当前位置:文档之家› 函数与导数练习题有标准答案.doc

函数与导数练习题有标准答案.doc

函数与导数练习题有标准答案.doc
函数与导数练习题有标准答案.doc

函数与导数练习题(高二理科)

1.下列各组函数是同一函数的是

( )

① f ( x)

2x 3 与 g (x) x

2x ;② f ( x)

x 与 g( x)

x 2 ;

③ f (x) x 0

与 g ( x)

1

;④ f ( x) x 2 2x 1 与 g(t ) t 2

2t 1 .

A 、①②

B

x 0

C

D

、①③

、③④ 、①④

2.函数 y

x

4

的定义域为 .

x 2

3.若 f (x) 是一次函数,

f [ f ( x)] 4x 1 且,则 f ( x) =

.

4.如果函数 f ( x)

x 2 2( a 1) x 2 在区间

,4 上单调递减,那么实数 a 的取值范围是(

A 、 a ≤ 3

B 、 a ≥ 3

C

、 a ≤ 5

D

、 a ≥ 5

5.下列函数中,在

0,2 上为增函数的是(

A . y

log 1 (x

1) B . y log 2 x

2

1

C . y

log 2

1

D . y log 1 ( x 2

4x 5)

2

x

2

6.y

f ( x) 的图象关于直线 x

1对称,且当 x 0 时, f (x)

1

, 则当 x

2 时, f (x)

.

x

7.函数 f ( x)

ax 1

在区间 ( 2, ) 上为增函数,则 a 的取值范围是

.

x 2

8.偶函数

f ( x) 在

)上是减函数,若

f (-1)

f (l

g x) ,则实数 x 的取值范围是

( - ,0

9.若 lg x

lg y a,则 lg( x

)

3

lg( y

)3

2

2

A . 3a

B . 3

a

C . a

D .

a

2

2

10.若定义运算 a

b

b

a b

,则函数 f x log 2 x log 1 x 的值域是(

a

a b

2

A 0,

B

0,1 C 1,

D

R

11.函数 y

a x 在[ 0,1] 上的最大值与最小值的和为 3,则 a (

A .

1

B . 2

C

.4

D

1

2

4

12.已知幂函数 y f ( x) 的图象过点 (2, 2 ),则 f (9) .

13.已知 x 1 是方程 x lg x 3 的根, x 2 是方程 x 10 x

3 的根,则 x 1 x 2 值为

.

14.函数 y 2 x 1

2, x (

,2]

的值域为

.

15.设f ( x) 2e x 1, x< 2,

. log 3 ( x2

则 f ( f (2))的值为

1), x 2.

16.若f (52 x 1) x 2 ,则 f (125) .

17.根据表格中的数据,可以断定方程e x x 2 0的一个根所在的区间是()

x - 1 0 1 2 3

e x 0.37 1 2.72 7.39 20.09

x 2 1 2 3 4 5 A.(- 1,0)B.( 0, 1)C.( 1,2) D.(2, 3)

18.若一次函数f ( x) ax b有一个零点2,那么函数g( x) bx2 ax 的零点是. 19.关于x的方程| x2 4x 3 | a 0 有三个不相等的实数根,则实数 a 的值是.

20.关于x的方程(1

)x

1

1 有正根,则实数 a 的取值范围是.

2 lg a

21.设f '( x)是函数f ( x) 的导函数,将y f (x) 和 y f '(x) 的图象画在同一个直角坐标系中,不可能正确的是()

A B C D

22.函数 f ( x) 2x2 1 x3在区间 [0 , 6] 上的最大值是.

3

23.曲线y x 3在点1,1 处的切线与 x 轴、直线x 2 所围成的三角形的面积为. 24.直线y 1 x b 是曲线 y ln x x 0 的一条切线,则实数 b .

2

4 x2 (x 0)

25.已知函数 f x 2( x 0) ,

1 2x( x 0)

( 1)画出函数 f x 图像;

( 2)求f a2 1 (a R), f f 3 的值;

( 3)当 4 x 3 时,求 f x 取值的集合 .

26.已知函数f (x) x 3 3x 2 9x a.

( 1)求f (x)的单调减区间;

( 2)若f (x)在区间 [ - 2, 2] .上的最大值为20,求它在该区间上的最小值.

27.已知函数f x x3 ax2 bx c 在,0 上是减函数,在0,1 上是增函数,函数 f x 在 R

( 1)求 b 的值; ( 2)求 f 2 的取值范围;

( 3)试探究直线 y x

1与函数 y f x 的图像交点个数的情况,并说明理由.

28.已知函数 f

x

e x

x 2 ax 1,(其中 a R . 无理数 e 2.71828L )

2

( 1)若 a

1

时,求曲线 y

f ( x) 在点 1, f (1) 处的切线方程;

2

( 2)当 x

1

时,若关于 x 的不等式 f x 0 恒成立,试求 a 的最大值.

2

29.设 f ( x) e x ( ax 2

x 1)

,且曲线 y f (x) 在 x 1处的切线与 x 轴平行.

( 1)求 a 的值,并讨论 f ( x) 的单调性;

( 2)证明:当

[ 0, ] 时, f (cos ) f (sin ) 2 .

2 a 30.已知函数 f (x)

ln x R ) .

x (a

1

( 1)当 a

9

时,如果函数 g( x)

f ( x) k 仅有一个零点,求实数 k 的取值范围;

2

( 2)当 a

2 时,试比较 f (x) 与 1的大小;

( 3)求证: ln( n 1)

1 1 1 1 ( n N * ).

3 5 7

2n 1

《函数与导数练习题》参考答案

1.C ; 2. { x x

4 且 x

2} ; 3. 2x

1 或 2x 1; 4. A ; 5. D ;6. 1 ;

1

1

3

x 2

7. a

; 8. (0, ) (10, ) ; 9. 3a ; 10.A ; 11. B ; 12. 3 ; 13. 3 ;

2 10 1 1

,10) ;

14. ( 2,0] ; 15. 2 ; 16. 0 ; 17. C ; 18. 和 0 ; 19. ; 20. (

2 1 10

21. D ; 22.

32

; 23. 8

3

3

24. ln 2 1;

25.( 1)如右图所示。

( 2) f (a 2

1) 4 (a 2

1) 2 a 4 2a 2 3 ,

f ( f (3))

f ( 5)

11 。

( 3) y | 5 y 9 。

26.

27.( 1)∵ f x

x 3 ax 2 bx c ,∴ f x 3x 2 2ax b . ∵ f x 在,0 上是减函数,

( 2)由(1)知, f x x 3

2

c , ∵1 是函数 f

x 的一个零点,即 f 1 0 ,∴ c 1 a .

ax ∵ f

x

3x

2

2ax

0 的两个根分别为 x 1 0 , x 2 2a

. ∵ f x 在 0,1 上是增函数,

3

且函数 f x 在 R 上有三个零点,∴

x 2

2a 1 ,即 a 3 .

3 2

∴ f 2

8 4a

1 a

3a 7

5

.故 f 2 的取值范围为

5 , .

2

2

(3)由( 2)知 f

x

x

3

ax

2

1 a ,且 a

3

. 要讨论直线 y x 1 与函数 y f x 图像的

2

交点个数情况,即求方程组

y x 1,

解的个数情况.由

x 3

ax 2 1 a x 1,

y

x 3

ax 2 1

a

得 x 3 1 a x 2 1

x 1 0 .即 x 1 x 2

x 1 a x 1 x 1

x 1 0 .

即 x 1 x

2

1 a x

2 a

0 .∴ x 1 或 x 2

1 a x

2 a 0 .

由方程 x 2 1 a x 2 a

0 ,

3 ,

(* )

1 a

2

4 2 a a 2

2a 7 . ∵ a

0 ,解得 3

2

0 ,即 a

2

2a 7 a 2 2 1.此时方程( * )无实数解.

2

若 0 ,即 a 2 2a 7 0 ,解得 a 2 2 1 .此时方程( * )有一个实数解 x 2 1.

0 ,即 a 2

2a 7 0 ,解得 a 2 2 1 .此时方程( * )有两个实数解,分别

x

a 1

a 2

2a 7 , x

a 1

a 2

2a 7 .

1

2

2

2

且当 a 2 时, x 1 0, x 2 1.

综上所述,当

3

a 2 2 1时,直线 y x 1与函数 y

f x

的图像有一个交点.

2

当 a 2 2 1 或 a 2 时,直线 y x 1 与函数 y f x 的图像有二个交点.

当 a

2 2 1 且 a 2 时,直线 y x 1与函数 y

f x 的图像有三个交点.

28.(1)当 a

1

时, f x e x

x 2 1 x 1, f x e x x

1

,从而得 f 1

e 1,

f 1

e 1 ,

2

2

2

2

2 故曲线 y

f (x) 在点 1, f 1 处的切线方程为 y e 1 (e

1 )( x 1) ,

2

即 e

1 x y 1 0 .

2

2

1 x 2

1 ,

e x

1 x

2 1

e x

1 x

2 1

( 2)由 f ( x)

0 ,得 ax e x 1,Q x a

2 ,令 g x 2 , 则

1 x 2

2

2

x

x

e x x 1 1

1 x 2

g x x 2 2

,

再令 ( x) e x (x 1) 1,则

1 ,

2

x x(e x 1),Q x

x

0 ,即 (x) 在 1 ,

上单调递增 .

2

2

所以 ( x)

1 7 e 0 ,因此

x

g x

0 x 1 ,

2

8 2

,

2

1

1

1 ,

1

e 2 1

9 ,

故 g x

8

在 上单调递增 . 则 g x

g x min g

2 e

2 2

1

4

9 2

a

max 因此

2 e .

4

30.( 1)当 a

9

时, f (x)

ln x

9 1) ,定义域是 ( 0, ) ,

2

2( x

f ( x)

1

9 1) 2

(2x 1)( x 2

2)

, 令 f (x)

0,得 x

1 或 x

2 .

x

2(x

2x(x 1)

2

当 0 x 1 或 x 2 时, f (x)

0,当

1

x 2 时, f ( x) 0 ,

2

2

函数 f ( x) 在 (0, 1 ) 、 ( 2, ) 上单调递增,在 ( 1 , 2) 上单调递减.

2

2

f (x) 的极大值是 f ( 1

)

3 ln 2 ,极小值是 f ( 2)

3 ln 2 .

2

2

当 x

0 时, f (x)

; 当 x

时, f (x)

当 g ( x) 仅有一个零点时, k 的取值范围是 k

3

ln 2 或

3

ln 2 .

k

2

( 2)当 a 2 时, f ( x) ln x

2 ,定义域为 ( 0,

) .令 h( x)

f ( x) 1 ln x

x 2 1 ,

x 1

1

h ( x)

1

2

x 2 1

0 , h( x) 在 (0,

) 上是增函数.

x (x

1)2

x(x 1)

2

①当 x 1时, h(x) h(1) 0 ,即 f ( x) 1;

②当 0 x 1 时, h(x)

h(1) 0 ,即 f ( x) 1 ;

③当 x 1时, h(x)

h(1) 0 ,即 f ( x) 1.

( 3)根据( 2)的结论,当 x

1 时, ln x

2 1,即 ln x x 1

.令 x k 1 ,

x 1 x 1 k 则有 ln

k 1

1

n

ln

k

1 n

1

n

. ln( n 1)

k

2k 1 k 1

k

k 1 2k 1

k 1

1 1

1

ln( n 1)

5

2n

3

1

ln

k

1

k

高考数学导数与三角函数压轴题综合归纳总结教师版

导数与三角函数压轴题归纳总结 近几年的高考数学试题中频频出现含导数与三角函数零点问题,内容主要包括函数零点个数的确定、根据函数零点个数求参数范围、隐零点问题及零点存在性赋值理论.其形式逐渐多样化、综合化. 一、零点存在定理 例1.【2019全国Ⅰ理20】函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明: (1)()f x '在区间(1,)2 π -存在唯一极大值点; (2)()f x 有且仅有2个零点. 【解析】(1)设()()g x f x '=,则()()() 2 11 cos ,sin 11g x x g x x x x '=- =-+++. 当1,2x π??∈- ?? ?时,()g'x 单调递减,而()00,02g g π?? ''>< ???, 可得()g'x 在1,2π?? - ?? ?有唯一零点,设为α. 则当()1,x α∈-时,()0g x '>;当,2x πα?? ∈ ??? 时,()0g'x <. 所以()g x 在()1,α-单调递增,在,2πα?? ???单调递减,故()g x 在1,2π?? - ???存在唯一极大 值点,即()f x '在1,2π?? - ?? ?存在唯一极大值点. (2)()f x 的定义域为(1,)-+∞. (i )由(1)知, ()f x '在()1,0-单调递增,而()00f '=,所以当(1,0)x ∈-时,()0f 'x <,故()f x 在(1,0)-单调递减,又(0)=0f ,从而0x =是()f x 在(1,0]-的唯一零点. (ii )当0,2x π?? ∈ ???时,由(1)知,()f 'x 在(0,)α单调递增,在,2απ?? ??? 单调递减,而

高中数学函数的单调性与导数测试题(附答案)

高中数学函数的单调性与导数测试题(附答 案) 选修2-21.3.1函数的单调性与导数 一、选择题 1.设f(x)=ax3+bx2+cx+d(a0),则f(x)为R上增函数的充要条件是() A.b2-4ac0 B.b0,c0 C.b=0,c D.b2-3ac0 [答案] D [解析]∵a0,f(x)为增函数, f(x)=3ax2+2bx+c0恒成立, =(2b)2-43ac=4b2-12ac0,b2-3ac0. 2.(2009广东文,8)函数f(x)=(x-3)ex的单调递增区间是() A.(-,2) B.(0,3) C.(1,4) D.(2,+) [答案] D [解析]考查导数的简单应用. f(x)=(x-3)ex+(x-3)(ex)=(x-2)ex, 令f(x)0,解得x2,故选D. 3.已知函数y=f(x)(xR)上任一点(x0,f(x0))处的切线斜率k =(x0-2)(x0+1)2,则该函数的单调递减区间为() A.[-1,+) B.(-,2]

C.(-,-1)和(1,2) D.[2,+) [答案] B [解析]令k0得x02,由导数的几何意义可知,函数的单调减区间为(-,2]. 4.已知函数y=xf(x)的图象如图(1)所示(其中f(x)是函数f(x)的导函数),下面四个图象中,y=f(x)的图象大致是() [答案] C [解析]当01时xf(x)0 f(x)0,故y=f(x)在(0,1)上为减函数 当x1时xf(x)0,f(x)0,故y=f(x)在(1,+)上为增函数,因此否定A、B、D故选C. 5.函数y=xsinx+cosx,x(-)的单调增区间是() A.-,-2和0,2 B.-2,0和0,2 C.-,-2, D.-2,0和 [答案] A [解析]y=xcosx,当-x2时, cosx0,y=xcosx0, 当02时,cosx0,y=xcosx0. 6.下列命题成立的是() A.若f(x)在(a,b)内是增函数,则对任何x(a,b),都有f(x)0

2007——2014高考数学新课标卷(理)函数与导数压轴题汇总

2007——2014高考数学新课标卷(理)函数与导数综合大题 【2007新课标卷(海南宁夏卷)】 21.(本小题满分12分) 设函数2()ln()f x x a x =++ (I )若当1x =-时,()f x 取得极值,求a 的值,并讨论()f x 的单调性; (II )若()f x 存在极值,求a 的取值范围,并证明所有极值之和大于e ln 2 . 【解析】(Ⅰ)1()2f x x x a '= ++,依题意有(1)0f '-=,故32a =. 从而2231(21)(1) ()3322 x x x x f x x x ++++'==++. ()f x 的定义域为32?? -+ ??? ,∞,当312x -<<-时,()0f x '>; 当1 12 x -<<-时,()0f x '<; 当1 2 x >- 时,()0f x '>. 从而,()f x 分别在区间3 1122????---+ ? ?????,,, ∞单调增加,在区间112?? -- ??? ,单调减少. (Ⅱ)()f x 的定义域为()a -+,∞,2221 ()x ax f x x a ++'=+. 方程2 2210x ax ++=的判别式2 48a ?=-. (ⅰ)若0?< ,即a << ()f x 的定义域内()0f x '>,故()f x 的极值. (ⅱ)若0?= ,则a a = 若a = ()x ∈+ ,2 ()f x '= . 当x =时,()0f x '=,

当2 x ? ??∈-+ ? ????? ,∞时, ()0f x '>,所以()f x 无极值. 若a =)x ∈+,()0f x '= >,()f x 也无极值. (ⅲ)若0?>,即a > a <22210x ax ++=有两个不同的实根 1x = 2x = 当a <12x a x a <-<-,,从而()f x '有()f x 的定义域内没有零点, 故()f x 无极值. 当a > 1x a >-,2x a >-,()f x '在()f x 的定义域内有两个不同的零点, 由根值判别方法知()f x 在12x x x x ==,取得极值. 综上,()f x 存在极值时,a 的取值范围为)+. ()f x 的极值之和为 2221211221()()ln()ln()ln 11ln 2ln 22 e f x f x x a x x a x a +=+++++=+->-=. 【2008新课标卷(海南宁夏卷)】 21.(本小题满分12分) 设函数1 ()()f x ax a b x b =+ ∈+Z ,,曲线()y f x =在点(2(2))f ,处的切线方程为y =3. (Ⅰ)求()f x 的解析式: (Ⅱ)证明:函数()y f x =的图像是一个中心对称图形,并求其对称中心; (Ⅲ)证明:曲线()y f x =上任一点的切线与直线x =1和直线y =x 所围三角形的面积为定值,并求出此定值. 21.解:(Ⅰ)2 1 ()() f x a x b '=- +,

全国百所名校高考数学一轮复习试卷:函数与导数(详解答案)

全国百所名校高考数学一轮复习试卷 专题四:函数与导数 满分150分,考试用时120分钟。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.函数( )sin f x x = 的导数为( ) A .( )'sin cos f x x x = B .( )'sin cos f x x x = C .( )' cos f x x = D .( )' cos f x x = 2.已知函数f (x )的图象如图所示,下列数值的排序正确的是( ) A .(2)(3)(3)(2)f f f f <'<-' B .(3)(3)(2)(2)f f f f <-'<' C .(3)(2)(3)(2)f f f f <'<-' D .(3)(2)(2)(3)f f f f ''-<< 3.设函数()f x 可导,则()() 11lim 3x f f x x ?→-+??等于( ) A .()1f -' B .()31f ' C .()113f - ' D .()1 13 f ' 4.函数3()31f x x x =-+,[3,0]x ∈-的最大值.最小值分别是( ) A .3,-17 B .1,-1 C .1,-17 D .9,-19 5.函数()21 x x f x x =+ +的图象大致为( ) A . B .

C . D . 6.函数()f x 是定义在区间(0,)+∞上的可导函数,其导函数为()f x ',且满足 2()()0f x f x x '+ <,则不等式(2020)(2020)5(5)52020 x f x f x ++<+的解集为( ) A .{} 20202015x x -<<- B .{} 2015x x <- C .{}20200x x -<< D .{} 2015x x >- 7.若函数()()ln 01f x x x =<≤与函数()2 g x x a =+有两条公切线,则实数a 的取值范围是( ) A .1,2??-+∞ ??? B .13ln ,24? ?-- ??? C .3ln 4 ??-- ?? ? D .13ln ,24??-- ?? ? 8.设函数()1x x e f x e =-,下列说法中正确的是( ) A .()f x 的单调递增区间为(,0)(0,)-∞+∞ B .()f x 图象的对称中心为10,2??- ??? C .()f x 图象的对称中心为1,02?? - ??? D .()f x 的值域为(1,0)- 9.若对任意()0,x ∈+∞,不等式22ln ln 0x e a a a x --≥恒成立,则实数a 的最大值为( ) A B .e C .2e D .2e 10.已知函数()21(1)2 x x f x x e ae ax =--+只有一个极值点,则实数a 的取值范围是( ) A .(﹣∞,0]∪[ 1 2 ,+∞) B .(﹣∞,0]∪[ 1 3 ,+∞)

全国卷历年高考函数与导数真题归类分析(含答案)

全国卷历年高考函数与导数真题归类分析(含答案) (2015年-2018年共11套) 函数与导数小题(共23小题) 一、函数奇偶性与周期性 1.(2015年1卷13)若函数f (x ) =ln(x x +为偶函数,则a= 【解析】由题知ln(y x = 是奇函数,所以ln(ln(x x ++- =22ln()ln 0a x x a +-==,解得a =1.考点:函数的奇偶性 2.(2018年2卷11)已知是定义域为的奇函数,满足 .若 , 则 A. B. 0 C. 2 D. 50 解:因为是定义域为 的奇函数,且 , 所以, 因此, 因为 ,所以, ,从而 ,选C. 3.(2016年2卷12)已知函数()()R f x x ∈满足()()2f x f x -=-,若函数1 x y x += 与()y f x =图像的交点为()11x y ,,()22x y ,,?,()m m x y ,,则()1 m i i i x y =+=∑( ) (A )0 (B )m (C )2m (D )4m 【解析】由()()2f x f x =-得()f x 关于()01, 对称,而11 1x y x x +==+也关于()01,对称, ∴对于每一组对称点'0i i x x += '=2i i y y +,∴()1 1 1 022 m m m i i i i i i i m x y x y m ===+=+=+? =∑∑∑,故选B . 二、函数、方程与不等式 4.(2015年2卷5)设函数211log (2),1, ()2,1,x x x f x x -+-

高考理科数学全国卷三导数压轴题解析

2018年高考理科数学全国卷三导数压轴题解析 已知函数2()(2)ln(1)2f x x ax x x =+++- (1) 若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2) 若0x =是()f x 的极大值点,求a . 考点分析 综合历年试题来看,全国卷理科数学题目中,全国卷三的题目相对容易。但在2018年全国卷三的考察中,很多考生反应其中的导数压轴题并不是非常容易上手。第1小问,主要通过函数的单调性证明不等式,第2小问以函数极值点的判断为切入点,综合考察复杂含参变量函数的单调性以及零点问题,对思维能力(化归思想与分类讨论)的要求较高。 具体而言,第1问,给定参数a 的值,证明函数值与0这一特殊值的大小关系,结合函数以及其导函数的单调性,比较容易证明,这也是大多数考生拿到题目的第一思维方式,比较常规。如果能结合给定函数中20x +>这一隐藏特点,把ln(1)x +前面的系数化为1,判断ln(1)x +与2/(2)x x +之间的大小关系,仅通过一次求导即可把超越函数化为求解零点比较容易的代数函数,解法更加容易,思维比较巧妙。总体来讲,题目设置比较灵活,不同能力层次的学生皆可上手。 理解什么是函数的极值点是解决第2问的关键。极值点与导数为0点之间有什么关系:对于任意函数,在极值点,导函数一定等于0么(存在不存在)?导函数等于0的点一定是函数的极值点么?因此,任何不结合函数的单调性而去空谈函数极值点的行为都是莽撞与武断的。在本题目中,0x =是()f x 的极大值点的充要条件是存在10δ<和20δ>使得对于任意1(,0)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递增),对于任意2(0,)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递减),因此解答本题的关键是讨论函数()f x 在0x =附近的单调性或者判断()f x 与(0)f 的大小关系。题目中并没有限定参数a 的取值范围,所以要对实数范围内不同a 取值时的情况都进行分类讨论。在第1小问的基础上,可以很容易判断0a =以及0a >时并不能满足极大值点的要求,难点是在于判断0a <时的情况。官方标准答案中将问题等价转化为讨论函数2 ()ln(1)/(2)h x x x x =+++在0x =点的极值情况,非常巧妙,但是思维跨度比较大,在时间相对紧张的选拔性考试中大多数考生很难想到。需要说明的是,官方答案中的函数命题等价转化思想需要引起大家的重视,这种思想在2018年全国卷2以及2011年新课标卷1的压轴题中均有体现,这可能是今后导数压轴题型的重要命题趋势,对学生概念理解以及思维变通的能力要求更高,符合高考命题的思想。 下面就a 值变化对函数()f x 本身在0x =附近的单调性以及极值点变化情况进行详细讨论。

导数测试题(含答案)

导数单元测试题 班级姓名 一、选择题 1.已知函数y=f(x)=x2+1,则在x=2,Δx=0.1时,Δy的值为( ) A.0.40 B.0.41 C.0.43 D.0.44 2.函数f(x)=2x2-1在区间(1,1+Δx)上的平均变化率Δy Δx 等于( ) A.4 B.4+2Δx C.4+2(Δx)2 D.4x 3.设f′(x0)=0,则曲线y=f(x)在点(x0,f(x0))处的切线( ) A.不存在B.与x轴平行或重合 C.与x轴垂直D.与x轴相交但不垂直 4.曲线y=-1 x 在点(1,-1)处的切线方程为( ) A.y=x-2 B.y=x C.y=x+2 D.y=-x-2 5.下列点中,在曲线y=x2上,且在该点处的切线倾斜角为π 4 的是( ) A.(0,0) B.(2,4) C.(1 4 , 1 16 ) D.( 1 2 , 1 4 ) 6.已知函数f(x)=1 x ,则f′(-3)=( ) A.4 B.1 9 C.- 1 4 D.- 1 9 7.函数f(x)=(x-3)e x的单调递增区间是( ) A.(-∞,2) B.(0,3) C.(1,4) D.(2,+∞) 8.“函数y=f(x)在一点的导数值为0”是“函数y=f(x)在这点取极值”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 9.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内的极小值点有( ) A.1个B.2个 C.3个D.4个 10.函数f(x)=-x2+4x+7,在x∈[3,5]上的最大值和最小值分 别是( ) A.f(2),f(3) B.f(3),f(5) C.f(2),f(5) D.f(5),f(3) 11.函数f(x)=x3-3x2-9x+k在区间[-4,4]上的最大值为10,则其最小值为( ) A.-10 B.-71 C.-15 D.-22 12.一点沿直线运动,如果由始点起经过t秒运动的距离为s= 1 4 t4- 5 3 t3+2t2,那么速度为零的时刻是( ) A.1秒末 B.0秒 C.4秒末 D.0,1,4秒末 二、填空题 13.设函数y=f(x)=ax2+2x,若f′(1)=4,则a=________. 14.已知函数y=ax2+b在点(1,3)处的切线斜率为2,则 b a =________. 15.函数y=x e x的最小值为________. 16.有一长为16 m的篱笆,要围成一个矩形场地,则矩形场地的最大面积是________m2. 三、解答题 17.求下列函数的导数:(1)y=3x2+x cos x; (2)y= x 1+x ; (3)y=lg x-e x. 18.已知抛物线y=x2+4与直线y=x+10,求: (1)它们的交点; (2)抛物线在交点处的切线方程. 19.已知函数f(x)= 1 3 x3-4x+4.(1)求函数的极值; (2)求函数在区间[-3,4]上的最大值和最小值.

函数与导数经典例题高考压轴题含答案

函数与导数经典例题-高考压轴 1. 已知函数3 2 ()4361,f x x tx tx t x R =+-+-∈,其中t R ∈. (Ⅰ)当1t =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)当0t ≠时,求()f x 的单调区间; (Ⅲ)证明:对任意的(0,),()t f x ∈+∞在区间(0,1)内均存在零点. 2. 已知函数21 ()32 f x x = +,()h x = (Ⅰ)设函数F (x )=18f (x )-x 2[h (x )]2,求F (x )的单调区间与极值; (Ⅱ)设a ∈R ,解关于x 的方程33 lg[(1)]2lg ()2lg (4)24 f x h a x h x --=---; (Ⅲ)设*n ∈N ,证明:1 ()()[(1)(2)()]6 f n h n h h h n -+++≥L . 3. 设函数ax x x a x f +-=2 2ln )(,0>a (Ⅰ)求)(x f 的单调区间; (Ⅱ)求所有实数a ,使2 )(1e x f e ≤≤-对],1[e x ∈恒成立. 注:e 为自然对数的底数. 4. 设2 1)(ax e x f x +=,其中a 为正实数. (Ⅰ)当3 4 = a 时,求()f x 的极值点;(Ⅱ)若()f x 为R 上的单调函数,求a 的取值范围. 5. 已知a , b 为常数,且a ≠0,函数f (x )=-ax+b+axlnx ,f (e )=2(e=2.71828…是自然对数 的底数)。 (I )求实数b 的值; (II )求函数f (x )的单调区间; (III )当a=1时,是否同时存在实数m 和M (m

集合与简易逻辑函数与导数测试题(含答案)

集合与简易逻辑、函数与导数测试题 1.若集合{ }8,7,6,5,4,3,2,1=U ,{}8,5,2=A ,{}7,5,3,1=B ,那么(A U )B 等于 ( )A.{}5 B . { }7,3,1 C .{}8,2 D. {}8,7,6,5,4,3,1 2.函数()2()3log 6f x x x =+-的定义域是( ) A .{}|6x x > B .{}|36x x -<< C .{}|3x x >- D .{}|36x x -<≤ 3.已知23:,522:≥=+q p ,则下列判断中,错误的是 ( ) A .p 或q 为真,非q 为假 B . p 或q 为真,非p 为真 C .p 且q 为假,非p 为假 D . p 且q 为假,p 或q 为真 4.下列函数中,既是偶函数又在)0,(-∞上单调递增的是 ( ) A .3y x = B .y cos x = C .y ln x = D .2 1 y x = 5.对命题” “042,02 00≤+-∈?x x R x 的否定正确的是 ( ) A .042,02 00>+-∈?x x R x B .042,2≤+-∈?x x R x C .042,2>+-∈?x x R x D .042,2≥+-∈?x x R x 6.为了得到函数x y )3 1(3?=的图象,可以把函数x y )31 (=的图象 A .向左平移3个单位长度 B .向右平移3个单位长度 C .向左平移1个单位长度 D .向右平移1个单位长度 7.如图是函数)(x f y =的导函数)(x f '的图象,则下面判断正确的是 A .在区间(-2,1)上)(x f 是增函数 B .在(1,3)上)(x f 是减函数 C .在(4,5)上)(x f 是增函数 8. 若函数) )(12()(a x x x x f -+= 为奇函数,则a 的值为 ( ) A .21 B .32 C .4 3 D .1 9.已知定义域为R 的函数f (x )在区间(4,+∞)上为减函数,且函数y =f (x +4)为偶函数,则( ) O y x 1 2 4 5 -3 3 -2

高考导数压轴题题型(精选.)

高考导数压轴题题型 李远敬整理 2018.4.11 一.求函数的单调区间,函数的单调性 1.【2012新课标】21. 已知函数()f x 满足满足12 1()(1)(0)2 x f x f e f x x -'=-+; (1)求()f x 的解析式及单调区间; 【解析】 (1)12 11()(1)(0)()(1)(0)2 x x f x f e f x x f x f e f x --'''=-+?=-+ 令1x =得:(0)1f = 1211 ()(1)(0)(1)1(1)2 x f x f e x x f f e f e --'''=-+?==?= 得:21 ()()()12 x x f x e x x g x f x e x '=-+?==-+ ()10()x g x e y g x '=+>?=在x R ∈上单调递增 ()0(0)0,()0(0)0f x f x f x f x ''''>=?><=?< 得:()f x 的解析式为21()2 x f x e x x =-+ 且单调递增区间为(0,)+∞,单调递减区间为(,0)-∞ 2.【2013新课标2】21.已知函数f (x )=e x -ln(x +m ). (1)设x =0是f (x )的极值点,求m ,并讨论f (x )的单调性; 【解析】 (1)f ′(x )=1 e x x m - +. 由x =0是f (x )的极值点得f ′(0)=0,所以m =1. 于是f (x )=e x -ln(x +1),定义域为(-1,+∞),f ′(x )=1 e 1 x x -+. 函数f ′(x )=1 e 1 x x -+在(-1,+∞)单调递增,且f ′(0)=0. 因此当x ∈(-1,0)时,f ′(x )<0; 当x ∈(0,+∞)时,f ′(x )>0. 所以f (x )在(-1,0)单调递减,在(0,+∞)单调递增. 3.【2014新课标2】21. 已知函数()f x =2x x e e x --- (1)讨论()f x 的单调性; 【解析】 (1)+ -2≥0,等号仅当x=0时成立,所以f (x )在(—∞,+∞)单调递 增 【2015新课标2】21. 设函数 f (x )=e mx +x 2-mx 。 (1)证明: f (x )在 (-¥,0)单调递减,在 (0,+¥)单调递增; (2)若对于任意 x 1,x 2?[-1,1],都有 |f (x 1)-f (x 2)|£e -1,求m 的取值范围。

导数测试卷(带答案)

高二导数部分测试卷 一、选择题(每小题5 分,共12小题,满分60分) 1.曲线3x y =在点)8,2(处的切线方程为( ). A .126-=x y B .1612-=x y C .108+=x y D .322-=x y 2.在曲线2 y x =上的切线的倾斜角为4 π 的点是( ) A .()0,0 B .()2,4 C .11,416?? ??? D .11,24?? ??? 3.已知函数)(x f y =的导函数)(x f y '=的图像如右图,则( ) A .函数)(x f 有1个极大值点,1个极小值点 B .函数)(x f 有2个极大值点,2个极小值点 C .函数)(x f 有3个极大值点,1个极小值点 D .函数)(x f 有1个极大值点,3个极小值点 4. 函数32 (2)y x =+的导数是( ) A .5 2 612x x + B .3 42x + C .332(2)x + D .3 2(2)3x x +? 5.曲线3cos (0)2y x x π =≤≤ 与坐标轴围成的面积是:( ) A.4 B. 5 2 C.3 D.2 6. 直线y x =是曲线ln y a x =+的一条切线,则实数a 的值为 A .1- B .e C .ln 2 D .1 7.若函数3 2 ()1f x x x mx =+++是R 上的单调函数,则实数m 的取值范围是: ( ) A. 1(,)3+∞ B. 1(,)3-∞ C. 1[,)3+∞ D. 1(,]3 -∞ 8. 若函数)1,1(12)(3+--=k k x x x f 在区间上不是单调函数,则实数k 的取值范围( ) A .3113≥≤≤--≤k k k 或或 B .3113<<-<<-k k 或 C .22<<-k D .不存在这样的实数k 9. ()f x 与()g x 是R 定义在上的两个可导函数,若()f x 与()g x 满足()()f x g x ''=, 则()f x 与()g x 满足: ( ) A.()()f x g x = B.()()f x g x -为常数函数 C.()()0f x g x == D.()()f x g x +为常数函数 10、设函数()y f x =在定义域内可导,()y f x =的图象如图1所示,则导函数()y f x '=可能为( ) 11.点P 在曲线3 2 3 y x x =- +上移动,设点P 处切线的倾斜角为α,则角α 的取值范 围是( ) A .0,2π?????? B .30,,24πππ???????????? C .3,4ππ?????? D .3,24ππ?? ??? 12.设函数()m f x x tx =+的导数()21f x x '=+,则数列1(*)()n N f n ?? ∈???? 的前n 项 和为( ). A . n n 1- B .n n 1 + C . 1 +n n D . 1 2 ++n n 二、填空题 13.函数2cos y x x =+在区间[0,]2 π 上的最大值是 14. 已知函数2)(2 3 -=+++=x c bx ax x x f 在处取得极值,并且它的图象与直线 33+-=x y 在点(1,0)处相切,则函数)(x f 的表达式为 __ __. 15.(08北京卷理)如图函数()f x 的图像是折线段, 其中A 、B 、C 的坐标分别是(0,4)、(2,0)、(6,4), 则((0))f f =________; (1)(1li ) m x x f x f ?→?-?+=______(用数字作答). A B C D

名校测试:函数与导数

专题测试 1.函数y =2-x lg x 的定义域是( ) A .{x |0

=3 2sin2x +3×1-cos2x 2 =3(12sin2x -32cos2x )+32 =3sin(2x -π3)+3 2. 4.幂函数y =f (x )的图像经过点(4,12),则f (1 4)的值为( ) A .1 B .2 C .3 D .4 5.设二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,且f (m )≤f (0),则实数m 的取值范围是( ) A .(-∞,0] B .[2,+∞) C .(-∞,0]∪[2,+∞) D .[0,2] 【试题出处】2012·潍坊一中模拟 【解析】二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,则a ≠0,又f (x )=a (x -1)2-a +c ,所以a >0,即函数图像的开口向上,对称轴是直线x =1.所以f (0)

函数与导数例题高考压轴题含答案

函数与导数 1. 已知函数3 2 ()4361,f x x tx tx t x R =+-+-∈,其中t R ∈. (Ⅰ)当1t =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)当0t ≠时,求()f x 的单调区间; (Ⅲ)证明:对任意的(0,),()t f x ∈+∞在区间(0,1)内均存在零点. 【解析】(19)本小题主要考查导数的几何意义、利用导数研究函数的单调性、曲线的切线方程、 函数的零点、解不等式等基础知识,考查运算能力及分类讨论的思想方法,满分14分。 (Ⅰ)解:当1t =时,3 2 2 ()436,(0)0,()1266f x x x x f f x x x '=+-==+- (0) 6.f '=-所以曲线()y f x =在点(0,(0))f 处的切线方程为6.y x =- (Ⅱ)解:2 2 ()1266f x x tx t '=+-,令()0f x '=,解得.2 t x t x =-=或 因为0t ≠,以下分两种情况讨论: (1)若0,,t t t x <<-则 当变化时,(),()f x f x '的变化情况如下表: 所以,()f x 的单调递增区间是(), ,,;()2t t f x ??-∞-+∞ ? ??的单调递减区间是,2t t ?? - ??? 。 (2)若0,t t t >-< 则,当x 变化时,(),()f x f x '的变化情况如下表: 所以,()f x 的单调递增区间是(),,,;()2t t f x ??-∞-+∞ ??? 的单调递减区间是,.2t t ? ?- ??? (Ⅲ)证明:由(Ⅱ)可知,当0t >时,()f x 在0,2t ? ? ??? 内的单调递减,在,2t ?? +∞ ??? 内单调递增,以下分两种情况讨论: (1)当1,22 t t ≥≥即时,()f x 在(0,1)内单调递减, 所以对任意[2,),()t f x ∈+∞在区间(0,1)内均存在零点。

集合与简易逻辑函数与导数测试题(含答案)

集合与简易逻辑、函数与导数测试题 时间:100分钟 满分:130分 1.若集合{ }8,7,6,5,4,3,2,1=U ,{}8,5,2=A ,{}7,5,3,1=B ,那么(A U )B 等于( ) A.{}5 B . { }7,3,1 C .{}8,2 D. {}8,7,6,5,4,3,1 2.函数()2()3log 6f x x x =+-的定义域是( ) A .{}|6x x > B .{}|36x x -<< C .{}|3x x >- D .{}|36x x -<≤ 3.已知23:,522:≥=+q p ,则下列判断中,错误的是 ( ) A .p 或q 为真,非q 为假 B . p 或q 为真,非p 为真 C .p 且q 为假,非p 为假 D . p 且q 为假,p 或q 为真 4.下列函数中,既是偶函数又在)0,(-∞上单调递增的是 ( ) A .3y x = B .y cos x = C .y ln x = D .21 y x = 5.对命题” “042,02 00≤+-∈?x x R x 的否定正确的是 ( ) A .042,02 00>+-∈?x x R x B .042,2≤+-∈?x x R x C .042,2>+-∈?x x R x D .042,2≥+-∈?x x R x 6.为了得到函数x y )3 1(3?=的图象,可以把函数x y )31 (=的图象 A .向左平移3个单位长度 B .向右平移3个单位长度 C .向左平移1个单位长度 D .向右平移1个单位长度 7.如图是函数)(x f y =的导函数)(x f '的图象,则下面判断正确的是 A .在区间(-2,1)上)(x f 是增函数 B .在(1,3)上)(x f 是减函数 C .在(4,5)上)(x f 是增函数 8. 若函数) )(12()(a x x x x f -+= 为奇函数,则a 的值为 ( ) A .21 B .32 C .4 3 D .1 9.已知定义域为R 的函数f (x )在区间(4,+∞)上为减函数,且函数y =f (x +4)为偶 O y x 1 2 4 5 -3 3 -2

函数与导数经典例题--高考压轴题(含答案)

函数与导数经典例题--高考压轴题(含答案)

所以对任意[2,),()t f x ∈+∞在区间(0,1)内均存在零 点。 (2)当01,022t t <<<<即时,()f x 在0,2t ?? ??? 内单调递减,在,12t ?? ???内单调递增,若3 3177(0,1],10.244t f t t t ??∈=-+-≤-< ??? 2(1)643643230.f t t t t t =-++≥-++=-+> 所以(),12t f x ?? ??? 在内存在零点。 若()3377(1,2),110.244t t f t t t ??∈=-+-<-+< ??? (0)10f t =-> 所以()0,2 t f x ?? ???在内存在零点。 所以,对任意(0,2),()t f x ∈在区间(0,1)内均存在 零点。 综上,对任意(0,),()t f x ∈+∞在区间(0,1)内均存在 零点。 2. 已知函数21 ()32 f x x =+,()h x =. (Ⅰ)设函数F (x )=18f (x )-x 2[h (x )]2,求F (x ) 的单调区间与极值; (Ⅱ)设a ∈R ,解关于x 的方程33lg[(1)]2lg ()2lg (4)24 f x h a x h x --=---; (Ⅲ)设*n ∈N ,证明:1 ()()[(1)(2)()]6f n h n h h h n -+++≥. 本小题主要考查函数导数的应用、不等式的证

明、解方程等基础知识,考查数形结合、函数与方程、分类与整合等数学思想方法及推理运算、分析问题、解决问题的能力. 解:(Ⅰ)223()18()[()]129(0)F x f x x h x x x x =-=-++≥, 2()312F x x '∴=-+. 令()0F x '∴=,得2x =(2x =-舍去). 当(0,2)x ∈时.()0F x '>;当(2,)x ∈+∞时,()0F x '<, 故当[0,2)x ∈时,()F x 为增函数;当[2,)x ∈+∞时,()F x 为 减函数. 2x =为()F x 的极大值点,且(2)824925F =-++=. (Ⅱ)方法一:原方程可化为 422 33log [(1)]log ()log (4)24f x h a x h x --=---, 即为4222log (1)log log log x -==,且,14,x a x , 此时3x ==±∵1x a <<, 此时方程仅有一解3x = ②当4a >时,14x <<,由14a x x x --=-,得2640x x a -++=,364(4)204a a ?=-+=-, 若45a <<,则0?> ,方程有两解3x =± 若5a =时,则0?=,方程有一解3x =; 若1a ≤或5a >,原方程无解. 方法二:原方程可化为422log (1)log (4)log ()x h x h a x -+-=-, 即222 1log (1)log log 2x -+,

函数与导数测试题

《函数与导数》测试题 一、选择题 1.函数x e x x f )3()(-=的单调递增区间是 ( ) A. )2,(-∞ B.(0,3) C.(1,4) D. ),2(+∞ 解析 ()()(3)(3)(2)x x x f x x e x e x e '''=-+-=-,令()0f x '>,解得2x >,故选D 2. 已知直线y=x+1与曲线y ln()x a =+相切,则α的值为 ( ) B. 2 C.-1 解:设切点00(,)P x y ,则0000ln 1,()y x a y x =+=+,又0' 01 |1x x y x a == =+Q 00010,12x a y x a ∴+=∴==-∴=.故答案 选B 3.已知函数()f x 在R 上满足2()2(2)88f x f x x x =--+-,则曲线()y f x =在点 (1,(1))f 处的切线方程是( ) A.21y x =- B.y x = C.32y x =- D.23y x =-+解析 由2()2(2)88f x f x x x =--+-得几何 2(2)2()(2)8(2)8f x f x x x -=--+--, 即22()(2)44f x f x x x --=+-,∴2()f x x =∴/()2f x x =,∴切线方程 12(1)y x -=-,即210x y --=选A 4.存在过点(1,0)的直线与曲线3y x =和215 94 y ax x =+ -都相切,则a 等于 () A .1-或25-64 B .1-或214 C .74-或25 -64 D .74-或7 解析 设过(1,0)的直线与3y x =相切于点300(,)x x ,所以切线方程为 320003()y x x x x -=- 即230032y x x x =-,又(1,0)在切线上,则00x =或03 2 x =-,

(完整)2019-2020年高考数学压轴题集锦——导数及其应用(一).doc

2019-2020 年高考数学压轴题集锦——导数及其应用(一) 1.已知函数f (x) x2 ax ln x(a R) . (1)函数f (x)在 [1,2] 上的性; (2)令函数g( x) e x 1 x2 a f (x) ,e=2.71828?是自然数的底数, 若函数 g (x) 有且只有一个零点m,判断 m 与 e 的大小,并明理由 . 2.已知函数 f (x) x3ax2bx c 在x 2 与x 1都取得极. 3 (1)求 a, b 的与函数f( x)的区; (2)若x [ c,1] ,不等式 f (x) c 恒成立,求 c 的取范 . 2 3.已知函数 f (x) ln(1 x) ln(1x) . (1)明 f '(x) 2 ; (2)如果 f (x) ax x [0,1) 恒成立,求 a 的范 .

x 1 4.已知函数f (x) ( e 自然数的底数) . e x (1)求函数f (x)的区; (2)函数(x) xf (x) tf '(x) 1 x1, x2 [0 ,1] ,使得 2 ( x1 )(x2 ) x ,存在数 e 成立,求数t 的取范 . 5.已知函数 f ( x) kx a x,其中k R,a 0且a 1 . (1)当 a e ( e=2.71 ?自然数的底),f(x)的性;(2)当k 1,若函数f(x)存在最大g(a),求g(a)的最小. 6.已知函数 f x x2ax ln x a R (1)当a 3 ,求函数f(x)在 1 , 2 上的最大和最小; 2 (2)函数 f(x)既有极大又有极小,求数 a 的取范 .

7.已知 f( x)是定义在 R 上的奇函数,当 x 0 时, f x 1 x 3 ax a R ,且曲线 f(x)在 3 x 1 处的切线与直线 y 3 x 1平行 2 4 (1)求 a 的值及函数 f(x)的解析式; (2)若函数 y f x m 在区间 3, 3 上有三个零点,求实数 m 的取值范围 . 8.已知函数 f x x 0 ax, a ln x (1)若函数 y f x 在 1, 上减函数,求实数 a 的最小值; (2)若存在 x 1 , x 2 e,e 2 ,使 f x 1 f x 2 a 成立,求实数 a 的取值范围 . 9.已知函数 f (x) x 3 ax 2 bx 1, a , b R . ( 1)若 a 2 b 0 , ①当 a 0 时,求函数 f(x)的极值(用 a 表示); ②若 f(x)有三个相异零点,问是否存在实数 a 使得这三个零点成等差数列?若存在,试 求出 a 的值;若不存在,请说明理由; ( 2)函数 f( x)图象上点 A 处的切线 l 1 与 f(x)的图象相交于另一点 B ,在点 B 处的切线为 l 2 ,直线 l 1, l 2 的斜率分别为 k 1, k 2 ,且 k 2 =4k 1 ,求 a ,b 满足的关系式.

高考导数压轴题---函数与导数核心考点(精编完美版)

导数与函数核心考点 目录 题型一切线型 1.求在某处的切线方程 2.求过某点的切线方程 3.已知切线方程求参数 题型二单调型 1.主导函数需“二次求导”型 2.主导函数为“一次函数”型 3.主导函数为“二次函数”型 4.已知函数单调性,求参数范围 题型三极值最值型 1.求函数的极值 2.求函数的最值 3.已知极值求参数 4.已知最值求参数 题型四零点型 1.零点(交点,根)的个数问题 2.零点存在性定理的应用 3.极值点偏移问题 题型五恒成立与存在性问题 1.单变量型恒成立问题 2.单变量型存在性问题 3.双变量型的恒成立与存在性问题 4.等式型恒成立与存在性问题 题型六与不等式有关的证明问题 1.单变量型不等式证明 2.含有e x与lnx的不等式证明技巧 3.多元函数不等式的证明 4.数列型不等式证明的构造方法

题型一 切线型 1.求在某处的切线方程 例1.【2015重庆理20】求函数f (x )=3x 2 e x 在点(1, f (1))处的切线方程. 解:由f (x )=3x 2e x ,得f ′(x )=6x -3x 2e x ,切点为(1,3e ) ,斜率为f ′(1)=3 e 由f (1)=3e ,得切点坐标为(1,3e ),由f ′(1)=3e ,得切线斜率为3 e ; ∴切线方程为y -3e =3 e (x -1),即3x -ey =0. 例2.求f (x )=e x (1 x +2)在点(1,f (1))处的切线方程. 解:由f (x )=e x (1x +2),得f ′(x )=e x (-1x 2+1 x +2) 由f (1)=3e ,得切点坐标为(1,3e ),由f ′(1)=2e ,得切线斜率为2e ; ∴切线方程为y -3e =2e (x -1),即2ex -y +e =0. 例3.求f (x )=ln 1-x 1+x 在点(0,f (0))处的切线方程. 解:由f (x )=ln 1-x 1+x =ln (1-x )-ln (1+x ),得f ′(x )=-11-x -1 1+x 由f (0)=0,得切点坐标为(0,0),由f ′(0)=-2,得切线斜率为-2; ∴切线方程为y =-2x ,即2x +y =0. 例4.【2015全国新课标理20⑴】在直角坐标系xoy 中,曲线C :y =x 2 4 与 直线l :y =kx +a (a >0)交于M ,N 两点,当k =0时,分别求C 在点M 与N 处的切线方程. 解:由题意得:a =x 2 4,则x =±2a ,即M (-2a ,a ),N (2a ,a ), 由f (x )=x 24,得f ′(x )=x 2, 当切点为M (-2a ,a )时,切线斜率为f ′(-2a )=-a , 此时切线方程为:ax +y +a =0; 当切点为N (2a ,a )时,切线斜率为f ′(2a )=a , 此时切线方程为:ax -y -a =0;

相关主题
文本预览
相关文档 最新文档