压力数据与预设压力进行比较,得出偏差值,再经PID运算之后得出控制参数,D/A模块将控制参数转换为模拟电压输出,调节变频器的输出频率,从而控制水泵的转速,以保证管网压力基本恒定。当用水量增大时,管网压力低于预设值,变频器频率就会升高,水泵转速加快,从而提升管道水压,但若达到水泵额定输出功率仍无法满足用户供水要求时,该泵自动转换成工频运行状态,并变频启动下一台水泵;反之,当用水量减少,则降低水泵运行频率直至设定的下限运行频率,若供水量仍大于用水量,则减泵直至全部泵停止工作,经过一定的延时,控制器重新比较压力,并计算控制输出,从而维持恒压供水。它的系统原理框图如图1所示。

恒压供水系统自动控制设计要点

变频调速恒压供水系统,该系统能够根据运行负荷的变化自动调节供水系统水泵的数量和转速,使整个系统始终保持高效节能的最佳状态。 本文主要针对当前供水系统中存在的自动化程度不高、能耗严重、可靠性低的缺点加以研究,开发出一种新型的并在这三个方面都有所提高的变频式恒压供水自动控制系统。全文共分为四章。第一章阐明了供水系统的应用背景、选题意义及主要研究内容。第二章阐明了供水系统的变频调速节能原理。第三章详细介绍了系统硬件的工作原理以及硬件的选择。第四章详细阐述了系统软件开发并对程序进行解释。 关键词:变频器;恒压供水系统; PLC

Frequency conversion constant pressure water supply system, the system is capable of automatically adjusting water supply system based on load changes of quantity and speed of the pump, always maintain the high efficiency and energy saving the best state of the This article primarily for current there is a high degree of automation in the water supply system, serious disadvantages, reliability, low energy consumption study developed a new and increased in these three areas of automatic control system of frequency conversion constant pressure water supply. The text is divided into four chapters. Chapter I sets out the water supply system of main research topics on background, meaning and content. Chapter II sets out the principle of variable frequency speed adjusting energy saving of water supply systems. Chapter III details the working principle of system hardware and hardware choices. The fourth chapter elaborates system software development and to explain the procedures Key words:Cam、high deputy、automation

给水控制系统逻辑

课程实验总结报告 实验名称:给水控制系统逻辑 课程名称:专业综合实践:大型火电机组热控系统设计及实现(2)

1 前言 2 1.1 汽包炉和直流炉的区别 (2) 1.2 给水控制系统的重要性 (2) 2 给水控制系统 (2) 2.1 给水流量控制方案 (3) 2.1.1 控制方式 (3) 2.1.2 控制方案 (4) 2.1.3 控制原理 (5) 2.2 给水流量计算 (6) 2.2.1 相关图纸 (6) 2.2.2 逻辑分析 (6) 2.3 给水流量设定值控制(给水控制一) (7) 2.3.1 相关图纸 (7) 2.3.2 控制系统原理 (7) 2.3.3 控制系统结构 (7) 2.3.4 控制逻辑分析 (8) 2.3.4.1 中间点温度(焓值)的设定值校正 (8) 2.3.4.2 给水流量设定值计算 (9) 2.3.5 小结 (10) 2.4 给水泵控制(给水控制二) (11) 2.4.1 相关图纸 (11) 2.4.2 控制系统原理 (11) 2.4.3 控制系统结构 (11) 2.4.4 控制逻辑分析 (12) 2.4.4.1 电泵控制 (12) 2.4.4.2 汽泵与给水旁路阀控制 (14) 2.4.5 小结 (16)

1 前言 1.1 汽包炉和直流炉的区别 汽包锅炉和直流锅炉的最大区别在于有无汽包了,而因为有无汽包的关系又决定了他们的另一个不同之处就是:有无循环水泵。有汽包锅炉为低压锅炉,依靠汽水密度差产生的上升力使从汽包下降的水和汽再回到汽包进行分离,合格的蒸汽进入过热器内加热、控温;而直流锅炉多数应用在压力大于19.2MPa的条件下,在这样高的压力下汽水密度差几近为零,汽水密度差的上升力也就为零,因此需要在下降管中串联循环水泵将工质直接打到过热器中加入,一次性完成预热、汽化和过热,故这种锅炉也称强制循环锅炉。 1.2 给水控制系统的重要性 汽包锅炉给水自动控制的任务是维持汽包水位在设定值。汽包水位是锅炉运行中的一个重要的监控参数,它间接地表示了锅炉负荷和给水的平衡关系。维持汽包水位是保证机炉安全云心的重要条件。锅炉汽包水位过高,影响汽包内汽水分离装置的正常工作,造成出口蒸汽中水分过高,结果使过热器受热面结垢而导致过热器烧坏,同时还会使过热气温产生急剧变化,直接影响机组运行的经济性和安全性;汽包水位过低,则可能是炉水循环泵正常运行的工况破坏,造成供水设备损坏或者水冷壁管因供水不足而烧坏。 给水控制的任务实际上包括两方面内容:即在保持水位在工艺允许的范围内变化的条件下,尽量保持给水流量稳定。 2 给水控制系统 机组中的给水泵有三台,包括一台电动给水泵和两台汽动给水泵。在机组冷态启动初期使用电动给水泵给锅炉上水,当汽轮机冲转完成后,待主汽温度、压力满足一定条件后,启动小汽机即汽动给水泵给锅炉上水,并逐渐关闭电动给水泵。

给水全程控制系统设计

300MW机组给水全程控制系统设计 摘要 本文在讨论给水调节系统的被控对象动态特性、热工测量信号、调节机构特性的基础上,分析了三冲量给水控制系统的结构及工作原理,提出了实现单元制给水全程控制系统应考虑的问题及控制方案。随着锅炉朝大容量、高参数发展,给水系统采用自动控制系统是必不可少的,它可以减轻运行人员的劳动强度,保证锅炉的安全运行。对于大容量高参数锅炉,其给水系统是非常复杂和完善的。针对目前发电厂给水系统的现状及其存在的问题,结合发电厂300MW 机组配置,发电厂300MW 机组给水全程调节系统的构成原理和控制功能,分析了系统的总体结构、工作原理、控制过程、系统切换方式、控制逻辑、调试及参数整定原则。 关键词:给水全程,给水控制,控制系统,汽包水位,自动调节

沈阳工程学院课程设计论文 Abstract Based on the discussion of the feed water regulating system controlled object dynamic characteristic, thermal measurement signals, adjusting mechanism on the basis of analysis of the characteristics, structure and working principle of the three element feed-water control system, is proposed to realize the unit water supply problems should be considered in system and control scheme of the whole control. With the large capacity, high parameter boiler towards development, water supply systems using automatic control system is essential way, it can reduce the labor intensity of the operation personnel, to ensure the safe operation of the boiler. For the large capacity and high parameters of the boiler, the water supply system is very complex and perfect. In view of the present situation of water supply system of power plant and its existing problems, combined with the configuration of 300MW power plant, the whole feed water regulating system for 300MW unit of power plant construction principle and control function, analysis of the overall structure, working principle, control process, the system switching mode, control logic, debugging and tuning principle. Key Words feed water, feed water control, control system, drum water level, automatic regulation

PLC控制恒压供水系统.docx

PLC 控制恒压供水系统 国家职业资格全省统一鉴定 维修电工技师 (国家职业资格二级) 所在省市:江苏省常州市 摘要:本设计是针对居民生活用水 /消防用水而设计的。由变 频器、 PLC 控制系统,调节水泵的输出流量。电动机泵组由三 台水泵并联而成,由变频器或工频电网供电,根据供水 系统出口水压和流量来控制变频器电动机泵组之间的切换 及速度,使系统运行在最合理的状态,保证按需供水。采用 PLC 控制的变频调速供水系统,由PLC 进行逻辑控制,由 变频器进行压力调节。通过PLC控制变频与工频切换,实现闭环自动调节恒压供水。运行结果表明,该系统具有压力稳 定,结构简单,工作可靠操作方便等优点。

关 第一章概 述??????????????????????(1)1-1常的供水方式及恒 的??????????(1) 二、水的一般性原 ????????????????(1) 1-2PLC 、器控制的恒供水系方 案?????????(3) 二、方案特 点??????????????????????(3)四、型及目 的???????????????????(4) 硬件 ??????????????????????(6)二、器介 ?????????????????????(7)二、方 式??????????????????????(7)机速方案的比 ????????????????(9) 二、模供水系的

定?????????????????(10 ) 一、路介 ??????????????????????(11 )三、入出元件与 PLC 地址照 表????????????( 15) 程序????????????????????(17)???????????????????????? ?( 20) 致 ???????????????????????? ?( 21) 参考文 献???????????????????????( 22 )第一章概述 供水的一种典型方式是恒供水。恒供水使用器的速 功能通供水的水的速,以持供水始端力,使之保持相 的恒定,故又称恒供水。在供水以逐步渗透到各种行,品 种也从一的恒供水向多功能和高的、供水及能化控 制的方向展。 基于触摸屏和PLC 作控制器作速的恒供

单元机组给水控制系统设计

摘要 随着我国电力市场的实际情况和国民经济发展的需要,电站项目向着高参数、大容量的方向发展已成为大势所趋,近年来超临界发电机组在国内得到迅速发展和应用。 超临界锅炉将是国家未来的发展方向,给水系统是其中的重要环节。超临界直流炉的给水控制技术是目前国内热控领域一个重要的研究课题。本论文介绍了超临界机组的概况,分析了超临界锅炉的静、动态特性及控制特点与超临界锅炉给水系统的工艺过程,比较分析了亚临界汽包锅炉与超临界直流锅炉给水系统控制的异同,研究了超临界锅炉给水控制策略。同时针对目前国内普遍使用的600MW超临界直流锅炉的给水控制系统,进行了设计。设计内容主要包括锅炉干/湿态下给水流量控制的切换、PID模块的手/自动的无扰切换、储水箱水位控制等部分,并对设计SAMA图逐一进行说明。 关键词:超临界直流炉;给水控制系统;燃水比;中间点温度;中间点焓

THE DESIGNING ON PLANT UNIT FEEDWATER CONTROL SYSTEM Abstract It becomes a trend that the power station projects go forward to high parameter and large capacity in consideration of china’s actual situation and the demand of the national economic development. In the past years the super-critical unit were applied and developed quickly. The supercritical boiler will be the future nationai tendency, and the water supply system is an important link. The feedwater control of super critical once through boiler is an important study subject in thermal field at present. This paper introduces the general situation of supercritical unit, analyses the static or dynamic characteristics and the control feature of the supercritical boiler . The technological process of supercritical boiler feed water system is analyzed too, Comparative analysis the similarities and differences between the subcritical and supercritical once-through boiler steam drum boiler feed water system control, studies the strategy of the supercritical boiler feed water control. At the same time, designs the 600MW supercritical once-through boiler feed water control system in view of the present domestic universal. Design content mainly includes Boiler feed water flow control under the wet/dry state switch, running state of the switch of hand/auto undisturbed switching of PID module, storage tank water level control, illustrates the design SAMA graph one by one. Key Words:Supercritical once-through boiler; Feedwater control system; Coal to water ratio; Intermediate point’s enthalpy; Intermediate point’s temperature

300MW火电机组给水控制系统设计

300MW火电机组给水控制系统设计 1选题背景 锅炉朝大容量、高参数发展,给水系统采用自动控制系统是必不可少的,它可以减轻运行人员的劳动强度,保证锅炉的安全运行。对于大容量高参数锅炉,其给水系统是非常复杂和比较完善的。大型电站锅炉将是国家未来的发展方向,给水系统是其中的重要环节。随着火电机组容量的提高及参数的增加,机组在启停过程中需要监视的参数及控制的项目越来越多,大型电站锅炉给水控制系统是机组控制系统中的重点和难点。近些年来,研究大型电站锅炉给水的文献相应增多,火电机组越大,其设备结构就越复杂,自动化程度也要求越高。在现代科学技术的众多领域中,自动控制技术起着越来越重要的作用。所谓自动控制,是指在没有人直接参与的情况下,利用外加的设备或装置(称控制装置或控制器),使机器、设备或生产过程(统称被控对象)的某个工作状态或参数(即被控量)自动地按照预定的规律运行。目前已广泛应用于工农业生产、交通运输和国防建设。生产过程自动化是保证生产稳定、降低成本、改善劳动条件、促进文明生产、保证生产安全和提高劳动生产率的重要手段,是21世纪科学与技术进步的特征,是工业现代化的标志之一。可以说,自动化水平是衡量一个国家的生产技术和科学水平先进与否的一项重要标志。 2本文研究的主要内容 大型电站汽包锅炉给水控制系统的任务是通过调节进入汽包的给水流量,在保证汽包水位在一定范围内相对稳定的同时,产生汽轮发电机组所需的蒸汽流量,使机组输出的电功率与电网负荷变化相适应。给水控制系统对保证汽包锅炉运行过程的安全性和稳定性具有重要意义。 2.1给水系统的概况 汽包锅炉给水控制系统的作用是产生用户所要求的蒸汽流量,同时保证汽包水位在一定范围内变化。由于设计有汽包,使锅炉的蒸发段与过热段明确分开,锅炉的蒸发量主要取决于燃烧率(燃料量与相应的空气量)。所以汽包锅炉由燃烧率调节负荷,实现燃料热量与蒸汽热量之间的能量平衡。汽包锅炉的给水控制

基于三菱PLC控制的恒压供水系统设计(互联网+)

摘要 本设计是专门对日常用水而设计的恒压供水控制系统。根据国内外的研究现状以及系统的控制要求,制定出了一套适合此系统的控制方案。控制方案中,硬件设计主要对可编程控制器(PLC)机型、变频器机型以及电机泵组的机型做出了选择,同时还对系统的输入输出点进行了规划和分配。在软件设计部分,针对控制要求画出了系统的流程图,并且还对每一部分的流程图进行了功能的解释,使读者能更加轻松的了解整个系统的软件设计情况。在此课题中,还采用了MCGS组态软件,对控制系统进行监视与模拟运行,很直观的再现了现场的实际情况。最后,还对整个系统进行了运行调试,运行结果表明该系统具有水压稳定、硬件组成简单、运行可靠和操作方便等优点。 关键词:恒压供水;可编程控制器;变频器;组态软件

Abstract This design is specially designed for water constant pressure water supply control system. According to the requirements of the current research at home and abroad and the system control, develop a set of control scheme suitable for the system. In the control scheme, the hardware design is mainly to the programmable logic controller (PLC) model , frequency converter and motor pump set model made a choice, but also on the system input and output points of planning and allocation. In software design part, according to draw the flow chart of the system, and the required control and flow chart of every part of the function of explanation, so that readers can more easily understand the software design of the whole system. In this topic, also adopted the MCGS configuration software, to monitor and control system’s simulate, intuitive reproduce the actual situation of the scene. Finally, the debugging of the whole system running, the results on the surface of the system has stable pressure, simple structure, reliable operation and convenient operation. Key words: Constant pressure water supply;Programmable logic Controller;Inverter;Configuration software

汽包锅炉给水控制系统设计

目录 目录 (1) 1绪论 (3) 1.1锅炉汽包水位测量的重要性 (3) 1.2 锅炉汽包水位测量 (3) 2 控制系统总体结构设计 (4) 2.1 控制对象的选择 (4) 2.1.1 给水任务 (4) 2.1.2给水自动调节系统被 (4) 2.1.3被调量H变化的主要原因 (5) 2.2 整体结构设计 (7) 2.2.1控制方案 (7) 2.2.2 300MW机组给水控制过程 (9) 3 测量仪表选型 (13) 3.1 给水控制系统测量任务 (13) 3.1.1汽包水位的修正 (13) 3.1.2给水流量的校正 (13) 3.1.3主蒸汽流量的校正 (14) 3.2测量仪表的选型 (15) 3.2.1汽包水位测量方面 (15) 3.2.2给水流量测量方面 (17)

3.2.3主蒸汽流量测量方面 (18) 4 数据采集系统选型 (20) 4.1数据采集基本知识 (20) 4.2数据采集卡的主要性能指标 (20) 4.3 数据采集系统选型 (21) 4.3.1数据采集卡的选型 (21) 4.3.2 NI PCI-6221数据采集卡相关配件 (21) 4.2.3数据采集系统结构图如下 (24) 第五章:数据采集程序设计 (25) 5.1 LabVIEW数据采集介绍 (25) 5.2 基于LabVIEW平台的虚拟仪器程序设计 (25) 5.3数据采集程序设计 (26) 5.3.1配置采集任务 (26) 5.3.2程序设计步骤 (26) 6控制系统界面设计 (31) 6.1LabVIEW界面设计介绍 (31) 6.2控制系统界面设计 (31) 6.2.1锅炉给水操作控制面板图如下 (31) 6.2.2界面总图如下 (32) 分组说明 (32) 参考文献 (34)

恒压供水PLC控制系统设计

1.1恒压供水PLC控制系统 一、实验目的 1.学习西门子PLC的使用; 2.掌握闭环调速原理; 3.掌握变频器的使用方法; 4.了解PLC控制变频恒压供水原理。 二、实验容 1.变频器参数设置 端子号参数的设定值缺省的操作V/F曲线选择/ C003=‘1’ 最高电压设定/ C004=‘380’ 基准频率设定/ C005=‘50’ 最大频率设定/ C010=‘50’ 运行控制选择/ C012=‘1’ 2.控制要求 1)单泵控制恒压供水,当需水量不是很大,用一个泵通过PID控制进行恒压供水; 2)双泵控制恒压供水,当需水量大时,当一个泵满足不了用水需求时,进行双泵切 换恒压供水; 3)PLC模拟量控制变频开环控制; 4)分时控制,定时轮换,可以有效地防止水泵长期不用而发生的锈死现象,提高了 设备的综合利用率,降低了维护费用。 三、实验步骤 1.单泵控制恒压供水 1)按照接线图接好线路,确保接线无误,以免损坏变频器和PLC的各个模块。 2)接好总电源,打开漏电保护器,此时电压表显示电压。按下启动按钮,电压指示灯亮起。 3)把模式选择开关打到手动位置,此时手动状态指示灯亮起。检查各水泵的运行情况,确定水泵能能正常运行。 4)把模式选择开关打到自动位置。 5)打开S7-200软件把程序写到PLC中,关闭软件。 6)把PLC的开关达到RUN位置。 7)打开组态王软件,运行变频恒压供水监控程序。在主画面中选择“闭环控制”打开闭环控制画面。

8)在闭环控制模式下单击单泵运行,并单击PID设定,设定给定压力SP,进行PID参数整定。

9)单击实时曲线可观察各参数的变化。 2.双泵控制恒压供水 1)打开组态王软件,运行变频恒压供水监控程序。在主画面中选择闭环控制打开闭环控制画面。

锅炉汽包水位控制系统的设计

/ 过程控制系统实验报告( 专业 xxxxxx 班级 xxxxxxxxx 学生姓名 xxxxxx < 学号 xxxxxxxx

锅炉汽包水位控制系统设计 < 一、控制要求 设计一个汽包水位控制系统,使汽包水位维持在90CM,稳态误差±0,5CM,以满足生产要求。 二、完成的主要任务 1.掌控锅炉生产蒸汽工及其工作流程 2.对被控对象进行特性分析,画出汽包水位控制系统方框图和流程图 3.选择被控参数和被控变量,说明其选择依据 4.】 5.设计控制系统方案,如何选择检测仪表,说明其选择原则和仪表性能指标 6.说明单回路控制系统4个环节的工作形式对控制过程 7.对控制进行PID控制说明其参数整定理论 8.对锅炉汽包水位进行simulink仿真,对参数进行整定,其仿真图要满足动态性能 指标 9.总结实验课程设计的经验和收获 (

* 过程控制系统实验报告............................... - 0 -第一章锅炉汽包水位控制系统的组成原理............ - 3 -概述............................................ - 3 -! 锅炉生产蒸汽工艺简述 ............................ - 3 - 锅炉生产蒸汽工作流程 ............................ - 4 - ............... - 5 -对被控对象进行特性分析 ............................... - 5 -汽包水位控制系统方框图和流程图......................... - 5 -液位控制系统的方框图.................................. - 5 - 液位控制系统的方案图.................................. - 6 -选择被控参数和被控变量 ................................ - 6 -; 选择检测仪表,说明其选择原则和仪表性能指标............. - 7 -传感器、变送器选择........................................... - 7 -执行器的选择................................................. - 8 -关于给水调节阀的气开气关的选择。............................. - 8 - 关于给水调节阀型号的选择。.................................. - 8 -

相关主题
文本预览
相关文档 最新文档