当前位置:文档之家› 高分子复合材料重点

高分子复合材料重点

高分子复合材料重点
高分子复合材料重点

高分子复合材料重点

“高分子复合材料”练习题

第1章绪论

2、简述复合材料的特性。

A 比强度和比模量,复合材料的突出特点是比强度与比模量高。

B 抗疲劳性能

C 减振性能

D 过载安全性

E 高温性能良好

F 具有可设计性

第2章基体材料

2、述不饱和聚酯树脂固化中交联剂的选择以及引发剂的结构特点;

交联剂的选择一般对交联剂有如下的要求:高沸点、低粘度,能溶解树脂呈均匀溶液,能溶解引发剂、促进剂及染料;无毒,反应活性大,能与树脂共聚成均匀的共聚物,共聚物反应能在室温或较低温度下进行。

引发剂的结构特点:引发剂一般为有机过氧化物4、简述酚醛树脂的种类及其常用固化剂;

酚醛树脂的种类:a.热固性酚醒树脂 b.热塑性酚醛树脂 c.其它类型酚醛树脂

(a)低压钡酚醛树脂。(b)硼酚醛树脂。(c)改性酚醛树脂。

常用固化剂:热固性塑料酚醛树脂一般采用酸类固化剂。常用的酸类固化剂有盐盐酸或磷酸,也可用对甲苯磺酸、苯酚磺酸或其它的磺酸。

5 简述热塑性树脂的特点及其常用产品;

热塑性树脂的特点:就是加热软化甚至熔融,冷却后硬化,这个过程是可以反复进行的,因此,热塑性树脂的加工成型是非常方便的。

常用的热塑性树脂:有聚乙烯、聚碳酸酌、聚甲醛、聚苯醚、聚矾、豪四氟乙烯等。

6、简述聚苯硫醚的结构及其物理特性。

聚苯硫醚是以硫化钠和对二氯苯为原料制备的,在其分子链中含有苯硫基,分子结构式为右方所

示。

聚苯硫醚为一种线型结构,当在空气中加热到345℃以上时,它就会发生部分交联。固化的聚合物是坚韧的,且是非常难溶的。聚苯疏醚具有优异的综合性能。表现为突出的热稳定性,优良的化学稳定性、耐蠕变性、刚性、电绝缘性及加工成型性。

第3章复合材料的增强材料

2、简述玻璃纤维的物理性能和化学性能;

物理性能:具有不燃、耐高温、化学稳定性好等优良性能,还可以来用有机徐覆处理技术来进行制品深加工及扩大制品的应用。

化学性能:玻璃纤维的耐化学药品性,玻璃纤维除去浓碱、浓磷酸和氢氟波外几乎耐所有的无机和有机化学药品。

3、简述碳纤维的分类及其常用制品;

A按前驱体纤维原料的不同,可分为粘胶基碳纤维、碳纤维、沥青基碳纤维和气相生长碳纤维;

b按纤维力学性能分类,可分为通用级碳纤维(GP)和高性能碳纤维(HP),其中

c按照碳纤维的制造方法不同分类,石墨纤维(2000一3000℃)、氧化纤维(预氧丝200一300℃)、活性碳纤维和气相生长碳纤维。

碳纤维与玻璃纤维一样有布、毡等,主要用于航空航天工业。

4、简述碳纤维的结构及其性能;

结构:(1)微观结构碳纤维属于过渡形式碳,

其微结构基本类似石墨,但层面的排列并不规整,属于乱层结构。

(2)碳纤维的形态结构主要取决于原丝和热处理条件。在碳化过程中,纤维的结构特征如原丝结构,原丝的挥忧取向以及截面形状等都保留在碳纤维中。

性能:高强度,随着热处理温度的提高,碳纤维的电阻率随之降低。

6、简述晶须的结构特点及其种类;

结构特点:晶须(whisker)是指由高纯度单晶生长而成的直径几微米、长度几十微米的单晶纤维材料,是一类力学性能十分优异的新型复合材料补强增韧材料。

种类:晶须的种类很多。按用途分为结构材料晶须和功能材料晶须;按导电性能分为绝缘型、半导体型、导电型和超导型晶须;按组成结构类型分为金属晶须、氧化物品须、碳化物晶须、氮化物品须、硼化物晶须、硅化物晶须和新开发的无机盐类晶须。

7、简述粉体增强材料的要求及其选择弥散相的

原则;

要求: (1)对粉体材料的要求:

A .高纯

B .粉料材料的形状一般要求物料粒子尽可能为等轴状或球形,且粒径分布范围窄。采用这种粉料成型时可获得均匀紧密的颗粒排列,并避免烧结时由于粒径相差很大而造成的晶粒异常长大及其它缺陷。

C 无严重的团聚

D .粉料的结晶形态对于存在多种结晶形态的粉料由于烧结时致密化行为不同,或其它原因,往往要求粉料为某种特定的结晶形态。

E 超细

选择弥散相的原则:

①弥散相往往是一类高熔点、高硬度的非氧化物材料

②弥散相必须有员佳尺寸、形状、分布及数量,对于相变粒子,其晶粒尺寸还与临界相变尺寸有关;

③弥散相在基体中的镕解度须很低,且不与基体发生化学反应;

④弥散相与基体须有良好的结合力。

8、简述轻质碳酸钙和重质碳酸钙的制备方法和性质;

轻质碳酸钙制备方法和性质:工业上常采用2种方法制备(1)氯化钙与碳酸钠溶液反应(2)氢氧化钠与碳酸钙反应

重质碳酸钙的制备方法和性质:由石灰石选矿、粉碎、分级、旋风分离、表面处理而制得。其中粉碎方法可分为干式和湿式两种。无味,无嗅的白色粉末,粒径比轻质碳酸钙,密度比轻质碳酸钙略重。

9、简述氧化锆的3种晶型结构及其“应力诱导相变”机理;

氧化锆有3种品型,属多晶相转化的氧化物。三种晶型分别为:立方结构(c相)、四方结构(t相)和单斜结构(m相)。

“应力诱导相变”机理:在应力作用下发生t→m马氏体转称为“应力诱导相变”

这种相变过程将吸收能量,使裂纹尖端的应力场松弛,增加裂纹扩展阻力,从而实现增韧。10、简述白炭黑的显著特征及其主要制备方法。

显著特征:①白炭黑粒径小,比表面积大

②由于白炭黑是一种超细粒子填料,不溶于

水和酸,有吸水性,内表面积很大,它

在树脂中的分散力较大,能提高塑料制品的物理性能。

②白炭黑具有很高的电绝线性,对提高塑料制品的电绝线性也有一定作用,

主要制备方法:白炭黑的制备主要有三种:

a沉淀法:稀硅酸钠和稀盐酸进行反应

b炭化法:硅砂和纯碱进行反应。

c燃烧法:四氯化硅气体与氢气和空气的均匀混合物反应。

第4章纤维复合材料及其制造方法

2、简述热固性预浸料的制备方法;

热固性预浸料的制备方法: a.热固性预浸料的制备按照浸渍设备或制造方式的不同,热固性纤维增强树脂预浸料的制备分轮鼓缠绕法和列陈排铺法;按浸渍树脂状态分湿法(溶液预浸法)和干法(热熔预浸法)。

3、简述热塑预浸料的制备方法;

热塑性预浸料制造热塑性纤维增强复合材料预浸料制造,按照树脂状态的不同,可分为预浸渍技术和后浸渍技术两大类。预浸渍技术包括溶液预浸和熔触预浸两种,其特点是预浸料中

树脂完全浸渍纤维。后预浸技术包括膜层叠、粉末浸渍、纤维混杂,纤维温编等,其特点是项浸料中树脂以粉末、纤维成包层等形式存在,对纤维的完全浸该要在复合材料成型过程中完成。

4、简述手糊成型工艺流程及其特点;

手糊工艺是聚合物基复合材料中最早采用和最简单的方法。其工艺过程是先在模具上涂刷台有固化剂的树脂混合物,再在其上铺贴一层按要求剪裁好的纤维织物,用刷子、压辊或刮刀挤压织物,使其均匀浸胶并排除气泡后,再涂刷树脂混合物和铺贴第二层纤维织物,反复上述过程直至达到所需潭度为止。

简述缠绕成型工艺流程及其特点;

缠绕成型是一种将浸渍了树脂的纱或丝束缠绕在回转芯模上、常压下在室温或较高温度下固化成型的一种复合材料制造工艺,是一种生产各种尺寸回转体的简单有效的方法。

纤维缠绕成型的主要特点是,结构效率高,自动化成型,产品质量稳定,生产效率高。

7、简述聚合物基复合材料的力学性能特点;

力学性能特点:A比强度高B各向异性C 弹性模量和层间剪切强度低D性能分散性大

8、简述聚合物基复合材料的疲劳性能特点;

影响树脂基复合材料疲劳特性的因素很多,其疲劳强度随静态强度的提高而增大,每种纤维增强复合材料都存在一个最佳纤维体积含量,如当纤维体积含量低于或高于最佳值时,其疲劳强度都会下降。

9、简述聚合物基复合材料的冲击性能特点;

不同成型法的制品的冲击强度不同,一般地说,纤维缠绕制品的冲击性能最佳,模压成型的次之,手糊成型和注射成型的较低。玻璃布增强树脂基复合材料的冲击性比玻璃毡增强的复合材料的冲击性能较高。

10、简述聚合物基复合材料的蠕变性能特点。

复合材料在恒定应力作用下,形变随时间的延长而不断增大,这种现象称为蠕变。这是由于基体材料的链段或整链运动不能瞬间完成,而需要一定时间的结果。蠕变严重时将导致材料或制品尺寸不稳定。提高材料抗蠕变性能的途径有:选用碳纤维等能增加制品刚性的增强材料。

第5章复合材料力学性能

2、简述复合材料力学分类情况;

3、简述复合材料的疲劳损伤的主要表现;

疲劳指的是在周期性交变载荷作用下材料发生的破坏行为,它论述了材料经受周期应力或应变时的失效过程。主要表现在以下几点:

①复合材料在疲劳过程中,尽管韧始损伤尺寸比金属材料大,例如纤维断头、脱层、基体开型、脱胶、基本孔洞等,但疲劳寿命比金属长。

⑧复合材料的疲劳损伤是累积的,在破坏之前,损伤已有了较大的发展,有明显的征兆。而金屑材料损伤累积却很隐蔽,破坏有很大的突发性,这对工程结构来讲是报危险的。

4、简述单向复合材料面内剪切破坏的特点。

复合材料破坏的特点主要有:

①不同纤维分布对缺陷的敏感性不同。复合材料中纤维是主要承载组分,不同的纤维分布对缺陷的敏感性不同,对于连续纤维增强单层复合材料,如图5—54所示,(a)为纤维方向分布,在纤维方向载荷作用下,板边缺口附近应力集中引起纤维与基体界面沿纤维方向脱粘,由此缺陷

张开钝化,减轻应力集中,它对缺陷敏感不大。

②在应力作用下,不存在缺口钝化,裂纹很容易顺原方向扩展,而材料断裂破坏,即对缺陷很敏感;

第6章复合材料的界面

2、简述复合材料的界面层化学键理论;

化学链理论认为增强材料与基体材料之间必须形成化学键才能使粘结界面产生良好的粘结强度,形成界面。

3、简述复合材料的界面层弱边界层理论;

通常边界层主要是指液体、固体、气体紧密接触的部分,一般是指流经固体表面最接近的流体层,对传热、传质和动量均有特殊影响,但是它没有独立的相,在这一点上和界面是有一定的区别的。如果边界层内存在有低强度区城,别称为弱边界层。

简述复合材料的界面层物理吸附理论;

这种理论主要是考虑两个理想清洁表面,靠物理作用来结合的,实际上就是以表面能为基础的吸附理论。此理论认为基体树脂与增强材料之间的结合主要是取决于次价力的作用,粘结作用的

优劣决定于相互之间的浸润性。浸润得好,则被粘体与枯合剂分子之间紧密接触而发生吸附,则粘结界面形成了很大的分子间作用力,同时排除了粘结体表面吸附的气体,减少了钻结界面的空隙率,提高了粘结强度,而偶联剂的主要作用就是促使基体树脂与增强材料表面完全浸润。

6、简述碳纤维的氧化法表面处理;

氧化法主要有气相氧化法、掖相氧化法、阳极氧化法。

气相氧化法中使用的氧化剂有空气、氧气、臭氧或二氧化碳等。最常使用的方法为空气氧化法。空气氧化法是在空气中不同的温度下氧化碳纤维,一般是在空气中400一500℃条件下进行处理,处理过程中采用铅和铜的盐作为催化剂。这种方法使用的设备简单,容易实现连续化处理,但是操作比较因难,氢化程度也难以控制,有时会使碳纤维发生严重损伤。

液相法的种类比较多,所使用的氧化剂有浓硝酸、次氯政钠,次氯酸钠/硫酸、磷酸等。处理的方法就是把碳纤维在一定的温度下浸入到氧化剂里浸泡一段时间,然后将碳纤维表面残存的破浓洗去。这种方法可增加碳纤维表面的租糙

程度和羧基含量,改善纤维的表面性能,提高复合材料的层间剪切强度。但是由于碳纤维吸附的酸不易洗净,公害严重,而且处理时间长,效果不佳也不易工业化仅在实验室中使用。

阳极氧化法是目前工业上普通采用的一种碳纤维表面处理的方法。其方法就是将碳纤维作为阳极、石墨及其它金属材料作为阴极,在含有

NaOH、HNO

3:、H

2

SO

4

等电解质溶液中通电对碳纤

维的表面进行电解表面阳极氧化处理,阳极氧化处理酌效果较好,均匀性好,层剪切强度可提高40%一80%。缺点是比空气氧化法工序多,需经水洗、干燥等工序,碳纤维强度稍有降低。

7、简述碳纤维的沉淀法表面处理;

沉积法是指在高温及还原性气氛中,使烃类、金属卤化物等以碳、碳化物的形式在碳纤维表面形成沉积膜或生长晶须,从而可对碳纤维表面进行改性。沉积到破纤维表面的碳膜活性较大,容易被树脂润湿,并朗提高碳纤维复合材料的层间剪切强度。一般沉积法对纤维力学性能影响不大,很少损失纤维的强度,主要是利用沉积膜及晶须来增加纤维与高聚物之间的界面结合力。此法缺点是工艺较复杂,不易连续化、工业

化,均匀性也差。

8、简述碳纤维的等离子体表面处理;

低温等离子体的纤维表面处理可使用空气、氧气、氮气、员气等气体,处理时间一般为几秒钟至几十分钟,处理时间的长短与气体的种类有关。另外,通过低温等离子体处理技术,还可达到在碳纤维的表面发生聚合接技的目的,从而改善碳纤维的表面性质,并能有效酌增强纤维复合材料的层剪强度、断裂韧性、弹性模量以及玻璃化转变温度。

9、简述复合材料界面的红外光谱分析技术;

现在已有很多方法可获得高聚物界面的红外光谱,比如透射光谱法,表面研磨法,内反射光谱法,没反射光谱法、反射—吸收光谱法等。对于厚度<5微米的薄膜样品,采用透射光谱法就可很方便地获得红外光谱团。但是采用此法所使用的试样膜不能过厚,否则所得到的透射光谱将反映的是试样的本体结构而不是它的表面特征。因此,这种方法对于那些不能成膜或难以得到符合厚度要求的试样是不适用的。那么,对于较厚的薄膜试样,就可采用表面研磨技术制样.然后测定其透射光谱。这种方法可测定厚度

为1000左右的试样。现在,对于高聚物表面性能的研究,常采用一种内反射光谱法。这是一种非常简便的表面测定方法。当入射的红外光以一个大于临界角θ的入射角θ1射人具有高折射率的物质中,然后再投射到试样的表面上,就会立即被试样反射出来,这称为内反射。当入射角大于或等于临界角时,则入射光不合发生折射,而是在界面处发生全反射。当一个能选择性地吸收辐射光的试样与另一个折射率大的反射表面紧密接触时.则部分入射光就会镇吸收,而不被吸收的光就会被反射或透过,这时辐射光发生了衰减,其衰减程度与试祥的吸光系数大小有关。被衰减了的辐射光通过红外分光光度计测量,对强度与波长或波数作图,即为试祥的内反射吸收光谱。

10、简述复合材料界面的X射线光电子能谱分析技术。

X射线光电子能谱(XPS)是利用光电效应,以一束固定能量的X—射线来激发试样的表面,并对其光电子进行检测。XPS技术的典型取样深度小于100入.是通过购定内层电于能级谱的化学位移,进而确定材料中原子结合状态和电

子分布状态,并根据元素具有的特征电子结合能及谱团的特征谱线,可鉴定出除氢、氦以外的元素周期表上的所有元素。

功能高分子材料复合材料

第四课时§3.3.4 功能高分子材料复合材料 教学过程: 【引言】前面三节课,我们学习了传统意义上的有机高分子材料中的三大合成材料(塑料、合成纤维、合成橡胶),今天,我们来了解第四大合成材料(功能高分子材料)以及复合材料。 【板书】§3.3.4功能高分子材料复合材料 【过渡】何谓功能高分子材料?它的分类如何?它的性能和应用怎样?这些是我们这节课要弄清楚的。 【教师讲解】一、功能高分子材料: 1.功能高分子材料的定义:功能高分子材料是指既有传统高分子材料的机械性能,又有某些特殊功能的高分子材料。(它是一类性能特殊、使用量小、附加值高的高分子材料。是高分子材料渗透到电子、生物、能源等领域后开发涌现出的一种新型材料。)2.功能高分子材料的分类: 物理功能高分子材料如:导电材料、光敏性材料、液晶高分子材料 功能高分子材料分离功能高分子材料如:膜材料、吸附分离功能材料 化学功能高分子材料如:高分子试剂、高分子卤化剂3.日常生活中常见的几种功能高分子材料: 【投影】用高吸水性树脂制造的纸尿布高吸水性树脂 【教师讲解】(1)高吸水性树脂 高吸水性树脂是一种新型的功能高分子材料,它本身不溶于水或有机溶剂,与水接触时能在短时间内可吸收自身质量几百倍、上千倍,最高可达5300倍的水,即使挤压也很难脱水,被冠于“超级吸附剂”的桂冠,因此可用作农业、园林、苗木移植用保水剂。高吸水性树脂与苯、乙醇、三氯甲烷、四氯化碳、醋酸等化学试剂混合时,可使试剂脱水,却不与试剂发生化学反应。它吸收试剂中的水分后,变成一种凝胶状的物质。 【投影】 触摸屏导电橡胶按键

【教师讲解】(2)导电性材料 如果在高分子中加入各种导电物质,如铁粉、铜粉、石墨粉等,就可制成导电橡胶、导电塑料、导电涂料、导电胶粘剂等。 【投影】 人造心脏 【教师讲解】(3)医用高分子材料 a.性能:优异的生物相容性;很高的机械性能。 b.应用:制作人体的皮肤、骨骼、眼、喉、心、肺、肝、肾等各种人工器官。 【投影展示】 玻璃钢快船波音767飞机碳纤维网球拍 【过渡】不同的材料具有不同的性能,每种材料都有它的优缺点。如普通金属材料强度大,但易被腐蚀;普通陶瓷材料耐高温,但易碎裂;合成高分子材料强度大、密度小,但易老化。航天工业需要强度大、耐高温、密度小的材料。海洋工程需要耐高压、耐腐蚀的材料。有没有兼具它们优点的一种材料呢?复合材料的出现很好地回答了这个问题。 【板书】二、复合材料 【学生阅读】P108复合材料定义并回答。 【板书】1.复合材料的定义:复合材料是指两种或两种以上性质不同的材料组合而成的一种新型材料。其中一种材料作为基体,其他的材料作为增强剂。 【教师讲解】由于复合材料克服了单一材料的不足,一般具有强度高、质量轻、耐高温、耐腐蚀等优异性能,在综合性能上超过了任一单一材料,是材料科学领域的重大突破。【教师组织讨论】P109有一个“交流与讨论”栏目,请同学们举出实例来说明人们的日常生活越来越离不开复合材料。 【学生回答】日常生活中用的牙刷、塑料碗盆、地板、壁纸、人造心脏、人造骨、关节、网球拍、滑雪板、撑杆、弓箭…… 【教师组织练习】以上事实说明复合材料是人类赖以存在和发展的基础,那么,复合材料的组成怎样?请同学们阅读后完成下列练习:(投影) 1.复合材料是由基体材料和分散于其中的增强材料组成的。 2.钢筋混凝土中的混凝土是基体材料,分布于其中的钢筋是增强材料;石棉瓦用石棉作增

高分子复合材料重点

高分子复合材料重点

“高分子复合材料”练习题 第1章绪论 2、简述复合材料的特性。 A 比强度和比模量,复合材料的突出特点是比强度与比模量高。 B 抗疲劳性能 C 减振性能 D 过载安全性 E 高温性能良好 F 具有可设计性 第2章基体材料 2、述不饱和聚酯树脂固化中交联剂的选择以及引发剂的结构特点; 交联剂的选择一般对交联剂有如下的要求:高沸点、低粘度,能溶解树脂呈均匀溶液,能溶解引发剂、促进剂及染料;无毒,反应活性大,能与树脂共聚成均匀的共聚物,共聚物反应能在室温或较低温度下进行。 引发剂的结构特点:引发剂一般为有机过氧化物4、简述酚醛树脂的种类及其常用固化剂; 酚醛树脂的种类:a.热固性酚醒树脂 b.热塑性酚醛树脂 c.其它类型酚醛树脂

(a)低压钡酚醛树脂。(b)硼酚醛树脂。(c)改性酚醛树脂。 常用固化剂:热固性塑料酚醛树脂一般采用酸类固化剂。常用的酸类固化剂有盐盐酸或磷酸,也可用对甲苯磺酸、苯酚磺酸或其它的磺酸。 5 简述热塑性树脂的特点及其常用产品; 热塑性树脂的特点:就是加热软化甚至熔融,冷却后硬化,这个过程是可以反复进行的,因此,热塑性树脂的加工成型是非常方便的。 常用的热塑性树脂:有聚乙烯、聚碳酸酌、聚甲醛、聚苯醚、聚矾、豪四氟乙烯等。 6、简述聚苯硫醚的结构及其物理特性。 聚苯硫醚是以硫化钠和对二氯苯为原料制备的,在其分子链中含有苯硫基,分子结构式为右方所 示。 聚苯硫醚为一种线型结构,当在空气中加热到345℃以上时,它就会发生部分交联。固化的聚合物是坚韧的,且是非常难溶的。聚苯疏醚具有优异的综合性能。表现为突出的热稳定性,优良的化学稳定性、耐蠕变性、刚性、电绝缘性及加工成型性。

功能高分子材料研究进展

功能高分子材料研究进展 摘要 功能高分子材料是高分子学科中的一个重要分支,它是研究各种功能性高分子材料的分子设计和合成、结构和性能关系以及作为新材料的应用技术,它的重要性在于所包含的每一类高分子都具有特殊的功能。它主要包括化学功能高分子材料、光功能高分子材料、电、磁功能高分子材料、声功能高分子材料、高分子液晶、医用高分子材料几部分,这一领域的研究主要包括研究分子结构、组成与形成各种特殊功能的关系,也就是从宏观乃至深入到微观,以及从半定量深入到定量,从化学组成和结构原理来阐述特殊功能的规律性,从而探索和合成出新的功能性材料。本文主要论述了在工程上应用较广和具有重要应用价值的一些功能高分子材料,如吸附分离功能高分子、反应型功能高分子、光功能高分子、电功能高分子、医用功能高分子、液晶高分子、高分子功能膜材料等。 关键词:高分子材料;功能高分子;功能材料; Abstract Functional polymer materials is an important branch of polymer science, it is the study of various functional polymer molecular design and synthesis of relationship between structure and properties and application technology as a new material. its importance is that contains every kind of polymer has special function it light functional polymer materials mainly include chemical functional polymer materials electric magnetic functional polymer materials acoustic functional polymer materials, polymer liquid crystal sections medical polymer materials, the research of this field mainly includes the study of the function of the molecular structure and formation of various sorts of special relationship, which is from the macro and go deep into the micro, and from the quantitative and semi-quantitative into from the chemical composition and structure principle to explain the special function of regularity, to explore and this paper mainly discusses the synthesis of new functional materials. Keywords:high polymer materials; functional polymer; functional Materials;

高分子材料和复合材料导学案

高分子材料和复合材料 导学案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第三单元高分子材料和复合材料 编写:王飞审核:何一位作业等第:_______ 班级:________姓名:____________批改日期:_______ 【学习目标】 了解有机高分子材料的分类,认识塑料、纤维、橡胶、功能高分子材料的区别; 【课堂导学】 1、塑料的主要成分是,具有、、、、等优点;塑料按性能和用途可分为、、;按受热情况可分为、。 2、纤维可以分为那两大类: 3、区分不同纤维的常见方法是: 4、橡胶的分类: 5、天然橡胶的主要成分它为分子; 缺点是:;为了改变特性常常要经过处理;使得分子结构变为 6、常见的高分子材料有: 7、复合材料是指: 其优点是: 常见的复合材料有: 二、课堂探究 1.随着社会的发展,复合材料逐渐成为一类新的有前途的发展材料,目前,复合材料最主要的应用领域是( )。 A.高分子分离膜 B.人类的人工器官 c.宇宙航天工业 D.新型药物 2、下列塑料的合成,所发生的化学反应类型与另外三种不同的是() A 聚乙烯塑料 B 聚氯乙烯塑料 C 酚醛塑料 D 聚苯乙烯塑料 3、下列有关高分子化合物的叙述正确的是( )。 A.高分子化合物极难溶解 B.高分子化合物依靠分子间作用力结合,材料强度均较小 C.高分子均为长链状分子 D.高分子材料均为混合物 三、课堂笔记

【巩固反馈】 1.橡胶属于重要的工业原料。它是一种有机高分子化合物,具有良好的弹性,但强度较差。为了增加某些橡胶制品的强度,加工时往往需进行硫化处理,即将橡胶原料与硫黄在一定条件下反应。橡胶制品硫化程度越高,强度越大,弹性越差。下列橡胶制品中,加工时硫化程度较高的是() A.橡皮筋B.汽车外胎 C.普通气球 D.医用乳胶手套 2、物质不属于天然高分子化合物的是( ) A. 淀粉 B. 纤维素 C. 塑料 D. 蛋白质 3下列各物质属于高分子化合物的是( )。 A.葡萄糖 B.硬脂酸甘油酯 C.TNT I).酶 4下列原料或制成的产品中。若出现破损不可以进行热修补的是( )。 A.聚氯乙烯凉鞋 B.电木插座 C.聚丙烯材料 D.聚乙烯塑料膜 5离分子材料与一般金属材料相比,优越性是( )。 A.强度大 B.电绝缘性能好 C.不耐化学腐蚀 D.不耐热 6、材料科学、能源科学、信息科学是二十一世纪的三大支柱产业。在信息通信方面,能同时传输大量信息,且具有较强抗干扰能力的材料是( )。 A.光导纤维 B.塑料 C.合成橡胶 D.合成纤维 7、“空对空”响尾蛇导弹头部的“红外眼睛”,能分辨出0C的温差变化,它是由热敏陶瓷材料和热释电陶瓷材料做成的。下列叙述中不正确的是( )。 A.“红外眼睛”对热非常敏感 B.“红外眼睛”的热目标是敌机发动机或尾部喷口高温区 C.“红外眼睛”的电阻值随温度明显变化

高分子复合材料的研究现状与展望(最新篇)

高分子复合材料的研究现状与展望 高分子复合材料的研究现状与展望 研究领域的一个研究热点。复合材料可以发挥各种材料的优点,避其弱点,可充分利用和节约资源,因此科技界将复合材料作为一类新型材料来研究。例如玻璃钢,因质轻、坚硬,机械强度可与钢材相比,已成功用于印刷电路板、汽车车身、船体等领域。 复合材料与陶瓷、高聚物、金属并称为四大材料。其已成为衡量一个国家或地区的复合材料工业水平的标志之一,是国家安全和国民经济具有竞争优势的源泉。有关研究报道指出,到2020年,复合材料性能潜力可获得20%~25%的提升. 随着工业现代化的发展,设备的集群规模和自动化程度越来越高,同时针对设备的安全连续生产的要求也越来越高,传统的以金属修复方法为主的设备维护工艺技术已远远不能满足高新设备的维护需求,对此需要研发针对设备预防和现场解决的新技术和材料,为此诞生了包括高分子复合材料在内的更多新的维护技术和材料,满足新设备运行环境的维护需求。 1、高分子材料研究现状 高分子材料是以高分子化合物为基础的材料,由巨量原子以共价键结合形成相对分子量大、具有重复结构单元的有机化合物。高分子材料按来源分为天然高分子材料、合成高分子材料、半合成高分子材料。生活中的高分子材料很多,如蚕丝、棉、麻、毛、玻璃、橡胶、纤维、塑料、高分子胶粘剂、高分子涂料和高分子基复合材料等.

我国在高分子材料的开发和综合利用虽起步较晚,但高分子材料为我国的经济建设做出了重要的贡献,已建立了完善的高分子材料的研究、开发和生产体系,取得了进步。目前,我国应提高整体科研水平,致力于创新的高分子聚合反应和方法,开发出绿色功能和智能材料,满足工业和新技术的需求,提高人们生活质量。 高分子材料对我们未来的影响是不可预测的,随着科技的发展,高分子材料也可以具有其他材料的特性,成为最全面的材料,能满足人类在工业、医药、航天方面对新材料的需求,造福人类。 2、复合材料研究现状 复合材料中以纤维增强材料应用最广、用量最大。其特点是比强度和比模量大、比重小。例如碳纤维与环氧树脂复合的复合材料,其比强度、比模量比钢和铝合金的比强度、比模量大数倍,且具有优良的化学稳定性、减摩耐磨、自润滑、耐热、耐疲劳、耐蠕变、消声、电绝缘等性能. 纤维增强材料的另一个特点是各向异性,可按制件不同部位的强度要求设计纤维的排列。以碳纤维和碳化硅纤维增强的铝基复合材料,在500℃时仍能保持足够的强度和模量。碳化硅纤维与钛复合,耐热性高,耐磨损,可作发动机风扇叶片。碳化硅纤维与陶瓷复合,使用温度可达1500℃,比超合金涡轮叶片的使用温度高得多。碳纤维增强碳、石墨纤维增强碳或石墨纤维增强石墨,构成耐烧蚀材料,已用于航天器、火箭导弹和原子能反应堆中。非金属基复合材料由于密度小,用于汽车和飞机可减轻重量、提高速度、节约能源。用碳纤维和玻璃纤维混合制成的复合材料片弹簧,其刚度和承载能力与重量大5倍多的钢片弹簧相当。

高分子纳米生物材料的发展现状及前景

高分子纳米生物材料的发展现状及前景 纳米材料研究都是从20世纪80年代开始的,是在之前三次工业革命的基础上发展起来的的新兴科技领域。巨大的需求与技术支撑,使其在材料、生物、医学、高分子等领域开拓出一片片新大陆,筑起21世纪工业革命的基石。而纳米技术作为一项高新技术在高分子材料中有着非常广阔的应用前景,对开发具有特殊性能的高分子材料有着重要的实际意义 纳米高分子材料,也称高分子纳米微粒或高分子超微粒,粒径尺度在1 nm~1000 nm范围。这种粒子具有胶体性、稳定性和优异的吸附性能,可用于药物、基因传递和药物控释载体,以及免疫分析、介入性诊疗等方面。 1纳米科技与高分子材料的邂逅 高分子材料学的一个重要方面就是改变单一聚合物的凝聚态,或添加填料来使高分子材料使用性能大幅提升。而纳米微粒的小尺寸效应、表面与界面效应、量子尺寸效应和宏观量子隧道效应能在声、光、电、磁、力学等物理特性方面呈现许多奇异的物理、化学性质。金属、无机非金属和聚合物的纳米粒、纳米丝、纳米薄膜、纳米块体以及由不同组元构成的纳米复合材料,可实现组元材料的优势互补或加强。通过微乳液聚合方法得到的纳米高分子材料具有巨大的比表面积,纳米粒子的特异性能使其在这一领域的发展过程中顺应高分子复合材料对高性能填料的需求,出现了一些普通微米级材料所不具有的新性质和新功能,纳米科技与高分子材料科学的交融互助对高分子材料科学突破传统理念发挥了重要作用。 高分子纳米复合材料的应用及前景 由于高分子纳米复合材料既能发挥纳米粒子自身的小尺寸效应、表面效应和量子效应,以及粒子的协同效应,而且兼有高分子材料本身的优点,使得它们在催化、力学、物理功能(光、电、磁、敏感)等方面呈现出常规材料不具备的特性,故而有广阔的应用前景利用纳米粒子的催化特性,并用高聚物作为载体,既能发挥纳米粒子的高催化性和选择催化性,又能通过高聚物的稳定作用使之具有长效稳定性。 纳米粒子加入聚合物基体后,能够改善材料的力学性能。如纳米A-Al2O3/环氧树脂体系,粒径27nm,用量1%~5%(质量分数)时,玻璃化转变温度提高,模量达极大值,用量超过10%(质量分数)后,模量下降[79]。又如插层原位聚合制备的聚合物基有机)无机纳米级复合材料(聚酰胺/粘土纳米复合材料等)具有高强度、高模量、高热变形温度等优点,目前已有产品出现,用作自行车、汽车零部件等[55]。尤其引人注目的是高分子纳米复合材料在功能材料领域方面的应用,包括磁性、电学性质、光学性质、光电性质及敏感性质等方面。 磁性纳米粒子由于尺寸小,具有单磁畴结构,矫顽力很高,用它制作磁记录材料可以提高记录密度,提高信噪比;一般要求与聚合物复合的纳米粒子,采用单磁畴针状微粒,且不能小于超顺磁性临界尺寸(10nm)。 利用纳米粒子的电学性质,可以制成导电涂料、导电胶等,例如用纳米银代替微米银制成导电胶,可以节省银的用量;还可以用纳米微粒制成绝缘糊、介电糊等。另外可用于静电屏蔽材料,日本松下公司应用纳米微粒Fe2O3、TiO2、Cr2O3、ZnO等具有半导体特性的氧化物粒子制成具有良好静电屏蔽的涂料,而且可以调节其颜色;在化纤制品中加入金属纳米粒子可以解决其静电问题,提高安全性。 利用复合体系的光学性能,可以制成如下材料:(1)优异的光吸收材料。例如在塑料制品表面上涂上一层含有吸收紫外线的纳米粒子的透明涂层,可以防止塑料

高分子复合材料

高分子复合材料 高分子复合材料,从狭义上来说是指高分子与另外不同组成、不同形状、不同性质的物质复合而成的多相材料,大致可分为结构复合材料和功能复合材料两种。广义上的高分子复合材料则还包含了高分子共混体系,统称为“高分子合金”。当分散相为金属/无机物时,则称为有机/无机高分子复合材料;而当分散相为异种高分子材料时,则称为高分子共混物。自然界中有大量的高分子复合材料的例子,如树木、蜂巢、燕窝等。 高分子复合材料分为两大类:高分子结构复合材料和高分子功能复合材料。以前者为主。高分子结构复合材料包括两个组分:①增强剂。为具有高强度、高模量、耐温的纤维及织物,如玻璃纤维、氮化硅晶须、硼纤维及以上纤维的织物。②基体材料。主要是起粘合作用的胶粘剂,如不饱合聚酯树脂、环氧树脂、酚醛树脂、聚酰亚胺等热固性树脂及苯乙烯、聚丙烯等热塑性树脂,这种复合材料的比强度和比模量比金属还高,是国防、尖端技术方面不可缺少的材料。高分子功能复合材料也是由树脂类基体材料和具有某种特殊功能的材料构成,如某些电导、半导、磁性、发光、压电等性质的材料,与粘合剂复合而成,使之具有新的功能。如冰箱的磁性密封条即是这类复合材料。 高分子复合材料有以下优异特性:优异的附着力:高分子渗透形成分子之间的作用力,使其与修复部件形成范德华力和氢键链接。优异的机械性能:分析了机械设备在运行过程中所产生的各种复合力的要求,在材料的合成过程中实现了各种数据的均衡性,并具有良好的机械加工性能和延展性能。抗化学腐蚀性能:解决了大多数高温下的有机酸、无机酸及混合酸的腐蚀。材料的安全性:100%固体,材料没有挥发性;无毒无害,可以和皮肤直接接触。 所以它的应用范围比较广,已经形成工业化生产规模的高分子为通用高分子材料,称具有特殊用途与功能的为功能高分子。高分子是生命存在的形式,所有的生命体都可以看作是高分子的集合。树枝、兽皮、稻草等天然高分子材料是人类或者类似人类的远古智能生物最先使用的材料。在历史的长河中,纸、树胶、丝绸等从天然高分子加工而来的产品一直同人类文明的发展交织在一起。 例如,将水泥砂浆与聚合物等材料以适当比例配制而形成的聚合物水泥砂浆,因其材料组成中有热塑性高分子化合物,在固化剂作用下可形成不溶、不熔硬质的复合材料,此复合材料具有包括抗冲耐磨性能在内的许多优良力学性能。因此,选择合适的材料组成成分并确定其配合比,是实现材料优良性能的先决条件。 上海复鑫分析技术中心研发团队在长期实验室分析经验的积累中,一直坚持专注于成分分析领域,产品种类涵盖:塑料、橡胶、钢材、胶粘剂、涂料、油墨、清洗剂、水处理助剂、表面处理剂、金属加工液、建筑类添加剂、油田助剂、脱模剂、助焊剂等八大行业的四十余个品类。依托复旦大学、上海交大等高校的国家重点实验室作为技术平台,并通过与上海有机化学研究所、上海材料研究所等机构的紧密合作,不断挖掘一线市场需求,服务长三角、全国乃至东南亚和北欧的客户。

高分子材料与工程实习报告

南京林业大学 认知实习报告 学院:理学院 专业:高分子材料与工程 姓名:陈凯 学号:101102203 指导老师:陈泳 实习时间:2012年10月22日——2012年10月28日 实习地点:南京林业大学校内 一、目录 二、实习目的和意义 三、实习内容 “聚氨酯材料”讲座 “玻璃钢复合材料”讲座 “玻璃钢复合材料”讲座

参观实验室 三、认知实习总结 一、实习目的和意义 通过认识实习,使学生了解高分子材料的一些典型成型方法,了解高分子材料的应用领域。通过认识实习,学生应该将正在学习的聚合物加工基础、塑料橡胶成型原材料、塑料橡胶成型工艺与设备等专业理论知识与生产实际相结合,进一步理解和深化过去学到的知识为即将要学习塑料橡胶模具设计等课程积累生产实践经验。 二、实习内容 “聚氨酯材料”讲座 聚氨酯全称为聚氨基甲酸酯,英文名称是polyurethane,CASNo.:51852-81-4分子式:(C10H8N2O2·C6H14O3)x,它是一种高分子材料。聚氨酯是一种新兴的有机高分子材料,被誉为“第五大塑料”是主链上含有重复氨基甲酸酯基团(NHCOO)的大分子化合物的统称。它是由有机二异氰酸酯或多异氰酸酯与二羟基或多羟基化合物加聚而成。反应式如下:-N=C=O+HO-→-NH-COO-,聚氨酯大分子中除了氨基甲酸酯外,还可含有醚、酯、脲、缩二脲,脲基甲酸酯等基团。(氰酸说明:H—O—C≡N(正)氰酸H—N=C=O(异氰酸)有(正)氰

酸和异氰酸两种。游离酸是二者混合物,未曾分离开业,但其酯类则有两种形式。氰酸是有挥发性和腐蚀性的液体。有强烈的乙酸气味。密度1.14。沸点23.6℃。在水溶液中显示极强酸性。性不稳定,容易聚合。水解时生成氨和二氧化碳。与醇类作用时生成氨基甲酸酯。(正)氰酸酯R—O—C≡N易聚合,并易水解,很难得到纯态物。异氰酸酯R—N=C=O或O=C=N—R—N=C=O,一般是带有不愉快气味的液体。氰酸可由氰尿酸经加热分解而制得。) 聚氨酯制品形态有软质、半硬质及硬质泡沫塑料、弹性体、油漆涂料、胶粘剂、密封胶、合成革涂层树脂、弹性纤维等,广泛应用于汽车制造、冰箱制造、交通运输、土木建筑、鞋类、合成革、织物、机电、石油化工、矿山机械、航空、医疗、农业等许多领域。 根据所用原料的不同,可有不同性质的产品,一般为聚酯型和聚醚型两类。聚醚型聚氨酯主要是针对制备聚氨酯材料中的多元醇定义的,即制备聚氨酯的多元醇完全由聚醚型多元醇或者是在该体系中占有绝大部分。 聚醚多元醇分子结构中,醚键内聚能低,并易旋转,故有它制备的聚氨酯材料低温柔顺性能好,耐水解性能优良,虽然机械性能不如聚酯型聚氨酯,但原料体系粘度低,易与异氰酸酯、助剂等组份互溶,加工性能优良。 聚酯多元醇一般所指的是由二元羧酸与二元醇等通过缩聚反应得到的聚酯多元醇。广义上是含有酯基(COO)或是碳酸酯基

高分子复合材料的性能特点

高分子复合材料的性能特点 陈金鹏 (河北工业大学材料科学与工程学院,材料物理与化学国家重点学科,天津)摘要:简单介绍了稀土/高分子复合材料,磁智能材料,聚合物基纳米复合材料,导电高分子复合材料,磁性纳米高分子复合材料等几种高分子复合材料的性能和特点,以及对它们的制作方法做了简单的介绍。 关键词:高分子复合材料,纳米材料,特性 The performance characteristics of polymer composite materials Chen jin peng (College of Materials Science and Engineering, Hebei University of Technology, Tianjin, China ) Abstract: Introduced several the performance and characteristics of the rare earth/polymer composite material l, magnetic intelligent materials, polymer nanocomposites, conductive polymer composite material, magnetic nano polymer composite macromolecule composite materials, and their production methods do briefly introduced. Key words:Polymer composite materials, Nano materials, characteristics 1.1稀土/高分子复合材料 在高分子材料科学发展过程中,兼备高分子材料质轻、高比强度、易加工、耐腐蚀的优点,同时又具有光、电、磁、声等性能的特种高分子复合材料备受推崇。稀土因其电子结构的特殊性而具有光、电、磁等特性,这些特性是人们制备稀土/高分子复合材料强烈的技术和应用的驱动力。在简单掺混型稀土/高分子复合材料的制备过程中,研

《功能高分子材料》教学设计

专题一 为课堂教学注入新的生命力 ---淡如何面对和认识新课程 南京金陵中学李惠娟 们常常会看到这样两种截然不同的景象,如右图所示。 其实,作为老师谁不希望自己的课堂精彩受欢迎? 然而现实中不少老师发出这样的感慨和困惑: 比起以往,现在的学生(尤其城市)对学习的热情 越来越缺乏,对人间的真情越来越淡漠,…… 传统的教育似乎越来越乏力,老师的工作越来越辛 苦,身心越来越疲惫,成就感却越来越缥缈…… 究竟我们的教育出了什么问题?让辛苦的老师得不 到鼓励;让认真的学生无法获得肯定;让学以致用的梦 想无法落实! 如果老师课堂上只是把一个个有理智、有情感的鲜活学生看成是一只只吞咽僵化知识的“饲料鸡”,学习的内容和过程抽离实际的生活情境,他们自然会对学习觉得无聊,对未来感到茫然,这样的教育终究是失败和悲哀的。 也许我们每个老师的脑际时隐时现地会思考这样一些问题: 问题1:“学习是什么?学习如何发生?以及如何使用知识?” 问题2:作为老师的我,今天的教育或教学,想给学生最关键、最宝贵的是什么? 问题3:怎样才能把老师的辛勤付出、美好期待与学生的现在渴求、未来发展紧密相连? …… 其实细细品味,这不是与新课程倡导的三维目标不谋而合吗?所以,我相信绝大多数老师的内心深处对新课程的是持赞同和欢迎态度的。 也许新课程的美好理念与面临的残酷现实似乎存在难以调和的矛盾,“高考考什么,老师教什么,学生学什么!”在现实中这样的教育现象并不少见,也许这是许多老师面对现实无奈的选择。不少老师进行新课改时顾虑重重,其中一点就是认为注重过程、方法的培养势必会影响学生知识技能的操练,因为高中三年的时间是个定量,只要会做题、考高分,现在社会就是这样评价你! 我一直倍感中学老师重任在肩,不仅要为他们眼前高考的现实渴求着想,更要为他们的未来发展负责!也许小学还稚嫩,大学已成型,中学时代学生正处于身体发育、性格形成、思维养成最关键的阶段。中学对一个人的一生影响是非同寻常的!中学老师的人品修养、气

高分子材料简介

康尔高分子复合板板材结构及技术特点分析介绍 1、基材是用福人牌中密度板,密度为 710-730 ,达到欧洲环保的 E1 级标准。不含任何有害的易挥发性物质。 2、背面用进口耐污的纯三聚氢氨面材贴面,耐磨且更易清洗。 3、表面用世界先进的 PUR 胶水粘合一层高分子复合材料,胶水特性:目前航天部门指定胶水,永远不脱胶。高分子复合材料特性:是我公司用两年时间反复试验后,开发出的一种 PVC 、 PET 、 Acrylic 等高分子材料的聚合体,在抗黄变、抗冲击、阻燃、耐变形、耐污和耐磨等方面在同类产品上有显著提高,是目前国际上最优质的产品。 4、使用全中国引进的第一条欧洲最先进的贴合设备,有效提高了板材表面的平整度,克服了同类产品表面不平整的缺点。 5、高分子复合材料是在原先 UV 类产品上的改良产品,除拥有原先 UV 产品的特性外,还解决了 UV 类产品常见的色差、起皱等问题,而且颜色更趋于流行时尚。 6、门板封边采用欧式的封边技术,使门板更具完美品质。铝合金封边:简洁、大方、质感分明;同色封边:幽雅、柔和、浑然一体; 高分子复合材料产品与传统类 UV 产品的理化性能对比 PET材料,其化学名称是聚对苯二甲酸乙二酯。分子结构高度对称,具有很好的光学性能和耐侯性,PET做成的各种材料均具有强度大、透明性好、无毒、防渗透、高环保等优点。因此,被广泛应用在各类食品、药品、无毒无菌的包装材料,包装瓶,电子电器,汽车配件等方面。 PET板材是目前最为环保的橱柜、衣柜门板用材料之一,其性能解析如下: 一、材料解析:

PET材料因其高环保性、无毒、达到食品级(PET材料具有强度大、透明性好、无毒、防渗透、高环保等优点。被广泛应用在各类食品、药品、无毒无菌的包装材料:像保鲜膜、饮料瓶、食用油包装瓶均是由PET材料做成)而广泛受到国内外装饰业界的关注,这也是PET 材料的最大卖点,因为现在的消费者越来越关注环保,也愿意为这类产品多花价钱买单。现在国内知名品牌像海尔高端F0橱柜(即海尔零甲醛橱柜门板全面选用PET)、柯乐芙、东方邦太等厂家的PET产品也已全面上市。 二、面材构成: 表层材料由两层构成,上层采用PET材料(表面透明部分),下层为PVC颜色膜材料。采用当今世界耐磨、耐污的美国杜邦化工原料进口添加剂,使用当今流行的德国真空覆膜技术制作而成,具有耐磨、耐压、耐高温、抗腐蚀、耐老化等特点;基材为经过国家环保认证的高环保型E0/E1级优质中密度纤维板。 PE T复合材料具有强度大、透明性好、无毒、防渗透、高环保达到食品级等优点。因此,被广泛应用在各类食品、药品、无毒无菌的包装材料:像保鲜膜、饮料瓶、食用油包装瓶均是由PE T材料做成)现在国内很多知名品牌像海尔高端F0橱柜(即海尔零甲醛橱柜门板全面选用PE T)、柯乐芙、科宝等厂家的PE T产品已全面上市。 产品优势:

高分子_石墨烯纳米复合材料研究进展

高分子/石墨烯纳米复合材料研究进展 高秋菊1,夏绍灵1,2* ,邹文俊1,彭 进1,曹少魁2 (1.河南工业大学材料科学与工程学院,郑州 450001;2.郑州大学材料科学与工程学院,郑州 450052 )收稿:2012-01-09;修回:2012-04- 24;基金项目:郑州科技攻关项目(0910SGYG23258- 1);作者简介:高秋菊(1984—),女,硕士研究生,主要从事高分子复合材料的研究。E-mail:gaoqiuj u2008@yahoo.com.cn;*通讯联系人,Tel:0371-67758722;E-mail:shaoling _xia@haut.edu.cn. 摘要: 石墨烯以其优异的力学、光学、电学和热学性能,得到日益广泛的关注和研究。本文介绍了石墨烯的结构、性能和特点,并对石墨烯的改性方法进行了概括。本文着重综述了高分子/石墨烯纳米复合材料的研究现状和进展,并介绍了高分子/石墨烯纳米复合材料的三种制备方法,即原位插层聚合法、溶液插层法和熔融插层法。此外,还对高分子/石墨烯纳米复合材料的应用前景进行了展望,并对石墨烯复合材料研究存在的问题和未来的研究方向进行了讨论。 关键词:石墨烯;高分子;纳米复合材料;研究进展 引言 石墨烯是以sp2 杂化连接的碳原子层构成的二维材料, 其厚度仅为一个碳原子层的厚度。这种“只有一层碳原子厚的碳薄片”,被公认为目前世界上已知的最薄、最坚硬、最有韧性的新型材料。石墨烯具 有超高的强度,碳原子间的强大作用力使其成为目前已知力学强度最高的材料。石墨烯比钻石还坚硬, 强度比世界上最好的钢铁还高100倍[1] 。石墨烯还具有特殊的电光热特性, 包括室温下高速的电子迁移率、 半整数量子霍尔效应、自旋轨道交互作用、高理论比表面积、高热导率和高模量、高强度,被认为在单分子探测器、集成电路、场效应晶体管等量子器件、功能性复合材料、储能材料、催化剂载体等方面有广泛 的应用前景[ 2] 。石墨烯是一种疏松物质,在高分子基体中易团聚,而且石墨烯本身不亲油、不亲水,在一定程度上也限制了石墨烯与高分子化合物的复合,尤其是纳米复合。因而,很多学者对石墨烯的改性进行了大量的研究,以提高石墨烯和高分子基体的亲和性,从而得到优异的复合效应。 1 石墨烯的改性方法 1.1 化学改性石墨烯 该方法基于改性Hummers法[3] 。首先,由天然石墨制得石墨氧化物, 再通过几种化学方法获得可溶性石墨烯。其化学方法包括:氧化石墨在稳定介质中的还原[4]、通过羧基酰胺化的共价改性[5] 、还原氧化石墨烯的非共价功能化[ 6]、环氧基的亲核取代[7]、重氮基盐的耦合[8] 等。此外,还出现了对石墨烯的氨基化[9]、酯化[10]、异氰酸酯[11] 改性等。用化学功能化的方法对石墨烯进行改性,不仅可以提高其溶解性 和加工性能,还可以增强有机高分子间的相互作用。1.2 电化学改性石墨烯 利用离子液体对石墨烯进行电化学改性已见报道[12] 。用电化学的方法,使石墨变成用化学改性石 墨烯的胶体悬浮体。石墨棒作为阴极,浸于水和咪唑离子液的相分离混合物中。以10~20V的恒定电 · 78· 第9期 高 分 子 通 报

高分子复合材料现状及发展趋势

高分子复合材料现状及发展趋势 8090216 王健敏 摘要:本文概述了高分子复合材料近年来的最新发展状况以及未来的发展趋势。针对不同的高分子复合材料,文章分别简要概括了液晶高分子复合材料、纳米高分子复合材料以及导热高分子复合材料这三种目前发展最为迅猛的高分子复合材料各自的发展状况。通过相关文献所报导的对于复合机理或者是具体应用上的报导,可以得知高性能、高功能、合金化、精细化、智能化的高分子复合材料是未来材料发展的主要方向之一。 关键词:液晶高分子复合材料、纳米高分子复合材料、导电高分子复合材料 21世纪是科技迅猛发展的时代,随着科学技术的发展,人们对聚合物材料的应用性能的要求日益提高,仅由合成法制备新的聚合物越来越难以满足要求的应用性能,而高分子复合材料所表现出来的优异性能引起了科学家的极大关注。高性能、高功能、合金化、精细化、智能化的高分子复合材料将在21世纪发挥出巨大的作用和无限的生命力。目前,高分子复合材料主要有高分子液晶复合材料、高分子纳米复合材料等。另外由于导热高分子复合材料的用途广泛及应用价值巨大,因此将它单独列为一类。随着科学技术的发展,这几类高分子复合材料都得到了长足的发展,下面将分别介绍各种高分子复合材料的发展状况。 1、高分子液晶复合材料

自从1888年奥地利植物学家F. Reinitzer在合成苯甲酸胆甾醇时发现了液晶后[1] , 人们对液晶材料的探索就从未停止。在1966年Dopont 公司首次使用各向异性的向列态聚合物溶液制出商品纤维——Fi2bre B后,高分子液晶走向了工业化道路。至本世纪,高分子液晶的研究已成为高分子学科发展的一个重要方向。液晶高分子当前的发展趋势是:降低成本;发展液晶高分子原位材料;开发新的成型加工技术和新品种;发展功能液晶高分子材料。目前,关于热致液晶高分子的原位复合是液晶高分子复合领域的一大热点。 原位复合材料是以热塑性树脂为基体, 热致液晶高分子为增强剂, 利用热致液晶聚合物易于自发取向成纤维或带状结构的特点, 在共混熔融后拉伸或注射成型时, 体系中的分散相TLCP 在合适的应力作用下取向形成微纤结构, 由于刚性分子链有较长的松弛时间,在熔体冷却时能被有效地冻结或保存在T P 基体中, 从而形成一种自增强的微观复合材料, 即热致液晶原位复合材料[2]。热致液晶高分子( TLCP) 具有高强度、高模量和自增强性能, 杰出的耐高温和冷热交变性能, 优异的阻燃性、耐腐蚀性、耐磨性、阻隔性和成型加工性能, 线胀系数和摩擦系数小, 尺寸稳定性高, 抗辐射、耐微波、综合性能十分优异, 被誉为超级工程材料。 据相关报道,由于碳纳米管( CNT ) 具有卓越的力学、热学、电学等理化性能, 因而广泛用于高分子复合材料改性, 由于长径比较大,只需添加极少的CNT, 就可以显著改善高分子基体的性能[3],国内外学者对以各种聚合物为基体的CNT /聚合物纳米复合材料进行了广

高分子基复合材料

高分子基复合材料Polymer Matrix Composite Materials 课程编号:07370380 学分:2 学时:30 (其中:讲课学时:30 实验学时:0 上机学时:0) 先修课程:材料科学导论、高分子化学、大学物理适用专业:高分子材料与工程、复合材料与工程 教材:《聚合物复合材料》黄丽主编,中国轻工业出版社,2012.01 第二版开课学院:材料科学与工程学院 一、课程的性质与任务高分子基复合材料是建立在数学、物理学、化学等课程知识的基础上,为材料科学与工程专业学生开设的一门专业方向课,其性质为选修。 通过本课程的学习,旨在让学生获得复合材料的有关基本理论和基本知识,为拓宽学科方向和今后从事相关研究和工作奠定必要的基础。其主要任务是使学生具备下列知识和能力: 1. 熟悉复合材料的常用基体材料和常用增强材料结构与性能; 2. 初步掌握聚合物基、碳基、纤维增强复合材料的种类和基本性能; 3. 能够根据实际要求合理设计材料,从微观或亚微观水平上选定合适的基体和增强体或功 能体; 4. 依靠复合材料设计知识,确定合适的表面处理技术和成型工艺; 5. 了解先进复合材料的发展概况。二、课程的基本内容及要求 第1 章绪论 1. 教学内容 (1).复合材料的发展史 (2).复合材料的定义、命名及分类 (3).复合材料的特性 (4).对高性能复合材料的期望及开发现状 2. 学习要求 (1).了解复合材料的发展简史 (2).掌握复合材料的概念、分类及命名规则 (3).理解复合材料的特性及发展趋势 3. 重难点 掌握复合材料的定义及特性既是本章的重点,也是难点

第2 章基体材料 1. 教学内容 (1).概述 (2).聚合物基体 (3).金属基体 (4).陶瓷基体 (5).碳基体 2. 学习要求 (1).理解基体的概念 (2).掌握基体在复合材料材料中的作用及对复合材料性能的影响(3).了解复合材料中常用的基体类型 (4).掌握聚合物基体的特性 3. 重难点 (1).重点是熟悉复合材料中基体的类型及各类基体的特性(2).难点是掌握几种常用聚合物基体的制备原理和工艺 第3章复合材料的增强材料 1. 教学内容 (1).玻璃纤维 (2).碳纤维 (3).有机高分子纤维 (4).陶瓷纤维 (5).金属纤维 (6).晶须 (7).粉体增强材料 2. 学习要求 (1).理解增强材料在复合材料中的作用 (2).理解各类增强材料增强原理 (3).掌握常用增强材料的制备工艺 3. 重难点 (1).重点是理解各类型增强材料的增强机制和特点 (2).难点是掌握几种常用增强材料的制备工艺 第4章纤维复合材料及其制造方法 1. 教学内容 (1).聚合物基复合材料

功能高分子材料

种类繁多的功能高分子材料 功能高分子材料目前尚无严格的定义。一般认为,是指除了具有一定的力学性能之外,还具有某些特定功能(如化学性、导电性、磁性、光敏性、生物活性等)的高分子材料。或者理解为是一种当受到外部刺激时,能通过化学或物理方法做出响应的材料。 材料的性能是指材料对外部作用的抵抗特性。而功能是指向材料输入某种能量和信息,经过材料的储存、传输或转换等过程,再向外输出的一种特性。按照功能高分子材料的组成和结构,可将其分为结构型功能高分子材料和复合型功能高分子材料。按照来源又可分为天然功能高分子材料、半合成功能高分子材料和合成功能高分子材料。通常对于功能高分子材料是按照功能和应用特点进行分类。据此大致可将功能高分子材料分为化学、光、电、磁、热、声、机械、生物等八大类。 (1)聚苯乙烯型吸附树脂80%以上的吸附树脂是聚苯乙烯型的吸附树脂,它们主要是以苯乙烯为主要的合成单体,以二乙烯苯作为交联单体制备的。聚苯乙烯是最早工业化的塑料品种之一,其苯环上的邻、对位具有一定的活性,便于和其他的化合物反应,引入其他的化学基团,实现对聚苯乙烯的改性,同时将之作为吸附树脂使用时,为了提高其稳定性,还需对其进行一定的交联。聚苯乙烯的主要缺点在于,机械强度不够高,抗冲击性和耐热性较差。

在水溶液中悬浮聚合得到的聚苯乙烯型吸附树脂其外观是白色或浅黄色,直径不同的多孔球粒。通过选择不同的引发剂,苯乙烯可以实现光引发、热引发聚合,利用所加入的交联剂如二乙烯苯的用量来调节其交联度。同时聚苯乙烯上的活性点为其改性提供了条件,可以引入其他极性基团,甚至可以引入配位结构形成螯合树脂或引入离子型基团得到离子交换树脂。 (2)离子交换树脂是结构上带有可离子化基团的一类高分子,它由高分子骨架、与高分子骨架以化学键相连的固定离子以及可在一定条件下离解出来并与周围的外来离子相互交换的反离子组成。其功能基团为固定离子与反离子组成的离子化基团。功能基团中的可交换离子与外来离子完成交换过程后,通过改变条件又可再生为原有的反离子。 根据离子交换树脂的合成方式,可将其分为缩聚型和加聚型。根据树脂的物理结构,可分为凝胶型、大孔型和载体型离子交换树脂。离子交换树脂在重金属的提取、水处理、化学反应的催化方面均有重要的应用。 (3) 复合型导电高分子材料是采用各种复合技术将导电性物质与树脂复合而成的。按照复合技术分类有导电表面膜形成法,导电填料分散复合法、导电填料层压复合法三种。 常用的导电填料有金粉、银粉、铜粉、镍粉、钯粉、钼粉、铝粉、钴粉镀银二氧化硅粉、镀银玻璃微珠、炭黑、碳化钨、碳化镍等。复合型导电高分材料可用作防静电材料、导电涂料、电路板的制作、压

高分子材料在交通运输中的应用

高分子材料在交通运输中的应用 随着科学技术的不断进步,具有质轻、高强、耐腐蚀、易成型等优点的高分子材料及其复合材料越来越多地在现代交通运输业(包括基础设施建设和海上陆地交通运输工具)中得到广泛的应用。应用于交通运输行业的高分子材料主要包括塑料及其复合材料和橡胶两大类,当然其他以高分子材料为基础原料的材料如胶粘剂、油漆等也大量用于交通运输业,但用量远远低于塑料和橡胶。 ??? 交通运输行业中,目前得到广泛应用的高分子材料主要包括塑料及其复合材料、橡胶、胶粘剂等,本文分别从塑料及其复合材料和橡胶两个方面介绍高分子材料及其复合材料在交通运输行业包括交通运输基础设施和交通运输工具上的应用现状。 一、塑料及其复合材料在交通运输中的应用 ??? 塑料及其复合材料在基础设施建设方面,主要应用于路基、高等级公路的护栏,各种交通标识、标牌;高速铁路的钢轨扣件(包括绝缘板、垫和挡板座等),轨道的填充材料、弹性枕木等部件。而在交通运输工具方面,应用塑料材料最多的是汽车工业,而在机车上,塑料则主要用于无油润滑部件、制动盘摩擦片、车窗玻璃等,在其他类型的交通运输工具上,塑料及其复合材料的应用也越来越广泛。 ??? 1、基础设施 ???(1)公路基础设施 ??? 根据我国公路交通的阶段发展目标,到2010年全国公路总里程将达到210~230万公里,到2020年全国公路总里程将达到260~300万公里,高速公路里程达到7万公里以上。虽然我国高等级公路建设发展迅速,但因交通量大、车辆超载严重、车速快,对路基路面的危害导致我国一部分高等级公路路面损坏现象十分严重,对路基路面的强度和稳定性都提出了更高的要求。 ??? 聚苯乙烯(PS)泡沫板材在国外作为路基填充材料已有30年历史,在美国和欧洲已被普遍采用。PS泡沫板材在公路建设上的应用,可有效改善路面质量,更好地保证道路完好平坦。由于PS泡沫比强度高、质量小、可承受较大的交通负荷、轻质防水,能更有效地防止路面在使用过程中雨雪对路基的侵蚀,提高了防止路面局部塌陷的能力。PS泡沫材料的优异性能能够在一些特殊地段大显身手,如在沼泽地带的路段上用作路基填料,可大大减少路面的沉降及侧压力,利于保持路面的稳定完好及地下排水系统的畅通;用于冻土地区还可减少冰冻现象;在雨雪较多的山地,还可提高坡体的稳定性,使坡体变得稳定坚固,能有效减少山体滑坡现象的发生。用聚苯乙烯泡沫板作路基填料的费用低廉,维护工作量和费用也大大降低。另外,路基用PS泡沫板还可以采用包装材料的回收料来制作,为包装废弃物寻找了一个合理的去处。尽管我国开发路基用聚苯乙烯泡沫板材才刚刚起步,但在沪宁高速苏州段路基上的应用已经为我们展示了良好的市场前景。 ??? 高等级公路防护栏也是塑料及其复合材料应用的一个重要方面。现在高等级公路使用的防护栏多用钢材制成,但钢护栏自重大,安装维修不方便;耐腐蚀性差,易受汽车尾气的严重侵蚀;标识能力差,且耐撞击性能也有待提高。所以,现在很多国家都在大力研究塑料复合材料护栏,并已经取得了一些突破性进展。玻璃纤维增强塑料(GFRP)强度高,刚度小,受撞击

相关主题
文本预览
相关文档 最新文档