当前位置:文档之家› HBV基因和亚型:分型技术

HBV基因和亚型:分型技术

HBV基因和亚型:分型技术
HBV基因和亚型:分型技术

参考文献:南方医科大学硕士学位论文~《HCV基因型和亚型:分型技术、临床意义及其流行病学研究》

HBV基因型和亚型:分型技术

乙肝临床与分型研究国际现状:

乙型肝炎病毒(HBV)是一种嗜肝病毒,在全世界长期感染约3亿人,据报道每年造成约100万人死亡。基于对完整基因组的序列相似性,将诸多HBV分离株分为8个基因型A至H。HBV基因型显示特征性地理分布:基因型A流行最广,但普遍是在北欧、北美和中非;在东亚,韩国、中国、日本、波利尼西亚和越南发现了基因型B和C;基因型D也是大流行性基因型,但最要在地中海地区、中东和印度为主要分布地;基因型E是非洲的典型常见型;美国当地人和波利尼西亚发现基因型F;基因型G在西欧和北美,基因型H主要发现在中美洲。不仅对于分子流行病学的目的,HBV的基因分型是重要的;最近的几项研究也表明,一些基因型的慢性结局和肝脏疾病的严重程度可能是不同的。来自:National Center for Biotechnology Information—Viral Genotyping Tool Hepatitis B virus (HBV) is a hepatotropic virus, that chronically infects some 300 million people worldwide and is thought to be responsible for a million deaths annually. Numerous HBV isolates have been grouped into eight genotypes, A through H, on the basis of sequence similarities of their complete genomes. HBV genotypes show a characteristic geographical distribution: genotype A is pandemic but most prevalent in northern Europe, North America and central Africa; genotypes B and C are found in eastern Asia, Korea, China, Japan, Polynesia and Vietnam; genotype D is also pandemic but is predominant in the Mediterranean area, the Middle East and India; genotype E is typical for Africa; genotype F is found in American natives and in Polynesia; genotype G in western Europe and North America and genotype H is found predominantly in Central America. Genotyping of HBV is important not only for molecular epidemiology purposes. Several recent researches demonstrated that rate of the chronic outcome and the severity of liver disease can be different for some genotypes. 来自:National Center for Biotechnology Information—Viral Genotyping Tool

乙肝临床与分型研究中国现状:

目前(追溯至2005年),根据乙型肝炎病毒(HBV)全基因组序列差异大于8%或者S基因序列大于4%,将HBV分为A、B、C、D、E、F、G、H等8个基因型,当时报道,HBV每个基因型还可以分为不同亚型,如:A基因型可分为Aa和Ae亚型;B基因型可分为B1、B2、B3和B4亚型,C基因型可分为C1、C2、C3和C4亚型等。有研究表明,HBV基因型与感染途径、感染谱、疾病进展有一定相关性。但是在2005年,国内现有关于HBV亚型的报道。我们研究组应用特异性引物聚合酶链式反应法对我国多个城市的445份HBV感染者血清进行了HBV基因型和亚型的分析。来源:北京大学医学部微生物系,庄辉课题组

乙型肝炎病毒(HBV)是引起人兽共患病的最小DNA病毒,全球分布,引发急性肝炎、慢性肝炎、肝硬化、乙肝相关性肝癌,对人类健康威胁大。目前(追溯至2005年),根据HBV全基因序列异质性大于8%或者S基因序列大于4%,将HBV分为8个基因型A~H,并根据全基因序列异质性不大于8%,大于4%将HBV同一种基因型再分为不同的亚型。不同基因型、亚型的HBV各具独特的流行病学特点及分子生物学特征。并发现可能与HBV感染途径、疾病谱、病程进展以及抗病毒治疗的反应局相关性。来源:福建医科大学附属第一医院肝病中心

乙肝病毒与复制

乙型肝炎病毒(HBV)为直径42~47nm的球形颗粒(Dane颗粒),由外壳与核心两部分组成。外壳有许多小球状颗粒,只含病毒表面抗原(HBsAg)。核心含环状双股脱氧核糖核酸(DNA)、DNA多聚酶、核心抗原(HBcAg)和e抗原(HBeAg)。双股DNA的正链短且不完整,长度仅为负链的50%,不含开放读码区,不能编码蛋白。负链完整,长度恒定,约含3200个核苷酸,有4个大开放读码区,可编码全部病毒蛋白:①S区基因。编码病毒外壳蛋白(HBsAg),分为S、前S1、前S2基因区共同编码3种外壳蛋白肽段,即主蛋白由S基因编码,中蛋白由前S2和S基因编码,大蛋白由前S1、前S2和S基因编码。3种外壳蛋白的功能和性质有所不同;②C基因。编码核心抗原蛋白及其可溶成分e抗原,前C基因区可能在HBV的装配和分泌中起作用;③P基因。其翻译产物为病毒的DNA多聚酶;④X基因。编码HBxAg,存在于HBsAg或HBcAg阳性病例的肝细胞核内,可能是一种转录调节蛋白。来自:百科全书

HBV基因组是一个长约为3.2千碱基对(kb)的不完全双链环状DNA。双链的长度不对称,长链(L)因与病毒mRNA互补,定位(-)链;短链(S)为(+)链,5末端固定,3端位置不固定,S正链的长度为L负链的50%-100%,因而在病毒群体中有不同长度的正链与全长的负链匹配,仅有部分基因组长度为双链。HBV基因组L负链上至少有4个开放读码框架(Open Reading Frame,ORF),分别称为S(外壳蛋白基因、表面抗原,surface)、C(核心蛋白、核心抗原,core)、P(DNA多聚酶,polymerase)和X(某种转录调节蛋白,HBx protein)。4个读码框架之间有部分重叠,P基因最长,与S基因区完全重叠、与C和X基因区部分重叠,X基因区和C基因区有部分重叠。开放阅读框全长为4.7kb,利用率约150%。

HBV外膜与宿主细胞接触,前S1肽无特异附着和侵染细胞,前S2肽有嗜肝细胞性的与肝细胞膜结合。蛋白酶将外膜裂解后,病毒DNA就侵入细胞。部分双链环状HBV DNA进入肝细胞核内,在宿主酶帮助下,以负链DNA为模板延长正链,修补正链中的裂隙区形成共价闭合环状DNA(ccc DNA)。再在宿主RNA 聚合酶Ⅱ的帮助下,转录成几种不同长短的mRNA,其中3.5kb全长序列的mRNA含有HBV DNA序列上的全部遗传信息,称为基因组mRNA。病毒基因组mRNA 随宿主mRNA进入肝细胞质,在HBV逆转录酶作用下,合成正链DNA。就形成了子代的部分双链式的环状DNA,最后装配成完整的HBV,释放到肝细胞外。细胞质中的病毒DNA,还可以继续进入肝细胞核,再形成cccDNA继续进行复制。

1、所有抑制HBV逆转录酶活性的抗病毒药物,不能清除处于肝细胞中的cccDNA,这是HBV难被清除的主要原因。

2、HBV基因组mRNA,其逆转录复制过程,因为RNA聚合酶(RNA扩增)和逆转录酶(逆转录)缺乏校正功能,使得病毒复制常发生一个或多个核酸变异。因而,HBV是一种变异较高的病毒。

3、HBV的变异呈多样化,是个区域均可发生变异,包括各种突变类型。但是,各区域不同区段出现突变的频率及突变类型有所不同,启动子区、增强子区及重要的调控区往往是保守区,如C基因与P基因的重叠区就是极端保守区。

HBV聚合酶的逆转录酶区的耐药突变

HBV的准种概念与HBV基因异质性

病源微生物长期点突变的积累形成了不同的基因型和血清型,但是对于具体的患者,在较短时间内病员微生物的突变则造成体内同时存在着序列微小差别的种群。准种:种群的各个成员之间差别程度一般不会超过核苷酸总长度的2~5%,这种差别不至于构成病原体不同的基因型或血清型,但的确存在基因序列的差别,这种现象称为准种。HBV的生活史是以前基因组HBV为模板,通过逆转录过程复制子代基因组序列。由于HBV逆转录酶不具有3端到5端的校对功能,子代的HBV基因组与模板存在一定的变异。这种特性决定了HBV基因组的高突变性及异质性,实际上,每个患者血清中都存在大量拷贝的HBV,序列不尽相同表现出准种特点。

来源:中山大学附属第三医院博士论文《多药物耐药慢性乙型肝炎患者的HBV准种的研究》

第三军医大学研究生论文《HBV准种异质性在HBV母婴宫内传播中作用的研究》

(推荐)乙型肝炎病毒耐药基因及分型检测

乙型肝炎现状如何? 乙型病毒性肝炎是由乙肝病毒(hepatitis B virus,HBV)感染引起的、以肝脏炎性病变为主,并可引起多器官损害的一种疾病,主要存在于肝细胞内,可引起肝细胞炎症、坏死和纤维化。 乙型肝炎病毒(HBV)感染呈世界性分布,全球约有3.6亿感染者,每年约有100万人死于与HBV相关的肝脏疾病。我国属于感染的高发区,现有的慢性HBV感染者约9300万例。 乙型肝炎病毒(HBV)基因分型的临床意义 HBV根据DNA差异可分为A、B、C、D、E、F、G、H八种类型,不同型别在流行特征,致病性,对药物治疗反应等方面存在差异,其中,我国以B型和C型为主,感染HBV基因型B的患者发生肝纤维化及肝细胞癌的平均年龄要比感染HBV基因型C的患者的年龄大。 通过分型检测,可判断病毒复制活跃程度及突变发生率情况。研究表明,与HBV-B型相比,C型复制较活跃,不易发生HBeAg血清转换;HBV-B型易产生前C区突变,C型核心启动子区变异发生率更高,与重型肝炎发病机制密切相关,可作为肝癌高危指标之一。同时,HBV-B、C型患者易产生拉米夫定耐药突变,通过分型检测,可指导临床治疗方案制定,有针对性进行临床治疗,更大程度上提高患者的生活质量。 乙肝的治疗方式有哪些? HBV感染主要的治疗方法是抗病毒治疗,国内外普遍使用的药物有干扰素和核苷(酸)类。由于干扰素需要反复注射,且副作用较多,近年来,核苷(酸)类似物(NA)已成为抗HBV感染的主要方法之一,NA因其抑制病毒复制能力强、使用方便、耐受性好且疗效确切,适用于不同阶段的肝病患者,是长期治疗的合理选择。但随着治疗时间的延长,往往会出现病毒耐药株,从而需要监测乙型肝炎病毒耐药基因型,指导临床用药。 乙肝病毒产生耐药的机理是什么? HBV对某种药物的耐药性一般是指由HBV基因组上某些位点的变异导致这种药物对HBV的抑制作用减弱或无作用。通常分为以下几种: (1)原发性耐药变异:指药物作用靶位的基因及其编码的氨基酸发生变异,导致变异病毒株对治疗药物的敏感度下降; (2)继发性耐药变异(又称补偿性耐药变异):指由于原发性耐药变异病毒株复制能力下降,在原发性耐药变异的基础上,病毒株也可在其他位点发生变异,这些变异可部分恢复变异病毒的复制能力或可导致变异病毒对药物敏感度的进一步下降; (3)基因型耐药:指检测到已在体外的表型分析研究中被证实与抗病毒药物耐药相关的HBV变异; (4)表型耐药:通过体外复制系统证实检测到的HBV变异会降低其对抗病毒药物的敏感度。 HBV属于嗜肝DNA病毒科,基因组长约3.2kb,是部分双链环状DNA结构。HBV基因组含有4个部分重叠的开放读框(open reading frame,ORF),分别为S基因区、C基因区、P基因区和x基因区。产物为含末端蛋白、间隔区、逆转录酶区和RNA酶H区4部分的HBV聚合酶。 HBV虽然属于DNA病毒,但其复制过程并非DNA—DNA的直接复制过程,而是经过前基因组RNA的中间过程,即DNA—RNA—DNA的复制过程。在前基因组RNA逆转录为负链DNA的过程中,HBV逆转录酶由于缺乏严格的校正机制,导致HBV复制过程中核苷酸错配率较高,发生变异的频率为每年(1.4~3.2)X105核苷酸替换/位点。HBV复制的这种过程和特点,决定了同一患者体内不同的HBV株基因序列之间也存在差别。 核苷(酸)类药物主要通过抑制HBV聚合酶的逆转录酶区活性,阻止HBV复制过程中以HBV的前基因组RNA为模板逆转录生成新的病毒DNA,从而发挥抑制病毒复制的作用,HBV前基因组RNA是以HBV的cccDNA 为模板合成的,即NA的药效靶点在cccDNA的下游,所以NA不能直接清除已经存在的cccDNA。

乙型肝炎病毒分型(B型、C型、D型)和耐药突变基因检测.doc

乙型肝炎病毒分型(B型、C型、D型)和耐药突变基因检测 一.检验项目:乙型肝炎病毒分型(B型、C型、D型)和耐药突变基因检测 二.检验目的:在进行抗病毒治疗前和抗病毒治疗中进行乙型肝炎病毒分型和耐药突变基因检测,能够:1). 区分中国和其他亚洲国家常见的HBV-B、C、D基因型; 2). 检测HBV抗病毒药物5个热点突变位点的6种突变类型; 3). 对HBV实行动态监控,辅助确定个性化的临床诊疗方案,进行HBV流 行病学研究。 三.临床意义: HBV基因型分为9种(A-I),其分布具有地域性,中国乃至亚洲流行的乙型肝炎病毒几乎都是B、C型,此外还有少量D型,不同的基因型易发生的突变类型不同,与病情转归也密切相关,如基因型C较B更容易引起严重的肝炎或肝癌,对干扰素的应答率A型高于D型,B型高于C型,C型高于D型。与C型患者相比,B型患者较早出现HBeAg血清学转换,较少进展为慢性肝炎,肝硬化和原发性肝细胞癌。 核苷(酸)类似物,如拉米夫定(Lamivudine,LMV),替比夫定(Telbivudine,LdT),阿德福韦酯(Adefovir,ADV)和恩替卡韦(Enticavir,ETV)等是抗HBV常见药物。但这些药物都无法彻底清除大多数乙肝病人体内的HBV,患者需要长期维持治疗。HBV在宿主体内感染以及抗病毒治疗的过程中会发生基因变异,并在宿主体内免疫系统的压力下和在治疗干预过程中进行变异的优势选择,以达到逃逸免疫、对抗药物、实现物种生存的目的,进而发生耐药。乙肝病人一旦出现耐药突变,其肝功能恶化的比例将显著增高,甚至快速进展至肝衰竭。 四.标本送检要求:4ml黄色帽血清管,空腹采集后立即送检,室温放置不宜超过2小时,如不能立即送检可于4℃保存一周,如需长期保存请放入-20℃冻存,运输过程中请注意保持低温。 五.开单名称:乙型肝炎病毒分型和耐药突变基因检测 进入本科室“医生工作站”→选择开单病人“姓名”→选择“项目类别”→选择“检验” →选择“乙型肝炎病毒分型和耐药突变基因检测”→确定 或进入本科室“医生工作站”→选择开单病人“姓名”→选择“项目类别”→选择“检验”→选择“实验室”→选择“乙型肝炎病毒分型和耐药突变基因检测”→确定六.收费:570元/例 七.送检时间:周一至周日8:00am-12:00am 八.送检地点:检验科三楼服务台 九.报告时间:抽血后,7个工作日后进入我院计算机检查报告系统,查看检测结果。 联系电话:84206146 检验科

高通量SNP基因分型技术研究进展

10 Sheng W et al.J Virol,2003;77(6):3859 11 C ohen J I,et al.J Virol,1999;73(9):7627 12 Wei MX et al.Cancer Res,1994;54(7):1843 13 G ao Y et al.Oncogene,2002;21(5):825 14 T anner J E et al.J In fect Dis,1997;175(1):3815 Decaussin G et al.Cancer Res,2000;60(19):5584 16 Brink AA et al.J Clin M icrobiol,1998;36(11):3164 17 Hayes DP et al.M ol Pathol,1999;52(2):97 18 zur Hausen A et al.Cancer Res,2000;60(10):2745 (2002211201 收稿) 高通量SNP基因分型技术研究进展 方唯意综述 姚开泰审阅 中南大学湘雅医学院肿瘤研究所(长沙,410078) 摘要 在后基因组时代,单核苷酸多态性研究已迅速成为了生物医学许多领域的焦点。发展可靠、敏感、经济、稳定、高通量的S NP基因分型技术已迫在眉睫。本文主要着重于高通量S NP基因分型技术的原理、利弊以及这些技术在这个领域过去几年中的进展。 关键词 高通量;单核苷酸多态性;基因分型 单核苷酸多态性(S NPs)是最普遍的遗传变异形式。通过开展具有明显表型特征的S NPs基因分型大规模相关研究,有助于鉴定许多复杂疾病原因,了解个体对各种药物的耐受性和对环境因子的反应。人类基因组测序的完成和142万个S NPs在基因组上的定位[1],为首次在全基因组水平上进行S NPs研究打开了方便大门。经典的S NPs分析方法是PCR 扩增后用凝胶电泳检测,虽然可靠性好,但缺乏效率。寡核苷酸微阵列和其他高通量筛选技术效率有了明显的提高,但临床应用绝非可靠,因此,有必要改进和发展新的可靠、敏感、高通量、经济、稳定的S NPs基因分型技术。在本文中,我们主要阐述高通量S NPs基因分型方法,包括一步均质法、焦磷酸测序、DNA芯片/阵列分析法、微球法、MA LDI2T OF质谱基因分型分析法等,讨论这些技术的目前状态和将来潜力。 1 一步均质法 T aqman、Scorpion分析和分子灯塔组成了微滴定平板荧光阅读系统。T aqman和分子灯塔都依赖于等位基因特异性寡核苷酸杂交在PCR期间对等位基因进行区分。而Scorpion分析能使用等位基因特异性PCR或是等位基因特异性杂交反应[2]来区分等位基因。它们作为一个末端分析能在一个完全均质的反应条件下进行分析。在反应起始,所有试剂和基因组DNA都混合在一起,经热循环步骤后,荧光信号能被检测到。该反应既没有单独的预扩增步骤,也没有中间的处理过程,因此它们是一种最简单的分析方法。由于没有适合这些方法的384孔荧光检测器,以及荧光标记探针的价格过高和缺乏可靠的自动化基因型呼叫软件,因此阻碍了这些方法的发展。最近,Applied Biosystems公司新开发的7900HT型高通量荧光定量PCR仪,使得进行384孔微滴定平板荧光检测成为了可能,这主要归因于高通量能力的增加和反应容积的减少。当如果要发展更高的基因分型通量时,一个可靠的自动化等位基因呼叫能力是必须的,它不只是纠正基因型呼叫信号更快,而且在处理和加工数据上必须更迅速,更准确。近来研究表明,自动化基因型呼叫在无阳性对照情况下进行聚类分析是可行的[3]。 2 焦磷酸测序Pyrosequencing 焦磷酸测序是对短到中等长度的DNA序列样品进行高通量、精确和重复性好的分析方法。其反应原理是当测序引物与PCR扩增的,单链DNA模板杂交,和各种酶包括DNA聚合酶、ATP硫酸化酶、荧光素酶、三磷酸腺苷双磷酸酶、以及底物、荧光素一起共同孵育。4种dNTP之一被加入反应体系,如与模板配对,该dNTP与引物的末端形成共价键,dNTP 的焦磷酸基团释放出来。ATP硫酸化酶在APS存在的情况下催化焦磷酸生成ATP,ATP驱动荧光素酶介导的荧光素向氧化荧光素的转化,氧化荧光素发出的可见光信号与ATP量成正比。ATP和未掺入的dNTP由三磷酸腺苷双磷酸酶降解,光信号淬灭,并再生反应体系,然后再加另一种dNTP继续反应。焦磷酸测序最初作为DNA测序方法而发展起来的,其化学反应与Sanger双脱氧二核苷酸法完全不同。它无需灌胶、毛细管电泳,也无需同位素或荧光染料

乙型肝炎病毒基因分型方法简述

乙型肝炎病毒基因分型方法简述 邵 玲 张 男 【摘要】乙型肝炎病毒是一种嗜肝脱氧核糖核酸病毒,属于一种复合体DNA病毒。乙型肝炎病毒可按两种方法分型:血清型和基因型。随着分子生物学的发展以及对乙型肝炎病毒研究的深入,乙型肝炎病毒血清分型法已不能适应对该病毒感染研究的需要,而出现的基因分型法则引起广泛的重视。 【关键词】乙型肝炎病毒;基因分型方法 H epatitis B virus gene minute method summ ary S HA O L in Z HA N G N an 【Abstract】The hepatitis B virus is one kind is addicted to the liver deoxyribonucleic acid virus,belongs to one kind of complex DNA virus.The hepatitis B virus may according to two method minutes:Blood serum and genotype.Along with molecular biology’s development as well as to hepatitis B virus research’s thorough,a hepatitis B virus blood serum minute law has not been able to adapt to this virus infection research need,but appears a gene minute principle brings to the widespread attention. 【K ey w ords】Hepatitis B virus;Gene minute method 乙型肝炎病毒是一种嗜肝脱氧核糖核酸病毒,属于一种复合体DNA病毒。乙型肝炎病毒可按两种方法分型:血清型和基因型。随着分子生物学的发展以及对乙型肝炎病毒研究的深入,乙型肝炎病毒血清分型法已不能适应对该病毒感染研究的需要,而出现的基因分型法则引起广泛的重视。1988年Ok2 mamoto[1]对18株不同亚型的HBV基因序列两两进行比较后,根据核苷酸序列异源性>8%的原则,将18株HBV DNA序列分为A~D4个基因型,提出了HBV基因型的概念。1992年Norder[2]发现ayw4和adw4q-两旧亚型之间及基因型A~D 之间S基因差异>4%,提出了两种新的基因型E,F,1994年Norder通过全基因序列P3测定加以证实。2000年Stuyver[3],在研究来自法国和美国的慢性乙肝病人血清样本时,发现有13株病毒无法归入A~F型,命名为G型。随后,日本和德国也相继发现了G基因型。2002年Arauz~Ruiz[4]对10株HBV进行基因型研究,发现其中3株虽与F型相近,但与F型又有明显的不同,进而命名为H型。截止现今,HBV基因型可分为A~H八型。 目前,国内外对HBV进行基因分型主要有“基因序列测定法、聚合酶链反应———限制性片段长度多态性分析法、基因型特异性表位单克隆抗体的EL ISA、基因型特异性线形探针检测法、基因型特异性引物PCR法和基因芯片技术”。 1 基因分型原理 1.1 全基因序列测定。全基因序列测定是根据HBV所有病毒核苷酸异源性>8%进行分型的。Okamoto对从日本及印度尼西亚adw2慢性携带者中分离出的3株HBV进行全序列测序及比较,其核苷酸的异质性为3.9%~5.6%,而与美国2株相同血清亚型HBV序列比较,异质性达8.3%~9.3%,达到甚至超过不同血清亚型HBV的异质性,从而说明血清学分型不能真正反映HBV基因变异。再经对18株HBV DNA进行两两比较分析,根据同源性<92%、异质性>8%,将其分为A, B,C及D4个基因型,初步建立了基因分型体系。12年后Stuyver使用该方法,发现了一种新的3248bp的HBV基因型G 。 1.2 S基因序列测定。由于乙型肝 炎病毒基因可分为p基因、前s基因、编 码HBs4的s基因、C基因及X基因(如 图),可分别对它们进行研究,从而找出各 个基因型在各个基因之间的差异。Nor2 der[5]对32例HBV患者s基因测序结果 进行分析,并建立进化树,基因型间异质 性>4%。除证实了Okamoto的A~D分型外,还发现了2个新的基因型E和F,使HBV基因型达到6个(A~F)。在其后对28例HBV全基因组、p基因、前s基因、编码HBs4的s基因、C 基因及X基因分别比较并建立进化树,进一步证实根据s基因序列分型最接近全基因组,从而证明了单独使用S基因进行分型的可靠性。目前,此法尚在使用,主要有SSP和SSO[6],即基因型特异性引物PCR法和基因型特异性线形探针检测法。 2 基因分型方法 2.1 序列测定法。即直接测定核苷酸序列,根据差异分型。自Okamoto据HBV基因型之间的全序列异质性8%进行分型以来,测序由于方法直接、可靠而成为主要鉴定HBV基因型的方法。同全序列进化树图比较,发现S基因的序列变化同全基因序列的变化一致,可用S基因序列代替全基因序列进行分型,界限为核昔酸序列的异质性4.0%。该法虽较为可靠但操作繁琐、费用昂贵,不适于临床大量标本检测。 2.2 聚合酶链反应———限制性片段长度多态性分析法(PCR~RFL P)。目前常用的基因分型方法,通过PCR扩增出目标基因片段(通常为S基因或Pres/s基因),用特定的限制性内切酶进行酶切,根据酶切图谱进行基因分型。Mizokami[7]通过分子进化方法对已知基因型的68例HBV患者全基因、106例HBV患者s基因序列进行分析,发现并确认基因型特异性酶切位点区域。Lindh[8]对不同基因型S基因的特异酶切位点进行分析,设计使用限制性内切酶Trp509I和Hinf I使S基因PCR产物产生不同长度的酶切片段,成功地将166/180例患者HBV实现A-F基因分型。RFL P敏感性高,但酶切位点易受基因变异影响,且遇混合感染或酶切不完全,会出现复杂条带,影响分型结果判断。 2.3 基因型特异性表位单克隆抗体的酶联免疫吸附法(EL ISA)PreS2多肽有多组抗原表位。基因型不同抗原表位也不同,从而可以鉴定不同基因型。Usuda[9]等用此法制备前S2区域基因型特异性表位的单克隆抗体,并用辣根过氧化酶进行标记,对68例HBV阳性患者血清检测,分型结果与S基因测序分型完全一致。在后期实验中发现,适用于大规模的流行病学调查,使较大范围的HBV的研究成为可能。 2.4 基因型特异性线形探针检测法。该方法是设计型特异的探针,检测HBV扩增产物,以产物的不同长度或与探针的反应性来区分不同型别。Kato[10]利用G基因型的病毒在核心区有36个核苷酸的插入,设计引物用PCR的方法可以对G基因型进行特异的筛查。早在1983年Wu用酶切的方法研究血清型的酶切图谱,来区分不同的血清型。王虹[11]等采用PCR2核酸杂交/EL ISA检测,主要是联合利用PCR、核酸杂交和酶联免疫技术,设计前C和C区的探针,可以快速准确的区分HBV的基因型。另外Van G eyt[12]根据A~F基因型的保守序列设计了18种型特异性探针与HBV S (下转12页)

遗传标记STR基因座分型

遗传标记STR基因座的高分辨电泳分型 摘要:STR(Short Tandem Repeat,短片段重复序列)广泛存在于人类及哺乳动物的基因组中,具有高度多态性,一般由2~6个碱基构成一个核心序列,核心序列串联重复排列,由核心序列重复数目的变化产生长度多态性。本实验用磁珠法提取人类基因组DNA后,用三对引物(D1S1677、D4S2364和D10S1248)分别对一号染色体、四号染色体和十号染色体的STR序列进行PCR扩增,通过聚丙烯酰氨凝胶电泳技术(PAGE)对PCR产物进行分离,最后用EB染色凝胶后在紫外灯下观察实验结果并进行分析。通过此次实验,我们了解了STR序列的特征和相关应用,掌握了磁珠法提取人类基因组DNA技术、PCR技术,以及聚丙烯酰氨凝胶电泳技术(PAGE)。 关键词:STR磁珠法PCR扩增聚丙烯酰氨凝胶电泳技术(PAGE) 1.引言 DNA指纹技术是一项具有广泛应用价值的技术。它在人类医学中被用于个体鉴别、确定亲缘关系、医学诊断及寻找与疾病连锁的遗传标记;在动物进化学中可用于探明动物种群的起源及进化过程;在物种分类中,可用于区分不同物种,也有区分同一物种不同品系的潜力。在作物的基因定位及育种上也有非常广泛的应用。 DNA指纹技术的发展经历了三代。第一代DNA指纹技术利用了DNA 指纹图谱。1984年英国莱斯特大学的遗传学家Jefferys及其合作者首次将分离的人源小卫星DNA用作基因探针,同人体核DNA的酶切片段杂交,获得了由多个位点上的等位基因组成的长度不等的杂交带图纹,这种图纹极少有两个人完全相同,故称为“DNA指纹”,意思是它同人的指纹一样是每个人所特有的。众多“DNA指纹”组成“DNA指纹图谱”。第二代DNA指纹技术用PCR 的方法对STR位点进行PCR扩增可得到不同长度DNA片段,用银染或荧光的方法对扩增后的DNA片段检测得到DNA指纹。第三代DNA指纹技术是用PCR的方法对SNP位点进行PCR扩增。 STR(Short Tandem Repeat,短片段重复序列)广泛存在于人类及哺乳动物的基因组中,具有高度多态性。它们一般由2~6个碱基构成一个核心序列,核心序列串联重复排列,由核心序列重复数目的变化产生长度多态性。对于一个特定的个体,染色体上某个特定位置的重复序列的重复次数是固定的,而对于不同的个体在同一位置处的重复次数可能不同,这就构成了人群中这些重复序列的多态性。由于人类基因组中这种重复序列非常多,通过对这种多态性的检测,就可以明确区分个体与个体的不同,确定父母子的亲缘关系,这就是STR 分型。联合应用16个STR位点的特异性,其个体识别率可达0.999999999998,其父权排除率可达0.99998。 本次实验中人类基因组DNA的提取使用的是磁珠法核酸纯化技术。它采用了纳米级磁珠微珠,这种磁珠微珠的表面标记了一种官能团,能同核酸发生吸附反应。该方法快速简捷,一般可在36分钟完成。不用多次漂洗磁珠也可确保基因组DNA的高纯度,提取出的基因组DNA OD260/OD280典型的比值达 1.7~1.9,长度可达20kb~50kb,可直接用于PCR、Southern-blot和各种酶切反应。 聚合酶链式反应(Polymerase Chain Reaction,PCR)是体外核酸扩增技术,由变性、退火、延伸三个基本反应步骤构成。本实验以人类基因组DNA为模板,以dNTP为原料,以含有Mg2+的buffer为缓冲液,在Taq酶催化下,用特定引物(D1S1677、D4S2364和D10S1248)为延伸起点,通过变性、退火、延伸等步骤,获得不同基因座的STR扩增片段。可用于基因分离克隆,序列分析,基因表达调控,基因多态性研究等许多方面。总之,PCR是一项DNA 体外合成放大技术,能快速特异地在体外扩增任何目的DNA。可用于基因分离克隆,序列分

狂犬病病毒的基因分型及其分子流行病学研究进展

文章编号:1002-2694(2006)03-0271-03 狂犬病病毒的基因分型及其分子流行病学研究进展 张建明1,2,严延生2 中图分类号:R37319 文献标识码:A 狂犬病(Rabies)是由狂犬病病毒(rabies virus,RV)引起的人和所有哺乳动物的急性致死性中枢神经系统的自然疫源性疾病。人狂犬病的临床特征是恐水、怕风、咽肌痉挛和进行性麻痹等,尤以恐水症状为突出,一旦发病,死亡率几乎达100%〔1〕。狂犬病是全球性的严重公共卫生问题,近些年来,随着宠物增多又缺乏相对有效的管理控制措施,狂犬病的发病又呈现上升趋势,在分子水平上进行狂犬病病毒流行病学研究对于阐明病毒的毒力变异和抗原飘移、了解病毒的宿主特异性和病毒系统发育的时空进程,以便更好地控制狂犬病都具有重要意义,本文就狂犬病病毒的基因分型及其分子流行病学研究进展作一综述。 1 狂犬病病毒的基因组结构和分型 111 基因结构 狂犬病病毒的基因组为单股负链不分节段的RNA,全长约12kb(11215kb)。由基因组的3’端至5’端依次排列着N、NS、M、G、L5个结构基因,各基因的序列长度分别为1424、991、805、1675和6475个核苷酸,它们分别编码核蛋白(N)、磷蛋白(P)、基质蛋白(M)、糖蛋白(G)和大蛋白(P或RNA依赖的RNA转录酶蛋白)。每个基因均由3’端非编码区、编码区和5’端非编码区三部分组成。在N 基因前有1个50个核苷酸的先导序列,在L基因后有约70个核苷酸的非翻译区。在N2NS、NS2M、M2G和G2L基因间分别有2、5、5和423个核苷酸的间隔序列,G2L基因间的423核苷酸间隔序列是一个伪基因。 112 基因分型 狂犬病病毒的N蛋白基因相对恒定,点突变较少,而且与病毒的型别有关,可以作为群变异的指标〔2〕。1993年Bourhy等〔3〕通过测定狂犬病病毒属中具有代表性的病毒分离物N基因的序列,将狂犬病原区分为6个基因型:基因型1(狂犬病病毒,RABV)、基因型2(拉各斯蝙蝠病毒,LBV)、基因型3(莫科拉病毒,MO KV)、基因型4(杜文海洛病毒,DUVV)、基因型5(欧洲蝙蝠狂犬病病毒1,EBLV2 2)、基因型6(欧洲蝙蝠狂犬病病毒2,EBLV22)。1998年Skerratt等〔4〕从澳大利亚的蝙蝠中分离出狂犬病病毒的基因型7(澳大利亚蝙蝠狂犬病病毒,ABLV)。2001年de Mattos 等〔5〕对狂犬病病毒基因分型进行比较研究,根据N基因核苷酸序列的同源性绘制了狂犬病病毒属成员间的种系发生关系图,属内成员N蛋白序列的同源性由78%(MO KV和EBLV22)至93%(DUVV和EBLV21),基因型和早先根据抗原性划分的血清型基本一致。7个基因型又可分为2个进化组:第一组包括基因型1、4、5、6和7;第二组含基因型2和3。同组内1种病毒的抗体与其他病毒可产生交叉反应,不同组的病毒之间不能产生交叉免疫保护。非洲的DUVV和EBLV21亲缘关系较近,而LBV和MO KV在系统发育上则和RABV亲缘关系较远。ABLV与古典的RABV亲缘关系最密切。在基因型内还可分辨出各个不同的病毒聚簇,这些聚簇反映了病毒间历史的地理的或宿主种别的关系。 2 狂犬病的分子流行病学研究 211 流行现状 狂犬病呈全球性分布,只有南极洲和少数岛国(日本、挪威、冰岛、芬兰、瑞典、英国、马来西亚、新加坡、新西兰等)无狂犬病发生。亚洲是狂犬病高发地区,估计每年有近40000人死于狂犬病,约占全球因犬伤死亡的90%〔6〕。亚洲狂犬病发病率以印度为最高,中国、菲律宾、孟加拉、巴斯基坦、越南、泰国等也相当高〔7〕。非洲普遍存在狂犬病且大面积流行,病原型别复杂,感染来源更复杂,最早发现的狂犬病病毒的4个血清型中有3个存在于非洲,除家犬、猫外,非洲南部至少有30种属于5个科的肉食动物被确诊患狂犬病。欧洲由于实行针对狐狸的口服免疫策略〔8〕,近10年来,动物狂犬病已明显下降,其流行病学也发生了改变,西欧国家采取了对犬进行免疫,同时对犬进行严格管理,已基本上控制或消灭了人、畜狂犬病。狂犬病在中、南美洲长期以来一直是严重的公共卫生和经济问题,其中阿根廷、玻利维亚、巴西、哥伦比亚、厄瓜多尔、危地马拉、洪都拉斯等国疫情较重。北美洲狂犬病呈地区性流行,以野生动物为主,自1996年以来,狂犬病发病率一直保持下降趋势,但蝙蝠作为传染源引起的人狂犬病无下降趋势〔9〕。澳大利亚原本是一个无狂犬病的国家,1998年Skerratt等〔4〕从果蝠中分离出澳大利亚蝙蝠狂犬病病毒,引起了公众的注意。 212 分子流行病研究方法 Rupprecht C等〔10〕通过单克隆抗体检测狂犬病病毒的抗原变异,证明了来自世界各地不同病毒分离物间存在许多差异。但是,单纯血清型或抗原型并不能鉴定狂犬病病毒的来源和迁移,在分子流行病学的研究中受到一定的限制。Ermine A等〔11〕把放射性标记的核酸探针杂交方法用于检测狂犬病病毒基因组,但此法只能用于检测受严重感染的组织中的狂犬病病毒基因组。近年来狂犬病的分子流行病学研究方法不断完善,Bourhy HB等〔12〕证实利用RT2PCR及基因测序的分子流行病研究在病毒的分类及病毒株来源的鉴别上是一个很有用的工具。许多学者是根据N基因的特点———高度保守和高效表达,先用RT2 PCR方法扩增N基因片段,然后再进行基因序列测定,对狂犬病病毒进行病毒检测、基因分型和系统发育分析,从而进 通讯作者:严延生 作者单位:1.福建医科大学,福州 350004; 21福建省疾病预防控制中心,福州 350001

乙肝病毒基因分型

乙肝病毒基因分型 近年来,随着分子生物学技术的迅猛发民和对HBV认识的不断深入,国内外许多学者对HBV基因分型及其临床的相关性开展了大量的研究.HBV基因分型比血清亚型更能反映原型病毒株之间的自然异质性.HBV基因分型方法有多种,以全基因测序为HBV基因分型的金标准,基于全基因核甘酸序列比较,HBV可分为A、B、C、D、E、F、G、H8个基因型。HBV基因型呈地理区域性分布,且不则基因型致病性不同,HBV基因型与乙型肝炎病情的进展,临床表现、治疗、预后有密切的关系。 近年来HBV基因分布的研究成为国内外学者关注的研究热点。研究发现,HBV基因的分布具有一定的地域性,A型主要分布在西欧、北欧、北美洲及非洲地区,B型和C型是亚洲和大洋洲的特征性基因型,B型主要见于中国、日本、印度尼西亚、越南和巴西,D型分布最为广泛,主要分布在中东、北非和南欧,也是地中海地区HBV的主要基因型,还发现于亚洲少数地区;E型主要分布于非洲撒哈拉沙漠地带;F型主要分布于美国、南美洲和土著居民;G型在法国、美国、德国、英国和意大利被发现;H 型已在尼加拉瓜、墨西哥及美国加利氟尼亚地区被发现。 大量研究表明,我国HBV基因型南方以B型为主,北方以C型为主,D

型仅见于西部及少数民簇地区,A,F型偶有发现,还未发现其它性别。也有学者研究表明D基因型在我国宁夏地区,广东地区和香港地区约占感染者15%,因而HBV基因型在我国的确切分布状况仍不十分清楚。 HBV基因型的临床意义 (1)HBV基因型与病毒复制及变异的关系 HBV基因型与病毒复制水平及病毒标志物的表达有一定的相关性。Watanabe等研究报道,基因C型的HBeAg阳性率高于B型和A型,而B型HBeAg阴性率高于C型,同时B型血清HBeAg清除率较C型显著常见且较早发现;基因C型血清HBV DNA水平显著高于B型;A型的HBV DNA自然清除率高于D型和F型,同时A型的HBsAg自然清除率也比D型高;以上均提示C型HBV复制较活跃,易形成持续病毒血症,不易发生e系统血清转换发生快,免疫清除HBV较C型早。 (2)HBV基因型临床疾病谱及疾病预后的关系 HVB感染不仅可以引起急.慢性病毒性肝炎,而且还与肝硬化(LC)和干细胞癌(HCC)的发生,发展有密切关系。HBV感染的临床转归一方面决定于患者的年龄和免疫能力,另一方面也与感染病毒株的基因型种类密切相关。近年研究发现HBV基因型是影响慢性乙型肝炎的临床转归的主要决

HBV基因和亚型:分型技术

参考文献:南方医科大学硕士学位论文~《HCV基因型和亚型:分型技术、临床意义及其流行病学研究》 HBV基因型和亚型:分型技术 乙肝临床与分型研究国际现状: 乙型肝炎病毒(HBV)是一种嗜肝病毒,在全世界长期感染约3亿人,据报道每年造成约100万人死亡。基于对完整基因组的序列相似性,将诸多HBV分离株分为8个基因型A至H。HBV基因型显示特征性地理分布:基因型A流行最广,但普遍是在北欧、北美和中非;在东亚,韩国、中国、日本、波利尼西亚和越南发现了基因型B和C;基因型D也是大流行性基因型,但最要在地中海地区、中东和印度为主要分布地;基因型E是非洲的典型常见型;美国当地人和波利尼西亚发现基因型F;基因型G在西欧和北美,基因型H主要发现在中美洲。不仅对于分子流行病学的目的,HBV的基因分型是重要的;最近的几项研究也表明,一些基因型的慢性结局和肝脏疾病的严重程度可能是不同的。来自:National Center for Biotechnology Information—Viral Genotyping Tool Hepatitis B virus (HBV) is a hepatotropic virus, that chronically infects some 300 million people worldwide and is thought to be responsible for a million deaths annually. Numerous HBV isolates have been grouped into eight genotypes, A through H, on the basis of sequence similarities of their complete genomes. HBV genotypes show a characteristic geographical distribution: genotype A is pandemic but most prevalent in northern Europe, North America and central Africa; genotypes B and C are found in eastern Asia, Korea, China, Japan, Polynesia and Vietnam; genotype D is also pandemic but is predominant in the Mediterranean area, the Middle East and India; genotype E is typical for Africa; genotype F is found in American natives and in Polynesia; genotype G in western Europe and North America and genotype H is found predominantly in Central America. Genotyping of HBV is important not only for molecular epidemiology purposes. Several recent researches demonstrated that rate of the chronic outcome and the severity of liver disease can be different for some genotypes. 来自:National Center for Biotechnology Information—Viral Genotyping Tool 乙肝临床与分型研究中国现状: 目前(追溯至2005年),根据乙型肝炎病毒(HBV)全基因组序列差异大于8%或者S基因序列大于4%,将HBV分为A、B、C、D、E、F、G、H等8个基因型,当时报道,HBV每个基因型还可以分为不同亚型,如:A基因型可分为Aa和Ae亚型;B基因型可分为B1、B2、B3和B4亚型,C基因型可分为C1、C2、C3和C4亚型等。有研究表明,HBV基因型与感染途径、感染谱、疾病进展有一定相关性。但是在2005年,国内现有关于HBV亚型的报道。我们研究组应用特异性引物聚合酶链式反应法对我国多个城市的445份HBV感染者血清进行了HBV基因型和亚型的分析。来源:北京大学医学部微生物系,庄辉课题组 乙型肝炎病毒(HBV)是引起人兽共患病的最小DNA病毒,全球分布,引发急性肝炎、慢性肝炎、肝硬化、乙肝相关性肝癌,对人类健康威胁大。目前(追溯至2005年),根据HBV全基因序列异质性大于8%或者S基因序列大于4%,将HBV分为8个基因型A~H,并根据全基因序列异质性不大于8%,大于4%将HBV同一种基因型再分为不同的亚型。不同基因型、亚型的HBV各具独特的流行病学特点及分子生物学特征。并发现可能与HBV感染途径、疾病谱、病程进展以及抗病毒治疗的反应局相关性。来源:福建医科大学附属第一医院肝病中心 乙肝病毒与复制 乙型肝炎病毒(HBV)为直径42~47nm的球形颗粒(Dane颗粒),由外壳与核心两部分组成。外壳有许多小球状颗粒,只含病毒表面抗原(HBsAg)。核心含环状双股脱氧核糖核酸(DNA)、DNA多聚酶、核心抗原(HBcAg)和e抗原(HBeAg)。双股DNA的正链短且不完整,长度仅为负链的50%,不含开放读码区,不能编码蛋白。负链完整,长度恒定,约含3200个核苷酸,有4个大开放读码区,可编码全部病毒蛋白:①S区基因。编码病毒外壳蛋白(HBsAg),分为S、前S1、前S2基因区共同编码3种外壳蛋白肽段,即主蛋白由S基因编码,中蛋白由前S2和S基因编码,大蛋白由前S1、前S2和S基因编码。3种外壳蛋白的功能和性质有所不同;②C基因。编码核心抗原蛋白及其可溶成分e抗原,前C基因区可能在HBV的装配和分泌中起作用;③P基因。其翻译产物为病毒的DNA多聚酶;④X基因。编码HBxAg,存在于HBsAg或HBcAg阳性病例的肝细胞核内,可能是一种转录调节蛋白。来自:百科全书

疱疹病毒如何分型

疱疹病毒如何分型 相信大家对病毒都是不陌生的。学了生物的小伙伴们,都应该知道病毒也是分很多种的,比如DNA病毒也是有单链DNA病毒和双链DNA病毒的,还有RNA病毒也是有多种的,当然还有其他类型的病毒。那么大家是否知道疱疹病毒又是如何分型的呢?不知道的好奇宝宝们都跟着我一起来增进一下知识吧。 疱疹病毒(Herpesviruses)是群中等小的双股DNA病毒,有100以上成员,根据其理化性质分α、β、γ三个亚科α疱疹病毒(如单纯疱疹病毒、水痘一带状疱疹病毒)增殖速度快,引起细胞病变。β疱疹病毒(如巨细胞病毒),生长周期长,感染细胞形成巨细胞。γ疱疹病毒(如EB病毒),感染的靶细胞是淋巴样细胞,可引起淋巴增生。疱疹病毒感染的宿主范围广泛,可感染人类和其他脊椎动物。 HSV有二个血清型,即HSV—1和HSV—2,两型病毒核苷酸序列有5%同源性,型间有共同抗原,也有特异性抗原,可用型

特异性单克隆抗体作ELISA,DNA限制性酶切图谱分析及DNA杂交试验等方法区分型别。 病毒分离培养是当今临床上明确诊断疱疹病毒感染的可靠 依据。可采集皮肤、生殖器等病变部位的水疱液、脑脊液、角膜刮取物、唾液等标本,接种人二倍体成纤维细胞株WI38及其它传代细胞株如Vero、BHK等,经24~48小时后,细胞则出现肿胀、变圆、细胞融合等病变。然后用HSV-1和HSV-2的单克隆抗体作免疫荧光染色鉴定或应用DNA限制性内切酶图谱分析来定型。 看了上面疱疹病毒的解说,是不是觉得病毒是一个非常神奇的东西,里面包含有非常丰富的生物知识。虽然学起来很复杂,但是只是我们对疱疹病毒的分型又有了一定的了解,我们的技能又多了一项,是不是也很开心呢!以后我们也要多了解了解和病毒有关的知识哦。

PCR基因分型

用PCR进行基因分型 发布日期:2008-11-24 热门指数:5901 分享| 收藏 与许多一次做数百块Southern blots的研究人员一样,我第一次用PCR做基因分型(genotyping)时觉得见效很快,不再需要等几天才能看到结果,不再需要DNA显微图像或者操作紫外线了。随着技术的不断进步,RCR使基因组学和转录组学发生了翻天覆地的变化,甚至随着免疫PCR的普及开始进军蛋白组学。 目前有许多以RNA为基础的基因分型技术,有些只是名称不同,简单到只是跑块胶,有些很复杂,需要检测单核苷酸多态性的累积。选择哪种方法当然依据需要而定,但这里对某些以PCR为基础的基因分型分析的优点和缺点做了一个简要总结。下标列出了一些常见的系统和平台及其详细特征。 The Simple Acronyms 最基本的设计是序列特异引物(sequence-specific primers ,SSP )或称等位基因特异性引物延伸(allele specific primer extension ,ASPE)、序列特异性寡核苷酸探针(sequence-specific oligonucleotide probes,SSOP)或等位基因特异性寡核苷酸(allele-specific oligonucleotides ,ASO)、限制性片段长度多态性分析(restriction fragment length polymorphism,RFLP)。进行低通量研究时,这些分析不需要特异仪器。 一般情况下,SSP中变的异体专一引物所检测的特异突变或者是positive 或者是negative;在SSOP中,将标记过的扩增子(amplicon)绑定在位于杂交斑点上的变异体专一探针,检测突变;RFLP中,用限制性内源性降解PCR产物,通过观察切开或者未切开片段,得到结果。尽管突变的位点对SSP设计引物有限制,但SSOP和RFLP为引物设计带来了很大弹性,引物可以在任何地点,尝到甚至可以跨越突变。 我还发现RFLP(又称扩增片段长度多态性,amplified fragment length polymorphism,AFLP)得到明确结果,鉴别突变有合适和和便宜的核酸内切酶。加入标记过的引物,大多数遗传分析仪可推算片段长度。问题在于它需要post-PCR操作,意味着污染的风险,而且也不适合高通量研究。 对于大项目,所有三种方法都很昂贵和耗时,但因为大多数自动化方法要求扩增小片段,基本的设计是分析大片段的唯一选择。而且,有旁向性同源基因(paralogs)的基因需要具有位点特异性的引物。假如目的突变和位点特异的引物相距较远,基本方法是必需的。 熔解曲线法 DNA的碱基组成影响变性温度。利用特异荧光染料或者标记探针的高分辨率熔解点分析能够在PCR(标准设备上)进行5~10分钟后鉴别一个PNA片段上的寡核苷酸突变,所需的专用设备包括Idaho Technology公司的LightScanner(或HR-1)和罗氏的LightTyper,但某些实时PCR平台也有这种功能。 该方法还可用于检测新突变和未知突变,专用设备能够在短时间内分析384孔平板,使高通量分析成为可能。至少可以区分一个片段的4种熔解温度,用六种颜色标记探针。因此,至少一次能够探测24个靶标,因此这种方法很便宜,而且对引物设计没有要求,系统始终处于封闭的管中,降低了污染风险。一些变异在低分辨率平台中会丢失,但这种方法有望成为最流行的筛选和检测突变的方法。 焦磷酸测序(Pyrosequencing) 多种引物延伸和以连接为基础的化学法已经整合入久经考验的“allelic discrimination”的高通量分析法中。焦磷酸测序法(Pyrosequencing)是一种新的实时DNA测序技术,以单碱基延伸反应(single base extension,SBE)为基础,在DNA 聚合酶、三磷酸腺苷硫酸化酶、荧光素酶(luciferase)和三磷酸腺苷双磷酸酶4种酶的协同作用下,使引物延伸聚合脱氧核糖核酸(dNTP)释放焦磷酸盐(PPi)、PPi转换三磷酸腺苷(ATP)、ATP产生荧光信号与dNTP和ATP的降解等化学反应偶联起来。dNTP以预定顺序被依次加入反应

人乳头瘤病毒HPV14个基因分型检测

人乳头瘤病毒(HPV)14个基因分型检测 一.检测项目:人乳头瘤病毒HPV基因检测 二.检测目的:人乳头病毒(HPV),目前发现有超过100种以上的亚型,大部分对人体无害,其中可能致癌的13种亚型被称为高危型人类乳头状病毒。而低危型HPV病毒主要为HPV6和11型感染,为男女常见的皮肤性病类致病因子,主要引起尖锐湿疣等良性病变。HPV的人群感染率达20%-30%,大多数HPV感染是“一过性”的,一般在 0.5-2年内,病毒会被自动清除,同一种高危亚型持续感染是引发宫颈癌的必要条件。 若检出一种或多种高危HPV亚型为阳性,应按医生指导定期复查或做进一步检查。三.临床意义: 1、感染的HPV类型预测受检者HPV阳性的发病风险度,决定其筛查间隔,预测患病风 险; 2、有效对HPV阳性病人进行很好的随访监控,即可避免对病人进行过度治疗,又可控 制病人的病情发展。 3、对宫颈病变病人手术前后随访提供依据; 如术后HPV仍呈阳性,有两种情况:若治疗后HPV仍为同一亚型阳性,复发的可能性大;如果是其它亚型阳性,则为重复感染,手术病灶切除干净。 4、对我国开发针对于不同区域人群的HPV疫苗提供可靠的依据。如:HPV16、18在世 界范围内是最重要的两个亚型,但美国研制的疫苗不完全适用于中国人群。 5、HPV病毒载量与宫颈病变严重程度在一定的含量阈值内有关,高水平的HPV载量可以 促进宫颈病变的发生发展。 6、低危型HPV病毒6型、11型主要导致疣、尖锐湿疣等外生殖器良性病变,通过荧光 PCR法可以快速诊断病原体,为临床治疗提供辅助诊断,同时定量病毒数,了解病毒感染复制情况,实时动态监测治疗情况。 四.标本送检要求: 1)宫颈细胞采集:用宫颈取样器刷取宫颈病灶处脱落细胞,置入细胞保存液管,密闭立即送检。 2)生殖泌尿道分泌物棉拭子:女性:生殖道-用无菌生理盐水棉球洗去宫颈外分泌物,再用采样器插入宫颈内,停5秒钟后旋动棉拭子采取宫颈分泌物,将采样器置入专用保存液中,密闭立即送检。男性:尿道-用无菌生理盐水棉球洗净尿道口,再用男性拭子插入尿道约2厘米,略捻拭子取出分泌物(应略带黏膜)。将棉拭子置入无菌玻璃管,密闭立即送检。 五.开单名称: 人乳头瘤病毒14型:包括HPV16,18,31,33,35,39,45,51,52,56,58,59,68亚型及6+11型六.收费:250元 七.送检时间:周一至周日 八.送检地点:周一至周日8:00am——5:00pm请将样本送到三层检验科窗口,5:00pm之后送到二楼检验科服务台 九.报告时间:暂定7个工作日 联系电话:84206146 检验科 2012年10月17日

相关主题
文本预览
相关文档 最新文档