当前位置:文档之家› 圆锥曲线中的最值和取值范围

圆锥曲线中的最值和取值范围

圆锥曲线中的最值和取值范围
圆锥曲线中的最值和取值范围

2

解得X"或…泞,则AM k28k2 -6

3 4k2

=1 k2

12

3 4k2

因为AM _AN,所以圆锥曲线中的最值和范围

圆锥曲线是高考数学压轴题之一,是有效区分学生层次不可或缺的一个题型,能否解

决圆锥曲线问题,对提高学生的数学成绩某种程度上至关重要。回顾几年高考中的圆锥曲线

试题,其核心问题大概有两大类型,一是定值、定点、存在性问题,二是最值和范围问题。

本文就第二问题进行归纳和分析。

最值和范围一般有两个求解方法:一是几何方法,所求最值量具有明显几何意义时可

利用几何性质结合图形直观求解;二是代数方法,选择适当变量,建立函数模型,按照求最值的方法求解,求最值方法中:利用基本不等式、函数单调性、分离常数、配方法等是常用方法。对目标函数的的整理和恰当变形是难点。所涉及的量有斜率、面积、离心率、线段长度等。

一.近几年高考试题回顾。

X y2

1.(2017全国2)已知椭圆E: 1的焦点在x轴上,A是E的左顶点,斜率为k(k 0)的

t 3

直线交E于A, M两点,点N在E上,MA丄NA. (I)当t =4 , AM| | AN时,求△ AMN

的面积;(II)当2 AM二AN时,求k的取值范围?

2 2

X y

【解析】⑴当t =4时,椭圆E的方程为 1 , A点坐标为-2 , 0,

4 3

则直线AM的方程为y =k X ? 2 .

'2 2

£ I 二1

联立 4 3 " 并整理得, 3 4k2 x2 16k2x 16k2 -1^0

y -k X 2

厂匚2 12

厂〒2 12

因为 AM 二 AN , k 0,所以 1 k

FTk^

= 1 k

3I 7^,

k

整理得k -1 4k —k ?4产0 , 4k 2_k ?4=0无实根,所以k

.

⑵直线AM 的方程为y 二k x ? ..t ,

r 2

2

x y

1

联立 t 3

并整理得,3 tk 2 x 2 https://www.doczj.com/doc/325387555.html, 2x t 2k ^3^-0 y =k (X + JT )

解得 3 2 ::: k ::: 2 .

2.(2015高考真题山东理21 )在平面直角坐标系 xOy 中,F 是抛物线C:x 2=2py (p 0) 的焦点,M 是抛物线C 上位于第一象限内的任意一点,过 M,F,0三点的圆的圆心为 Q ,

点Q 到抛物线C 的准线的距离为 3 .

[来源学科网]

(I)求抛物线 C 的方程;(n)是否存在点 M , 4

使得直线MQ 与抛物线C 相切于点M ?若存在,求出点 M 的坐标;若不存在,说明理由; (川)若点M 的横坐标为 2 ,直线l : ^kx 4与抛物线C 有两个不同的交点 A, B , l 与 圆Q 有两个不同的交点 D, E ,求当g 乞k 乞2时,|AB|2J DE|2的最小值 分析:(I )由题意,OF 为圆Q 的弦,y^— , ??? yQ — = 3 =

o

抛物线方程x 2 =2y

4 2 4

1 2

所以△ AMN 的面积为| AM | =

144 79

解得 ^-F 或x =曲昇,

3 +tk 2

所以 AM

2

3 tk

2

6 t

AN = 1 亠 k 2

—―—

"k E 所以

3k 」

k

因为

2 AM | | AN 所以 2

T k

6

?口隹,整理得,

k

3 tk

2

t 6k -3k t

3

k -2

因为椭圆E 的焦点在x 轴,所以

t 3,即

1 k —

2 k3_2 ::

(n)设存在点

2

X

2

又取FM 中点N^0 , X °4^),由垂径定理知 FM _QN ,

所以 FM QN =(X o , 2^)(-产,弓)=0二 X o =』2,所以存在 M (、2 , 1).

2 4X o 4

f x i +X 2 = 2k

设 A(X i , y i ),B(X ?,y 2),则有,

_ 1

X 1X 2 :

所以,I AB|2=(1 k 2)[(X 1 X 2)2 -4X 1X 2] =(1 k 2)(4k 2 2).

2

|AB|2 |DE :(1 k 2)(4k 2 2)

6k 2 * 曽忌(新心2)

记 f (x) =4x 2+6x +严+習 1^x (寸兰 x 兰4),

f'(x) =8x 6-25

— 6-孕 0,所以 f(x)在[1,4] 上单增,

8 (1+x)2 8 4

所以当X *,f (X)取得最小值f min (X )= f ? =号, 所以当k=*时,|AB|2+|DE|2取得最小值 号.

2

3 (2016年浙江高考)如图,设椭圆 务? y 2 =1 (a > 1 )

a

(I )求直线y =kx +1被椭圆截得的线段长(用 a 、k 表示); (II )若任意以点

A (0,1 )为圆心的圆与椭圆至多有 3个公共点,求椭圆离心率的取

k MQ

X 0 1 ~2 一4

X o —

X Q

X o 1

--- 十-----

2 4X o

圆心Q 到直线 所以,

|DE |2 = 4(r 2 —d 2) =4 27 - k 32 27+2k 2 8(1 k 2).

又联立

x 2=2y _ y

=kX 4 一

八2心=0,

=Xo =■

(川)依题MC .2, 1),圆心

^kX 4的距离为

值范围

y 二 kx 1 I

【试题解析】(I )设直线y = kx +1被椭圆截得的线段为AP ,由{ x 2

2 r + y =1

2 2 2 2

1 a k x 2akx=0 ,故凶=° ,

(II )假设圆与椭圆的公共点有 4个,由对称性可设 y 轴左侧的椭圆上有两个不同的点

?,

Q ,满足AP = AQ ?记直线AP , A Q 的斜率分别为k 1, k 2,且k 1, k 2 > 0 , k^ k 2.

AP = AQ= (k ; —k ; %+k ; +k ; +a 2(2—a 2 k ;k ;】=0

由 k^k 2,k 1,k^>0,所以上式可化为

;+1 f 1

2 +1 =1 + a 2(a 2 — 2)

'

上式关于k 1,k 2有解的充要条件是1 ? a 2 a 2 -2 a (2)

因此,以A 0,1为圆心的圆与椭圆至多有三个交点的充要条件是

V a 2

得 0

2

(I )求椭圆C 的方程;

(II )设P 是E 上的动点,且位于第一象限, E 在点P 处的切线丨与C 交与不同的两点 A ,

A M/

2

2a 2

k 2 2 -

1 a k

因此AP =山+k 2

X 1

「X 2

2

刑’时.

-1 a 2k 2

由(I )

AP =

2a 2 k 1

1 a 2kr 1

苛 AQ=^

1+a 2k ;

4. (2016年山东高考)平面直角坐标系

xOy 中,椭圆C : 2

- 丄 2 - a

b 2

=1 a > b >0 的离心 率是 x 2二2y 的焦点F 是C 的一个顶点

圆锥曲线中的最值和范围问题

圆锥曲线中的最值和范围问题 一、【基础考点】 与圆锥曲线有关的最值和范围问题在高考中突出考试的知识点: (1)圆锥曲线的定义和方程; (2)点与曲线的位置关系;特别是点在曲线上,点的坐标满足方程; (3)a 、b 、c 、p 、e 的几何意义及相关关系; (4)二次函数、均值不等式及导数的应用。 基础训练: 1.已知双曲线 122 22 =-b y a x (a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是(C ) A.( 1,2) B. (1,2) C.[2,)+∞ D.(2,+∞) 2. P 是双曲线 2 2 1916 x y - =的右支上一点,M 、N 分别是圆(x +5)2+y 2=4和(x -5)2+y 2 =1上的点,则|PM| -|PN |的最大值为( D ) A. 6 B.7 C.8 D.9 3.抛物线y=-x 2上的点到直线4x +3y -8=0距离的最小值是( A ) A .43 B .75 C .8 5 D .3 4.已知双曲线 222 2 1,(0,0)x y a b a b - =>>的左、 右焦点分别为F 1、F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,则此双曲线的离心率e 的最大值为:(B ) (A)43 (B)53 (C)2 (D)7 3 5.已知抛物线y 2 =4x ,过点P (4,0)的直线与抛物线相交于A(x 1,y 1),B(x 2,y 2)两点,则y 12+y 22的最小值是 . 32 6.对于抛物线y 2=4x 上任意一点Q ,点P (a ,0)都满足|PQ |≥|a |,则a 的取值范围是( B ) (A )(-∞,0) (B )(-∞,2] (C )[0,2] (D )(0,2) 二、【热点透析】 与圆锥曲线有关的最值和范围问题的讨论常用以下方法解决: (1)结合定义利用图形中几何量之间的大小关系; (2)不等式(组)求解法:利用题意结合图形(如点在曲线内等)列出所讨论的参数适合的不等式(组),通过解不等式组得出参数的变化范围; (3)函数值域求解法:把所讨论的参数作为一个函数、一个适当的参数作为自变量来表示这个函数,通过讨论函数的值域来求参数的变化范围。 (4)利用代数基本不等式。代数基本不等式的应用,往往需要创造条件,并进行巧妙的构思; (5)结合参数方程,利用三角函数的有界性。直线、圆或椭圆的参数方程,它们的一个共同特点是均含有三角式。因此,它们的应用价值在于: ① 通过参数θ简明地表示曲线上点的坐标; ② 利用三角函数的有界性及其变形公式来帮助求解诸如最值、范围等问题; (6)构造一个二次方程,利用判别式?≥0。 突破重难点 【例1】已知点M (-2,0),N (2,0),动点P 满足条件||||P M P N -=记动点P 的轨迹为W . (Ⅰ)求W 的方程; (Ⅱ)若A ,B 是W 上的不同两点,O 是坐标原点,求OA OB ? 的最小值. 解:(Ⅰ)依题意,点P 的轨迹是以M ,N 为焦点的双曲线的右支,

圆锥曲线专题(求离心率的值、离心率的取值范围)

圆锥曲线专题 求离心率的值 师生互动环节 讲课内容:历年高考或模拟试题关于离心率的求值问题分类精析与方法归纳点拨。 策略一:根据定义式求离心率的值 在椭圆或双曲线中,如果能求出c a 、的值,可以直接代公式求离心率;如果不能得到c a 、的值,也可以通过整体法求离心率:椭圆中221a b a c e -==;双曲线中22 1a b a c e +==.所以只 要求出 a b 值即可求离心率. 例1.(2010年全国卷2)己知斜率为1的直线l 与双曲线C :()22 22100x y a b a b -=>,>相交于 D B 、两点,且BD 的中点为)3,1(M ,求曲线C 的离心率. 解析:如图,设),(),(2211y x D y x B 、,则 12 2 1221=-b y a x ① 1222 222=-b y a x ② ①-②整理得 0) )(())((2 212122121=+--+-b y y y y a x x x x ③ 又因为)3,1(M 为BD 的中点,则6,22121=+=+y y x x ,且21x x ≠,代入③得

13222121==--=a b x x y y k BD ,解得322 =a b ,所以231122=+=+=a b e . 方法点拨:此题通过点差法建立了关于斜率与a b 的关系,解得22 a b 的值,从而整体代入求出离 心率e .当然此题还可以通过联立直线与曲线的方程,根据韦达定理可得),(21b a x x ?=+, 2),(=b a ?或者),(21b a y y ω=+,6),(=b a ω从而解出22 a b 的值,最后求得离心率. 【同类题型强化训练】 1.(呼市二中模拟)已知中心在原点,焦点在x 轴上的双曲线的渐近线方程为032=±y x ,则双曲线的离心率为( ). 313. A 213. B 315. C 2 10.D 2.(衡水中学模拟)已知中心在原点,焦点在x 轴上的一椭圆与圆222)1()2(r y x =-+-交于 B A 、两点,AB 恰是该圆的直径,且直线AB 的斜率2 1 -=k ,求椭圆的离心率. 3.(母题)已知双曲线)0(1:22 >=-m y m x C ,双曲线上一动点P 到两条渐近线的距离乘积为21, 求曲线C 的离心率. 【强化训练答案】 1.答案:由双曲线焦点在x 上,则渐近线方程0=±ay bx ,又题设条件中的渐近线方程为 032=±y x ,比较可得32=a b ,则3 13 941122=+=+=a b e . 2.答案:设椭圆方程为)0(122 22>>=+b a b y a x ,),(),,(2211y x B y x A ,则 1221221=+b y a x ① 122 2 222=+b y a x ② ①-②整理得 0) )(())((2 212122121=+-++-b y y y y a x x x x ③ 因为AB 恰是该圆的直径,故AB 的中点为圆心)1,2(,且21x x ≠

圆锥曲线中的最值、范围、证明问题

圆锥曲线的综合问题 1.(2016·邢 台 摸底 )已知A (-2,0),B (2,0)为椭圆C 的左、右顶点,F 为其右焦点,P 是椭圆C 上异于A ,B 的动点, △ APB 面积的最大值为2 3. (1)求椭圆C 的标准方程; (2)若直线AP 的倾斜角3π 4 ,且与椭圆在点B 处的切线交于点D ,试判断以BD 为直径的圆与直线PF 的位置关系,并加以证明. 解:(1)由题意可设椭圆C 的方程为x2a2+y2 b2=1(a >b >0),F (c,0). 由题意知????? 12·2a·b =23, a =2,解得 b = 3. 故椭圆C 的标准方程为x24+y2 3=1. (2)以BD 为直径的圆与直线PF 相切. 证明如下:由题意可知,c =1,F (1,0),直线AP 的方程为y =-x -2, 则点D 的坐标为(2,-4),BD 的中点E 的坐标为(2,-2),圆的半径r =2. 由???? ? y =-x -2,x24+y23=1,得7x 2+16x +4=0. 设点P 的坐标为(x 0,y 0), 则??? x0=-2 7,y0=-12 7 . 因为点F 的坐标为(1,0),直线PF 的斜率为4 3,直线PF 的方程为4x -3y -4=0,点E 到直线PF 的 距离d = |8+6-4| 5 =2.所以d =r . 故以BD 为直径的圆与直线PF 相切. 2.(2016· 合 肥 模 拟)已知抛物线C 1:x 2=2py (p >0),O 是坐标原点,点A ,B 为抛物线C 1上异于O 点的两点,以OA 为直径的圆C 2过点B . (1)若A (-2,1),求p 的值以及圆C 2的方程; (2)求圆C 2的面积S 的最小值(用p 表示). 解:(1)∵A (-2,1)在抛物线C 1上,∴4=2p ,p =2.

高考圆锥曲线中的最值和范围问题的专题

高考专题圆锥曲线中的最值和范围问题 ★★★高考要考什么 1 圆锥曲线的最值与范围问题 (1)圆锥曲线上本身存在的最值问题: ①椭圆上两点间最大距离为2a (长轴长). ②双曲线上不同支的两点间最小距离为2a (实轴长). ③椭圆焦半径的取值范围为[a -c ,a +c ],a -c 与a +c 分别表示椭圆焦点到椭圆上的点的最小距离与最大距离. ④抛物线上的点中顶点与抛物线的准线距离最近. (2)圆锥曲线上的点到定点的距离的最值问题,常用两点间的距离公式转化为区间上的二次函数的最值问题解决,有时也用圆锥曲线的参数方程,化为三角函数的最值问题或用三角形的两边之和(或差)与第三边的不等关系求解. (3)圆锥曲线上的点到定直线的距离的最值问题解法同上或用平行切线法. (4)点在圆锥曲线上(非线性约束条件)的条件下,求相关式子(目标函数)的取值范围问题,常用参数方程代入转化为三角函数的最值问题,或根据平面几何知识或引入一个参数(有几何意义)化为函数进行处理. (5)由直线(系)和圆锥曲线(系)的位置关系,求直线或圆锥曲线中某个参数(系数)的范围问题,常把所求参数作为函数,另一个元作为自变量求解. 与圆锥曲线有关的最值和范围问题的讨论常用以下方法解决: (1)结合定义利用图形中几何量之间的大小关系; (2)不等式(组)求解法:利用题意结合图形(如点在曲线内等)列出所讨论的参数适合的不等式(组),通过解不等式组得出参数的变化范围; (3)函数值域求解法:把所讨论的参数作为一个函数、一个适当的参数作为自变量来表示这个函数, 通过讨论函数的值域来求参数的变化范围。 (4)利用代数基本不等式。代数基本不等式的应用,往往需要创造条件,并进行巧妙的构思; (5)结合参数方程,利用三角函数的有界性。直线、圆或椭圆的参数方程,它们的一个共同特点是 均含有三角式。因此,它们的应用价值在于: ①通过参数θ简明地表示曲线上点的坐标; ②利用三角函数的有界性及其变形公式来帮助求解诸如最值、范围等问题; (6)构造一个二次方程,利用判别式?≥0。 ★★★突破重难点 【练习】1、点A (3,2)为定点,点F 是抛物线y 2=4x 的焦点,点P 在抛物线y 2=4x 上移动,若|P A|+|PF| 取得最小值,求点P 的坐标。若A (1,3)为定点,点F 是抛物线y 2=4x 的焦点,点P 在抛物线y 2=4x 上移动,若|P A|+d|取得最小值,其中d 是点P 到准线的距离,求点P 的坐标 2.已知A (3,2)、B (-4,0),P 是椭圆x y 22 259 1+=上一点,则|P A |+|PB|的最大值为() A .10 B .105- C .105+D .1025+ 3.已知双曲线22 1169 x y -=,过其右焦点F 的直线l 交双曲线于AB ,若|AB |=5,则直线l 有() A .1条 B .2条 C .3条 D .4条 4.已知点P 是抛物线y 2=4x 上一点,设P 到此抛物线的准线的距离为d 1,到直线x +2y+10=0的距离为d 2,则d 1+d 2的最小值为()

圆锥曲线最值、取值范围问题

例1、(2016年新课标一卷)设圆22 2150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E . (I )证明EA EB +为定值,并写出点E 的轨迹方程; (II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.

例2、(2014年新课标一卷) 已知点(0,2)A -,椭圆E:22 221(0)x y a b a b +=>>的离心率为2; F 是椭圆E 的右焦点,直线AF 的斜率为 3 ,O 为坐标原点 (I )求E 的方程; (II )设过点A 的动直线l 与E 相交于P,Q 两点。当OPQ ?的面积最大时,求l 的直线方程.

例3、(2016年新课标二卷)已知椭圆:E 22 13 x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为(0)k k >的直线交E 于,A M 两点,点N 在E 上,MA NA ⊥. (Ⅰ)当4,||||t AM AN ==时,求AMN ?的面积; (Ⅱ)当2AM AN =时,求k 的取值范围.

例4、(2015年天津卷)已知椭圆2222+=1(0)x y a b a b >>的左焦点为(,0)F c ,离心率为3,点M 在椭圆上且位于第一象限,直线FM 被圆4 22 +4b x y =截得的线段的长为c , (I)求直线FM 的斜率; (II)求椭圆的方程; (III)设动点P 在椭圆上,若直线FP ,求直线OP (O 为原点)的斜率的取值范围.

求圆锥曲线中离心率取值范围方法举例

圆锥曲线中离心率取值范围的求解 范围问题是数学中的一大类问题,在高考试题中占有很大的比重,圆锥曲线中离心率取值范围问题也是高考中解析几何试题的一个倍受青睐的考查点,其求解策略的关键是建立目标的不等式,建立不等式的方法一般有:利用曲线定义,曲线的几何性质,题设指定条件等. 策略一:利用曲线的定义 例1若双曲线22221(0,0)x y a b a b -=>>横坐标为32 a 的点到右焦点的距离大于它到左准线的距离,则双曲线的离心率的取值范围是( ) A.(1,2) B.(2,)+∞ C.(1,5) D.(5,)+∞ 【解析】B 22033352022 a ex a e a a a e e c -=?->+?-->, 2e ∴>或13 e <-(舍去),(2,)e ∴∈+∞. 例2双曲线22 221(0,0)x y a b a b -=>>的右支上存在一点,它到右焦点及左准线的距离相等,则双曲线离心率的取值范围是( ) A. B.)+∞ C.1]+ D.1,)++∞ 【解析】C 222 000(1)(1),a a a ex a x e x a a e a c c c -=+?-=+?+≥- 2111121011a e e e e c e ∴-≤+=+?--≤?≤≤+ 而双曲线的离心率1e >,1],e ∴∈故选C. 【点评】例1、例2均是利用第二定义及焦半径公式列出方程.例1根据题设列出不等式;例 2是根据0x 的范围将等式转化为不等式,从而求解.这种利用、x y 的范围将等式转化为不等式求参数范围的方法是解析几何常用的方法. 策略二:利用曲线的几何性质 例已知12、F F 是椭圆的两个焦点,满足120MF MF =的点M 总在椭圆内部,则椭圆离心率 的取值范围是( ) A.(0,1) B.1(0,]2 C. D. 【解析】C 由题,M 的轨迹为以焦距为直径的圆,由M 总在椭圆内部,知: 2222212c b c b a c e >时M 点有4个在椭圆上;c b =时M 有2个在椭圆上,就是椭圆短轴的两个端点. 例4已知双曲线22 221(0,0)x y a b a b -=>>的右焦点为F ,若过点F 且倾斜角为60的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( ) A.(1,2] B.(1,2) C.[2,)+∞ D.(2,)+∞

圆锥曲线的定点、定值和最值问题

圆锥曲线的定点、定值、范围和最值问题 会处理动曲线(含直线)过定点的问题;会证明与曲线上动点有关的定值问题;会按条件建 . 一、主要知识及主要方法: 1. 形式出现,特殊方法往往比较奏效。 2.对满足一定条件曲线上两点连结所得直线过定点或满足一定条件的曲线过定点问题,设该直线(曲线)上两点的坐标,利用坐标在直线(或曲线)上,建立点的坐标满足的方程(组),求出相应的直线(或曲线),然后再利用直线(或曲线)过定点的知识加以解决。 3.解析几何的最值和范围问题,一般先根据条件列出所求目标的函数关系式,然后根据函数关系式的特征选用参数法、配方法、判别式法、不等式法、单调性法、导数法以及三角函数最值法等求出它的最大值和最小值. 二、精选例题分析 【举例1】 (05广东改编)在平面直角坐标系xOy 中,抛物线2y x =上异于坐标原点O 的两不同 动点A 、B 满足AO BO ⊥. (Ⅰ)求AOB △得重心G 的轨迹方程; (Ⅱ)AOB △的面积是否存在最小值?若存在,请求出最小值; 若不存在,请说明理由. 【举例2】已知椭圆2 2142x y +=上的两个动点,P Q 及定点1,2M ? ?? ,F 为椭圆的左焦点,且PF ,MF ,QF 成等差数列.()1求证:线段PQ 的垂直平分线经过一个定点A ; ()2设点A 关于原点O 的对称点是B ,求PB 的最小值及相应的P 点坐标. 【举例3】(06全国Ⅱ改编)已知抛物线2 4x y =的焦点为F ,A 、B 是抛物线上的两动点,且 AF FB λ=u u u r u u u r (0λ>).过A 、B 两点分别作抛物线的切线(切线斜率分别为0.5x A ,0.5x B ),设其交点为 M 。 (Ⅰ)证明FM AB ?u u u u r u u u r 为定值;

圆锥曲线中的最值、范围问题

圆锥曲线中的最值、范围问题 圆锥曲线中最值问题的两种类型和两种解法 (1)两种类型 ① 涉及距离、面积的最值以及与之相关的一些问题; ② 求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时确定与之有关的一些 问题. (2)两种解法 ① 几何法,若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来 解决; ② 代数法,若题目的条件和结论能体现一种明确的函数关系, 则可先建立起目标函数, 再求这个函数的最值,最值常用基本不等式法、配方法及导数法求解. [典例](2018武昌调研)已知椭圆的中心在坐标原点, A(2,0), B(0,1)是它的两个顶点, 直线y = kx(k>0)与直线AB 相交于点D ,与椭圆相交于 E , F 两点. (1) 若 ED — = 6I D F ,求 k 的值; (2) 求四边形AEBF 的面积的最大值. [思路演示] 2 解:(1)由题设条件可得,椭圆的方程为 X + y 2= 1,直线AB 的方程为x + 2y — 2= 0. 4 设 D(x o , kx o ), E(X 1, kx 1), F(X 2, kx ?),其中 X 1 由 ED — = 6DF ,得 x 0— x 1= 6(x 2— x 0), 解得k = 2或k = 3. 2 由点D 在直线AB 上,得X o + 2kx 0- 2 = x o =百. 2 1 + 2k 10 7 .1 + 4k 2' 化简,得 24k 2— 25k + 6= 0, y = kx , 由 V y 2= 1 得(1 + 4k 2)x 2= 4, X o = ^(6X 2+ X 1) = 5x 2 = _10_ 7 ;1 +

与圆锥曲线有关取值范围与最值问题

与圆锥曲线有关取值围与最值问题 一、利用圆锥曲线定义求最值 . )1,3(,14 5,.122 221的最小值求在双曲线上,为双曲线内一点,点右焦点,的左是双曲线已知AF AP A P y x F F +=- . 19 25)2,2(),0,4(.22 2的最大值和最小值求是椭圆上的动点,内的两个点,是椭圆已知MB MA M y x B A +=+ . )2,3()2(.)2,0()1(. 2.32的最小值,求点和的最小值到抛物线准线的距离之的距离与到点求点为焦点上的一个动点,是抛物线已知PF PA A P P F x y P += .5 3)2,9(1169.42 2值的值最小,并求此最小使,点,在这个双曲线上求一,点的右焦点为已知双曲线MF MA M A F y x +=-

二、单变量最值问题——化为函数最值 .)2(;123),()1(.,,,123)07.(520 200021212 2的面积的最小值求四边形,证明 点的坐标为设,垂足为两点,且的直线交椭圆于过两点,的直线交椭圆于,过的左、右焦点分别为已知椭圆全国ABCD y x y x P P BD AC C A F D B F F F y x <+⊥=+ . 012,,,.62 2 值的面积的最小值与最大,求四边形共线,且与共线,与知轴正半轴上的焦点,已为椭圆在上,四点都在椭圆PMQN MF PF FN MF FQ PF y F y x N M Q P =?=+ .24 3,2tan 12 11. 1)0(1.722 22方程的最小值,并写出椭圆时,求,当)设(的取值范围;,求的夹角为与,向量)若(,且的面积为记△为椭圆上的点,的焦点,为椭圆如图,OQ c c S c OF FQ OF S FQ OF S OFQ Q b a b y a x F ≥==<<=?>>=+θθ

专题圆锥曲线中的最值与范围问题

高三数学专题复习 圆锥曲线中的最值问题和范围的求解策略 最值问题是圆锥曲线中的典型问题,它是教学的重点也是历年高考的热点。解决这类问题不仅要紧紧把握圆锥曲线的定义,而且要善于综合应用代数、平几、三角等相关知识。以下从五个方面予以阐述。 一.求距离的最值或范围: 例1.设AB 为抛物线y=x 2 的一条弦,若AB=4,则AB 的中点M 到直线y+1=0的最短距离为 , 解析:抛物线y=x 2 的焦点为F (0 , 41),准线为y=41-,过A 、B 、M 准线y=4 1-的垂线,垂足分别是A 1、B 1、M 1,则所求的距离d=MM 1+43=21(AA 1+BB 1) +43=21(AF+BF) +4 3 ≥ 21AB+43=21×4+43=411,当且仅当弦AB 过焦点F 时,d 取最小值4 11, 评注:灵活运用抛物线的定义和性质,结合平面几何的相关知识,使解题简洁明快,得心应手。 练习: 1、(2008海南、宁夏理)已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之 和取得最小值时,点P 的坐标为( A )A. ( 4 1 ,-1) B. ( 4 1 ,1) C. (1,2) D. (1,-2) 2、(2008安徽文)设椭圆22 22:1(0)x y C a b a b +=>>其相应于焦点(2,0)F 的准线方程为4x =. (Ⅰ)求椭圆C 的方程; (Ⅱ)已知过点1(2,0)F -倾斜角为θ的直线交椭圆C 于,A B 两点,求证:242 2AB COS θ =-; (Ⅲ)过点1(2,0)F -作两条互相垂直的直线分别交椭圆C 于,A B 和,D E ,求AB DE + 的最小值 解 :(1)由题意得: 2 22 2222 8 44c a a c b a b c =???=??=??=????=+?∴ ∴椭圆C 的方程为22 184 x y += (2)方法一: 由(1)知1(2,0)F -是椭圆C 的左焦点,离心率2 2 e = 设l 为椭圆的左准线。则:4l x =- 作1111,AA l A BB l B ⊥⊥于于,l 与x 轴交于点H(如图) ∵点A 在椭圆上 112 2AF AA =∴ 112 (cos )2 FH AF θ=+ 12 2cos 2AF θ=+ 12cos AF θ =-∴ 同理 12cos BF θ =+

高三一轮:圆锥曲线求参数的取值范围

圆锥曲线求最值范围问题 一、基础知识: 求参数的取值范围宏观上有两种思路:一个是通过解不等式求解,一个是利用函数,通过解函数的值域求得参数范围 1、解不等式:通过题目条件建立关于参数的不等式,从而通过解不等式进行求解。常见的不等关系如下: (1)圆锥曲线上的点坐标的取值范围 ① 椭圆(以()22 2210x y a b a b +=>>为例),则[],x a a ∈-,[],y b b ∈- ② 双曲线:(以()22 221,0x y a b a b -=>为例),则(],x a ∈-∞-(左支)[),a +∞(右支) y R ∈ ③ 抛物线:(以()2 20y px p =>为例,则[)0,x ∈+∞ (2)直线与圆锥曲线位置关系:若直线与圆锥曲线有两个公共点,则联立消元后的一元二次方程0?> (3)点与椭圆(以()22 2210x y a b a b +=>>为例)位置关系:若点()00,x y 在椭圆内,则2200221x y a b +< (4)题目条件中的不等关系,有时是解决参数取值范围的关键条件 2、利用函数关系求得值域:题目中除了所求变量,还存在一个(或两个)辅助变量,通过条件可建立起变量间的等式,进而可将等式变形为所求变量关于辅助变量的函数,确定辅助变量的范围后,则可求解函数的值域,即为参数取值范围 (1)一元函数:建立所求变量与某个辅助变量的函数关系,进而将问题转化为求一元函数的值域,常见的函数有:① 二次函数;②“对勾函数”()0a y x a x =+>;③ 反比例函数;④ 分式函数。若出现非常规函数,则可考虑通过换元“化归”为常规函数,或者利用导数进行解决。 (2)二元函数:若题目中涉及变量较多,通过代换消元最后得到所求参数与两个变量的表达式,则可通过均值不等式,放缩消元或数形结合进行解决。

圆锥曲线中的最值和取值范围

2 解得X"或…泞,则AM k28k2 -6 3 4k2 =1 k2 12 3 4k2 因为AM _AN,所以圆锥曲线中的最值和范围 圆锥曲线是高考数学压轴题之一,是有效区分学生层次不可或缺的一个题型,能否解 决圆锥曲线问题,对提高学生的数学成绩某种程度上至关重要。回顾几年高考中的圆锥曲线 试题,其核心问题大概有两大类型,一是定值、定点、存在性问题,二是最值和范围问题。 本文就第二问题进行归纳和分析。 最值和范围一般有两个求解方法:一是几何方法,所求最值量具有明显几何意义时可 利用几何性质结合图形直观求解;二是代数方法,选择适当变量,建立函数模型,按照求最值的方法求解,求最值方法中:利用基本不等式、函数单调性、分离常数、配方法等是常用方法。对目标函数的的整理和恰当变形是难点。所涉及的量有斜率、面积、离心率、线段长度等。 一.近几年高考试题回顾。 X y2 1.(2017全国2)已知椭圆E: 1的焦点在x轴上,A是E的左顶点,斜率为k(k 0)的 t 3 直线交E于A, M两点,点N在E上,MA丄NA. (I)当t =4 , AM| | AN时,求△ AMN 的面积;(II)当2 AM二AN时,求k的取值范围? 2 2 X y 【解析】⑴当t =4时,椭圆E的方程为 1 , A点坐标为-2 , 0, 4 3 则直线AM的方程为y =k X ? 2 . '2 2 £ I 二1 联立 4 3 " 并整理得, 3 4k2 x2 16k2x 16k2 -1^0 y -k X 2

厂匚2 12 厂〒2 12 因为 AM 二 AN , k 0,所以 1 k FTk^ = 1 k 3I 7^, k 整理得k -1 4k —k ?4产0 , 4k 2_k ?4=0无实根,所以k . ⑵直线AM 的方程为y 二k x ? ..t , r 2 2 x y 1 联立 t 3 并整理得,3 tk 2 x 2 https://www.doczj.com/doc/325387555.html, 2x t 2k ^3^-0 y =k (X + JT ) 解得 3 2 ::: k ::: 2 . 2.(2015高考真题山东理21 )在平面直角坐标系 xOy 中,F 是抛物线C:x 2=2py (p 0) 的焦点,M 是抛物线C 上位于第一象限内的任意一点,过 M,F,0三点的圆的圆心为 Q , 点Q 到抛物线C 的准线的距离为 3 . [来源学科网] (I)求抛物线 C 的方程;(n)是否存在点 M , 4 使得直线MQ 与抛物线C 相切于点M ?若存在,求出点 M 的坐标;若不存在,说明理由; (川)若点M 的横坐标为 2 ,直线l : ^kx 4与抛物线C 有两个不同的交点 A, B , l 与 圆Q 有两个不同的交点 D, E ,求当g 乞k 乞2时,|AB|2J DE|2的最小值 分析:(I )由题意,OF 为圆Q 的弦,y^— , ??? yQ — = 3 = o 抛物线方程x 2 =2y 4 2 4 1 2 所以△ AMN 的面积为| AM | = 144 79 解得 ^-F 或x =曲昇, 3 +tk 2 所以 AM 2 3 tk 2 6 t AN = 1 亠 k 2 —―— "k E 所以 3k 」 k 因为 2 AM | | AN 所以 2 T k 6 ?口隹,整理得, k 3 tk 2 t 6k -3k t 3 k -2 因为椭圆E 的焦点在x 轴,所以 t 3,即 1 k — 2 k3_2 :: (n)设存在点 2 X 。 2

高中数学干货资料-圆锥曲线中的最值和范围问题

圆锥曲线中的最值和范围问题 高考在考什么 【考题回放】 1.已知双曲线122 22=-b y a x (a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲 线的右支有且只有一个交点,则此双曲线离心率的取值范围是( ) A.( 1,2) B. (1,2) C.[2,)+∞ D.(2,+∞) 2. P 是双曲线 22 1916 x y -=的右支上一点,M 、N 分别是圆(x +5)2+y 2=4和(x -5)2+y 2=1上的点,则|PM|-|PN |的最大值为( ) A. 6 B.7 C.8 D.9 3.抛物线y=-x 2上的点到直线4x +3y -8=0距离的最小值是( ) A . 43 B .75 C .8 5 D .3 4.已知双曲线22 221,(0,0)x y a b a b -=>>的左、右焦点分别为F 1、F 2,点P 在双曲线的右 支上,且|PF 1|=4|PF 2|,则此双曲线的离心率e 的最大值为:( ) (A) 4 3 (B) 5 3 (C)2 (D) 73 5.已知抛物线y 2=4x ,过点P (4,0)的直线与抛物线相交于A(x 1,y 1),B(x 2,y 2)两点,则y 12+y 22的最小值是 . 6.设椭圆方程为14 2 2 =+y x ,过点M (0,1)的直线l 交椭圆于点A 、B ,O 是坐标原点,点P 满足OP (21=OA +)OB ,点N 的坐标为)2 1 ,21(,当l 绕点M 旋转时,求(1)动点P 的 轨迹方程;(2)||NP 的最小值与最大值.

高考要考什么 【考点透视】 与圆锥曲线有关的最值和范围问题,因其考查的知识容量大、分析能力要求高、区分度高而成为高考命题者青睐的一个热点。 【热点透析】 与圆锥曲线有关的最值和范围问题的讨论常用以下方法解决: (1)结合定义利用图形中几何量之间的大小关系; (2)不等式(组)求解法:利用题意结合图形(如点在曲线内等)列出所讨论的参数适合的不等式(组),通过解不等式组得出参数的变化范围; (3)函数值域求解法:把所讨论的参数作为一个函数、一个适当的参数作为自变量来表示这个函数,通过讨论函数的值域来求参数的变化范围。 (4)利用代数基本不等式。代数基本不等式的应用,往往需要创造条件,并进行巧妙的构思; (5)结合参数方程,利用三角函数的有界性。直线、圆或椭圆的参数方程,它们的一个共同特点是均含有三角式。因此,它们的应用价值在于: ① 通过参数θ简明地表示曲线上点的坐标; ② 利用三角函数的有界性及其变形公式来帮助求解诸如最值、范围等问题; (6)构造一个二次方程,利用判别式?≥0。 突破重难点 【范例1】已知动点P 与双曲线13 22 2=-y x 的两个焦点F 1、F 2的距离之和为定值,且cos ∠F 1PF 2的最小值为9 1 -. (1)求动点P 的轨迹方程; (2)若已知D (0,3),M 、N 在动点P 的轨迹上且DN DM λ=,求实数λ的取值范围. 【范例2】给定点A (-2,2),已知B 是椭圆2212516x y +=上的动点,F 是右焦点,当53 AB BF +

(完整版)微专题-圆锥曲线中的最值问题(解析版)

专题30 圆锥曲线中的最值问题 【考情分析】 与圆锥曲线有关的最值和范围问题,因其考查的知识容量大、分析能力要求高、区分度高而成为高考命题者青睐的一个热点。 江苏高考试题结构平稳,题量均匀.每份试卷解析几何基本上是1道小题和1道大题,平均分值19分,实际情况与理论权重基本吻合;涉及知识点广.虽然解析几何的题量不多,分值仅占总分的13%,但涉及到的知识点分布较广,覆盖面较大;注重与其他内容的交汇。圆锥曲线中的最值问题,范围问题都是考查学生综合能力的载体.俗话说:他山之石可以攻玉.在研究这几年外省新课程卷解析几何试题时,就很有启发性.比如2010年安徽卷理科19题,该题入题口宽,既可用传统的联立直线与曲线,从方程的角度解决,也可利用点在曲线上的本质,用整体运算、对称运算的方法求解.再比如2011年上海卷理科23题,主要涉及到中学最常见的几个轨迹,通过定义点到线段的距离这一新概念设置了三个问题,特别是第三问,呈现给学生三个选择,学生可根据自已的实际情况选择答题,当然不同层次的问题,评分也不一样,体现让不同的学生在数学上得到不同的发展 【备考策略】 与圆锥曲线有关的最值和范围问题的讨论常用以下方法解决: (1)结合定义利用图形中几何量之间的大小关系; (2)不等式(组)求解法:利用题意结合图形(如点在曲线内等)列出所讨论的参数适合的不等式(组),通过解不等式组得出参数的变化范围; (3)函数值域求解法:把所讨论的参数作为一个函数、一个适当的参数作为自变量来表示这个函数,通过讨论函数的值域来求参数的变化范围。 (4)利用代数基本不等式。代数基本不等式的应用,往往需要创造条件,并进行巧妙的构思;【激活思维】 1.已知双曲线122 22=-b y a x (a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲 线的右支有且只有一个交点,则此双曲线离心率的取值范围是[2,)+∞ 2. P 是双曲线 22 1916 x y -=的右支上一点,M 、N 分别是圆(x +5)2+y 2=4和(x -5)2+y 2=1上的点,则|PM|-|PN |的最大值为7 3.抛物线y=-x 2 上的点到直线4x +3y -8=0距离的最小值是 43 4.已知抛物线y 2 =4x ,过点P (4,0)的直线与抛物线相交于A(x 1,y 1),B(x 2,y 2)两点,则y 12 +y 2 2 的最小值是 32 . 5.已知点M (-2,0),N (2,0),动点P 满足条件||||2PM PN -=记动点P 的轨迹为W . (Ⅰ)求W 的方程; (Ⅱ)若A ,B 是W 上的不同两点,O 是坐标原点,求OA OB ?u u u r u u u r 的最小值. 解:(Ⅰ)依题意,点P 的轨迹是以M ,N 为焦点的双曲线的右支, 所求方程为:22 x y 122 -= (x >0) (Ⅱ)当直线AB 的斜率不存在时,设直线AB 的方程为x =x 0, 此时A (x 02 x 2-),B (x 020 x 2-,OA OB ?u u u r u u u r =2

高考数学复习:圆锥曲线中的最值、范围、证明问题

圆锥曲线中的最值、范围、证明问题 热点一 最值问题 求圆锥曲线中三角形面积的最值的关键 (1)公式意识,把求三角形的面积转化为求距离、求角等; (2)方程思想,即引入参数,寻找关于参数的方程; (3)不等式意识,寻找关于参数的不等式,利用基本不等式等求最值. 例1 (2019·邯郸模拟)已知椭圆E :x 2a 2+y 2 b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 为E 上 的一个动点,且|PF 2|的最大值为2+3,E 的离心率与椭圆Ω:x 22+y 2 8=1的离心率相等. (1)求E 的方程; (2)直线l 与E 交于M ,N 两点(M ,N 在x 轴的同侧),当F 1M ∥F 2N 时,求四边形F 1F 2NM 面积的最大值. 解 (1)依题意可知???? ? a +c =2+3,c a =1-2 8, 解得??? a =2, c =3, 则 b 2=a 2- c 2=1,故 E 的方程为x 24 +y 2 =1. (2)延长MF 1交E 于点M ′, 由(1)可知F 1(-3,0),F 2(3,0), 设M (x 1,y 1),M ′(x 2,y 2),

设MF 1的方程为x =my -3, 由????? x =my -3,x 24+y 2 =1 得(m 2+4)y 2-23my -1=0, 故? ???? y 1 +y 2 =23m m 2 +4,y 1y 2 =-1 m 2 +4. 设F 1M 与F 2N 的距离为d , 四边形F 1F 2NM 的面积为S , 则S =12(|F 1M |+|F 2N |)d =1 2(|F 1M ′|+|F 1M |)d =1 2|MM ′|d =2MF M S △′, 而2MF M S △′=1 2|F 1F 2||y 1-y 2| =3(y 1+y 2)2-4y 1y 2 =43m 2+1m 2+4 = 43m 2+1+ 3m 2+1 ≤ 43 23 =2, 当且仅当m 2+1= 3 m 2+1 , 即m =±2时,等号成立, 故四边形F 1F 2NM 面积的最大值为2. 跟踪演练1 (2019·焦作模拟)已知椭圆C :x 22 +y 2 =1,点A ????1,12,B (1,2). (1)若直线l 1与椭圆C 交于M ,N 两点,且A 为线段MN 的中点,求直线MN 的斜率; (2)若直线l 2:y =2x +t (t ≠0)与椭圆C 交于P ,Q 两点,求△BPQ 的面积的最大值. 解 (1)设M (x 1,y 1),N (x 2,y 2), 故x 2 12+y 2 1=1,x 222 +y 22=1. 将两式相减,可得x 212+y 2 1-????x 222+y 22 =0, 即 (x 1+x 2)(x 1-x 2) 2 +(y 1+y 2)(y 1-y 2)=0, 因为A 为线段MN 的中点, 所以x 1+x 2=2,y 1+y 2=1. 得(x 1-x 2)+(y 1-y 2)=0,

圆锥曲线的最值-定值-范围等经典考题型附答案-作业

圆锥曲线的综合应用 一、圆锥曲线的最值问题 方法1:定义转化法 ①根据圆锥曲线的定义列方程;②将最值问题转化为距离问题求解. 例1、已知点F是双曲线x2 4- y2 12=1的左焦点,定点A的坐标为(1,4),P是双曲 线右支上的动点,则|PF|+|P A|的最小值为________. 方法2:数形结合(切线法) 当所求的最值是圆锥曲线上的点到某条直线的距离的最值时:①求与直线平行的圆锥曲线的切线;②求出两平行线的距离即为所求的最值. 例2、求椭圆x2 2+y 2=1上的点到直线y=x+23的距离的最大值和最小值,并求 取得最值时椭圆上点的坐标. 方法3:参数法(函数法) ①选取合适的参数表示曲线上点的坐标; ②求解关于这个参数的函数最值 例3、在平面直角坐标系xOy中,点P(x,y)是椭圆x2 3+y 2=1上的一个动点,则 S=x+y的最大值为________. 方法4:基本不等式法 ①将最值用变量表示. ②利用基本不等式求得表达式的最值. 例4、求椭圆x2 3+y 2=1内接矩形ABCD面积的最大值. 二、圆锥曲线的范围问题 方法1:曲线几何性质法 ①由几何性质建立关系式;②化简关系式求解.

例1、已知双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的左,右焦点分别为F 1,F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,则此双曲线中a c 的取值范围是________. 方法2:判别式法 当直线和圆锥曲线相交、相切和相离时,分别对应着直线和圆锥曲线方程联立消元后得到的一元二次方程的判别式大于零、等于零、小于零 ① 联立曲线方程,消元后求判别式; ②根据判别式大于零、小于零或等于零结合曲线性质求解. 例2、在平面直角坐标系xOy 中,经过点(0,2)且斜率为k 的直线l 与椭圆x 22+y 2=1有两个不同的交点P 和Q . (1)求k 的取值范围; (2)设椭圆与x 轴正半轴、y 轴正半轴的交点分别为A ,B ,是否存在常数m ,使得向量OP →+OQ →与AB →共线?如果存在,求m 值;如果不存在,请说明理由. 三、圆锥曲线的定值、定点问题 方法1:特殊到一般法 根据特殊情况能找到定值(或定点)的问题 ① 根据特殊情况确定出定值或定点; ②对确定出来的定值或定点进行一般情况的证明. 例1、已知双曲线C :x 2-y 22=1,过圆O :x 2+y 2=2上任意一点作圆的切线l , 若l 交双曲线于A ,B 两点,证明:∠AOB 的大小为定值.

2020年高考数学(理)总复习:圆锥曲线中的定点与定值、范围与存在性问题(解析版)

2020年高考数学(理)总复习:圆锥曲线中的定点与定值、范围与 存在性问题 题型一 圆锥曲线中的定点、定值问题 【题型要点】 圆锥曲线中定点、定值问题必然是变化中所表现出来的不变的量,那么就用变化的量表示问题的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系不受变化的量所影响的一个点、一个值,就是要求的定点、定值.解决这类问题的一般思路是: (1)引进变化的参数表示直线方程、数量积、比例关系等. (2)根据等式的恒成立、数式变换等寻找不受参数影响的量. (3)求解定点、定值问题,如果事先不知道定点、定值,可以先对参数取特殊值,通过特殊情况求出这个定点、定值,然后再对一般情况进行证明. 【例1】已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,点Q ??? ??b a b ,在椭圆上,O 为坐 标原点. (1)求椭圆C 的方程; (2)已知点P ,M ,N 为椭圆C 上的三点,若四边形OPMN 为平行四边形,证明四边形OPMN 的面积S 为定值,并求该定值. (1)【解】 ∵椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为22,∴e 2 =c 2a 2=a 2-b 2a 2=12 ,得a 2=2b 2① 又点Q ??? ??b a b ,在椭圆C 上,∴b 2a 2+a 2b 4=1,② 联立①、②得a 2=8,且b 2=4. ∴椭圆C 的方程为x 28+y 2 4 =1. (2)【证明】 当直线PN 的斜率k 不存在时,PN 方程为x =2或x =-2, 从而有|PN |=23,

所以S =12|PN |·|OM |=1 2 ×23×22=26; 当直线PN 的斜率k 存在时,设直线PN 方程为y =kx +m (m ≠0),P (x 1,y 1),N (x 2,y 2), 将PN 的方程代入椭圆C 的方程,整理得(1+2k 2)x 2+4kmx +2m 2-8=0, 所以x 1+x 2=-4km 1+2k 2,x 1·x 2=2m 2-8 1+2k 2 , y 1+y 2=k (x 1+x 2)+2m =2m 1+2k 2,由OM →=OP →+ON → ,得M ??? ??++-22212,214k m k km 将M 点坐标代入椭圆C 方程得m 2=1+2k 2. 又点O 到直线PN 的距离为d = |m | 1+k 2 , |PN |=1+k 2|x 1-x 2|, ∴S =d ·|PN |=|m |·|x 1-x 2| =1+2k 2 ·(x 1+x 2)2 -4x 1x 2= 48k 2+24 2k 2+1 =2 6. 综上,平行四边形OPMN 的面积S 为定值2 6. 题组训练一 圆锥曲线中的定点、定值问题 已知椭圆C :x 2a 2+y 2 b 2=1过A (2,0),B (0,1)两点. (1)求椭圆C 的方程及离心率; (2)设P 为第三象限内一点且在椭圆C 上,直线P A 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值. 【解析】 (1)由题意得a =2,b =1, ∴椭圆C 的方程为x 24 +y 2 =1. 又c =a 2-b 2=3,∴离心率e =c a =3 2 .

相关主题
文本预览
相关文档 最新文档