当前位置:文档之家› 12第十二章 动量矩定理

12第十二章 动量矩定理

12第十二章 动量矩定理
12第十二章 动量矩定理

1

质点系对某轴的动量矩等于质点系中各质点的动量对同一轴之矩的代数和。 ( ) 2

刚体的质量是刚体平动时惯性大小的度量,刚体对某轴的转动惯量则是刚体绕该轴转动时惯性大小的度量。 ( ) 3

刚体对某轴的回转半径等于其质心到该轴的距离。( ) 4

如果作用于质点系上的所有外力对固定点O 的主矩不为零,那么,质点系的动量矩一定不守恒。( ) 5

如果质点系所受的力对某点(或轴)的矩恒为零,则质点系对该点(或轴)的动量矩不变。( ) 6

图中所示已知两个均质圆柱,半径均为R ,质量分别为2m 和3m ,重物的质量为1m 。重物向下运动的速度为V ,圆柱C 在斜面上只滚不滑,圆柱O 与绳子之间无引对滑动,则系统

对O 轴的动量矩为vR m R m vR m H o 12

232

++=ω。( )

7

图中已知均质圆轮的半径为R ,质量为m ,在水平面上作纯滚动,质心速度为C v

,则轮子对速度瞬心I 的动量矩为R mv H c I =。( )

1

已知刚体质心C 到相互平行的z z 、'轴的距离分别为b a 、,刚体的质量为m ,对z 轴的转动惯量为z J ,则'

z J 的计算公式为__________________。

A .2)(b a m z z ++='J J ;

B .)(2

2b a m z z -+='

J J ; C.)(2

2b a m z z --='

J J 。

2

两匀质圆盘A 、B ,质量相等,半径相同,放在光滑水平面上,分别受到F 和'

F 的作用,由静止开始运动,若'

F F =,则任一瞬间两圆盘的动量相比较是_____________________。 A.B A p p >; B.B A p p <; C.B A p p =。

3

在一重W 的车轮的轮轴上绕有软绳,绳的一端作用一水平力P ,已知车轮的半径为R ,轮轴的半径为r ,车轮及轮轴对中心O 的回转半径为ρ,以及车轮与地面间的滑动摩擦系数为f ,绳重和滚阻皆不计。当车轮沿地面作平动时,力P 的值为_________________。 A.ρ/fWR P =; B.r fWR P /=; C.r fW P /ρ=;④ fW P =。

4

质量分别为m m m 221==的两个小球21,M M 用长为L 而重量不计的刚杆相连。现将1M 置于光滑水平面上,且21M M 与水平面成?60 角,则当无初速释放、2M 球落地时,1M 球移动的水平距离为___________。

A.L /3; B.L /4; C.L /6;④ 0。

5

小球A 在重力作用下沿粗糙斜面下滚,角加速度为_________;当小球离开斜面后,角加速度为____________。

A.等于零; B.不等于零; C.不能确定。

6

圆柱A 在重力作用下沿粗糙斜面向下滚动,脱离斜面前的角速度为ω。则此后转动的角速度 。

A.等于零; B.等于ω; C.不能确定。

1

图中所示均质杆OA 长l ,重P ,圆盘重Q 半径为r ,二者焊接在一起以 在铅垂面内绕O 轴转动,则系统对O 轴的动量矩O H = 。

2

一细杆由等长的钢与木两段组成(见图)。两段质量分别为1m 、2m ,且都为均质杆,则系统对1z 轴、2z 轴、3z 轴的转动惯量1z J = ;2z J = ;3z J = 。

3

图中所示均质圆轮质量为m ,沿斜面无滑动地滚动,质心速度为C v

。则圆轮对O 点的动量矩O H = 。

4

图中OA 杆重为P ,对O 轴的转动惯量为J ,弹簧刚性系数为K ,当杆处于铅垂位置时,弹簧无变形。则OA 杆在铅垂位置附近作微小摆的运动微分方程为 。

5

半径为r 质量为m 的均质轮子,在常力偶M 的作用下,沿粗糙面只滚不滑,则轮子与接触与接触面间的摩擦力F= 。

6

质量为M ,半径为R 的均质圆盘,以角速度ω转动。其边缘上焊接一质量为m 、长为b 的均质细杆AB ,如图示。则系统动量的大小p =_________________,对轴O 的动量矩的大小=o L _______________________。

1

匀质圆轮B A 、的质量分别为M 与m ,半径分别为R 与 r ,且r R 2=。两圆轮上缠绕有不可伸长的细绳,如图所示。当轮A 绕固定轴1O 转动时,通过细绳带动轮B 升降并转动,

细绳与两轮间没有滑动。求当轮A 以角速度ω转动时,系统的动量及对1O 轴的动量矩。

2

双引擎喷气式飞机质量为40t ,以匀速度600m/s 水平飞行。机首昂起,喷出的气体相对于机身的速度为1200m/s ,方向如图。每一引擎燃料消耗率为4kg/s ,每一引擎的进气面积为

2m 4.0,大气密度为3kg/m 1.1。试求引擎的反推力及飞机的升力和阻力。

3

一不可伸长的绳索跨过定滑轮B ,其一端系于滑块A ,另一端绕在匀质圆柱C 上。滑块A 重N 49=P ,置于倾角为?30的光滑斜面上,绳的AD 段与斜面平行。匀质轮B 和圆柱C 的

重量均为N 98=Q ,其半径均为m 1.0=R 。已知轮B 的角加速度2

1rad/s 125.6=ε,圆

柱C 的角加速度2

2rad/s 25.61=ε,它们的转向均为顺时针方向,求铰支座B 在铅直方向

上的反力。

4

重为1W 的物体A ,沿三棱体D 的光滑斜面下降,同时借一绕过滑轮C 的绳子使重为2W 的物块B 运动。三棱体D 重为0W ,斜面与水平面成α角,如略去绳子和滑轮的重量,求三棱体D 给凸出部分E 的压力及给地面的压力(设三棱体与地面间没有摩擦)。

5

均质水平细杆AB 长为L ,一端铰接于A ,一端系于细绳BC ,而处于水平位置。设细绳突然被割断。试求此瞬时细杆的角加速度1ε及细杆运动到铅直位置时的角加速度2ε及角速度

2ω。

6

鼓轮重N 1200,置于水平面上,外半径cm 90=R ,轮轴半径cm 60=r ,对质心轴C 的回转半径cm 60=ρ。缠绕在轮轴上的软绳水平地连于固定点A ,缠在外轮上的软绳水平地跨过质量不计的定滑轮,吊一重物B ,B 重N 400=P 。鼓轮与水平面之间的动摩擦系数为0.4,求轮心C 的加速度。

7

在图示机构中,已知:均质杆质量kg 4=m ,长m 9.0=L ,系统从静止开始运动,此时2m/s 6=B a 。滑块质量不计,摩擦不计。试求:(1)此时作用在杆上的力偶矩M ;(2)A 处和B 处的反力。

8

在图示两均质杆中,已知:重均为Q,长均为l,在图示瞬时作用一力F。试求此瞬时两杆的角加速度。

9

m,系在绳子上,绳子跨过不计质量的固定滑轮D,并绕在鼓轮B上,如图重物A质量为

1

所示。由于重物下降,带动了轮C,使它沿水平轨道只滚不滑。设鼓轮半径为r,轮C的半

m,对于其水平轴O的回转半径为ρ。求重物A的加径为R,两者固连在一起,总质量为

2

速度。

10

图示均质杆AB长为l,放在铅直平面内,杆的一端A靠在光滑的铅直墙上,另一端B放在

?角。此后,杆由静止状态倒下。求:(1)杆在任意位光滑的水平地板上,并与水平面成

置时的角加速度和角速度;(2)当杆脱离墙时,此杆与水平面所夹的角。

11

如图所示,板的质量为1m ,受水平力F 作用,沿水平面运动,板与水平面的动摩擦因数为

f 。在板上放一质量为2m 的均质实心圆柱,此圆柱对板只滚不滑。求板的加速度。

12

半径为r 的均质圆柱体的质量为m ,放在粗糙的水平面上,如图所示。设其质心C 初速度为0v ,方向水平向右,同时圆柱如图所示方向转动,其初速度为0ω,且有00v r ω。如圆柱体与水平面的摩擦因数为f ,问经过多少时间,圆柱体才能只滚不滑地向前运动,并求该瞬时圆柱体中心的速度。

13

图示均质圆柱体的质量为m ,半径为r ,放在倾角为?60的斜面上。一细绳缠绕在圆柱体上,其一端固定于点A ,此绳与点A 相连部分与斜面平行。若圆柱体与斜面间的摩擦因子

3

1

=

f ,求其中心沿斜面落下的加速度c a 。

梁坤京理论力学第十二章动量矩定理课后答案

动量矩定理 12-1 质量为m 的点在平面Ox y内运动,其运动方程为: t b y t a x ωω2sin cos == 式中a 、b 和ω为常量。求质点对原点O的动量矩。 解:由运动方程对时间的一阶导数得原点的速度 t b t y v t a t x v y x ωωωω2cos 2d d sin d d ==-== 质点对点O 的动量矩为 t a t b m t b t a m x mv y mv m M m M L y x O O ωωωωωωcos 2cos 22sin )sin ()()(0??+?-?-=?+?-=+=y x v v ? t mab ωω3 cos 2= 12-3 如图所示,质量为m 的偏心轮在水平面上作平面运动。轮子轴心为A ,质心为C,A C = e ;轮子半径为R,对轴心A 的转动惯量为JA ;C 、A、B 三点在同一铅直线上。(1)当轮子只滚不滑时,若v A已知,求轮子的动量和对地面上B 点的动量矩。(2)当轮子又滚又滑时,若v A 、ω已知,求轮子的动量和对地面上B点的动量矩。 解:(1)当轮子只滚不滑时B 点为速度瞬心。 ? 轮子角速度R v A =ω? 质心C 的速度)(e R R v C B v A C += =ω? ?轮子的动量(A C mv R e R mv p += =?方向水平向右) ?对B点动量矩ω?=B B J L ? 由于? 2 22)( )( e R m me J e R m J J A C B ++-=++= 故[ ] R v e R m me J L A A B 2 2)( ++-=? (2)当轮子又滚又滑时由基点法求得C 点速度。 e v v v v A CA A C ω+=+= 轮子动量( )(e v m mv p A C ω+==?方向向右) 对B 点动量矩 ) ( )()()( )( 2e mR J e R mv me J e R e v m J BC mv L A A A A C C B +++=-+++=+=ωωωω 12-13 如图所示,有一轮子,轴的直径为50 m m,无初速地沿倾角?=20θ的轨道滚下,设只滚不滑,5秒内轮心滚动的距离为s = 3 m 。试求轮子对轮心的惯性半径。 解:取轮子为研究对象,轮子受力如图(a)所示,根据刚体平面运动微分方程有 ? F mg ma C -=θsin ? (1) J Cα = Fr ? ?(2) 因轮子只滚不滑,所以有 a C =αr (3)

012 第十二章 动量矩定理

第12章 动量矩定理 通过上一章的学习我们知道动量是表征物体机械运动的物理量。但是在某些情况下,一个物体的动量不足以反映它的运动特征。例如,开普勒在研究行星运动时发现,行星在轨道上各点的速度不同,因而动量也不同,但它的动量的大小与它到太阳中心的距离之乘积—称为行星对太阳中心的动量矩,总是保持为常量,可见,在这里,行星对太阳中心的动量矩比行星的动量更能反映行星运动的特征。 在另一些情况下,物体的动量则完全不能表征它的运动。例如,设刚体绕着通过质心C 的z 轴转动。因为不论刚体转动快慢如何,质 心速度C v 总是等于零,所以刚体的动量也总是零。但是,刚体上各质点的动量大小与其到z 轴的距离的乘积之和—即刚体对z 轴的动量矩却不等于零。可见,在这里,不能用动量而必须用动量矩来表征刚体的运动。 §12-1 质点动量矩定理 例2.人造地球卫星本来在位于离地面600km h =的圆形轨道上,如图所示,为使其进入410km r =的另一圆形轨道,须开动火箭,使卫星在A 点的速度于很短时间内增加0.646km/s ,然后令其沿椭圆轨道自由飞行到达远地点B ,再进入新的圆形轨道。问:(1)卫星在椭圆轨道的远地点B 处时的速度是多少?(2)为使卫星沿新的圆形轨道运行,当它到达远地点B 时,应如何调整其速度?大气阻力及其它星球的影响不计。地球半径6370km R =。 图12-5 解:首先求出卫星在第一个圆形轨道上的速度,可由质点动力学方程求出。卫星运行时只受地球引力的作用,即 2 2 () R F mg R x =+ 式中x 是卫星与地面的距离。当卫星沿第一圆形轨道运动时,有

22 2 ()()v R m mg R h R h =++ 即 2 2 () gR v R h =+ (b ) 将6370km R =,600km h =,9.8m/s g =代入上式,得卫星在第一个圆形轨道上运动的速度 17.553km/s v = 所以卫星在椭圆轨道上的A 点的速度为 7.5530.6468.199km/s A v =+= 卫星在椭圆轨道上运动时,仍然只受地球引力作用,而该引力始终指向地心O ,对地以O 的矩等于零,所以卫星对地心O 的动量矩应保持为常量。设卫星在远地点B 的速度为B v ,则有 A A B B r v r v = 所以 4 63706008.199 5.715km/s 10A B A B r v v r += ?=?= 设卫星沿新的圆形轨道运行时所需的速度为2v ,则 22 2 2 4 9.86370 6.306km/s 10gR v r ?=== 由此可见,为使卫星沿着第二个圆形轨道运行,当它沿椭圆轨道到达B 点时,应再开动火箭,使其速度增加一个值 20.591km/s B B v v v ?=-= 顺便指出,在(b )式中令0h →,就得到7.9km/s v =,这就是为使卫星在离地面不远处作圆周运动所需的速度,称为第一宇宙速度。 §12-2 质点系动量矩定理 例1.质量为1m 、半径为R 的均质圆轮绕定轴O 转动,如图所示。轮上缠绕细绳,绳端悬挂质量为2m 的物块,试求物块的加速度。均质圆 轮对于O 轴的转动惯量为211 2 O J m R =。

理论力学(机械工业出版社)第十一章动量矩定理习题解答

习 题 11-1 质量为m 的质点在平面Oxy 内运动,其运动方程为:t b y t a x ωω2sin ,cos ==。其中a 、b 和w 均为常量。试求质点对坐标原点O 的动量矩。 t a x v x ωωsin -== t b y v y ωω2cos 2== x mv y mv L y x O +-= )cos 2cos 22sin sin (t a t b t b t a m ωωωωωω?+?= )cos 2cos 22sin (sin t t t t mab ωωωωω?+?= )cos 2cos 2cos sin 2(sin t t t t t mab ωωωωωω?+?= )2cos (sin cos 22t t t mab ωωωω+= t mab ωω3cos 2= 11-2 C 、D 两球质量均为m ,用长为2 l 的杆连接,并将其中点固定在轴AB 上,杆CD 与轴AB 的交角为θ,如图11-25所示。如轴AB 以角速度w 转动,试求下列两种情况下,系统对AB 轴的动量矩。(1)杆重忽略不计;(2)杆为均质杆,质量为2m 。 图11-25 (1) θθ222sin 2)sin (2ml l m J z =?= θω22sin 2l m L z = (2) θθ220 2sin 3 2d )sin (2ml x x l m J l z ==?杆 θ22sin 3 8 ml J z = θ ω22sin 3 8 l m L z = 11-3 试求图11-26所示各均质物体对其转轴的动量矩。各物体质量均为m 。 图11-26 (a) ω23 1ml L O = (b) 22291)6(121ml l m ml J O =+= ω29 1ml L O -=

第03章 动量定理 动量守恒定律(1)

动量定理动量守恒定律 一填空题 1,有一物体开始自东向西运动,动量大小为10 kg·m/s,由于某种作用,后来自 西向东运动,动量大小为15 kg·m/s,如规定自东向西方向为正,则物体在该过程中动量变化为_____________。 2,如图,质量m = 5 kg的物体,静止在光滑水平面上,在与水平面成37o角斜向上50 N的拉力F作用下,水平向右开始做匀变速直线运动,则在前2 s内,拉力的冲量大小为______N·s,水平面对物体支持力的冲量大小为______N·s,重力的冲量大小为______N·s,合外力的冲量大小为________N·s. 3,在距离地面高度为h处以速度v0水平抛出质量为m的物体,当物体落地时和地面的碰撞事件为? ,这段时间内物体受到地面给的竖直方向冲量为______, 水平方向冲量为______,受到的地面给予的平均作用力为_______。4,一质量为m速率为v的小球与竖直放置的挡板成θ角的方向相撞,并以相同速率和角度弹回来。设碰撞时间为? , 则小球受到挡板的平均冲力为______。5,在光滑的水平桌面上停放着两辆小车,小车的质量之比为2:3,小车中间有 一根被细线绑住的弹簧,当细线断开的时候,两辆小车开始向相反方向开始运动,则此时两辆小车的动量之比为________; 速度之比为__________。 6,有一质量为M的木块静止在一光滑的水平面上,有一质量为m的子弹从左向右水平穿过木块,子弹在进入和离开木块时的速度分别为v0和v, 则子弹离开木块后,木块的速度为________。 7,一枚返回式火箭以2.5×10 m/s的速率相对地面水平飞行。设空气阻力不计。 现由控制系统使火箭分离为两部分,前方部分是质量为100 kg的仪器舱,后方部分是200 kg的火箭容器,已知仪器舱相对于火箭容器的水平速率是1.0× 10 m/s ,则仪器舱和火箭容器相对于地面的速率分别是___________。 8,某单级火箭燃料的燃烧速率约为1.62×10 kg/s,喷气速率约为3.21× 10 m/s,则起飞时理论上火箭得到的推力为_________。 9,假设月球和地球都是质量均匀的球体,已知地球和月球的质量分别为M和m,地球中心和月球中心的距离为D,则地球和月球组成的系统的质心距地球中心的距离为______________。

12第十二章 动量矩定理

1 质点系对某轴的动量矩等于质点系中各质点的动量对同一轴之矩的代数和。 ( ) 2 刚体的质量是刚体平动时惯性大小的度量,刚体对某轴的转动惯量则是刚体绕该轴转动时惯性大小的度量。 ( ) 3 刚体对某轴的回转半径等于其质心到该轴的距离。( ) 4 如果作用于质点系上的所有外力对固定点O 的主矩不为零,那么,质点系的动量矩一定不守恒。( ) 5 如果质点系所受的力对某点(或轴)的矩恒为零,则质点系对该点(或轴)的动量矩不变。( ) 6 图中所示已知两个均质圆柱,半径均为R ,质量分别为2m 和3m ,重物的质量为1m 。重物向下运动的速度为V ,圆柱C 在斜面上只滚不滑,圆柱O 与绳子之间无引对滑动,则系统 对O 轴的动量矩为vR m R m vR m H o 12 232 ++=ω。( ) 7 图中已知均质圆轮的半径为R ,质量为m ,在水平面上作纯滚动,质心速度为C v ,则轮子对速度瞬心I 的动量矩为R mv H c I =。( ) 1 已知刚体质心C 到相互平行的z z 、'轴的距离分别为b a 、,刚体的质量为m ,对z 轴的转动惯量为z J ,则' z J 的计算公式为__________________。

A .2)(b a m z z ++='J J ; B .)(2 2b a m z z -+=' J J ; C.)(2 2b a m z z --=' J J 。 2 两匀质圆盘A 、B ,质量相等,半径相同,放在光滑水平面上,分别受到F 和' F 的作用,由静止开始运动,若' F F =,则任一瞬间两圆盘的动量相比较是_____________________。 A.B A p p >; B.B A p p <; C.B A p p =。 3 在一重W 的车轮的轮轴上绕有软绳,绳的一端作用一水平力P ,已知车轮的半径为R ,轮轴的半径为r ,车轮及轮轴对中心O 的回转半径为ρ,以及车轮与地面间的滑动摩擦系数为f ,绳重和滚阻皆不计。当车轮沿地面作平动时,力P 的值为_________________。 A.ρ/fWR P =; B.r fWR P /=; C.r fW P /ρ=;④ fW P =。

第11章动矩定理

第11章 动量矩定理 上一章我们学习了动量定理,它只是从一个侧面反映物体间机械运动传递时,动量的变化与作用在物体上力之间的关系。但当物体作定轴转动时,若质心在转轴上,则物体动量等于零,可见对于转动刚体而言,动量不再用来描述转动物体的物理量。在这一章里我们学习描述转动物体的物理量——动量矩,以及作用在物体上力之间的关系。 11.1 动量矩定理 11.1.1质点和质点系动量矩 1.质点的动量矩 如图11-1所示,设质点在图示瞬时A 点的动量为m v ,矢径为r ,与力F 对点O 之矩的矢量表示类似,定义质点对固定点O 的动量矩为 v r v M m ×=)(m o (11-1) 图11-1 图11-2 质点对固定点O 的动量矩是矢量,方向满足右手螺旋法则,如图11-1所示,大小为固 定点O 与动量AB 所围成的三角形面积的二倍,即 mvh =OAB =)(m M 0的面积Δ2v 其中,h 为固定点O 到AB 线段的垂直距离,称为动量臂。 单位为kg.m 2/s 。

质点的动量对固定轴z 的矩与力F 对固定轴z 的矩类似,如图11-2所示,质点的动量v m 在oxy 平面上的投影xy )m (v 对固定点O 的矩,定义质点对固定轴z 的矩,同时也等于质点对固定点O 的动量矩在固定轴z 上的投影。质点对z 轴的动量矩是代数量,即 z o xy o m =m M =m M Z )]([])[()(v M v v (11-2) 2.质点系的动量矩 质点系对固定点O 的动量矩等于质点系内各质点对固定点O 的动量矩的矢量和,即 ∑==n i i i o )(m 1v M L o (11-3) 质点系对固定轴z 的矩等于质点系内各质点对同一轴z 动量矩的代数和,即 Z o n i i i z z )(m =L ][L v M =∑=1 (11-4) 刚体作平移时动量矩的计算:将刚体的质量集中在刚体的质心上,按质点的动量矩计 算。 刚体作定轴转动时动量矩的计算: 设定轴转动刚体如图11-3所示,其上任一质点i 的质量为m i ,到转轴的垂直距离为i r ,某瞬时的角速度为ω,刚体对转轴z 的动量矩由式(11-4)得 图11-3 ω J =ω)r m (=) r ωr (m =)r v (m =)(m M =L z n i i i n i i i i n i i i i n i i i z ∑∑∑∑====1 21 1 1v z 即 ωJ =L z z (11-5)

《理论力学》第十一章动量矩定理习题解

y x 第十一章 动量矩定理 习题解 [习题11-1] 刚体作平面运动。已知运动方程为:23t x C =,24t y C =,3 2 1t = ?,其中长度以m 计,角度以rad 计,时间以s 计。设刚体质量为kg 10,对于通过质心C 且垂直于图平面的惯性半径m 5.0=ρ,求s t 2=时刚体对坐标原点的动量矩。 解: )(1223|2 2m x t C =?== )(1624|22m y t C =?== t t dt d dt dx v C Cx 6)3(2=== )/(1226|2s m v t Cx =?== t t dt d dt dy v C Cy 8)4(2=== )/(1628|2s m v t Cy =?== 2323)21(t t dt d dt d === ?ω )/(622 3 |22s rad t =?==ω → →→+=k v m M J L C Z Cz O )]([ω → → -+=k y mv x mv m L C Cx C Cy O ][2 ωρ → =→ ?-?+??=k L t O ]1612121665.0[10|2 2 → =→ =k L t O 15|2 )/(2 s m kg ?,→ k 是z 轴正向的单位向量。 [习题11-2] 半径为R ,重为W 的均质圆盘固结在长l ,重为P 的均质水平直杆AB 的B 端,绕铅垂轴Oz 以角速度ω旋转,求系统对转轴的动量矩。 解: g Pl l g P J AB z 3312 2,= ??=

平动 )(a O 转动 绕定轴C )( b 转动 绕定轴1 )(O c 1 O 在圆弧上作纯滚动 )(d g l R W l g W g J l z 4) 4(R W 412222,+= ?+??=圆盘 ωω?+?=圆盘,,z AB z z J J L ω4) 4(3[222g l R W g Pl L z ++= ω)4443( 2 2 2 g WR g Wl g Pl L z ++= ω4333(2 22g WR g Wl g Pl L z ++= ω)433( 2 2R g W l g W P L z ++= [习题11-3] 已知均质圆盘质量为m ,半径为R ,当它作图示四种运动时,对固定点1O 的动量矩分别为多大?图中l C O =1。 解:)(a 因为圆盘作平动,所以 ωω211ml J L z O O == 解:)(b → → → →?+=p r L L C C O 1 其中,质心C 的动量为0 ωω22 1 1mR J L Cz O = = 解:)(c ωω)2 1 (2211ml mR J L z O O +== 解:)(d 因为圆盘作平面运动,所以: )(11→ +=C Z O Cz O v m M J L ω

大学物理课后习题答案第十二章

第12章 机械振动 习题及答案 1、什么是简谐振动?哪个或哪几个是表示质点作简谐振动时加速度和位移关系的? (1) ;(2) ;(3) ;(4) . 答:系统在线性回复力的作用下,作周期性往复运动,即为简谐振动。 对于简谐振动,有 ,故(3)表示简谐振动。 2、对于给定的弹簧振子,当其振幅减为原来的1/2时,下列哪些物理量发生了变化?变化为原来的多少倍? (1)劲度系数;(2)频率;(3)总机械能;(4)最大速度;(5)最大加速度。 解:当 时, (1)劲度系数k 不变。 (2)频率不变。 (3)总机械能 (4)最大速度 (5) 最大加速度 3、劲度系数为1k 和2k 的两根弹簧,与质量为m 的小球按题图所示的两种方式连接,试证明它们的振动均为谐振动,并分别求出它们的振动周期. 解:(1)图(a)中为串联弹簧,对于轻弹簧在任一时刻应有21F F F ==,设串联弹簧的等效倔强系数为串K 等效位移为x ,则有 1 11x k F x k F -=-=串 222x k F -= 又有 21x x x += 2 211k F k F k F x +== 串

所以串联弹簧的等效倔强系数为 2 12 1k k k k k += 串 即小球与串联弹簧构成了一个等效倔强系数为)/(2121k k k k k +=的弹簧振子系统,故小球作谐振动.其振动周期为 2 121)(222k k k k m k m T +=== ππ ω π 串 (2)图(b)中可等效为并联弹簧,同上理,应有21F F F ==,即21x x x ==,设并联弹簧的倔强系数为并k ,则有 2211x k x k x k +=并 故 21k k k +=并 同上理,其振动周期为 2 12k k m T +='π 4. 完全相同的弹簧振子, 时刻的状态如图所示,其相位分别为多少? 解:对于弹簧振子,时, , (a ) ,故 ,故 k m (a k m v (b k m v (c k m (d

梁坤京理论力学第十二章动量矩定理课后答案

动量矩定理 12-1 质量为m 的点在平面Oxy 内运动,其运动方程为: x a cos t y bsin2 t 式中a 、b 和 为常量。求质点对原点 O 的动量矩。 解:由运动方程对时间的一阶导数得原点的速度 V x dx sin t dt a V y dy 2b cos2 t 质点对点 O 的动量矩为 L O M o (mV x ) M 0( mV y ) mv x y mv y x m ( a sin t) bsin2 t m 2b cos2 t acos t 2mab cos 3 t 12-3 如图所示,质量为m 的偏心轮在水平面上作平面运动。 轮子轴心为A,质心为C, AC = e ;轮子半径为 R,对轴心A 的转动惯量为J A ; C 、A 、B 三点在同一铅直线上。(1 )当轮子只 滚不滑时,若 V A 已知,求轮子的动量和对地面上 B 点的动量矩。(2)当轮子又滚又滑时, 若V A 、 已知,求轮子的动量和对地面上 B 点的动量矩。 解:(1)当轮子只滚不滑时 B 点为速度瞬心。 轮子角速度 V A R 质心C 的速度V C BC R e 轮子的动量 p mv C mv A (方向水平向右) R 对B 点动量矩L B J B 2 2 2 由于 J B J C m (R e) J A me m (R e) 故 L B J A me 2 m (R e )2 食 (2)当轮子又滚又滑时由基点法求得 C 点速 度。 V C V A V CA V A e 轮子动量 p mv C m(v A e) (方向向右) 对B 点动量矩 L B mv C BC J C m(v A 2 e) (R e) (J A me) mv A (R e) (J A mRe) 12-13 如图所示,有一轮子,轴的直径为 50 mm 无初速地沿倾角 20的轨道滚下,设 只滚不滑,5秒内轮心滚动的距离为 s =3m 。试求轮子对轮心的惯性半径。 解:取轮子为研究对象,轮子受力如图( a )所示,根据刚体平面运动微分方程有 ma C mgsi n F ( 1) J C = Fr ( 2) 因轮子只滚不滑,所以有 a c = r ( 3) ? 12

第12章 动量矩定理(田)

第十二章 动量矩定理 一、填空题 1.如下(1)图所示,在提升重为G的物体A时,可在半径为r的鼓轮上作用一力偶M。已知鼓轮对轴O的转动惯量为I,某瞬时鼓轮的角加速度为α,则该瞬时,系统对轴O的动量矩定理可写成______________。 2.如下(2)图所示,轮B由系杆AB带动在固定轮A上无滑动滚动,两圆的半径分别为R,r。若轮B的质量为m,系杆的角速度为ω,则轮B对固定轴A的动量矩大小是_______________。 3.图(3)中匀质圆盘在光滑水平面上作直线平动,图(4)中匀质圆盘沿水平直线作无滑动滚动。设两圆盘的质量皆为m,半径皆为r,轮心O速度皆为v,则图示瞬时,它们各自对轮心O和对与地面接触点D的动量矩分别为:(3)LO =___________ ;LD =_____________________; (4)LO =_____________;LD =_____________________。 二、选择题 1.如下图(1)所示,已知两个匀质圆轮对转轴转动惯量分别为I A,I B,半径分别为RA,RB,作用在A轮上的转矩为M,则系统中A轮角加速度的大小为( )。 2 2A 2 2B 2 A A B A A 222A D C I I M B A B A B A B A A B B R I R I MR I M R I R I MR +==+=+=αααα、;、;、;、 2.如下图(2)所示,两匀质细杆OA和BC的质量均为m = 8kg,长度均为l = 0.5m, 固连成图所示的T字型构件,可绕通过点O的水平轴转动。当杆OA处于图示水平位置时,该构件的角速度ω = 4rad/s。则该瞬时轴O处反力的铅垂分力NOy的大小为( )。 A.NO=24.5N;B.NO=32.3N;C.NO=73.8N;D.NO=156.8N 3.如果把下图(3)中重为G A 的物体换为图(4)所示的力G A ,在这两种情况下,若把匀质滑轮的角加速度ε1和ε2的大小比较,则有( )。 A . ε1 < ε; B . ε1 > ε; C . ε1 = ε2 (1) (2) (3) (4) (1) (2) (3) (4)

高考物理复习十二章动量守恒定律动量定理动量守恒定律学案

第1讲动量定理动量守恒定律[考试标准] 知识内容必考要求加试要求说明 动量和动 量定理 c 1.运用动量定理计算时,只限于一个物体、一维运动 和一个过程. 2.运用动量定理计算时,不要求涉及连续介质. 3.只要求解决一维运动中简单的动量守恒问题. 4.只要求解决两个物体构成的系统相互作用一次的 动量守恒问题. 5.运用动量守恒定律计算时,不要求涉及相对速度. 6.运用动量守恒定律计算时,不要求涉及平均速度. 7.运用动量守恒定律计算时,不要求涉及变质量问 题. 8.综合应用动量、能量进行计算时,不要求联立方程 求解. 9.不要求定量计算反冲问题. 动量守恒 定律 c 碰撞 d 反冲运动 火箭 b 一、动量和动量定理 1.动量 物体的质量与速度的乘积为动量,即p=mv,单位是kg·m/s.动量是描述物体运动状态的物理量,是矢量,其方向与速度的方向相同. 2.冲量 力与力的作用时间的乘积叫做力的冲量,即I=F·t,冲量是矢量,其方向与力的方向相同,单位是N·s. 3.动量定理 物体在一个过程始末的动量变化量等于它在这个过程中所受力的冲量,即p′-p=I.适用于单个物体或多个物体组成的系统. 自测1(多选)关于物体的动量,下列说法中正确的是( ) A.物体的动量越大,其惯性也越大

B.同一物体的动量越大,其速度一定越大 C.物体的加速度增大,其动量一定增大 D.运动物体在任一时刻的动量方向一定是该时刻的速度方向 答案BD 二、动量守恒定律 1.适用条件 (1)系统不受外力或所受外力的合力为零,不是系统内每个物体所受的合力都为零,更不能认为系统处于平衡状态. (2)近似适用条件:系统内各物体间相互作用的内力远大于它所受到的外力. (3)如果系统在某一方向上所受外力的合力为零,则系统在该方向上动量守恒. 2.动量守恒定律的不同表达形式 (1)m1v1+m2v2=m1v1′+m2v2′,相互作用的两个物体组成的系统,作用前的总动量和等于作用后的总动量. (2)Δp1=-Δp2,相互作用的两个物体动量的增量等大反向. (3)Δp=0,系统总动量的增量为零. 自测2(多选)如图1所示,在光滑的水平面上有静止的物体A和B.物体A的质量是B的2倍,两物体中间用被细绳束缚的处于压缩状态的轻质弹簧相连.当把细绳剪断,弹簧在恢复原长的过程中( ) 图1 A.A的速率是B的2倍 B.A的动量大于B的动量 C.A受的力等于B受的力 D.A、B组成的系统的总动量为零 答案CD 三、碰撞 1.碰撞 碰撞是指物体间的相互作用持续时间很短,而物体间相互作用力很大的现象. 2.特点 在碰撞现象中,一般都满足内力远大于外力,可认为相互碰撞的系统动量守恒. 3.分类 动量是否守恒机械能是否守恒 弹性碰撞守恒守恒 非弹性碰撞守恒有损失 完全非弹性碰撞守恒损失最大

第十二章动量矩定理授课时间

授课时间 第24课,第 2 周星期 4 第1、2 节课时 2 授课方式理论课√讨论课□习题课□实验课□上机课□技能课□其他□授课题目 第十二章动量矩定理§12-1 质点和质点系的动量矩 §12-2动量矩定理 目的与 要求 掌握质点和质点系的动量矩的概念,动量矩定理的应用。 重点与 难点 重点:动量矩定理的应用。 难点:动量矩定理的应用。 教学基本内容方法及手段§12-1 质点和质点系的动量矩 1.质点的动量矩 对点O的动量矩 对z 轴的动量矩 单位:kg·m2/s 2.质点系的动量矩 对点的动量矩 对轴的动量矩 电教 30分钟 () O M mv r mv =? r r r r () O M mv r mv =? r r r r [()]() O z z M mv M mv = r r r 1 () n O O i i i L M m v = =∑ r r r 1 () n z z i i i L M m v = =∑ r [] O z z L L = r O x y z L L i L j L k =++ r r r r 即

(1) 刚体平移.可将全部质量集中于质心,作为一个质点来计算. (2) 刚体绕定轴转动 转动惯量 §12-2 动量矩定理 1.质点的动量矩定理,设O 为定点,有 其中, 因此, 称为质点的动量矩定理:质点对某定点的 动量矩对时间的一阶导数,等于作用力对 同一点的矩. 投影式: 2. 质点系的动量矩定理 由于 20分钟 20分钟 10分钟 () z z C L M mv =r () O O C L M mv =r r r i i i i i z z r v m v m M L ∑=∑=)(2 i i i i i r m r r m ∑=∑=ωω2i i z r m J ∑=ω z z J L =d d ()()d d O M mv r mv t t =?r r r r d d ()d d r mv r mv t t =?+?r r r r d ()d mv F t =r r (O 为定点) d d r v t =r r 0v mv ?=r r d ()() d O O M mv M F t =r r r r d ()()d x x M mv M F t =r r d ()()d y y M mv M F t =r r d ()()d z z M mv M F t =r r ()()d ()()()d i e O i i O i O i M m v M F M F t =+r r r r r r ()()d ()()()d i e O i i O i O i M m v M F M F t ∑=∑+∑r r r s r r () ()0 i O i M F ∑=r r d d d ()()d d d O O i i O i i L M m v M m v t t t ∑=∑=r r r r r

【课堂新坐标】(安徽专用)2014届高考物理一轮复习 第十二章 第1讲 动量定理 动量守恒定律跟踪检测

第1讲动量定理动量守恒定律 (对应学生用书第201页) 1.动量 (1)定义:运动物体的质量m与速度v的乘积. (2)定义式:p=mv. (3)单位:kg·m/s. (4)方向:与速度方向相同. (5)物理意义:物体的动量表征物体的运动状态,其中速度为瞬时速度. 2.动量变化 (1)定义:物体的末动量p′与初动量p的矢量差. (2)表达式:Δp=p′-p. (3)矢量性:动量变化是矢量,其方向与物体的速度变化的方向相同. 3 1.(2012届北京市朝阳区高三上学期期中统考)物体在运动过程中加速度不为零,则下列说法正确的是( ) A.物体速度的大小一定随时间变化 B.物体速度的方向一定随时间变化 C.物体动能一定随时间变化 D.物体动量一定随时间变化 【解析】加速度不为零,说明其速度在变化,速度的改变存在三种情况:速度的方向不变,只是大小在变化(动能也变化),速度的大小不变,只是方向在变化(动能不变);速度的大小和方向同时改变(动能变化).显然,选项A、B、C均错误;动量是矢量,只要加速度改变,物体的动量就一定改变,选项D正确.本题答案为D. 【答案】 D 1.冲量 (1)定义:力F与力的作用时间t的乘积.

(2)定义式:I =Ft . (3)单位:N·s (4)方向:恒力作用时,与力的方向相同. (5)物理意义:是一个过程量,表示力在时间上积累的作用效果. 2.动量定理 (1)内容:物体所受合力的冲量等于物体的动量变化. (2)表达式:????? Ft =mv 2-mv 1I =Δp 【针对训练】 2.篮球运动员通常伸出双手迎接传来的篮球.接球时,两手随球迅速收缩至胸前.这样做可以( ) A .减小球对手的冲量 B .减小球对人的冲击力 C .减小球的动量变化量 D .减小球的动能变化量 【解析】 接球过程中,球的初动量和末动量一定,所以球的动量变化量恒定不变,选项C 错误;根据动量定理,手对球的冲量等于球动量的改变量,也恒定不变,球对手的冲量也不变,选项A 错误;球的初动能和末动能一定,所以球的动能变化量恒定不变,选项D 错误;根据动量定理I =Ft ,球对手的冲量I 不变,接球时两手随球迅速收缩至胸前,是通过延长受力时间t 以减小球对人的冲击力F ,所以选项B 正确.本题答案为B. 【答案】 1.内容:这个系统的总动量保持不变. 2.常用的表达式 (1)p =p ′,系统相互作用前的总动量p 等于相互作用后的总动量p ′. (2)m 1v 1+m 2v 2=m 1v ′1+m 2v ′2,相互作用的两个物体组成的系统,作用前的总动量等于作用后的总动量. (3)Δp 1=-Δp 2,相互作用的两个物体动量的增量大小相等,方向相反. (4)Δp =0,系统总动量的增量为零. 3.成立条件:系统不受外力或所受外力的合力为零. (对应学生用书第202页) 1.适用于受持续的冲量作用,也适用于受间断的多个冲量的作用. 2.解释现象:一类是物体的动量变化一定,此时力的作用时间越短,力就越大;时间越长,力就越小.另一类是作用力一定,此时力的作用时间越长,动量变化越大;力的作用时间越短,动量变化越小. 3.解题的基本思路 (1)确定研究对象:一般为单个物体或由多个物体组成的系统. (2)对物体进行受力分析.可以先求每个力的冲量,再求各力冲量的矢量和;或先求合

第十一章动量矩定理习题解答

习题 11-1质量为m的质点在平面Oxy内运动,其运动方程为: 。其中a、b和w均为常量。试求质点对坐标原点 O的动量矩。 11-2 C、D两球质量均为m,用长为2 l的杆连接,并将其中点固定在轴AB上,杆CD与轴AB的交角为,如图11-25所示。如轴AB以角速度w转动,试求下列两种情况下,系统对AB轴的动量矩。<1)杆重忽略不计;<2)杆为均质杆,质量为2m。b5E2RGbCAP 图11-25 (1> (2> 11-3 试求图11-26所示各均质物体对其转轴的动量矩。各物体质量均为m。 图11-26 (a>

(b> (c> (d> 11-4如图11-27所示,均质三角形薄板的质量为m,高为h,试求对底边的转动惯量Jx。 图11-27 面密度为 在y处 微小区域对于z轴的转动惯量 11-5 三根相同的均质杆,用光滑铰链联接,如图11-28所示。试求其对与ABC所在平面垂直的质心轴的转动惯量。p1EanqFDPw 图11-28 11-6 如图11-29所示,物体以角速度w绕O轴转动,试求物体对于O轴的动量矩。(1> 半径为R,质量为m的均质圆盘,在中央挖去一边长为R的正方形,如图11-32a所示。(2> 边长为4a,质量为

m的正方形钢板,在中央挖去一半径为a的圆,如图11-32b所示。DXDiTa9E3d 图11-29 (1> (2> 11-7如图11-30所示,质量为m的偏心轮在水平面上作平面运动。轮子轴心为A,质心为C,AC=e;轮子半径为R,对轴心A的转动惯量为JA;C、A、B三点在同一直线上。试求下列两种情况下轮子的动量和对地面上B点的动量矩:(1>当轮子只滚不滑时,已知vA;(2>当轮子又滚又滑时,已知vA、w。RTCrpUDGiT 图11-30 (1>

动量矩定理例题

第12章 动量矩定理 12-1 质量为m 的点在平面Oxy 内运动,其运动方程为: t b y t a x ωω2sin cos == 式中a 、b 和ω为常量。求质点对原点O 的动量矩。 解:由运动方程对时间的一阶导数得原点的速度 t b t y v t a t x v y x ωωωω2cos 2d d sin d d ==-== 质点对点O 的动量矩为 t a t b m t b t a m x mv y mv m M m M L y x O O ωωωωωωcos 2cos 22sin )sin ()()(0??+?-?-=?+?-=+=y x v v t mab ωω3cos 2= 12-3 如图所示,质量为m 的偏心轮在水平面上作平面运动。轮子轴心为A ,质心为C ,AC = e ;轮子半径为R ,对轴心A 的转动惯量为J A ;C 、A 、B 三点在同一铅直线上。(1)当轮子只滚不滑时,若v A 已知,求轮子的动量和对地面上B 点的动量矩。(2)当轮子又滚又滑时,若v A 、ω已知,求轮子的动量和对地面上B 点的动量矩。 解:(1)当轮子只滚不滑时B 点为速度瞬心。 轮子角速度 R v A =ω 质心C 的速度 )(e R R v C B v A C += =ω 轮子的动量 A C mv R e R mv p += =(方向水平向右) 对B 点动量矩 ω?=B B J L 由于 222)( )( e R m me J e R m J J A C B ++-=++= 故 [] R v e R m me J L A A B 22)( ++-= (2)当轮子又滚又滑时由基点法求得C 点速度。 e v v v v A CA A C ω+=+= 轮子动量 )(e v m mv p A C ω+== (方向向右) 对B 点动量矩 ) ( )()()( )( 2e mR J e R mv me J e R e v m J BC mv L A A A A C C B +++=-+++=+=ωωωω 12-5 图示水平圆板可绕z 轴转动。在圆板上有一质点M 作圆周运动,已知其速度的大小为常量,等于v 0,质点M 的质量为m ,圆的半径为r ,圆心到z 轴的距离为l ,M 点在圆板的位置由?角确定,如图所示。如圆板的转动惯量为J ,并且当点M 离z 轴最远在点M 0时,圆板的角速度为零。轴的摩擦和空气阻力略去不计,求圆板的角速度与?角的关系。 解:以圆板和质点M 为系统,因为系统所受外力(包括重力和约束反力),对z 轴的矩均为零,故系统对z 轴动量矩守恒。在任意时刻M 点的速度包含相对速度v 0和牵连速度v e 。其中ω?=OM v e 。设质点M 在M 0 位置为起始位置,该瞬时系统对z 轴的动量矩为

第12章 动量矩定理

第十二章 动量矩定理 §12—1 质点和质点系的动量矩 一、质点的动量矩 质点Q 的动量对于点O 的矩,定义为质点对于点O 的动量矩 动量矩的单位:kgm 2/s 二、 质点系的动量矩 ()mv r mv M O ?=()OQA r mv mv M O ?=?=2sin ?() i i n i O O v m M L ∑==1 () i i n i z z v m M L ∑==1 ()A Q O mv M z ' '?±=2()[]() mv M mv M z z O =

绕定轴转动刚体对其转轴的动量矩等于刚体对转轴的转动惯量与转动角速度的乘积。 §12—2 动量矩定理 一、质点的动量矩定理 质点的动量矩定理: 质点对某定点的动量矩对时间的一阶导数,等于作用力对同一点的矩。 直角坐标投影式为 []z z O L L =()2 1 1 1 i n i i i n i i i i i n i z z r m r v m v m M L ∑∑∑====?==ω2 1 i n i i z r m J ∑==ω z z J L =()mv dt d r mv dt dr mv r dt d mv M dt d O ?+?=?=)()(()F r mv v mv M dt d O ?+?=()()F M mv M dt d O O =()()()()()()F M m v M dt d F M m v M dt d F M m v M dt d z z y y x x == =

特殊情形: 当质点受有心力F 的作用时,如图11-4所示,力矩0=)(o F M ,则质点对固定点O 的动量矩)(m o v M =恒矢量,质点的动量矩守恒。例如行星绕着恒星转,受恒星的引力作用,引力对恒星的矩0=)(o F M ,行星的动量矩 )(m o v M =恒矢量,此恒矢量的方向是不变的,因此行星作平面曲线运动;此 恒矢量的大小是不变的,即mvh =恒量,行星的速度v 与恒星到速度矢量的距离h 成反比。

梁坤京理论力学第十二章动量矩定理课后答案

动量矩定理 12-1 质量为m 的点在平面Oxy 内运动,其运动方程为: t b y t a x ωω2sin cos == 式中a 、b 和ω为常量。求质点对原点O 的动量矩。 解:由运动方程对时间的一阶导数得原点的速度 t b t y v t a t x v y x ωωωω2cos 2d d sin d d ==-== 质点对点O 的动量矩为 t a t b m t b t a m x mv y mv m M m M L y x O O ωωωωωωcos 2cos 22sin )sin ()()(0??+?-?-=?+?-=+=y x v v t mab ωω3 cos 2= ? 12-3 如图所示,质量为m 的偏心轮在水平面上作平面运动。轮子轴心为A ,质心为C ,AC = e ;轮子半径为R ,对轴心A 的转动惯量为J A ;C 、A 、B 三点在同一铅直线上。(1)当轮子只滚不滑时,若v A 已知,求轮子的动量和对地面上B 点的动量矩。(2)当轮子又滚又滑时,若v A 、ω已知,求轮子的动量和对地面上B 点的动量矩。 解:(1)当轮子只滚不滑时B 点为速度瞬心。 轮子角速度 R v A = ω 质心C 的速度 )(e R R v C B v A C += =ω 轮子的动量 A C mv R e R mv p += =(方向水平向右) 对B 点动量矩 ω?=B B J L 由于 222)( )( e R m me J e R m J J A C B ++-=++= 故 [] R v e R m me J L A A B 22)( ++-= ` (2)当轮子又滚又滑时由基点法求得C 点速度。 e v v v v A CA A C ω+=+= 轮子动量 )(e v m mv p A C ω+== (方向向右) 对B 点动量矩 ) ( )()()( )( 2e mR J e R mv me J e R e v m J BC mv L A A A A C C B +++=-+++=+=ωωωω 12-13 如图所示,有一轮子,轴的直径为50 mm ,无初速地沿倾角?=20θ的轨道滚下,设只滚不滑,5秒内轮心滚动的距离为s = 3 m 。试求轮子对轮心的惯性半径。 解:取轮子为研究对象,轮子受力如图(a )所示,根据刚体平面运动微分方程有 F mg ma C -=θsin (1) — J C α = Fr (2) 因轮子只滚不滑,所以有 a C =αr (3)

梁坤京理论力学第十二章动量矩定理课后答案

梁坤京理论力学第十二章动量矩定理课后答案 案场各岗位服务流程 销售大厅服务岗: 1、销售大厅服务岗岗位职责: 1)为来访客户提供全程的休息区域及饮品; 2)保持销售区域台面整洁; 3)及时补足销售大厅物资,如糖果或杂志等; 4)收集客户意见、建议及现场问题点; 2、销售大厅服务岗工作及服务流程 阶段工作及服务流程 班前阶段1)自检仪容仪表以饱满的精神面貌进入工作区域 2)检查使用工具及销售大厅物资情况,异常情况及时登记并报告上级。 班中工作程序服务 流程 行为 规范 迎接 指引 递阅 资料 上饮品 (糕点) 添加茶水工作1)眼神关注客人,当客人距3米距离侯客迎询问客户送客户

注意事项 15度鞠躬微笑问候:“您好!欢迎光临!”2)在客人前方1-2米距离领位,指引请客人向休息区,在客人入座后问客人对座位是否满意:“您好!请问坐这儿可以吗?”得到同意后为客人拉椅入座“好的,请入座!” 3)若客人无置业顾问陪同,可询问:请问您有专属的置业顾问吗?,为客人取阅项目资料,并礼貌的告知请客人稍等,置业顾问会很快过来介绍,同时请置业顾问关注该客人; 4)问候的起始语应为“先生-小姐-女士早上好,这里是XX销售中心,这边请”5)问候时间段为8:30-11:30 早上好11:30-14:30 中午好 14:30-18:00下午好 6)关注客人物品,如物品较多,则主动询问是否需要帮助(如拾到物品须两名人员在场方能打开,提示客人注意贵重物品); 7)在满座位的情况下,须先向客人致

待; 阶段工作及服务流程 班中工作程序工作 要求 注意 事项 饮料(糕点服务) 1)在所有饮料(糕点)服务中必须使用 托盘; 2)所有饮料服务均已“对不起,打扰一 下,请问您需要什么饮品”为起始; 3)服务方向:从客人的右面服务; 4)当客人的饮料杯中只剩三分之一时, 必须询问客人是否需要再添一杯,在二 次服务中特别注意瓶口绝对不可以与 客人使用的杯子接触; 5)在客人再次需要饮料时必须更换杯 子; 下班程 序1)检查使用的工具及销售案场物资情况,异常情况及时记录并报告上级领导; 2)填写物资领用申请表并整理客户意见;3)参加班后总结会; 4)积极配合销售人员的接待工作,如果下班

相关主题
文本预览
相关文档 最新文档