当前位置:文档之家› 《椭圆》方程典型例题20例(含标准答案)

《椭圆》方程典型例题20例(含标准答案)

《椭圆》方程典型例题20例(含标准答案)
《椭圆》方程典型例题20例(含标准答案)

《椭圆》方程典型例题20例

典型例题一

例1 椭圆的一个顶点为()02,A ,

其长轴长是短轴长的2倍,求椭圆的标准方程. 分析:题目没有指出焦点的位置,要考虑两种位置. 解:(1)当()02,A 为长轴端点时,2=a ,1=b ,

椭圆的标准方程为:11

42

2=+

y x ; (2)当()02,A 为短轴端点时,2=b ,4=a ,

椭圆的标准方程为:116

42

2=+

y x ; 说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况.

典型例题二

例2 一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率.

解:3

1

222??=c a c ∴223a c =, ∴3

331-

=

e . 说明:求椭圆的离心率问题,通常有两种处理方法,一是求a ,求c ,再求比.二是列含a 和c 的齐次方程,再化含e 的方程,解方程即可.

典型例题三 例3 已知中心在原点,焦点在x 轴上的椭圆与直线01=-+y x 交于A 、B 两点,

M 为AB 中点,OM 的斜率为0.25,椭圆的短轴长为2,求椭圆的方程.

解:由题意,设椭圆方程为1222

=+y a

x ,

由?????=+=-+1012

22y a

x y x ,得()021222=-+x a x a , ∴22

2112a

a x x x M +=+=,2111a x y M M +=-=,

4

1

12===

a x y k M M OM ,∴42=a , ∴14

22

=+y x 为所求. 说明:(1)此题求椭圆方程采用的是待定系数法;(2)直线与曲线的综合问题,经常要借用根与系数的关系,来解决弦长、弦中点、弦斜率问题.

典型例题四

例4椭圆19252

2=+y x 上不同三点()11y x A ,,??

?

??594,B ,()22y x C ,与焦点()04,F 的

距离成等差数列.

(1)求证821=+x x ;

(2)若线段AC 的垂直平分线与x 轴的交点为T ,求直线BT 的斜率k . 证明:(1)由椭圆方程知5=a ,3=b ,4=c . 由圆锥曲线的统一定义知:

a

c x c

a AF =-12

, ∴ 115

4

5x ex a AF -=-=. 同理 25

4

5x CF -

=. ∵ BF CF AF 2=+,且5

9=

BF , ∴ 51854554521=??? ??-+??? ?

?

-x x ,

即 821=+x x .

(2)因为线段AC 的中点为???

?

?+2421y y ,,所以它的垂直平分线方程为

()422

12

121---=

+-

x y y x x y y y . 又∵点T 在x 轴上,设其坐标为()00,x ,代入上式,得

()

2122

21024x x y y x --=-

又∵点()11y x A ,,()22y x B ,都在椭圆上,

∴ ()212125259

x y -=

(

)

22222525

9x y -= ∴ ()()21212

2

2125

9x x x x y y -+-=-. 将此式代入①,并利用821=+x x 的结论得 25

3640-

=-x ∴ 4

540

590=--=x k BT

典型例题五

例5 已知椭圆13

42

2=+y

x ,1F 、2F 为两焦点,问能否在椭圆上找一点M ,使M

到左准线l 的距离MN 是1MF 与2MF 的等比中项?若存在,则求出点M 的坐标;若不存在,请说明理由.

解:假设M 存在,设()11y x M ,,由已知条件得

2=a ,3=b ,∴1=c ,2

1=

e . ∵左准线l 的方程是4-=x , ∴14x MN +=. 又由焦半径公式知:

11121

2x ex a MF -=-=,

11221

2x ex a MF +=+=.

∵212

MF MF MN ?=,

∴()??? ??+??? ?

?-=+112

12122124x x x .

整理得048325121=++x x .

解之得41-=x 或5

12

1-

=x . ① 另一方面221≤≤-x . ②

则①与②矛盾,所以满足条件的点M 不存在. 说明:

(1)利用焦半径公式解常可简化解题过程.

(2)本例是存在性问题,解决存在性问题,一般用分析法,即假设存在,根据已知条件进行推理和运算.进而根据推理得到的结果,再作判断.

(3)本例也可设()

θθsin 3cos 2,M 存在,推出矛盾结论(读者自己完成).

典型例题六

例6 已知椭圆1222=+y x ,求过点??

?

??2121,P 且被P 平分的弦所在的直线方程.

分析一:已知一点求直线,关键是求斜率,故设斜率为k ,利用条件求k . 解法一:设所求直线的斜率为k ,则直线方程为??? ?

?

-=-2121x k y .代入椭圆方程,并整理得

()()

02

3

21222122

2

2

=+-+--+k k x k k

x k .

由韦达定理得2

2212122k k

k x x +-=+.

∵P 是弦中点,∴121=+x x .故得2

1

-=k .

所以所求直线方程为0342=-+y x .

分析二:设弦两端坐标为()11y x ,、()22y x ,,列关于1x 、2x 、1y 、2y 的方程组,从而求斜率:

2

12

1x x y y --. 解法二:设过??

?

??2121,P 的直线与椭圆交于()11y x A ,、()22y x B ,,则由题意得

?

????????=+=+=+=+④

1.

③1②12

①1221212

2222

121y y x x y x y x ,,, ①-②得02

2

2212

221=-+-y y x x . ⑤ 将③、④代入⑤得

2

1

2121-=--x x y y ,即直线的斜率为21-.

所求直线方程为0342=-+y x .

说明:

(1)有关弦中点的问题,主要有三种类型:过定点且被定点平分的弦;平行弦的中点轨迹;过定点的弦中点轨迹.

(2)解法二是“点差法”,解决有关弦中点问题的题较方便,要点是巧代斜率.

(3)有关弦及弦中点问题常用的方法是:“韦达定理应用”及“点差法”.有关二次曲线问题也适用.

典型例题七

例7 求适合条件的椭圆的标准方程.

(1)长轴长是短轴长的2倍,且过点()62-,;

(2)在x 轴上的一个焦点与短轴两端点的联机互相垂直,且焦距为6.

分析:当方程有两种形式时,应分别求解,如(1)题中由122

22=+b y a x 求出

1482

=a ,372

=b ,在得方程13714822=+y x 后,不能依此写出另一方程137

1482

2=+x y . 解:(1)设椭圆的标准方程为12222=+b y a x 或122

22=+b

x a y .

由已知b a 2=. ①

又过点()62-,

,因此有 ()16222

22=-+b a 或()12622

22

=+-b

a . ② 由①、②,得1482=a ,372=

b 或522=a ,132=b .故所求的方程为

13714822=+y x 或113

522

2=+x y . (2)设方程为122

22=+b y a x .由已知,3=c ,3==c b ,所以182=a .故所

求方程为19

182

2=+

y x . 说明:根据条件求椭圆的标准方程的思路是“选标准,定参数”.关键在于

焦点的位置是否确定,若不能确定,应设方程12222=+b y a x 或122

22=+b

x a y .

典型例题八

例8 椭圆112

162

2=+y x 的右焦点为F ,过点()

31,A ,点M 在椭圆上,当MF AM 2+为最小值时,求点M 的坐标.

分析:本题的关键是求出离心率2

1

=e ,把MF 2转化为M 到右准线的距离,从而得最小值.一般地,求MF e

AM 1

+

均可用此法. 解:由已知:4=a ,2=c .所以2

1

=e ,右准线

8=x l :.

过A 作l AQ ⊥,垂足为Q ,交椭圆于M ,故

MF MQ 2=.显然MF AM 2+的最小值为AQ ,即M 为所求点,因此3=M y ,且M 在椭圆上.故

32=M x .所以()

332,M .

说明:本题关键在于未知式MF AM 2+中的“2”的处理.事实上,如图,

2

1

=

e ,即MF 是M 到右准线的距离的一半,即图中的MQ ,问题转化为求椭圆上一点M ,使M 到A 的距离与到右准线距离之和取最小值.

典型例题九 例9 求椭圆13

22

=+y x 上的点到直线06=+-y x 的距离的最小值.

分析:先写出椭圆的参数方程,由点到直线的距离建立三角函数关系式,求出距离的最小值.

解:椭圆的参数方程为???==.

sin cos 3θθy x ,

设椭圆上的点的坐标为

()θθsin cos 3,,

则点到直线的距离为

2

63sin 226sin cos 3+??

?

??-=

+-=

θπθθd . 当13sin -=??

?

??-θπ时,22=最小值d .

说明:当直接设点的坐标不易解决问题时,可建立曲线的参数方程.

典型例题十 例10设椭圆的中心是坐标原点,长轴在x 轴上,离心率23=

e ,已知点??

? ??230,P 到这个椭圆上的点的最远距离是7,求这个椭圆的方程,并求椭圆上的点P 的距离等于7的点的坐标.

分析:本题考查椭圆的性质、距离公式、最大值以及分析问题的能力,在求

d 的最大值时,要注意讨论b 的取值范围.此题可以用椭圆的标准方程,也可用椭圆的参数方程,要善于应用不等式、平面几何、三角等知识解决一些综合性问题,从而加强等价转换、形数结合的思想,提高逻辑推理能力.

解法一:设所求椭圆的直角坐标方程是122

22=+b y a x ,其中0>>b a 待定.

由22

2

22222

1a

b a b a a

c e -=-==可得 21

43112=-=-=e a b ,即b a 2=. 设椭圆上的点()y x ,到点P 的距离是d ,则

4931232

2222

22+-+???

? ??-=??? ??-+=y y b y a y x d 342134933422

22++??? ?

?

+-=+--=b y y y b

其中b y b ≤≤-. 如果2

1

<

b ,则当b y -=时,2d (从而d )有最大值. 由题设得

()

2

2

237??? ?

?

+=b ,由此得21237>-=b ,与21

因此必有21≥b 成立,于是当2

1

-=y 时,2d (从而d )有最大值. 由题设得

()

34722

+=b ,可得1=b ,2=a .

∴所求椭圆方程是11

42

2=+

y x . 由21-=y 及求得的椭圆方程可得,椭圆上的点??? ??--213,,点??? ?

?

-213,到

点??

?

??230,P 的距离是7.

解法二:根据题设条件,可取椭圆的参数方程是???==θθ

sin cos b y a x ,其中0>>b a ,

待定,πθ20≤≤,θ为参数.

由2

2

22222

1??

?

??-=-==a b a b a a c e 可得 2

1

43112=-=-=e a b ,即b a 2=. 设椭圆上的点()y x ,到点??

?

??230,P 的距离为d ,则

2

2222

2

23sin cos 23??? ?

?

-+=??? ??-+=θθb a y x d

4

9

sin 3sin 34222+--=θθb b b

3421sin 322

2

++??? ?

?

+-=b b b θ

如果

121>b ,即2

1

由题设得

()

2

2

237??? ?

?

+=b ,由此得21237>-=b ,与21

121

≤b

成立. 于是当b

21

sin -=θ时2d (从而d )有最大值. 由题设知()

34722

+=b ,∴1=b ,2=a .

∴所求椭圆的参数方程是???==θ

θ

sin cos 2y x .

由21sin -=θ,23cos ±=θ,可得椭圆上的是??? ?

?

--213,,??? ??-213,.

典型例题十一

例11 设x ,R ∈y ,x y x 63222=+,求x y x 222++的最大值和最小值.

分析:本题的关键是利用形数结合,观察方程x y x 63222=+与椭圆方程的结构一致.设m x y x =++222,显然它表示一个圆,由此可以画出图形,考虑椭圆及圆的位置关系求得最值.

解:由x y x 63222=+,得

123492322

=+?

????

? ??

-y x 可见它表示一个椭圆,其中心在??

?

??023,点,焦点在x 轴上,且过(0,0)点

和(3,0)点.

设m x y x =++222,则 ()1122

+=++m y x

它表示一个圆,其圆心为(-1,0)半径为()11->+m m .

在同一坐标系中作出椭圆及圆,如图所示.观察图形可知,当圆过(0,0)点时,半径最小,即11=+m ,此时0=m ;当圆过(3,0)点时,半径最大,

即41=+m ,∴15=m .

∴x y x 222++的最小值为0,最大值为15.

典型例题十二

例12 已知椭圆()0122

22>>=+b a b

y a x C :,A 、B 是其长轴的两个端点.

(1)过一个焦点F 作垂直于长轴的弦P P ',求证:不论a 、b 如何变化,

120≠∠APB .

(2)如果椭圆上存在一个点Q ,使 120=∠AQB ,求C 的离心率e 的取值范围.

分析:本题从已知条件出发,两问都应从APB ∠和AQB ∠的正切值出发做出估计,因此要从点的坐标、斜率入手.本题的第(2)问中,其关键是根据什么去列出离心率e 满足的不等式,只能是椭圆的固有性质:a x ≤,b y ≤,根据

120=∠AQB 得到322

22

-=-+a

y x ay ,将2222

2y b a a x -=代入,消去x ,用a 、b 、c 表示y ,以便利用b y ≤列出不等式.这里要求思路清楚,计算准确,一气呵成.

解:(1)设()0,

c F ,()0,a A -,()0,a B . ????

??????=+=a b c P b a y a x b c x 2222222, 于是()a c a b k AP

+=

2,()

a c a

b k BP -=2

∵APB ∠是AP 到BP 的角.

∴()()()

222

2

24

2

221tan c

a a c a

b a

c a b a c a b APB -=-++-

-=∠ ∵22c a > ∴2tan -<∠APB

故3tan -≠∠APB ∴ 120≠∠APB . (2)设()y x Q ,,则a x y k QA +=

,a

x y k QB -=. 由于对称性,不妨设0>y ,于是AQB ∠是QA 到QB 的角.

∴2

2222

221tan a y x ay a x y a x y

a x y AQB -+=-++-

-=∠

∵ 120=∠AQB , ∴

322

22-=-+a

y x ay

整理得()

023222=+-+ay a y x

∵2

222

2

y b

a a x -=

∴02132

22=+???? ??-ay y b a

∵0≠y , ∴2

2

32c ab y = ∵b y ≤, ∴b c

ab ≤2

2

32 232c ab ≤,()

222234c c a a ≤-

∴04444224≥-+a c a c ,044324≥-+e e ∴232≥

e 或22-≤e (舍),∴

13

6

<≤e .

典型例题十三

例13 已知椭圆

19

82

2=++y k x 的离心率21=e ,求k 的值. 分析:分两种情况进行讨论.

解:当椭圆的焦点在x 轴上时,82+=k a ,92=b ,得12-=k c .由2

1

=e ,得4=k .

当椭圆的焦点在y 轴上时,92=a ,82+=k b ,得k c -=12.

由21=

e ,得

4191=-k ,即4

5

-=k . ∴满足条件的4=k 或4

5

-=k .

说明:本题易出现漏解.排除错误的办法是:因为8+k 与9的大小关系不定,

所以椭圆的焦点可能在x 轴上,也可能在y 轴上.故必须进行讨论.

典型例题十四

例14 已知椭圆1422

22=+b

y b x 上一点P 到右焦点2F 的距离为b )1(>b ,求P 到左

准线的距离.

分析:利用椭圆的两个定义,或利用第二定义和椭圆两准线的距离求解.

解法一:由142222=+b

y b x ,得b a 2=,b c 3=,23

=e .

由椭圆定义,b a PF PF 4221==+,得

b b b PF b PF 34421=-=-=. 由椭圆第二定义,

e d PF =1

1,1d 为P 到左准线的距离,

∴b e

PF d 3211==

即P 到左准线的距离为b 32. 解法二:∵

e d PF =2

2,2d 为P 到右准线的距离,2

3==

a c e , ∴

b e

PF d 3

3

222=

=

又椭圆两准线的距离为b c a 3

3

822=?.

∴P 到左准线的距离为

b b b 323

32338=-. 说明:运用椭圆的第二定义时,要注意焦点和准线的同侧性.否则就会产生

误解.

椭圆有两个定义,是从不同的角度反映椭圆的特征,解题时要灵活选择,运用自如.一般地,如遇到动点到两个定点的问题,用椭圆第一定义;如果遇到动点到定直线的距离问题,则用椭圆的第二定义.

典型例题十五

例15 设椭圆???==.

sin 32,cos 4ααy x (α为参数)上一点P 与x 轴正向所成角3π

=∠POx ,

求P 点坐标.

分析:利用参数α与POx ∠之间的关系求解.

解:设)sin 32,cos 4(ααP ,由P 与x 轴正向所成角为3

π, ∴α

α

π

cos 4sin 323

tan

=

,即2tan =α.

而0sin >α,0cos >α,由此得到55cos =

α,5

52sin =α, ∴P 点坐标为)5

15

4,554(

典型例题十六

例16 设),(00y x P 是离心率为e 的椭圆122

22=+b

y a x )0(>>b a 上的一点,P 到左

焦点1F 和右焦点2F 的距离分别为1r 和2r ,求证:01ex a r +=,02ex a r -=. 分析:本题考查椭圆的两个定义,利用椭圆第二定义,可将椭圆上点到焦点

的距离转化为点到相应准线距离.

解:P 点到椭圆的左准线c a x l 2-=:的距离,c

a x PQ 2

0+=,

由椭圆第二定义,

e PQ

PF =1,

∴01ex a PQ e r +==,由椭圆第一定义,0122ex a r a r -=-=.

说明:本题求证的是椭圆的焦半径公式,在解决与椭圆的焦半径(或焦点弦)的有关问题时,有着广泛的应用.请写出椭圆焦点在y 轴上的焦半径公式.

典型例题十七

例17 已知椭圆15

92

2=+

y x 内有一点)1,1(A ,1F 、2F 分别是椭圆的左、右焦点,点P 是椭圆上一点.

(1) 求1PF PA +的最大值、最小值及对应的点

P 坐标; (2) 求22

3

PF PA +

的最小值及对应的点P 的坐标. 分析:本题考查椭圆中的最值问题,通常探求变量的最值有两种方法:一是目标函数当,即代数方法.二是数形结合,即几何方法.本题若按先建立目标函数,再求最值,则不易解决;若抓住椭圆的定义,转化目标,运用数形结合,就能简捷求解.

解:

(1)如上图,62=a ,)0,2(2F ,22=AF ,设P 是椭圆上任一点,由

6

221==+a PF PF ,

2

2AF PF PA -≥,

∴26222211-=-=-+≥+AF a AF PF PF PF PA ,等号仅当22AF PF PA -=时成立,此时P 、A 、2F 共线.

由22AF PF PA +≤,∴26222211+=+=++≤+AF a AF PF PF PF PA ,等号仅当22AF PF PA +=时成立,此时P 、A 、2F 共线.

建立A 、2F 的直线方程02=-+y x ,解方程组?

??=+=-+4595,022

2y x y x 得两交点 )2141575,2141579(1+-P 、)214

15

75,2141579(2

-+P . 综上所述,P 点与1P 重合时,1PF PA +取最小值26-,

P 点与2P 重合时,2PF PA +取最大值26+.

(2)如下图,设P 是椭圆上任一点,作PQ 垂直椭圆右准线,Q 为垂足,由

3=a ,2=c ,∴32=

e .由椭圆第二定义知3

2

2==e PQ PF ,∴223PF PQ =,∴PQ PA PF PA +=+

22

3

,要使其和最小需有A 、P 、Q 共线,即求A 到右准线距离.右准线方程为2

9

=x .

∴A 到右准线距离为2

7

.此时P 点纵坐标与A 点纵坐标相同为1,代入椭圆得满足条件的点P 坐标)1,5

5

6(

. 说明:求21

PF e

PA +

的最小值,就是用第二定义转化后,过A 向相应准线作

垂线段.巧用焦点半径2PF 与点准距PQ 互化是解决有关问题的重要手段.

典型例题十八

例18 (1)写出椭圆14

92

2=+

y x 的参数方程; (2)求椭圆内接矩形的最大面积.

分析:本题考查椭圆的参数方程及其应用.为简化运算和减少未知数的个数,常用椭圆的参数方程表示曲线上一点坐标,所求问题便化归为三角问题.

解:(1) ?

??==θθ

sin 2cos 3y x )(R ∈θ.

(2)设椭圆内接矩形面积为S ,由对称性知,矩形的邻边分别平行于x 轴和y

轴,设)sin 2,cos 3(θθ为矩形在第一象限的顶点,)2

0(π

<θ<,

则122sin 12sin 2cos 34≤=??=θθθS 故椭圆内接矩形的最大面积为12.

说明:通过椭圆参数方程,转化为三角函数的最值问题,一般地,与圆锥曲线有关的最值问题,用参数方程形式较简便.

典型例题十九

例19 已知1F ,2F 是椭圆的两个焦点,P 是椭圆上一点,且?=∠6021PF F .

(1)求椭圆离心率的取值范围;

(2)求证21F PF ?的面积与椭圆短轴长有关. 分析:不失一般性,可以设椭圆方程为

12

2

22=+b y a x (0>>b a ),),(11y x P (01>y ). 思路一:根据题设容易想到两条直线的夹角公式,即

3160tan 1

212=+-=

?PF PF PF PF K K K K ,设),(11y x P ,)0,(1c F -,)0,(2c F ,化简可得

032332

121

2

1

=--+c cy y x .又122

122

1=+b

y a x ,两方程联立消去2

1x 得

03234122

12=-+b cy b y c ,由],0(1b y ∈,可以确定离心率的取值范围;解出1y 可以求出21F PF ?的面积,但这一过程很繁.

思路二:利用焦半径公式11ex a PF +=,12ex a PF -=,在21F PF

?中运用余

弦定理,求1x ,再利用],[1a a x -∈,可以确定离心率e 的取值范围,将1x 代入椭圆方程中求1y ,便可求出21F PF ?的面积.

思路三:利用正弦定理、余弦定理,结合a PF PF 221=+求解.

解:(法1)设椭圆方程为122

22=+b

y a x (0>>b a ),),(11y x P ,)0,(1c F -,

)0,(2c F ,0>c ,

则11ex a PF +=,12ex a PF -=. 在21F PF ?中,由余弦定理得

)

)((24)()(2160cos 112

2121ex a ex a c ex a ex a -+--++=

=?, 解得2

2

22

134e

a c x -=. (1)∵],0(22

1a x ∈,

∴22

22340a e

a c <-≤,即042

2≥-a c . ∴2

1≥=

a c e . 故椭圆离心率的取范围是)1,2

1

[∈e .

(2)将2

222

134e

a c x -=代入122

22=+b y a x 得 242

13c b y =,即c

b y 32

1=.

∴2

221333221212

1b c

b c y F F S F PF =??=?=?. 即21F PF ?的面积只与椭圆的短轴长有关.

(法2)设m PF =1,n PF =2,α=∠12F PF

,β=∠21F PF , 则?=+120βα.

(1)在21F PF ?中,由正弦定理得

?

=

=60sin 2sin sin c

n m βα. ∴

?

=

++60sin 2sin sin c

n m βα ∵a n m 2=+, ∴

?

=

+60sin 2sin sin 2c

a βα, ∴2

cos 2sin 260sin sin sin 60sin βαβαβα-+?

=

+?==

a c e 212

cos

21≥-=βα.

当且仅当βα=时等号成立.

故椭圆离心率的取值范围是)1,2

1

[∈e .

(2)在21F PF ?中,由余弦定理得:

?-+=60cos 2)2(222mn n m c

mn n m -+=22 mn n m 3)(2-+= ∵a n m 2=+,

∴mn a c 34422-=,即2223

4

)(34b c a mn =-=. ∴2

3

360sin 2121b mn S F PF =?=

?. 即21F PF ?的面积与椭圆短轴长有关.

说明:椭圆上的一点P 与两个焦点1F ,2F 构成的三角形为椭圆的焦点三角形,涉及有关焦点三角形问题,通常运用三角形的边角关系定理.解题中通过变形,使之出现21PF PF +的结构,这样就可以应用椭圆的定义,从而可得到有关a ,

c 的关系式,使问题找到解决思路.

典型例题二十

例20 椭圆122

22=+b y a x )0(>>b a 与x 轴正向交于点A ,若这个椭圆上总存在点

P ,使AP OP ⊥(O 为坐标原点),求其离心率e 的取值范围.

分析:∵O 、A 为定点,P 为动点,可以P 点坐标作为参数,把AP OP ⊥,转化为P 点坐标的一个等量关系,再利用坐标的范围建立关于a 、b 、c 的一个不等式,转化为关于e 的不等式.为减少参数,易考虑运用椭圆参数方程.

解:设椭圆的参数方程是???==θθ

sin cos b y a x )0(>>b a ,

则椭圆上的点)sin ,cos (θθb a P ,)0,(a A , ∵AP OP ⊥,∴

1cos sin cos sin -=-?a

a b a b θθ

θθ,

即0cos cos )(2

2

2

2

2

=+--b a b a θθ,解得1cos =θ或2

22

cos b a b -=θ,

∵1cos 1<<-θ ∴1cos =θ(舍去),112

22<-<-b

a b ,又2

22c a b -= ∴2022

<

a ,

∴22>

e ,又10<

2<

2

(

,求证在椭圆上总存在点P 使AP OP ⊥.如何证明?

高一数学圆的方程、直线与圆位置关系典型例题

高一数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-.∵圆心在0=y 上,故0=b .∴圆的方程为 222)(r y a x =+-.又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r .所以所求圆的方程为20)1(22=++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2=++==AC r . 故所求圆的方程为20)1(2 2 =++y x .又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22.∴点P 在圆外. 例2 求半径为4,与圆04242 2 =---+y x y x 相切,且和直线0=y 相切的圆的方程. 解:则题意,设所求圆的方程为圆2 22)()(r b y a x C =-+-: . 圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C . 又已知圆04242 2 =---+y x y x 的圆心A 的坐标为)1,2(,半径为3. 若两圆相切,则734=+=CA 或134=-=CA . (1)当)4,(1a C 时,2 2 2 7)14()2(=-+-a ,或2 2 2 1)14()2(=-+-a (无解),故可得 1022±=a .∴所求圆方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x .

圆的方程经典题目带答案

圆的方程经典题目 1.求满足下列条件的圆的方程 (1)过点A(5,2)和B(3,-2),且圆心在直线32-=x y 上;(2)圆心在835=-y x 上,且与两坐标轴相切;(3)过ABC ?的三个顶点)5,5()2,2()5,1(C B A 、、---;(4)与y 轴相切,圆心在直线03=-y x 上,且直线 x y =截圆所得弦长为72;(5)过原点,与直线1:=x l 相切,与圆1)2()1(:2 2 =-+-y x C 相外切;(6)以C(1,1)为圆心,截直线2-=x y 所得弦长为22;(7)过直线042:=++y x l 和圆0142:2 2 =+-++y x y x C 的交点,且面积最小的圆的方程. (8)已知圆满足①截y 轴所得弦长为2;②被x 轴分成两段圆弧,其弧长的比为1:3③圆心到直线02:=-y x l 的距离为52.0,求该圆的方程. (9)求经过)3,1()2,4(-B A 两点且在两坐标轴上的四个截距之和是2的圆的方程 2、已知方程0916)41(2)3(24222=++-++-+m y m x m y x 表示一个圆(1)求实数m 的取值范围 (2)求该圆半径r 的取值范围(3)求面积最大的圆的方程(4)求圆心的轨迹方程 1. 已知圆252 2 =+y x , 求下列相应值

(1)过)4,3(-的切线方程(2)过)7,5(的切线方程、切线长;切点弦方程、切点弦长 (3)以)2,1(为中点的弦的方程 (4)过)2,1(的弦的中点轨迹方程 (5)斜率为3的弦的中点的轨迹方程 2. 已知圆 062 2 =+-++m y x y x 与直线032=-+y x 相交于Q P 、两点,O 为坐标原点,若OQ OP ⊥,求实数m 的值. 3、已知直线b x y l +=:与曲线21:x y C -=有两个公共点,求b 的取值范围 4、一束光线通过点)18,25(M 射到x 轴上,被反射到圆25)7(:2 2 =-+y x C 上.求: (1)通过圆心的反射线方程,(2)在x 轴上反射点A 的活动范围. 5、圆03422 2 =-+++y x y x 上到直线0=++m y x 的距离为2的点的个数情况 已知两圆01010:2 2 1=--+y x y x O 和04026:2 2 2=--++y x y x O (1)判断两圆的位置关系 (2)求它们的公共弦所在的方程 (3)求公共弦长 (4)求公共弦为直径的圆的方程. 题型五、最值问题 思路1:几何意义 思路2:参数方程 思路3、换元法 思路4、函数思想 1. 实数y x ,满足012462 2 =+--+y x y x (1)求 x y 的最小值 (2)求2 2y x ++32-y 的最值;(3)求y x 2-的最值(4)|143|-+y x 的最值 2. 圆25)2()1(:2 2=-+-y x C 与)(047)1()12(:R m m y m x m l ∈=--+++.(1)证明:不论m 取什么实数直线l 与圆C 恒相交(2)求直线l 被圆C 截得最短弦长及此时的直线方程 3、平面上有A (1,0),B (-1,0)两点,已知圆的方程为()()2 2 2342x y -+-=.⑴在圆上求一点1P 使△AB 1P 面积最大并求出此面积;⑵求使2 2 AP BP +取得最小值时的点P 的坐标. 4、已知P 是0843:=++y x l 上的动点,PB PA ,是圆01222 2 =+--+y x y x 的两条切线,A 、B 是切点, C 是圆心,那么四边形PACB 的面积的最小值为 5、已知圆的方程为0862 2=--+y x y x .设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为_________ 6、已知圆的方程为0862 2=--+y x y x .设该圆过点(3,5)的互相垂直的弦分别为AC 和BD ,则四边形ABCD 的面积为_________

圆与方程知识点总结典型例题

圆与方程 1. 圆的标准方程:以点),(b a C 为圆心,r 为半径的圆的标准方程是222)()(r b y a x =-+-. 特例:圆心在坐标原点,半径为r 的圆的方程是:222r y x =+. 2. 点与圆的位置关系: (1).设点到圆心的距离为d ,圆半径为r : a.点在圆内 d <r ; b.点在圆上 d=r ; c.点在圆外 d >r (2).给定点),(00y x M 及圆222)()(:r b y a x C =-+-. ①M 在圆C 内22020)()(r b y a x <-+-? ②M 在圆C 上22020)()r b y a x =-+-? ( ③M 在圆C 外22020)()(r b y a x >-+-? (3)涉及最值: ① 圆外一点B ,圆上一动点P ,讨论PB 的最值 min PB BN BC r ==- max PB BM BC r ==+ ② 圆内一点A ,圆上一动点P ,讨论PA 的最值 min PA AN r AC ==- max PA AM r AC ==+ 思考:过此A 点作最短的弦?(此弦垂直AC ) 3. 圆的一般方程:022=++++F Ey Dx y x . (1) 当0422>-+F E D 时,方程表示一个圆,其中圆心??? ??--2,2E D C ,半径2 422F E D r -+=. (2) 当0422=-+F E D 时,方程表示一个点??? ??--2,2 E D . (3) 当0422<-+ F E D 时,方程不表示任何图形.

注:方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的充要条件是:0=B 且0≠=C A 且0422 AF E D -+. 4. 直线与圆的位置关系: 直线0=++C By Ax 与圆222)()(r b y a x =-+- 圆心到直线的距离22B A C Bb Aa d +++= 1)无交点直线与圆相离??>r d ; 2)只有一个交点直线与圆相切??=r d ; 3)有两个交点直线与圆相交???时,直线与圆有2个交点,,直线与圆相交; (2)当0=?时,直线与圆只有1个交点,直线与圆相切; (3)当0r r d ; ② 条公切线外切321??+=r r d ; ③ 条公切线相交22121??+<<-r r d r r ; ④ 条公切线内切121??-=r r d ; ⑤ 无公切线内含??-<<210r r d ;

(完整版)实数知识点及例题

实数习题集 【知识要点】 1.实数分类: 2.相反数:b a ,互为相反数 0=+b a 4.倒数:b a ,互为倒数 0;1=ab 没有倒数. 5.平方根,立方根:==x ,a x a x 记作的平方根叫做数则数若,2 ±a . 若a x ,a x a x 33,= =记作的立方根叫做数则数 6.数轴的概念与画法.实数与数轴上的点一一对应;利用数形结合的思想及数轴比较实数大小的方法. 【课前热身】 1、36的平方根是 ;16的算术平方根是 ; 2、8的立方根是 ;327-= ; 3、37-的相反数是 ;绝对值等于3的数是 4 、的倒数的平方是 ,2的立方根的倒数的立方是 。 5 、2的绝对值是 ,11的绝对值是 。 6、9的平方根的绝对值的相反数是 。 7 +的相反数是 ,-的相反数的绝对值是 。 8 - -+的相反数之和的倒数的平方为 。 【典型例题】 例1、把下列各数分别填入相应的集合里: 2 ,3.0,10,1010010001.0,125,722,0,1223π---?-Λ 有理数集合:{ }; 无理数集合:{ }; 负实数集合:{ }; 例2、比较数的大小 (1)2332与 (2)6756--与 例3.化简: (1)233221-+-+ - 实数 有理数 无理数 整数(包括正整数,零,负整数) 分数(包括正分数,负整数) 正无理数 负无理数 )0(>a 3.绝对值: =a a a - )0(=a )0(< a

(2 例4.已知b a ,是实数,且有0)2(132=+++-b a ,求b a ,的值. 例5 若|2x+1|与x y 48 1 +互为相反数,则-xy 的平方根的值是多少? 总结:若几个非负数的和为零,则每个非负数都为零,这个性质在代数式求值中经常被使用. 例6.已知b a ,为有理数,且3)323(2 b a +=-,求b a +的平方根 例7. 已知实数x 、y 、z 在数轴上的对应点如图 试化简:x z x y y z x z x z ---++++ -。 y x z

高中数学圆的方程典型例题

高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为222)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 22)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(22=++= =AC r . 故所求圆的方程为20)1(2 2 =++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?

实数典型例题(培优)

实数典型问题精析(培优) 例1.(2009的相反数是( ) A . B C .2 - D . 2 分析:本题考查实数的概念――相反数,要注意相反数与倒数的区别,实数a 的相反数是-a ,选A.要谨防将相反数误认为倒数,错选D. 例2.(2009年江苏省中考题)下面是按一定规律排列的一列数: 第1个数:11122-??-+ ???;第2个数:2311(1)(1)1113234????---??-++ + ??? ??????? ; 第3个数:234511(1)(1)(1)(1)11111423456???????? -----??-++ +++ ??????? ??????????? ; ……第n 个数:23 2111(1)(1)(1)111112342n n n -???? ?? ----??-++++ ??? ? ?+?????? ?? . 那么,在第10个数、第11个数、第12个数、第13个数中,最大的数是(A ) A .第10个数 B .第11个数 C .第12个数 D .第13个数 解析:许多考生对本题不选或乱选,究其原因是被复杂的运算式子吓住了,不善于从复杂的式子中寻找出规律,应用规律来作出正确的判断.也有一些考生尽管做对了,但是通过写出第10个数、第11个数、第12个数、第13个数的结果后比较而得出答案的,费时费力,影响了后面试题的解答,造成了隐性失分.本题貌似复杂,其实只要认真观察,就会发现,从第二个数开始,减数中的因数是成对增加的,且增加的每一对数都是互为倒数,所以这些数的减数都是 21,只要比较被减数即可,即比较14 1 131121111、、、的大小,答案一目了然. 例3(荆门市)定义a ※b =a 2 -b ,则(1※2)※3=___. 解 因为a ※b =a 2 -b ,所以(1※2)※3=(12 -2)※3=(-1)※3=(-1)2 -3=-2.故应填上-2. 说明:求解新定义的运算时一定要弄清楚定义的含义,注意新定义的运算符号与有理数运算符号之间的关系,及时地将新定义的运算符号转化成有理数的运算符号. 例4(河北省)古希腊著名的毕达哥拉斯学派把1、3、6、10、…,这样的数称为“三角形数”,而把1、4、9、16、…,这样的数称为“正方形数”.从如图所示中可以发现,任何一个大于

实数知识点汇总及经典知识讲解

)(无限不循环小数负有理数 正有理数无理数?????????????????--???---)()32,21()32,21()()3,2,1()3,2,1,0(无限循环小数有限小数整数负分数正分数小数分数负整数自然数整数有理数、、ΛΛΛΛ?????????????实数第二章 实数 一、 平方根、立方根 1..算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么正数x 叫做a 的算术平方根,记作a 。0的算术平方根为0;从定义可知,只有当a ≥0时,a 才有算术平方根。 2.平方根:一般地,如果一个数x 的平方根等于a ,即x 2=a ,那么数x 就叫做a 的平方根。 正数有两个平方根(一正一负)它们互为相反数;0只有一个平方根,就是它本身;负数没有平方根。 3.正数的立方根是正数;0的立方根是0;负数的立方根是负数。 4. (1)())0,0(0,0>≥=≥≥=?b a b a b a b a ab b a (2)若b 3=a ,则b 叫做a 的立方根。 (3 (0)(0).a a a a a ≥?==?-

减。运算中有括号的,先算括号内的,同一级运算从左到右依次进行。 3、实数的大小比较 常用方法:数轴表示法、作差法、平方法、估值法。 (1)在数轴上表示两个数的点,右边的点表示的数大,左边的点表示的数小。(2)正数大于零,负数小于零;两个正数,绝对值大的较大;两个负数,绝对值大的较小。(3)设a,b是任意两实数, 若a-b>0,则a>b; 若a-b=0,则a=b; 若a-b<0,则a

实数典型例题(培优)

相交实数典型问题精析(培优) 例1.(2009 的相反数是( ) A . B C . D . 分析:本题考查实数的概念――相反数,要注意相反数与倒数的区别,实数a 的相反数是-a ,选A.要谨防将相反数误认为倒数,错选D. 例2.(2009年江苏省中考题)下面是按一定规律排列的一列数: 第1个数:11122-??-+ ???;第2个数:2311(1)(1)1113234????---??-+++ ??? ???????; 第3个数:234511(1)(1)(1)(1)11111423456????????-----??-+++++ ??????? ??????????? ; ……第n 个数:232111(1)(1)(1)111112342n n n -??????----??-++++ ??? ? ?+????????L . 那么,在第10个数、第11个数、第12个数、第13个数中,最大的数是(A ) A .第10个数 B .第11个数 C .第12个数 D .第13个 数 解析:许多考生对本题不选或乱选,究其原因是被复杂的运算式子吓住了,不善于从复杂的式子中寻找出规律,应用规律来作出正确的判断.也有一些考生尽管做对了,但是通过写出第10个数、第11个数、第12个数、第13个数的结果后比较而得出答案的,费时费力,影响了后面试题的解答,造成了隐性失分.本题貌似复杂,其实只要认真观察,就会发现,从第二个数开始,减数中的因数是成对增加的,且增加的每一对数都是互为倒数,所以这些数的减数都是21,只要比较被减数即可,即比较141131121111、、、的大小,答案一目了然. 例3(荆门市)定义a ※b =a2-b ,则(1※2)※3=___. 解 因为a ※b =a2-b ,所以(1※2)※3=(12-2)※3=(-1)※3=(-1)2-3=-2.故应填上-2. 说明:求解新定义的运算时一定要弄清楚定义的含义,注意新定义的运算符号与有理数运算符号之间的关系,及时地将新定义的运算

直线和圆的方程知识与典型例题

直线和圆的方程知识关系 直线的方程一、直线的倾斜角和斜率 1.直线的倾斜角:一条直线向上的方向与x轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与x轴平行或重合时,其倾斜角为0o,故直线倾斜角α的范围是0180 α< o o ≤. 2.直线的斜率:倾斜角不是90o的直线其倾斜角α的正切叫这条直线的斜率k,即 tan kα =. 注:①每一条直线都有倾斜角,但不一定有斜率. ②当ο 90 = α时,直线l垂直于x轴,它的斜率k不存在. ③过两点 111 (,) P x y、 222 (,) P x y 12 () x x ≠的直线斜率公式21 21 tan y y k x x α - == - 二、直线方程的五种形式及适用条件 名称方程说明适用条件 斜截式y=kx+b k—斜率 b—纵截距 倾斜角为90°的直线 不能用此式 点斜式y-y0=k(x-x0) (x0,y0)—直线上已 知点, k ──斜率 倾斜角为90°的直线 不能用此式 两点式1 21 y y y y - - =1 21 x x x x - - (x1,y1),(x2,y2) 是直线上两个已知 点 与两坐标轴平行的直 线不能用此式 截距式 x a + y b =1 a—直线的横截距 b—直线的纵截距 过(0,0)及与两坐 标轴平行的直线不能 用此式 一般式 A x+ B y+C=0 (A、B不全为零) A、B不能同时为零

直线和圆的方程

简单的线性规划例13. 若点(3,1)和(4 -,6)在直线0 2 3= + -a y x的两侧,则实数a的取值范围是 ()724 A a a <-> 或()724 B a -<<()724 C a a =-= 或(D)以上都不对例14. ABC ?的三个顶点的坐标为(2,4) A,(1,2) B-,(1,0) C,点(,) P x y在ABC ?内部及边界上运动,则2 y x -的最大值为,最小值为。 例15. 不等式组: 10 x y x y y -+ + ? ? ? ? ? ≥ ≤ ≥ 表示的平面区域的面积是; 例16.20个劳动力种50亩地,这些地可种蔬菜、棉花或水稻,如果种这些农作物每亩地所需的劳动力和预计产值如下表。问怎样安排才能使每亩都种上农作物,所有的劳动力都有工作且农作物的预计产值最高? 例17.某集团准备兴办一所中学,投资1200万用于硬件建设.为了考虑社会效益和经济利益,对该地区教育市场进行调查,得出一组数据列表(以班为单位)如下: 根据有关规定,除书本费、办公费外,初中生每年可收取学费600元,高中生每年可收取学费1500元.因生源和环境等条件限制,办学规模以20至30个班为宜.

(完整版)高中数学必修2圆与方程典型例题(可编辑修改word版)

标准方程(x - a )2 + (y - b )2 = r 2 ,圆心 (a , b ),半径为 r 11 11 11 11 0 0 第二节:圆与圆的方程典型例题 一、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。二、圆的方程 (1) ; 点 M (x , y ) 与圆(x - a )2 + ( y - b )2 = r 2 的位置关系: 当(x - a )2 + ( y - b )2 > r 2 ,点在圆外 当(x - a )2 + ( y - b )2 = r 2 ,点在圆上 当(x - a )2 + ( y - b )2 < r 2 ,点在圆内 (2) 一般方程 x 2 + y 2 + Dx + Ey + F = 0 当 D 2 + E 2 - 4F > 0 时,方程表示圆,此时圆心为?- D E ? ,半径为r = 当 D 2 + E 2 - 4F = 0 时,表示一个点; 当 D 2 + E 2 - 4F < 0 时,方程不表示任何图形。 ,- ? ? 2 2 ? 2 (3) 求圆方程的方法: 一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程, 需求出 a ,b ,r ;若利用一般方程,需要求出 D ,E ,F ; 另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。 例 1 已知方程 x 2 + y 2 - 2(m - 1)x - 2(2m + 3) y + 5m 2 + 10m + 6 = 0 . (1) 此方程表示的图形是否一定是一个圆?请说明理由; (2) 若方程表示的图形是是一个圆,当 m 变化时,它的圆心和半径有什么规律?请说明理由. 答案:(1)方程表示的图形是一个圆;(2)圆心在直线 y =2x +5 上,半径为 2. 练习: 1.方程 x 2 + y 2 + 2x - 4 y - 6 = 0 表示的图形是( ) A.以(1,- 2) 为圆心, 为半径的圆 B.以(1,2) 为圆心, 为半径的圆 C.以(-1,- 2) 为圆心, 为半径的圆 D.以(-1,2) 为圆心, 为半径的圆 2.过点 A (1,-1),B (-1,1)且圆心在直线 x +y -2=0 上的圆的方程是( ). A .(x -3)2+(y +1)2=4 B .(x +3)2+(y -1)2=4 C .(x -1)2+(y -1)2=4 D .(x +1)2+(y +1)2=4 3.点(1,1) 在圆(x - a )2 + ( y + a )2 = 4 的内部,则 a 的取值范围是( ) A. -1 < a < 1 B. 0 < a < 1 C. a < -1 或 a > 1 D. a = ±1 4.若 x 2 + y 2 + ( -1)x + 2y + = 0 表示圆,则的取值范围是 5. 若圆 C 的圆心坐标为(2,-3),且圆 C 经过点 M (5,-7),则圆 C 的半径为 . 6. 圆心在直线 y =x 上且与 x 轴相切于点(1,0)的圆的方程为 . 7. 以点 C (-2,3)为圆心且与 y 轴相切的圆的方程是 . 1 D 2 + E 2 - 4F

高中数学圆的方程典型例题及详细解答

新课标高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2= ++==AC r . 故所求圆的方程为20)1(2 2 =++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?

二次根式知识点及典型例题练习

第十六章 二次根式 知识点: 1、二次根式的概念:形如(a ≥0)的式子叫做二次根式。“”= “”,叫做二次根号,简称根号。根号下面的整体“a ”叫做被开方数。 2、二次根式有意义的条件:a ≥0; 二次根式没有意义的条件:a 小于0; 例1、 a +1表示二次根式的条件是______。 例2、已知y=2x -+2x -+5,求x y 的值。 例3、若1a ++1b -=0,求a 2004+b 2004的值。 例4、 当x ______时,12--x 有意义,当x ______时,3 1+x 有意义。 例5、若无意义2+x ,则x 的取值范围是______。 例6、(1)当x 是多少时,31x -在实数范围内有意义? (2)当x 是多少时, 2x 在实数范围内有意义?3x 呢? 3、二次根式的双重非负性: ≥0;a ≥0 。 例1、 已知+ =0,求x,y的值. 例2、 若实数a、b满足 +=0,则2b-a+1=___. 例3、 已知实a满足,求a-2010的值. 例4、 在实数范围内,求代数式 的值. 例5、 设等式=在实数范围内成立,其中a、x、y是两两不同的实数,求的值. 例6、已知9966 x x x x --=--,且x 为偶数,求(1+x )22541x x x -+-的值. 4、二次根式的性质: (3)

例1、(1) ()25.1=________ (2) ()252 =________ (3) ()2 2.0-=________ (4) 272??? ? ??=________ 例2、化简 (1)9=_____ (2)2(4)-=_____ (3)25=_____ (4)2 52??? ??--=_____ (4)2(3)- =_____ 例3.(1)若2a =a ,则a 可以是什么数? (2)若2a =-a ,则a 是什么数? (3)2a >a ,则a 是什么数? 例4.当x>2,化简2(2)x --2(12)x -. 5、积的算术平方根的性质 (a ≥0,b ≥0)即两个非负数的积的算术平方根,等于积中各因式的 算术平方根的积。 , 6、商的算术平方根的性质 (a ≥0,b >0) 商的算术平方根,等于被除式的算术平方根除以除式的算术平方根。 。 例1、计算 (1)57 (2139(3927 (412 6 例2、化简 (1916?(21681?(3229x y (4)54

实数知识点总结及典型例题练习

实数知识点总结 考点一、实数的概念及分类 (3分) 1、实数的分类 正有理数 有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数 无理数 无限不循环小数 负无理数 整数包括正整数、零、负整数。 正整数又叫自然数。 正整数、零、负整数、正分数、负分数统称为有理数。 2、无理数 在理解无理数时,要抓住“无限不循环”这一点,归纳起来有四类: (1)开方开不尽的数,如32,7等; (2)有特定意义的数,如圆周率π,或化简后含有π的数,如3 π+8 等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数,如sin60o 等(这类在初三会出现) 考点二、实数的倒数、相反数和绝对值 1、相反数 实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=-b ,反之亦成立。 2、绝对值 一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。零的绝对值是它本身,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。正数大于零,负数 小于零,正数大于一切负数,两个负数,绝对值大的反而小。 3、倒数 如果a 与b 互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。 考点三、平方根、算数平方根和立方根 1、平方根 如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。 一个数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。 正数a 的平方根记做“a ±”。 2、算术平方根 正数a 的正的平方根叫做a 的算术平方根,记作“a ”。 正数和零的算术平方根都只有一个,零的算术平方根是零。 a (a ≥0) 0≥a ==a a 2 -a (a <0) ;注意a 的双重非负性: a ≥0 3、立方根 如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。 一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。 注意:33a a -=-,这说明三次根号内的负号可以移到根号外面。 考点四、科学记数法和近似数 1、有效数字 一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个

高中数学圆的方程典型题型归纳总结

高中数学圆的方程典型题型归纳总结 类型一:巧用圆系求圆的过程 在解析几何中,符合特定条件的某些圆构成一个圆系,一个圆系所具有的共同形式的方程称为圆系方程。常用的圆系方程有如下几种: ⑴以为圆心的同心圆系方程 ⑵过直线与圆的交点的圆系方程 ⑶过两圆和圆的交点的圆系方程 此圆系方程中不包含圆,直接应用该圆系方程,必须检验圆是否满足题意,谨防漏解。 当时,得到两圆公共弦所在直线方程 例1:已知圆与直线相交于两点,为坐标原点,若,求实数的值。 分析:此题最易想到设出,由得到,利用设而不求的思想,联立方程,由根与系数关系得出关于的方程,最后验证得解。倘若充分挖掘本题的几何关系,不难得出在以为直径的圆上。而刚好为直线与圆的交点,选取过直线与圆交点的圆系方程,可极大地简化运算过程。

解:过直线与圆的交点的圆系方程为: ,即 ………………….① 依题意,在以为直径的圆上,则圆心()显然在直线上,则 ,解之可得 又满足方程①,则故 例2:求过两圆和的交点且面积最小的圆的方程。 解:圆和的公共弦方程为 ,即 过直线与圆的交点的圆系方程为 ,即 依题意,欲使所求圆面积最小,只需圆半径最小,则两圆的公共弦必为所求圆的直径,圆心 必在公共弦所在直线上。即,则代回圆系方程得所求圆方程 例3:求证:m为任意实数时,直线(m-1)x+(2m-1)y=m-5恒过一定点P,并求P点坐标。分析:不论m为何实数时,直线恒过定点,因此,这个定点就一定是直线系中任意两直线的交点。

解:由原方程得 m(x +2y -1)-(x +y -5)=0,① 即 ?? ?-==???=-+=-+4y 9 x 05y x 01y 2x 解得, ∴直线过定点P (9,-4) 注:方程①可看作经过两直线交点的直线系。 例4已知圆C :(x -1)2+(y -2)2=25,直线l :(2m +1)x +(m +1)y -7m -4=0(m ∈R ). (1)证明:不论m 取什么实数,直线l 与圆恒交于两点; (2)求直线被圆C 截得的弦长最小时l 的方程. 剖析:直线过定点,而该定点在圆内,此题便可解得. (1)证明:l 的方程(x +y -4)+m (2x +y -7)=0. 2x +y -7=0, x =3, x +y -4=0, y =1, 即l 恒过定点A (3,1). ∵圆心C (1,2),|AC |=5<5(半径), ∴点A 在圆C 内,从而直线l 恒与圆C 相交于两点. (2)解:弦长最小时,l ⊥AC ,由k AC =-2 1 , ∴l 的方程为2x -y -5=0. 评述:若定点A 在圆外,要使直线与圆相交则需要什么条件呢? 思考讨论 类型二:直线与圆的位置关系 ∵m ∈R ,∴ 得

高三总复习直线与圆的方程知识点总结及典型例题

直线与圆的方程 一、直线的方程 1、倾斜角: ,范围0≤α<π, x l //轴或与x 轴重合时,α=00。 2、斜率: k=tan α α与κ的关系:α=0?κ=0 已知L 上两点P 1(x 1,y 1) 0<α< 02 >?k π P 2(x 2,y 2) α= κπ ?2 不存在 ?k= 1 212x x y y -- 022

二、两直线的位置关系 1、 2、L 1 到L 2的角为0,则1 21 21tan k k k k ?+-= θ(121-≠k k ) 3、夹角:1 21 21tan k k k k +-= θ 4、点到直线距离:2 2 00B A c By Ax d +++= (已知点(p 0(x 0,y 0),L :AX+BY+C=0) ①两行平线间距离:L 1=AX+BY+C 1=0 L 2:AX+BY+C 2=0?2 221B A c c d +-= ②与AX+BY+C=0平行且距离为d 的直线方程为Ax+By+C ±022 =+B A d ③与AX+BY+C 1=0和AX+BY+C 2=0平行且距离相等的直线方程是 02 2 1=++ +C C BY AX 5、对称:(1)点关于点对称:p(x 1,y 1)关于M (x 0,y 0)的对称)2,2(1010Y Y X X P --' (2)点关于线的对称:设p(a 、b)

实数知识点、典型例题及练习题单元复习

第六章《实数》知识点总结及典型例题练习题 一、平方根 1. 平方根的含义 如果一个数的平方等于a ,那么这个数就叫做a 的平方根。 即a x =2 ,x 叫做a 的平方根。 2.平方根的性质与表示 ⑴表示:正数a 的平方根用a ± 表示,a 叫做正平方根,也称为算术平方 根,a -叫做a 的负平方根。 ⑵一个正数有两个平方根:a ± (根指数2省略) 0有一个平方根,为0,记作00= ,负数没有平方根 ⑶平方与开平方互为逆运算 开平方:求一个数a 的平方根的运算。 a a =2 ==? ??-a a 00<≥a a ()a a =2 (0≥a ) ⑷a 的双重非负性:0≥a 且0≥a (应用较广) 例:y x x =-+-44 得知0,4==y x ⑸如果正数的小数点向右或者向左移动两位,它的正的平方根的小数点就相应地 向右或向左移动一位。 区分:4的平方根为____ 4的平方根为____ ____4=4开平方 后,得____ 3.计算a 的方法????? ? ? ??精确到某位小数  =非完全平方类 =完全平方类 773294 *若0>>b a ,则b a > 二、立方根和开立方 1.立方根的定义 如果一个数的立方等于a ,呢么这个数叫做a 的立方根,记作3a 2. 立方根的性质 任何实数都有唯一确定的立方根。正数的立方根是一个正数。负数的立方根是一个负数。0的立方根是0. 3. 开立方与立方 开立方:求一个数的立方根的运算。 ()a a =3 3 a a =3 3 33a a -=- (a 取任何数) 这说明三次根号内的负号可以移到根号外面。 *0的平方根和立方根都是0本身。 三、推广: n 次方根 1. 如果一个数的n 次方(n 是大于1的整数)等于a ,这个数就叫做a 的n 次方根。 当n 为奇数时,这个数叫做a 的奇次方根。 当n 为偶数时,这个数叫做a 的偶次方根。 2. 正数的偶次方根有两个。 n a ± 0的偶次方根为0。00=n 负数没有偶次方根。 正数的奇次方根为正。0的奇次方根为0。负数的奇次方根为负。

《椭圆》方程典型例题20例(含标准答案)

《椭圆》方程典型例题20例 典型例题一 例1 椭圆的一个顶点为()02,A , 其长轴长是短轴长的2倍,求椭圆的标准方程. 分析:题目没有指出焦点的位置,要考虑两种位置. 解:(1)当()02,A 为长轴端点时,2=a ,1=b , 椭圆的标准方程为:11 42 2=+ y x ; (2)当()02,A 为短轴端点时,2=b ,4=a , 椭圆的标准方程为:116 42 2=+ y x ; 说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况. 典型例题二 例2 一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率. 解:3 1 222??=c a c ∴223a c =, ∴3 331- = e . 说明:求椭圆的离心率问题,通常有两种处理方法,一是求a ,求c ,再求比.二是列含a 和c 的齐次方程,再化含e 的方程,解方程即可. 典型例题三 例3 已知中心在原点,焦点在x 轴上的椭圆与直线01=-+y x 交于A 、B 两点, M 为AB 中点,OM 的斜率为0.25,椭圆的短轴长为2,求椭圆的方程. 解:由题意,设椭圆方程为1222 =+y a x , 由?????=+=-+1012 22y a x y x ,得()021222=-+x a x a , ∴22 2112a a x x x M +=+=,2111a x y M M +=-=,

4 1 12=== a x y k M M OM ,∴42=a , ∴14 22 =+y x 为所求. 说明:(1)此题求椭圆方程采用的是待定系数法;(2)直线与曲线的综合问题,经常要借用根与系数的关系,来解决弦长、弦中点、弦斜率问题. 典型例题四 例4椭圆19252 2=+y x 上不同三点()11y x A ,,?? ? ??594,B ,()22y x C ,与焦点()04,F 的 距离成等差数列. (1)求证821=+x x ; (2)若线段AC 的垂直平分线与x 轴的交点为T ,求直线BT 的斜率k . 证明:(1)由椭圆方程知5=a ,3=b ,4=c . 由圆锥曲线的统一定义知: a c x c a AF =-12 , ∴ 115 4 5x ex a AF -=-=. 同理 25 4 5x CF - =. ∵ BF CF AF 2=+,且5 9= BF , ∴ 51854554521=??? ??-+??? ? ? -x x , 即 821=+x x . (2)因为线段AC 的中点为??? ? ?+2421y y ,,所以它的垂直平分线方程为 ()422 12 121---= +- x y y x x y y y . 又∵点T 在x 轴上,设其坐标为()00,x ,代入上式,得 () 2122 21024x x y y x --=-

文本预览
相关文档 最新文档