当前位置:文档之家› 数学模型(第四版)课后详细答案

数学模型(第四版)课后详细答案

数学模型(第四版)课后详细答案
数学模型(第四版)课后详细答案

数学模型作业

六道题

作业一

1.P56.8一垂钓俱乐部鼓励垂钓者将钓上的鱼放生,打算按照放生的鱼的重量给予奖励,俱乐部只准备了一把软尺用于测量,请你设计按照测量的长度估计鱼的重量的方法。假定鱼池中只有一种鲈鱼,并且得到8条鱼的如下数据(胸围指鱼身的最大周长):

解:

要求鱼的体重,我们利用质量计算公式:M=ρV。我们假定鱼池中是同一种鱼,于是可以近似地考虑其密度是相同的。至于鱼的体积问题,由于是同一种类,可以假定这种鱼在体型上是一致的。我们假设鱼的体积和鱼身长的立方成正比。即:V=k

1

L3,因此,模型为:

33

111

M V k l K L

ρρ

===……………………………模型一

利用Eviews软件,用最小二乘法估计模型中的参数K

1

,如下图1所示:

图1

从图1结果可以得到参数K

1

=0.014591,所以模型为:

3

1

M0.014591 L

=

上述模型存在缺陷,因为它把肥鱼和瘦鱼同等看待。因此,有必要改进模型。如果只假定鱼的横截面是相似的,假设横截面积与鱼身最大周长的平方成

正比,即:V=k

2

d2L,因此,模型为:

身长

/cm

36.8 31.8 43.8 36.8 32.1 45.1 35.9 32.1

质量

/g

765 482 1162 737 482 1389 652 454

胸围

/cm

24.8 21.3 27.9 24.8 21.6 31.8 22.9 21.6

22222M V k d K d L L ρρ===………………………………

模型二

利用Eviews 软件,用最小二乘法估计模型中的参数K 2,如下图2所示:

图2

从图2可以得到参数K 2=0. 032248,所以模型为:

22M 0.032248d L

=

将实际数据与模型结果比较如表1所示:

实际数

据M 765 482 1162 737 482 1389 652 454

模型一M 1 727.165 469.214 1226.061 727.165 482.629 1338.502 675.108 482.619 模型二M 2 729.877 465.248 1099.465 729.877 482.960 1470.719 607.106 483.960

2.P131.2 一家出版社准备在某市建立两个销售代理点,向7个区的大学生售书,每个区的大学生数量(单位:千人)已经表示在图上。每个销售代理点只能向本区和一个相邻区的大学生售书,这两个代理点应该建在何处,才能使所能供应的大学生的数量最大?建立该问题的整数线性规划模型并求解。

解:

将大学生数量为34、29、42、21、56、18、71的区分别标号为1、2、3、4、5、6、7区,画出如下区域区之间的相邻关系:

2

5

记r 为第i 区的大学生人数,用0-1变量x ij =1表示(i ,j )区的大学生由一个代售点供应图书(i

i j ij

i.j

Max r r x s.t.2

1,{0,1}

i j i j ij

j

j

i j x x x

i

x =+≤+≤?∈∑∑∑∑相邻

()

即:

12132325344546566747121323242534454647566712131223242513233424455646Max 63*x 76*x 71*x 85*x 63*x 77*x 39x *x 74*x 89*x 92*x s.t.x x x x x x x x x x x 2 x x 1

x x x x 1 x x x 1 x x x 1 x =+++++++++++++++++++≤+≤+++≤++≤++≤5667ij ij x x 1 x 0x 1

++≤==或将上述建立的模型输入LINGO ,如下: modle:

max=63*x12+76*x13+71*x23+85*x25+63*x34+77*x45+39x*x46+74*x56+89*x67+92*x47 s.t. x12+x13+x23+x24+x25+x34+x45+x46+x47+x56+x67<=2; x12+x13<=1;

x12+x23+x24+x25<=1; x13+x23+x34<=1;

x24+x45+x56<=1; x46+x56+x67<=1

@gin(x12); @gin(x13); @gin(x23); @gin(x25); @gin(x34); @gin(x45); @gin(x46);@gin(x47); @gin(x67); End 运行,得到的输出如下:

Local optirnal solution found at iteration Objective value: Vauable Value Reduced Cost

x12 0.000000 0000000 x13 0.000000 0000000 x23 0.000000 0000000 x24 0.000000 0000000 x25 1.000000 0000000 x34 0.000000 0000000 x45 0.000000 0000000 x46 0.000000 0000000 x47 1.000000 0000000 x56 0.000000 0.000000 x67 0.000000 0000000

从上述结果可以得到:最优解 2547x x 1==(其他的均为0),最优值为177人. 即:第2、5区的大学生由一个销售代理点供应图书,代理点在2区或者5区,第4、7区区的大学生由另一个销售代理点供应图书,代理点在4区或者7区。

作业二

3.P181.14 在鱼塘中投放n 0尾鱼苗,随着时间的增长,尾数将减少而每尾的重量将增加。

(1)设尾数n(t) 的(相对)减少率为常数;由于喂养引起的每尾鱼重量的增加率与鱼表面积成正比,由于消耗引起的每尾鱼重量的减少率与重量本身成正比。分别建立尾数和每尾鱼重的微分方程,并求解。

(2)用控制网眼的办法不捕小鱼,到时刻T 才开始捕捞,捕捞能力用尾数的相对减少量|?/n| 表示,记作E ,即单位时间捕获量是En(t)。问如何选择T 和E ,使从T 开始的捕获量最大。 解: (1)

鱼塘的初始鱼苗为n 0尾,且随着时间的增长,尾数将减少。设尾数n(t) 的(相对)减少率为为k 1,因此由题意建立微分方程为:

,(0)(0)dn

kn k dt n n =->= 求解得:

0()kt n t n e -=

在鱼塘里,由于喂养引起的每尾鱼重量的增加率与鱼表面积成正比,即:

S αI(t)=

在鱼塘里,由于消耗引起的每尾鱼重量的减少率与重量本身成正比,即:

m βD(t)=

所以每尾鱼重量的净增长率r(t)为:

S m αβ-r(t)=

因此,建立微分方程为:

dm

S m dt

αβ-= 因为该微分方程涉及多个变量间的数量关系,所以我们暂时无法求解该微分方程。但是要想解决此微分方程还需要更多的信息,例如,每尾鱼表面积与其重量间的关系,一旦此关系确定,便可轻松解出每尾鱼的质量随时间的变化,即m(t)。

(2)

用控制网眼的办法不捕小鱼,假设t=T 时开始捕捞,且单位时间的捕捞率为E ,依题意建立微分方程:

,()dn

kn En t T dt

=--≥

因此得:

()()0()t E t T n t n e e λλ--+-=

所以单位时间的捕捞鱼的尾数为En(t),因此从T 时刻开始的总捕捞量为:

()()T

y m t En t dt ∞

=?

问题就转化为求E 和λ的值,使得y 最大,由于条件不足导致m(t)求解不出,因此无法求出y 的具体解释式。

4.P213.2 雨滴的速度v 与空气密度ρ、粘滞系数μ和重力加速度g 有关,其中粘滞系数的定义是:运动物体在空气中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度v 的表达式。 解:

雨滴速度问题中涉及的物理量:雨滴的速度v ,空气密度ρ,粘滞系数μ,重力加速度g ,长度γ。要寻找的关系是:

(,,,)v g ψγρμ=

更一般的将各个物理量之间的关系写作:

0),,,,(=g v f μργ

这里没有因变量与自变量之分,进而设:

3

5

1

2

4

.................(1)y y y y y v g πγρμ=

其量纲表达式为:

0130110002[]LM T []L MT ,[]L MT []LM T []LM T g νρμγ-----=====,,,

其中L ,M ,T 是基本量纲。 因此量纲表达式可以写成:

5120000130110002(LM T )(L MT )(L MT (LM T (LM T )y y y L M T -----=34y y ))

根据量纲原则可写成:

???

?

?=---=+=+--+020035414354321y y y y y y y y y y

量纲矩阵为:

11311()001

1

()10012()()()()

()()L A M T v g γρμ--????=????---??

解得方程的基本解为:

1211(1,,0,0,)22......................(2)31(0,,1,1,)22Y Y ?

=--???

?=---??

将(2)代入(1)可得两个相互独立的无量纲量

???==-----2/11

2/322

/12/11g g v μργ

πγπ 为了得到形如(,,,)v g ?γρμ=的关系,取12()πψπ=,其中

ψ是某个函数,

所以(2)式为:

1/21/23/211/2()v g g γψγρμ-----=

于是:

3/211/21/21/2()()v g g ψγρμγ---=

作业三

5.P248.13 一个岛屿上栖居着食肉爬行动物和哺乳动物,又长着茂盛的植物。爬行动物以哺乳动物为食物,哺乳动物又依赖植物生存。在适当假设下建立三者关系的模型,求其平衡点。 解:

)(1t x 、)(2t x 、)(3t x 分别表示植物、哺乳动物、食肉爬行动物在时刻t 的数量。假设不考虑植物、哺乳动物和食肉爬行动物对自身的阻滞增长作用。

设1r 为植物的固有增长率,而哺乳动物的存在使植物的增长率减少,设减小的程度与捕食者数量成正比,于是建立植物数量的模型:

)()

(21111x r x dt

t dx λ-= 比例系数1λ反映了哺乳动物消耗植物的能力。

哺乳动物离开植物无法生存,设其死亡率为2r ,则哺乳动物独自存在时有:

222)

(x r dt

t dx -= 而植物的存在可以为哺乳动物提供食物,但是食肉爬行动物的存在使哺乳动物数量减少,设减少的程度与食肉爬行动物数量成正比,于是建立哺乳动物数量模型:

)()

(312222x x r x dt

t dx μλ-+-= 其中比例系数2λ反映了植物对哺乳动物的供养能力,μ反映了食肉爬行动物掠取哺乳动物的能力。

食肉爬行动物离开动物无法生存,设其死亡率为3r ,则食肉爬行动物独自

存在时有:

333)

(x r dt

t dx -= 而哺乳动物的存在可以为食肉爬行动物提供食物,于是(4)式右端应加上哺乳动物对食肉爬行动物的增长作用,设为3λ,于是建立食肉爬行动物的数量模型:

)()

(23333x r x dt

t dx λ+-= 比例系数3λ反映了哺乳动物对食肉爬行动物的供养能力。

综上所述,建立如下微分方程组模型

????

??

???+-=-+-=-=)()

()()

()()

(2333331222221111x r x dt t dx x x r x dt t dx x r x dt t dx λμλλ 求得微分方程组的平衡点为

)0,,(

),0,0,0(1

1

22

21λλr r P P 其中平衡解)0,0,0(1P 对是没有意义的。

6.P43

7.9 一个服务网络由k 个工作站v1,v2,…,vk 依次串接而成,当某种服务请求到达工作站vi 时, vi 能够处理的概率为 pi ,转往下一站vi+1处理的概率为 qi (i=1,2,... ,k-1,设 qk=0),拒绝处理的概率为 ri ,满足pi + qi + ri =1。试构造马氏链模型,确定到达 vi 的请求平均经过多少工作站才能获得接受或拒绝处理的结果,被接受和拒绝的概率各多大。 解:

用随机变量i X 表示第i 站对请求服务的处理方式,i X =1表示接受请求

i X =2表示拒绝请求,()i ,,k =12L ,用()a i 1表示第i 站接受请求的概率,()

a i 2表示第i 站拒绝请求的概率。i q 表示第i 站转移至下一站的转移概率。分析可知,第i +1站处理请求的概率和第i 站处理请求的概率以及转移概率有关,由此可得

()(

)i i i i i i a i p q q q a i r q q q +-+-+=???

+=??L L 1111

211111

其中,()a p =111 ,()a r =211,由(1)可以计算出k 个站各自接受和拒绝服务

()i k k k a X p p q p q q p q q q --==++++1213211211L L

服务请求被拒绝处理的概率为

()i k k k a X p p q p q q r q q q --==++++121321121

2L L

将服务请求到达工作站i v 记做状态i ,i ,,k =12L ,设v 0表示请求被拒绝,

v 00表示请求被接受,于是转移概率矩阵为:

()()()

()()()

()()()()()()()()k k k k k p r q p r p p r q k p r k k k ---??

??????????

=???

???

-??

??-????

O O M M O O

O

M L 111221111

00001000102010121000 转移矩阵i p =1的状态i 称为吸收状态,如果马氏链中至少含有一个吸收状态,并且从每一个非吸收状态出发,能以正的概率经有限次转移到达某一个吸

收状态,那么这个马氏链称为吸收链。吸收链可以写成简单的标准形式,若有

r 个吸收状态,k r -个非吸收状态,则转移矩阵p 可表示为

r r

I p R Q ???

=????

0 其中k r -阶子方阵Q 的特征值λ满足λ<1,这要求子阵()k r r R -?中必含有非零元素,以满足任一非吸收状态经有限次转移能够到达某一个吸收状态的条件,这样Q 就不是随机矩阵,它至少存在一个小于1的行和,且如下定理成。

由于()I Q -可逆因此:

()s s M I Q Q ∞

-==-=∑1

记元素全为1的列向量()T

e ,,=111L ,则y Me =的第i 个分量是从第i 个非吸收状态出发,被某个吸收状态吸收的平均转移次数。

所以有

()k k q q q q q q q q M I Q ---????????=-=??

?

?????

121112121

1101L L L O M O M

到达i v 的请求获得接受或拒绝时,平均经过的工作站数由y Me =可得:

k i q q q q q q -=++++1121211L L

数学模型第三版课后习题答案.doc

《数学模型》作业解答 第七章( 2008 年 12 月 4 日) 1.对于节蛛网模型讨论下列问题: ( 1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一时段的价格,所以第 k 1时段的价格y k 1由第k 1 和第 k 时段的数量x k 1和x k决定,如果仍设x k 1仍只取

决于 y k ,给出稳定平衡的条件,并与节的结果进行比较 . ( 2)若除了 y k 1 由 x k 1 和 x k 决定之外, x k 1 也由前两个时段的价格 析稳定平衡的条件是否还会放宽 . 解:( 1)由题设条件可得需求函数、供应函数分别为: y k 1 f x k 1 x k ) ( 2 x k 1 h( y k ) 在 P 0 (x 0 , y 0 ) 点附近用直线来近似曲线 f , h ,得到 y k 1 y 0 ( x k 1 x k x 0 ), 2 x k 1 x 0 ( y k y 0 ) , 由( 2)得 x k 2 x 0 ( y k 1 y 0 ) ( 1)代入( 3)得 x k 2 x 0 ( x k 1x k x 0 ) 2 2x k 2 x k 1 x k 2x 0 2 x 0 对应齐次方程的特征方程为 2 2 ( ) 2 8 特征根为 1, 2 4 y k 和 y k 1 确定 . 试分 (1) ( 2) (3) 当 8 时,则有特征根在单位圆外,设 8 ,则

1,2 ( ) 2 ( ) 2 8 42 2 4 1,2 1 2 即平衡稳定的条件为 2与 P 207 的结果一致 . ( 2)此时需求函数、供应函数在 P 0 (x 0 , y 0 ) 处附近的直线近似表达式分别为: y k 1 y 0 ( x k 1 x k x 0 ), ( 4) 2 x k 1 x 0 ( y k y k 1 y 0 ) , ( 5) 2 由( 5)得, (x x 0 ) β(y y y k 1 y 0 ) ( 6 ) 2 k 3 k 2 将( 4)代入( 6),得 2( x k 3 x 0 ) ( x k 2 x k 1 x 0 ) ( x k 1 x k x 0 ) 2 2 4 x k 3x k 2 2 x k 1 x k 4 x 0 4 x 0 对应齐次方程的特征方程为 4 3 2 2 0 (7) 代数方程( 7 )无正实根,且 αβ , , 2 4 不是( 7)的根 . 设( 7)的三个非零根分 别为 1, 2, 3,则 1 2 3 4 1 2 2 3 3 1 2 1 2 3 4 对( 7)作变换: , 则 12 3 q 0, p 其中 p 1 (2 2 2 ), q 1(833 2 2 ) 4 12 4 123 6

数学模型第四版习题3-1答案

1.在3.1节存贮模型的总费用增加购买货物本身的费用,重新确定最优订货周期和订 货批量,证明在不允许缺货模型和允许缺货模型中结果都与原来的一样。 问题分析:增加购买货物本身的费用后,仍符合增加前生产规律,所以必存在一个最佳的周期,使总费用最小。 一般的考察这样的不允许缺货的存货模型:产品需求稳定不变,生产准备费和产品储存费为常数,生产能力无限,不允许缺货,确定生产周期和产量,使总费用最小。 模型假设:为了处理的方便,考虑连续模型,即设生产周期T和产量Q均为连续量。根据问题性质作如下假设: 1.产品每天的需求量为常数r 2.每件产品的购买费用为p. 3.每次生产准备费为c1,每天每件产品贮存费为c2 4.生产能力为无限大(相对于需求量),当贮存量降到零时,Q件产品立即生产 出来供给需求,即不允许缺货 模型建立:将贮存量表示为时间的函数q(t),t=0生产Q件,贮存量q(0)=Q,q(t)以需求速率递减,直到q(t)=0,如图所示 Q=rT 一个周期内的贮存费是c2∫0T q(t)dt,其中积分恰等于图中三角形A的面积QT/2,因为一个周期的准备费为c1,所以可以得到一个周期的总费用为 C=c1+c2QT/2+PQ=c1+c2rT2+prT 于是每天的平均费用为 C=C/T=c1/T+c2rT/2+pr

这就是这个优化模型的目标函数。 模型求解:求T使目标函数的C最小 C′=-c1/T2+c2r/2 令C′=0 T=√2c1/c2r 带入可得Q=√2c1r/c2 所以可以得到C=√2c1c2r 结果解释:当准备费c1增加时,生产周期和产量都变大;当贮存费c2增加时,生产周期和产量都变小;当需求量r增加时,生产周期变小而产量变大。当生产周期T=√2c1/c2r时,总费用最小。

数学建模作业

数学建模作业 姓名:李成靖 学号:1408030311 班级:计科1403班 日期:2015.12。30

1.某班准备从5名游泳队员中选4人组成接力队,参加学校的4×100m混合泳接力比赛,5名队员4种泳姿的百米平均成绩如下表所示,问应如何选拔队员组成接力队? 如果最近队员丁的蛙泳成绩有较大的退步,只有1′15"2;而队员戊经过艰苦训练自由泳成绩有所进步,达到57”5,组成接力队的方案是否应该调整? 名队员4种泳姿的百米平均成绩 ij 若参选择队员i 加泳姿j 的比赛,记x i j=1, 否则记xi j=0 目标函数: 即m in=66.8*x11+75.6*x12+87*x13+58.6*x14+57。2*x21+66*x22+66.4*x 23+53*x24+78*x31+67.8*x32+84。6*x33+59.4*x34+70*x 41+74。2*x42+69.6*x 43+57。2*x44+67。4*x51+71*x52+83。8*x53+62.4*x54; 约束条件: x 11+x12+x13+x14〈=1; x 21+x22+x23+x 24〈=1; x 31+x32+x33+x34<=1; x 41+x42+x 43+x44〈=1; x 51+x52+x53+x54<=1; x11+x 21+x31+x41+x51=1; x 12+x22+x32+x42+x52=1; x13+x 23+x33+x43+x53=1; x14+x24+x 34+x44+x54=1; 甲 乙 丙 丁 戊 蝶泳 1′06"8 57”2 1′18” 1′10” 1′07"4 仰泳 1′15"6 1′06" 1′07”8 1′14"2 1′11" 蛙泳 1′27” 1′06"4 1′24"6 1′09"6 1′23"8 自由泳 58"6 53” 59”4 57”2 1′02”4 ∑∑=== 415 1j i ij ij x c Z Min

数学模型习题解答解读

上机练习题一 班级: 姓名: 学号: 1.建立起始值=3,增量值=5.5,终止值=44的一维数组x 答案: x=(3:5.5:44) 2.写出计算 Sin(30o )的程序语句. 答案: sin(pi*30/180) 或 sin(pi/6) 3.矩阵??????????=187624323A ,矩阵???? ??????=333222111B ;分别求出B A ?及A 与B 中对应元素之间的乘积. 答案:A = [3,2,3; 4,2,6; 7,8,1] B = [1,1,1; 2,2,2; 3,3,3] A*B ;A.*B 4计算行列式的值1 876243 23=A 。答案:det(A) 5对矩阵 ???? ??????=187624323A 进行下述操作。 (1)求秩。答案:rank(A) (2)求转置。答案:A' (3) 对矩阵求逆,求伪逆。答案:inv(A) ,pinv(A) (4) 左右反转,上下反转。答案:fliplr(A),flipud(A) (5) 求矩阵的特征值. 答案:[u,v]=eig(A) (6) 取出上三角和下三角. 答案:triu(A) tril(A) (7)以A 为分块作一个3行2列的分块矩阵。答案:repmat(a) 6 计算矩阵??????????897473535与???? ??????638976242之和。 >> a=[5 3 5;3 7 4;7 9 8]; >> b=[2 4 2;6 7 9;8 3 6]; >> a+b 7 计算??????=572396a 与?? ????=864142b 的数组乘积。 >> a=[6 9 3;2 7 5]; >> b=[2 4 1;4 6 8];

数学建模习题与答案课后习题

第一部分课后习题 1.学校共1000名学生,235人住在A宿舍,333人住在B宿舍,432人住在C宿舍。学生 们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数: (1)按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者。 (2)2.1节中的Q值方法。 (3)d’Hondt方法:将A,B,C各宿舍的人数用正整数n=1,2,3,…相除,其商数如 将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A,B,C行有横线的数分别为2,3,5,这就是3个宿舍分配的席位。你能解释这种方法的道理吗。 如果委员会从10人增至15人,用以上3种方法再分配名额。将3种方法两次分配的结果列表比较。 (4)你能提出其他的方法吗。用你的方法分配上面的名额。 2.在超市购物时你注意到大包装商品比小包装商品便宜这种现象了吗。比如洁银牙膏50g 装的每支1.50元,120g装的3.00元,二者单位重量的价格比是1.2:1。试用比例方法构造模型解释这个现象。 (1)分析商品价格C与商品重量w的关系。价格由生产成本、包装成本和其他成本等决定,这些成本中有的与重量w成正比,有的与表面积成正比,还有与w无关的因素。 (2)给出单位重量价格c与w的关系,画出它的简图,说明w越大c越小,但是随着w 的增加c减少的程度变小。解释实际意义是什么。 3.一垂钓俱乐部鼓励垂钓者将调上的鱼放生,打算按照放生的鱼的重量给予奖励,俱乐部 只准备了一把软尺用于测量,请你设计按照测量的长度估计鱼的重量的方法。假定鱼池中只有一种鲈鱼,并且得到8条鱼的如下数据(胸围指鱼身的最大周长): 先用机理分析建立模型,再用数据确定参数 4.用宽w的布条缠绕直径d的圆形管道,要求布条不重叠,问布条与管道轴线的夹角 应 多大(如图)。若知道管道长度,需用多长布条(可考虑两端的影响)。如果管道是其他形状呢。

数学建模第四版答案

数学建模第四版答案 【篇一:数学建模课后答案】 t>第二章(1)(2012年12月21日) 1.学校共1000名学生,235人住在a宿舍,333人住在b宿舍,432人住在c宿舍.学生们 要组织一个10人的委员会,试用下列办法分配各宿舍的委员数:(1). 按比例分配取整数的名额后,剩下的名额按惯例分给小数部分 较大者; (2). 1中的q值方法; (3).d’hondt方法:将a、b、c各宿舍的人数用正整数n=1,2,3,??相除,其商数如下表: 将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中a、b、c行有横线的数分别为2,3,5,这就是3个宿舍 分配的席位.你能解释这种方法的道理吗? 如果委员会从10个人增至15人,用以上3种方法再分配名额,将 3种方法两次分配的结果列表比较. 解:先考虑n=10的分配方案, p1?235,p2?333,p3?432,方法一(按比例分配) ?p i?1 3 i ?1000. q1? p1n ?p i?1 3 ?2.35,q2? p2n i ?p i?1 3 ?3.33, q3? p3n i

?p i?1 3 ?4.32 i 分配结果为: n1?3, n2?3, n3?4 方法二(q值方法) 9个席位的分配结果(可用按比例分配)为: n1?2,n2?3, n3?4 第10个席位:计算q值为 235233324322 q1??9204.17, q2??9240.75, q3??9331.2 2?33?44?5 q3最大,第10个席位应给c.分配结果为 n1?2,n2?3,n3?5 方法三(d’hondt方法) 此方法的分配结果为:n1?2,n2?3,n3?5 此方法的道理是:记pi和ni为各宿舍的人数和席位(i=1,2,3代表a、b、c宿舍). pi 是ni 每席位代表的人数,取ni?1,2,?,从而得到的近. pip 中选较大者,可使对所有的i,i尽量接nini 再考虑n?15的分配方案,类似地可得名额分配结果.现将3种方法两次分配的结果列表如下: 2.试用微积分方法,建立录像带记数器读数n与转过时间的数学模型. 解:设录像带记数器读数为n时,录像带转过时间为t.其模型的假设见课本. 考虑t到t??t时间内录像带缠绕在右轮盘上的长度,可得 vdt?(r?wkn)2?kdn,两边积分,得 ? t vdt?2?k?(r?wkn)dn n 2?rk?wk22n2 2vv 第二章(2)(2008年10月9日)

数学建模作业43508

数学建模作业

1、在甲乙双方的一场战争中,部分甲方部队被乙方部队包围长达4个月,乙方封锁了所有 水陆交通通道,因此被包围的甲方只能依靠空中交通维持补给,运送4个月的供给依此分别 需要2次、3次、3次、4次飞行,每次飞行编队由50架飞机组成,每架飞机都需要3名飞 行员,每架飞机每月只能飞行一次,每名飞行员每月也只能飞行一次,每次执行完运输飞行 任务后的返回途中有20%的飞机被乙方部队击落,导致机上的飞行员也牺牲或失踪。在第 一个月开始时,甲方拥有110架飞机和330名熟练的飞行员,每个月开始时,甲方可以招聘 新飞行员和购买新飞机,新飞机必须经过一个月的检查磨合后才可以投入使用,新飞行员也 必须在熟练飞行员的指导下经过一个月的训练才能成为熟练飞行员而投入飞行(作为教练的 熟练飞行员本月不能参与飞行任务),每名熟练飞行员作为教练每月指导20名飞行员(包括 自己在内)进行训练,每名飞行员在完成本月的飞行任务后必须有一个月的带薪休假,然后 返回待命可再次投入飞行,已知各项费用平均单价如下表所示(单位:千元)。 第一个月第二个月第三个月第四个月新飞机价格200 195 190 185 闲置的熟练飞行员报酬7 6.9 6.8 6.7 10 9.9 9.8 9.7 教练及飞行员报酬和训练 费用 执行飞行任务的飞行员报 9 8.9 9.8 9.7 酬 休假期的飞行员报酬 5 4.9 4.8 4.7 (1)为甲方安排一个总费用最小的飞行计划。 (2)如果每名熟练飞行员作为教练每月指导不超过20名飞行员(包括自己在内)进行训练, 相应的模型和安排将会发生怎样的改变? 解:(1) 设每月初购买飞机数量为d1,d2,d3,d4架,每月闲置飞机数量为 y1,y2,y3,y4架,每月教练与新飞行员总数量为a1,a2,a3,a4人,每月闲置熟练 飞行员的数量为b1,b2,b3,b4人。由于每月执行任务的飞行员和休假期的飞行员 的数量是固定的,即这部分的花费是固定的,所以在优化目标中可以不必考虑。 模型建立: 决策变量:设每月初购买飞机数量为d1,d2,d3,d4架,每月闲置飞机数量 为y1,y2,y3,y4架,每月教练与新飞行员总数量为a1,a2,a3,a4人,每月闲置熟 练飞行员的数量为b1,b2,b3,b4人。 目标函数:设总费用为z元,则由价格平均表可知: z=200d1+195d2+190d3+185d4+10a1+9.9a2+9.8a3+9.7a4+7b1+6.9b2+6.8b3+ 6.7b4 约束条件包括: (1)飞机数量限制:四个月中出去执行任务的飞机数量分别为100,150,150,200架次,每次安全返回的数量为80,120,120,160架次。 根据每个月的实际情况可得方程: 100+y1=110; 150+y2=80+y1+d1; 150+y3=120+y2+d2; 200+y4=120+y3+d3;

数学模型课后答案

《数学模型》作业答案 第二章(1)(2012年12月21日) 1. 学校共1000名学生,235人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍.学生们 要组织一个10人的委员会,试用下列办法分配各宿舍的委员数: (1). 按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者; (2). §1中的Q 值方法; (3).d ’Hondt 方法:将A 、B 、C 各宿舍的人数用正整数n=1,2,3,……相除,其商数如下表: 将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A 、B 、C 行有横线的数分别为2,3,5,这就是3个宿舍分配的席位.你能解释这种方法的道理吗? 如果委员会从10个人增至15人,用以上3种方法再分配名额,将3种方法两次分配的结果列表比较. 解:先考虑N=10的分配方案, ,432 ,333 ,235321===p p p ∑==3 1 .1000i i p 方法一(按比例分配) ,35.23 1 11== ∑=i i p N p q ,33.33 1 22== ∑=i i p N p q 32.43 1 33== ∑=i i p N p q 分配结果为: 4 ,3 ,3321===n n n 方法二(Q 值方法) 9个席位的分配结果(可用按比例分配)为: 4 ,3 ,2321===n n n

第10个席位:计算Q 值为 ,17.92043223521=?=Q ,75.92404333322=?=Q 2.9331544322 3=?=Q 3Q 最大,第10个席位应给C.分配结果为 5 ,3 ,2321===n n n 方法三(d ’Hondt 方法) 此方法的分配结果为:5 ,3 ,2321===n n n 此方法的道理是:记i p 和i n 为各宿舍的人数和席位(i=1,2,3代表A 、B 、C 宿舍). i i n p 是每席位代表的人数,取,,2,1 =i n 从而得到的i i n p 中选较大者,可使对所有的,i i i n p 尽量接近. 再考虑15=N 的分配方案,类似地可得名额分配结果.现将3种方法两次分配的结果列表如下: 2. 试用微积分方法,建立录像带记数器读数n 与转过时间的数学模型. 解: 设录像带记数器读数为n 时,录像带转过时间为t.其模型的假设见课本. 考虑t 到t t ?+时间内录像带缠绕在右轮盘上的长度,可得,2)(kdn wkn r vdt π+=两边积分,得 ?? +=n t dn wkn r k vdt 0 )(2π )22 2 n wk k(r n πvt +=∴ .2 22n v k w n v rk t ππ+=∴ 《数学模型》作业解答 第三章1(2008年10月14日)

数学建模课后答案

第一章 4.在1、3节“椅子能在不平的地面上放稳不”的假设条件中,将四脚的连线呈正方形改为长方形,其余不变。试构造模型并求解。 答:相邻两椅脚与地面距离之与分别定义为)()(a g a f 和。f 与g 都就是连续函数。椅子在任何位置至少有三只脚着地,所以对于任意的a ,)()(a g a f 和中至少有一个不为零。不妨设0)0(,0)0(g >=f 。当椅子旋转90°后,对角线互换,0π/2)(,0)π/2(>=g f 。这样,改变椅子的位置使四只脚同时着地。就归结为证明如下的数学命题: 已 知 a a g a f 是和)()(的连续函数,对任意 0)π/2()0(,0)()(,===?f g a g a f a 且,0)π/2(,0)0(>>g f 。证明存在0a ,使0)()(00==a g a f 证:令0)π/2(0)0(),()()(<>-=h h a g a f a h 和则, 由g f 和的连续性知h 也就是连续函数。 根据连续函数的基本性质, 必存在0a (0<0a <π/2)使0)(0=a h ,即0)()(00==a g a f 因为0)()(00=?a g a f ,所以0)()(00==a g a f

8 第二章

10.用已知尺寸的矩形板材加工半径一定的圆盘,给出几种简便有效的排列方法,使加工出尽可能多的圆盘。

第三章 5.根据最优定价模型 考虑成本随着销售量的增加而减少,则设 kx q x q -=0)( (1)k 就是产量增加一个单位时成本的降低 , 销售量x 与价格p 呈线性关系0,,>-=b a bp a x (2) 收入等于销售量乘以价格p :px x f =)( (3) 利润)()()(x q x f x r -= (4) 将(1)(2)(3)代入(4)求出 ka q kbp pa bp x r --++-=02)( 当k q b a ,,,0给定后容易求出使利润达到最大的定价*p 为 b a kb ka q p 2220*+--=

数学建模课后习题答案

第一章 课后习题6. 利用1.5节药物中毒施救模型确定对于孩子及成人服用氨茶碱能引起严重中毒和致命的最小剂量。 解:假设病人服用氨茶碱的总剂量为a ,由书中已建立的模型和假设得出肠胃中的药量为: )()0(mg M x = 由于肠胃中药物向血液系统的转移率与药量)(t x 成正比,比例系数0>λ,得到微分方程 M x x dt dx =-=)0(,λ(1) 原模型已假设0=t 时血液中药量无药物,则0)0(=y ,)(t y 的增长速度为x λ。由于治疗而减少的速度与)(t y 本身成正比,比例系数0>μ,所以得到方程: 0)0(,=-=y y x dt dy μλ(2) 方程(1)可转换为:t Me t x λ-=)( 带入方程(2)可得:)()(t t e e M t y λμμ λλ ----= 将01386=λ和1155.0=μ带入以上两方程,得: t Me t x 1386.0)(-= )(6)(13866.01155.0---=e e M t y t 针对孩子求解,得: 严重中毒时间及服用最小剂量:h t 876.7=,mg M 87.494=; 致命中毒时间及服用最小剂量:h t 876.7=,mg M 8.4694= 针对成人求解: 严重中毒时间及服用最小剂量:h t 876.7=,mg M 83.945= 致命时间及服用最小剂量:h t 876.7=,mg M 74.1987= 课后习题7. 对于1.5节的模型,如果采用的是体外血液透析的办法,求解药物中毒施救模型的血液用药量的变化并作图。

解:已知血液透析法是自身排除率的6倍,所以639.06==μu t e t x λ-=1100)(,x 为胃肠道中的药量,1386.0=λ )(6600)(t t e e t y λμ---= 1386.0,639.0,5.236)2(,1100,2,====≥-=-λλλu z e x t uz x dt dz t 解得:()2,274.112275693.01386.0≥+=--t e e t z t t 用matlab 画图: 图中绿色线条代表采用体外血液透析血液中药物浓度的变化情况。 从图中可以看出,采取血液透析时血液中药物浓度就开始下降。T=2时,血液中药物浓度最高,为236.5;当z=200时,t=2.8731,血液透析0.8731小时后就开始解毒。 第二章 1.用 2.4节实物交换模型中介绍的无差别曲线的概念,讨论以下的雇员和雇主之间的关系: 1)以雇员一天的工作时间和工资分别为横坐标和纵坐标,画出雇员无差别曲线族的示意图,解释曲线为什么是那种形状; 2)如果雇主付计时费,对不同的工资率画出计时工资线族,根据雇员的无差别曲线族和雇主的计时工资线族,讨论双方将在怎样的一条曲线上达成协议; 3)雇员和雇主已经达成了协议,如果雇主想使用雇员的工作时间增加到t 2,他有两种

数学模型(第四版)课后详细答案

数学模型作业 六道题 作业一 1.P56.8一垂钓俱乐部鼓励垂钓者将钓上的鱼放生,打算按照放生的鱼的重量给予奖励,俱乐部只准备了一把软尺用于测量,请你设计按照测量的长度估计鱼的重量的方法。假定鱼池中只有一种鲈鱼,并且得到8条鱼的如下数据(胸围指鱼身的最大周长): 解: 要求鱼的体重,我们利用质量计算公式:M=ρV。我们假定鱼池中是同一种鱼,于是可以近似地考虑其密度是相同的。至于鱼的体积问题,由于是同一种类,可以假定这种鱼在体型上是一致的。我们假设鱼的体积和鱼身长的立方成正比。即:V=k 1 L3,因此,模型为: 33 111 M V k l K L ρρ ===……………………………模型一 利用Eviews软件,用最小二乘法估计模型中的参数K 1 ,如下图1所示: 图1 从图1结果可以得到参数K 1 =0.014591,所以模型为: 3 1 M0.014591 L = 上述模型存在缺陷,因为它把肥鱼和瘦鱼同等看待。因此,有必要改进模型。如果只假定鱼的横截面是相似的,假设横截面积与鱼身最大周长的平方成 正比,即:V=k 2 d2L,因此,模型为: 身长 /cm 36.8 31.8 43.8 36.8 32.1 45.1 35.9 32.1 质量 /g 765 482 1162 737 482 1389 652 454 胸围 /cm 24.8 21.3 27.9 24.8 21.6 31.8 22.9 21.6

22222M V k d K d L L ρρ===……………………………… 模型二 利用Eviews 软件,用最小二乘法估计模型中的参数K 2,如下图2所示: 图2 从图2可以得到参数K 2=0. 032248,所以模型为: 22M 0.032248d L = 将实际数据与模型结果比较如表1所示: 实际数 据M 765 482 1162 737 482 1389 652 454 模型一M 1 727.165 469.214 1226.061 727.165 482.629 1338.502 675.108 482.619 模型二M 2 729.877 465.248 1099.465 729.877 482.960 1470.719 607.106 483.960 2.P131.2 一家出版社准备在某市建立两个销售代理点,向7个区的大学生售书,每个区的大学生数量(单位:千人)已经表示在图上。每个销售代理点只能向本区和一个相邻区的大学生售书,这两个代理点应该建在何处,才能使所能供应的大学生的数量最大?建立该问题的整数线性规划模型并求解。 解: 将大学生数量为34、29、42、21、56、18、71的区分别标号为1、2、3、4、5、6、7区,画出如下区域区之间的相邻关系: 2 5

数学建模习题指导

数学建模习题指导 第一章 初等模型 讨论与思考 讨论题1 大小包装问题 在超市购物时你注意到大包装商品比小包装商品便宜这种现象吗?比如洁银牙膏50g 装的每支1.50元,120g 装的每支3.00元,二者单位重量的价格比是1.2:1,试用比例方法构造模型解释这种现象。 (1)分析商品价格C 与商品重量w 的关系。 (2)给出单位重量价格c 与w 的关系,并解释其实际意义。 提示: 决定商品价格的主要因素:生产成本、包装成本、其他成本。 单价随重量增加而减少 单价的减少随重量增加逐渐降低 思考题2 划艇比赛的成绩 赛艇是一种靠浆手划桨前进的小船,分单人艇、双人艇、四人艇、八人艇四种。各种艇虽大小不同,但形状相似。T.A.McMahon 比较了各种赛艇1964—1970年四次2000m 比赛的最好成绩(包括1964年和1968年两次奥运会和两次世界锦标赛),见下表。建立数学模型解释比赛成绩与浆手数量之间的关系。 各种艇的比赛成绩与规格 γβα++=3 2w w C w w c γβα++=-3 123 431w w c γβ--='-3 2943 4w w c γβ+=''-

第二章 线性代数模型 森林管理问题 森林中的树木每年都要有一批砍伐出售。为了使这片森林不被耗尽且每年都有所收获,每当砍伐一棵树时,应该就地补种一棵幼苗,使森林树木的总数保持不变。被出售的树木,其价值取决于树木的高度。开始时森林中的树木有着不同的高度。我们希望能找到一个方案,在维持收获的前提下,如何砍伐树木,才能使被砍伐的树木获得最大的经济价值。 思考: 试解释为什么模型中求解得到的 为每周平均销售量会略小于模型假设中给出的1。 练习: 将钢琴销售的存贮策略修改为:当周末库存量为0或1时订购,使下周初的库存 达到3架;否则,不订购。建立马氏链模型,计算稳态下失去销售机会的概率和每周的平均销售量。 2.将钢琴销售的存贮策略修改为:当周末库存量为0时订购本周销售量加2架;否则,不订购。建立马氏链模型,计算稳态下失去销售机会的概率和每周的平均销售量。 第三章 优化模型 讨论题 1)最优下料问题 用已知尺寸的矩形板材加工半径一定的圆盘。给出几种加工排列方法,比较出最优下料方案。 2)广告促销竞争问题 甲乙两公司通过广告竞争销售商品,广告费分别为 x 和 y 。设甲乙公司商品的售量在两公司总售量中所占份额是它们的广告费在总广告费中所占份额的函数 又设公司的收入与售量成正比,从收入中扣除广告费后即为公司的利润。试构造模型的图形,并讨论甲公司怎样确定广告费才能使利润最大。 (1)令 (2)写出甲公司的利润表达式 对一定的 y ,使 p (x ) 最大的 x 的最优值应满足什么关系。用图解法确定这个最优值。 练习1 三个家具商店购买办公桌:A 需要30张,B 需要50张,C 需要45张。这些办公桌由两个工厂供应:工厂1生产70张,工厂2生产80张。下表给出了工厂和商店的距离(单位公里) , 857.0=n R ) (),(y x y f y x x f ++的示意图。。画出则)()()(,t f t f t f y x x t 11=-++= 。 )(t p

数学模型第四版作业对于6.4节蛛网模型讨论下列问题

对于节蛛网模型讨论下列问题: (1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一时段的价格,所以第k+1时段的价格1+k y 由第k+1和第k 时段的数 量1+k x 和k x 决定。如果设1+k x 仍只取决于k y ,给出稳定平衡的条件,并 与的结果进行比较。 (2)若除了1+k y 由1+k x 和k x 决定之外,1+k x 也由前两个时段的价格k y 和 1-k y 决定,试分析稳定平衡的条件是否还会放宽。 解:(1) 设1+k y 由1+k x 和k x 的平均值决定,即价格函数表示为: )2 (11k k k x x f y +=++ 则 0),2 (0101>-+-=-++ααx x x y y k k k 0),(001>-=-+ββy y x x k k 消去y, 得到 012)1(22x x x x k k k +=++++αβαβαβ ,k=1,2,…. 该方程的特征方程为 022=++αβαβλλ 与节中 )2 (11-++=k k k y y g x 时的特征方程一样, 所以0<αβ<2, 即为0p 点的稳定条件。

(2)设 )2 (11k k k x x f y +=++ )2 (11-++=k k k y y g x , 则有 0),2 (0101>-+-=-++ααx x x y y k k k 0),2 (0101>-+=--+ββy y y x x k k k 消去y,得到 0123)1(424x x x x x k k k k +=++++++αβαβαβαβ 该方程的特征方程为 0242 3=+++αβαβλαβλλ 令λ=x,αβ=a , 即求解三次方程 0a 2ax ax 4x 2 3=+++ 的根 在matlab 中输入以下代码求解方程的根x : syms x a solve(4*x^3+a*x^2+2*a*x+a==0,x) 解得 1x = (36*a^2 - 216*a - a^3 + 24*3^(1/2)*(-a^2*(a - 27))^(1/2))^(1/3)/12 - a/12 + (a*(a - 24))/(12*(36*a^2 - 216*a - a^3 + 24*3^(1/2)*(-a^2*(a - 27))^(1/2))^(1/3)); 2x = -(2*a*(36*a^2 - 216*a - a^3 + 24*3^(1/2)*(-a^2*(a - 27))^(1/2))^(1/3) - 3^(1/2)*a*24*i - 3^(1/2)*(36*a^2 - 216*a - a^3 + 24*3^(1/2)*(-a^2*(a - 27))^(1/2))^(2/3)*i - 24*a + 3^(1/2)*a^2*i + (36*a^2 - 216*a - a^3 + 24*3^(1/2)*(-a^2*(a - 27))^(1/2))^(2/3) + a^2)/(24*(36*a^2 - 216*a - a^3 + 24*3^(1/2)*(-a^2*(a -

数学建模习题答案

数学建模部分课后习题解答 中国地质大学 能源学院 华文静 1、在稳定的椅子问题中,如设椅子的四脚连线呈长方形,结论如何? 解: 模型假设 (1) 椅子四条腿一样长,椅脚与地面接触处视为一点,四脚的连线呈长方形 (2) 地面高度就是连续变化的,沿任何方向都不会出现间断(没有像台阶那样的情 况),即从数学角度来瞧,地面就是连续曲面。这个假设相当于给出了椅子能放稳的必要条件 (3) 椅子在任何位置至少有三只脚同时着地。为了保证这一点,要求对于椅脚的间距 与椅腿的长度而言,地面就是相对平坦的。因为在地面上椅脚间距与椅腿长度的尺寸大小相当的范围内,如果出现深沟或凸峰(即使就是连续变化的),此时三只脚就是无法同时着地的。 模型建立 在上述假设下,解决问题的关键在于选择合适的变量,把椅子四只脚同时着地表示出来。首先,引入合适的变量来表示椅子位置的挪动。生活经验告诉我们,要把椅子通过挪动放稳,通常有拖动或转动椅子两种办法,也就就是数学上所说的平移与旋转变换。然而,平移椅子后问题的条件没有发生本质变化,所以用平移的办法就是不能解决问题的。于就是可尝试将椅子就地旋转,并试图在旋转过程中找到一种椅子能放稳的情形。 注意到椅脚连线呈长方形,长方形就是中心对称图形,绕它的对称中心旋转180度后,椅子仍在原地。把长方形绕它的对称中心旋转,这可以表示椅子位置的改变。于就是,旋转角度θ这一变量就表示了椅子的位置。为此,在平面上建立直角坐标系来解决问题。 设椅脚连线为长方形ABCD,以对角线AC 所在的直线为x 轴,对称中心O 为原点,建立平面直角坐标系。椅子绕O 点沿逆时针方向旋转角度θ后,长方形ABCD 转至A1B1C1D1的位置,这样就可以用旋转角)0(πθθ≤≤表示出椅子绕点O 旋转θ后的位置。 其次,把椅脚就是否着地用数学形式表示出来。当椅脚与地面的竖直距离为零时,椅脚就着地了,而当这个距离大于零时,椅脚不着地。由于椅子在不同的位置就是θ的函数,因此,椅脚与地面的竖直距离也就是θ的函数。 由于椅子有四只脚,因而椅脚与地面的竖直距离有四个,它们都就是θ的函数,而由假设(3)可知,椅子在任何位置至少有三只脚同时着地,即这四个函数对于任意的θ,其函数值至少有三个同时为0。因此,只需引入两个距离函数即可。考虑到长方形ABCD 就是对称中心图形,绕其对称中心O 沿逆时针方向旋转180度后,长方形位置不变,但A,C 与B,D 对换了。因此,记A,B 两脚与地面竖直距离之与为)(θf ,C,D 两脚之与为)(θg ,其中[] πθ,0∈,使得)()(00θθg f =成立。 模型求解 如果0)0()0(== g f ,那么结论成立。 如果)0(与) 0(g f 不同时为零,不妨设.0)0(,0)0(=>g f 这时,将长方形ABCD 绕点O

数学建模课后习题

第一章 课后习题6. 利用节药物中毒施救模型确定对于孩子及成人服用氨茶碱能引起严重中毒和致命的最小剂量。 解:假设病人服用氨茶碱的总剂量为a ,由书中已建立的模型和假设得出肠胃中的药量为: )()0(mg M x = 由于肠胃中药物向血液系统的转移率与药量)(t x 成正比,比例系数0>λ,得到微分方程 M x x dt dx =-=)0(,λ (1) 原模型已假设0=t 时血液中药量无药物,则0)0(=y ,)(t y 的增长速度为x λ。由于治疗而减少的速度与)(t y 本身成正比,比例系数0>μ,所以得到方程: 0)0(,=-=y y x dt dy μλ (2) 方程(1)可转换为:t Me t x λ-=)( 带入方程(2)可得:)()(t t e e M t y λμμ λλ ----= 将01386=λ和1155.0=μ带入以上两方程,得: 针对孩子求解,得: 严重中毒时间及服用最小剂量:h t 876.7=,mg M 87.494=; 致命中毒时间及服用最小剂量:h t 876.7=,mg M 8.4694= 针对成人求解: 严重中毒时间及服用最小剂量:h t 876.7=,mg M 83.945= 致命时间及服用最小剂量:h t 876.7=,mg M 74.1987= 课后习题7. 对于节的模型,如果采用的是体外血液透析的办法,求解药物中毒施救模型的血液用药量的变化并作图。 解:已知血液透析法是自身排除率的6倍,所以639.06==μu t e t x λ-=1100)(,x 为胃肠道中的药量,1386.0=λ

解得:()2,274.112275693.01386.0≥+=--t e e t z t t 用matlab 画图: 图中绿色线条代表采用体外血液透析血液中药物浓度的变化情况。 从图中可以看出,采取血液透析时血液中药物浓度就开始下降。T=2时,血液中药物浓度最高,为;当z=200时,t=,血液透析小时后就开始解毒。 第二章 1.用节实物交换模型中介绍的无差别曲线的概念,讨论以下的雇员和雇主之间的关系: 1)以雇员一天的工作时间和 工资分别为横坐标和纵坐标,画出雇员无差 别曲线族的示意图,解释曲线为什么是那种形状; 2)如果雇主付计时费,对不同的工资率画出计时工资线族,根据雇员的无差别曲线族和雇主的计时工资线族,讨论双方将在怎样的一条曲线上达成协议; 3)雇员和雇主已经达成了协议,如果雇主想使用雇员的工作时间增加到t 2,他有两种办法:一是提高计时工资率,在协议线的另一点

数学模型(第四版)课后详细答案

数学模型作业 六道题 作业一 1.P56.8一垂钓俱乐部鼓励垂钓者将钓上的鱼放生,打算按照放生的鱼的重量给予奖励,俱乐部只准备了一把软尺用于测量,请你设计按照测量的长度估计鱼的重量的方法。假定鱼池中只有一种鲈鱼,并且得到8条鱼的如下数据(胸围指鱼身的最大周长): 解: 要求鱼的体重,我们利用质量计算公式:M=ρV 。我们假定鱼池中是同一种鱼,于是可以近似地考虑其密度是相同的。至于鱼的体积问题,由于是同一种类,可以假定这种鱼在体型上是一致的。我们假设鱼的体积和鱼身长的立方成正比。即:V=k 1L 3,因此,模型为: 33111M V k l K L ρρ===……………………………模型一 利用Eviews 软件,用最小二乘法估计模型中的参数K 1,如下图1所示: 图1 从图1结果可以得到参数K 1=0.014591,所以模型为: 31M 0.014591 L = 上述模型存在缺陷,因为它把肥鱼和瘦鱼同等看待。因此,有必要改进模型。如果只假定鱼的横截面是相似的,假设横截面积与鱼身最大周长的平方成正比,即:V=k 2d 2L ,因此,模型为:

22222M V k d K d L L ρρ===………………………………模型二 利用Eviews 软件,用最小二乘法估计模型中的参数K 2,如下图2所示: 图2 从图2可以得到参数K 2=0. 032248,所以模型为: 22M 0.032248d L = 将实际数据与模型结果比较如表1所示: 2.P131.2 一家出版社准备在某市建立两个销售代理点,向7个区的大学生售书,每个区的大学生数量(单位:千人)已经表示在图上。每个销售代理点只能向本区和一个相邻区的大学生售书,这两个代理点应该建在何处,才能使所能供应的大学生的数量最大?建立该问题的整数线性规划模型并求解。 解: 将大学生数量为34、29、42、21、56、18、71的区分别标号为1、2、3、4、5、6、7区,画出如下区域区之间的相邻关系:

数学建模课后习题作业

选修课——数学建模部分习题详细解答 【陈文滨】 1、在稳定的椅子问题中,如设椅子的四脚连线呈长方形,结论如何? 【模型假设】 (1)椅子四条腿一样长,椅脚与地面接触处视为一点,四脚的连线呈长方形. (2)地面高度是连续变化的,沿任何方向都不会出现间断 (没有像台阶那样的情况),即从数学的角度看,地面是连续曲面.这个假设相当于给出了椅子能放稳的必要条件. (3)椅子在任何位置至少有三只脚同时着地.为保证这一点,要求对于椅脚的间距和椅腿的长度而言,地面是相对平坦的.因为在地面上与椅脚间距和椅腿长度的尺寸大小相当的范围内,如果出现深沟或凸峰(即使是连续变化的),此时三只脚是无法同时着地的。 【模型建立】 在上述假设下,解决问题的关键在于选择合适的变量,把椅子四只脚同时着地表示出来.首先,引入合适的变量来表示椅子位置的挪动.生活经验告诉我们,要把椅子通过挪动放稳,通常有拖动或转动椅子两种办法,也就是数学上所说的平移与旋转变换.然而,平移椅子后问题的条件没有发生本质变化,所以用平移的办法是不能解决问题的.于是可尝试将椅子就地旋转,并试图在旋转过程中找到一种椅子能放稳的情形. 注意到椅脚连线呈长方形,长方形是中心对称图形,绕它的对称中心旋转180度后,椅子仍在原地.把长方形绕它的对称中心O旋转,这可以表示椅子位置的改变。于是,旋转角度θ这一变量就表示了椅子的位置.为此,在平面上建立直角坐标系来解决问题. 如下图所示,设椅脚连线为长方形ABCD,以对角线AC所在的直线为x轴,对称中心O为原点,建立平面直角坐标系.椅子绕O点沿逆时针方向旋转角度θ后,长方形ABCD转至

A1B1C1D1 的位置,这样就可以用旋转角θ(0≤θ≤π)表示出椅子绕点O旋转θ后的位置. 其次,把椅脚是否着地用数学形式表示出来. 我们知道,当椅脚与地面的竖直距离为零时,椅脚就着地了,而当这个距离大于零时,椅脚不着地.由于椅子在不同的位置是θ的函数,因此,椅脚与地面的竖直距离也是θ的函数. 由于椅子有四只脚,因而椅脚与地面的竖直距离有四个,它们都是θ的函数.而由假设(3)可知,椅子在任何位置至少有三只脚同时着地,即这四个函数对于任意的θ,其函数值至少有三个同时为0.因此,只需引入两个距离函数即可.考虑到长方形ABCD是中心对称图形,绕其对称中心 O沿逆时针方向旋转180°后,长方形位置不变,但A,C和B,D对换了.因此,记A、B两脚与地面竖直距离之和为f(θ),C、D两脚与地面竖直距离之和为g(θ),其中θ∈[0,π],从而将原问题数学化。 数学模型:已知f(θ)和g(θ)是θ的非负连续函数,对任意θ,f(θ)?g(θ)=0,证明:存在θ0∈[0,π],使得f(θ0)=g(θ0)=0成立。 【模型求解】 如果f(0)=g(0)=0,那么结论成立。 如果f(0)与g(0)不同时为零,不妨设f(0)>0,g(0)=0。这时,将长方形ABCD 绕点O逆时针旋转角度π后,点A,B分别与C,D互换,但长方形ABCD在地面上所处的位置不变,由此可知,f(π)=g(0),g(π)=f(0).而由f(0)>0,g(0)=0,得g(π)>0, f(π)=0。 令h(θ)=f(θ)-g(θ),由f(θ)和g(θ)的连续性知h(θ)也是连续函数。 又h(0)=f(0)-g(0)>0,h(π)=f(π)-g(π)<0,,根据连续函数介值定理,必存在θ0∈(0,π)使得h(θ0)=0,即f(θ0)=g(θ0); 又因为f(θ0)?g(θ0)=0,所以f(θ0)=g(θ0)=0。于是,椅子的四只脚同时着地,放稳了。 【模型讨论】 用函数的观点来解决问题,引入合适的函数是关键.本模型的巧妙之处就在于用变量θ表示椅子的位置,用θ的两个函数表示椅子四只脚与地面的竖直距离.运用这个模型,不但可以确信椅子能在不平的地面上放稳,而且可以指导我们如何通过旋转将地面上放不稳的椅子放稳.

相关主题
文本预览
相关文档 最新文档