当前位置:文档之家› 三相桥式PWM逆变电路

三相桥式PWM逆变电路

三相桥式PWM逆变电路
三相桥式PWM逆变电路

《电力电子技术》课程设计说明书三相桥式PWM逆变电路的设计院、部:电气与信息工程

学生姓名:刘远治

指导教师:桂友超职称副教授

专业:电气工程及其自动化

班级:电气本1104班

完成时间:2014年06月

摘要

本文设计了一个三相桥式PWM控制的逆变电路。PWM控制就是对脉冲的宽度进行调制的技术,如果脉冲的宽度按正弦规律变化而和正弦波等效的PWM波形,也称为SPWM波形。该设计包括主电路、驱动电路、SPWM信号产生电路、过流保护等方面的设计。该逆变器主电路采用的开关器件是IGBT;如需实物制作,驱动电路可采用现在大功率MOSFET、IGBT专用驱动芯片IR2110;PWM信号产生电路可采用CD4538芯片控制产生。

关键词:三相桥式;主电路;IR2110;CD4538

Abstract

This paper designed a three-phase PWM controlled inverter bridge circuit. PWM control is on the pulse width modulation technology, if the pulse width changes according to sine law and the sine wave PWM waveform equivalent, also known as SPWM waveform. The design includes the main circuit, driver circuit, SPWM signal generation circuit, over-current protection and other aspects of design. The inverter main circuit uses IGBT; If you need make it real, driver circuit can use high-power MOSFET, IGBT dedicated driver chip IR2110; PWM signal generation circuit controlled by the CD4538 chip produced。

Key words three-phase bridge; main circuit; IR2110; CD4538

目录

1 绪言 (1)

2 主电路设计 (2)

2.1主电路原理图 (2)

2.2原理分析 (2)

2.3参数计算 (3)

2.4器件选择 (3)

3 控制电路设计 (4)

3.1电路原理框图 (4)

3.2电路原理图 (4)

3.3原理分析 (4)

3.4主要器件介绍 (5)

4 保护电路的设计 (6)

4.1保护电路的作用 (6)

4.2电路原理图 (6)

4.3原理分析 (6)

5 仿真分析 (7)

5.1仿真模型的建立方法 (7)

5.2仿真电路模型 (7)

5.3仿真效果图 (8)

5.4仿真结果分析 (9)

6 设计总结 (10)

7 附录 (11)

1 绪言

1.1学习情况

不知不觉中《电力电子技术》这门课程十来周的课时就结束了,从课余时间做老师布置的作业和前几周考试的情况来看,我对自己对这门课程理论知识的掌握情况还算比较满意。虽然不是说老师讲过的重点都掌握的很好,但是起码有了一个初步的了解和一点自己的理解,我觉得能做到这样也还不错。

1.2对设计内容的掌握情况

至于三相桥式逆变电路,我感觉自己掌握得不够好,其实应该说对所有三相的电路掌握都不如单相的电路来的好,当然这和自己电路,数电和模电等课程没有学好有一定的关系,因为这方面的基础没打好,学起来感觉就相对吃力些。不过,我会把跟课程设计有关的内容好好复习一下,实在不懂的地方可以上网查阅资料,请教老师和同学。

1.3设计任务

对三相桥式PWM逆变电路的主电路及控制电路进行设计,参数要求如下:直流电压为100 V。三相阻感负载,负载中R=2 ,L=1mH,要求频率范围:30Hz~60Hz,电压在30~50V范围可调。

理论设计:了解掌握三相桥式PWM逆变电路的工作原理,设计三相桥式PWM 逆变电路的主电路和控制电路。包括:

(1)IGBT相关参数的计算和器件的选择;

(2)驱动和保护电路的设计;

(3)画出主电路原理图和控制原理图。

仿真试验:利用MATLAB仿真软件对三相桥式PWM逆变电路的主电路及控制电路进行仿真建模,并进行仿真试验。

2 主电路设计

2.1 电路原理图

图1 主电路原理图

2.2原理分析

由于期望的逆变器输出是一个正弦电压波形,可以把一个正弦半波分作N 等分。然后把每一等分的正弦曲线与横轴所包围的面积都用个与此面积相等的等高矩形脉冲来代替,矩形脉冲的中点与正弦波每一等分的中点重合。这样,由N 个等幅不等宽的矩形脉冲所组成的波形为正弦的半周等效。同样,正弦波的负半周也可用相同的方法来等效。

这一系列脉冲波形就是所期望的逆变器输出SPWM波形。由于各脉冲的幅值相等,所以逆变器可由恒定的直流电源供电,也就是说,这种交一直一交变频器中的整流器采用不可控的二极管整流器就可以了。逆变器输出脉冲的幅值就是整流器的输出电压。当逆变器各开关器件都是在理想状态下工作时,驱动相应开关器件的信号也应为与形状相似的一系列脉冲波形,这是很容易推断出来的。

从理论上讲,这一系列脉冲波形的宽度可以严格地用计算方法求得,作为控制逆变器中各开关器件通断的依据。但较为实用的办法是引用通信技术中的“调制”这一概念,以所期望的波形(在这里是正弦波)作为调制波(Modulation Wave ),而受它调制的信号称为载波(Carrier Wave )。在SPWM中常用等腰三角波作为载波,因为等腰三角波是上下宽度线性对称变化的波形,当它与任何一个光滑的曲线相交时,在交点的时刻控制开关器件的通断,即可得到一组等幅而脉冲宽度正比于该曲线函数值的矩形脉冲,这正是SPWM所需要的结果。

2.3参数计算

根据设计要求有I

d =U

d

/R=50A,所以可以算得基波电流有效值为 I

01

= 0.9I

d

=0.9×50=45A;本设计选择的开关器件为IGBT,则IGBT的额定电流为:I

N

=(1.5~2) ×45/1.57=(42.99~57.32)A;

若取U

d = 100V,所以有IGBT的额定电压为U

N

= (2~3) ×√2U

d

=(282.84~

424.26)V,所以,在选择IGBT(开关器件)的时候,只要满足以上额定电压和额定电流的范围均可。

2.4器件选择

IGBT选择BSM75GB60DLC,其最高耐压为600V,最大电流为75A,满足设计要求。

除此之外,根据要求,电压源为100V,由于其价格贵重,不予考虑选择其具体型号;所用的电阻R=2Ω,具体型号可选择2.2Ω的任意一种;电感为1mH,选择0204 0307 0410 0510。

3 控制电路设计

3.1电路原理框图

图2 控制电路原理框图

3.2电路原理图

图3 控制电路原理图

3.3原理分析

据自然采样法,三个互差120o的正弦波与高频三角载波进行比较,每路结果再经反相器产生与原信号相反的控制波,分别控制上下桥臂IGBT的导通与关断。这样产生的六路SPWM波分别控制六个IGBT的通断,从而在负载端产生与调制波同频的三相交流电。原理图中的三角载波用S函数产生。

3.4主要器件介绍

美国 IR 公司生产的IR2110 驱动器。它兼有光耦隔离(体积小)和电磁隔离(速度快)的优点,是中小功率变换装置中驱动器件的首选品种。IR2110 采用HVIC 和闩锁抗干扰CMOS 制造工艺,DIP14 脚封装。具有独立的低端和高端输入通道;悬浮电源采用自举电路,其高端工作电压可达500V,dv/dt=±50V/ns,15V 下静态功耗仅116mW;输出的电源端(脚3,即功率器件的栅极驱动电压)电压范围10~20V;逻辑电源电压范围(脚9)5~15V,可方便地与TTL,CMOS 电平相匹配,而且逻辑电源地和功率地之间允许有±5V 的偏移量;工作频率高,可达500kHz;开通、关断延迟小,分别为120ns 和94ns;图腾柱输出峰值电流为2A。

4 保护电路设计

4.1保护电路的作用

电力电子电路中设置保护电路主要是防止电路中电力电子器件的损毁。4.2电路原理图

图4 过流保护电路

图5 过电压保护电路

4.3原理分析

电力电子电路运行不正常或者发生故障时,可能会发生过电流。过电流分为过载和短路两种情况。通常采用的保护措施有:快速熔断器、直流快速断路器和过电流继电器。一般电力电子装置均同时采用集中过流保护措施,以提高保护的可靠性和合理性。综合本次设计电路的特点,采用快速熔断器,即给晶闸管串联一个保险丝实施电流保护。如图4电流保护电路所示。对于所选的保险丝,遵从t2I值小于晶闸管的允许t2I值。

电力电子装置中可能发生的过电压分为外因过电压和内因过电压两类。外因过电压主要来自雷击和系统中的操作过程等外部原因。本设计主要用于室内,为了使用方便不考虑来自雷击的威胁。根据以上产生过电压的的各种原因,设计相应的保护电路。如图5过电压保护电路所示。其中:图中是利用一个电阻加电容进行电压抑制,当电压过高时,保护电路中的电容会阻碍其电压的上升,从而防止电子器件IGBT管因电压的过高厄尔损坏。图5中的电阻可以是1KΩ左右的电阻,而电容的值可以为100μF左右,这样形成一个保护电路。

5 仿真分析

5.1仿真模型的建立方法

本次课程设计我采用的是MATLAB进行仿真,整个三相桥式PWM逆变电路的设计分为两块——主电路部分和控制电路部分。据图1主电路原理图,在Simulink中搭建系统主电路如图6所示。主要用到了simpower systems工具箱和Simulink工具箱。图中的逆变主电路用Universal Bridge 则更加简单。图中的变压器起到隔离作用,使得SPWM波和负载波形同时能测取。

5.2仿真电路模型

图6 主电路仿真图

图7 驱动电路仿真图5.3仿真效果图

产生频率为30HZ时的实验:

图8 30Hz仿真结果图产生频率为50HZ时的实验:

图9 50Hz仿真结果图

5.4仿真结果分析

从图6第五路波形可以看出,系统输出正弦波周期为0.033s左右,即输出频率约为30HZ。同理,从图7第五路波形可以看出,系统输出正弦波周期为0.02s

左右,即频率约为50Hz。图6和图7中,前三路波形分别为u

UN’,u

VN’

,u

WN’

第四路为没有滤波前的u

VW ,第五路为滤波后的u

VW

6 设计总结

回顾此次电力电子技术课程设计,至今我仍感慨颇多,的确,从选题到定稿,从理论到实践,在整整一星期的日子里,可以说是苦多于甜,但是可以学到很多的东西,不仅巩固了以前所学过的知识,而且学到了很多在书本上所没不到的知识。在设计的过程中遇到很多问题,甚至可以说是困难重重,这毕竟第一次做,难免会遇到各种各样的问题,比如有时候被一些看似微不足道,细节上的问题挡住前进的步伐,让我总是为了解决一个小问题而花费很长的时间。最后还要查阅其他的书籍才能找出解决的办法,而且自己看起来挺好的设计在实践下就漏洞百出了。并且我在做设计的过程中发现有很多东西,也知道自己的很多不足之处,知道自己对以前所学过的知识理解得不够深刻,掌握得不够牢固,自己认为学了没用的课程现在也用到了。比如《MATLAB在自动控制中的应用》这门课程,看起来不是很有用的东西现在却都多多少少的集中在一块儿了。

所谓“态度决定一切”,于是偶然又必然地收获了诸多,概而言之,大约以下几点:温故而知新。课程设计开始的时候思绪全无,举步维艰,对于理论知识学习不够扎实的我此时深感“书到用时方恨少”,于是想起圣人之言“温故而知新”,便重拾教材与实验手册,对知识系统全面进行了梳理,遇到难处先是苦思冥想再向老师和同学请教,终于熟练掌握了基本理论知识,而且领悟诸多平时学习难以理解掌握的较难知识,学会了如何思考的思维方式,找到了设计的灵感。

思路即出路。当初没有思路,感觉就是不知怎么下手,也不知道从哪里下手,在对理论知识梳理掌握之后,可谓是茅塞顿开。这次课程设计终于顺利完成了,在设计中遇到了很多问题,最后在努力下终于迎刃而解。同时发现了还有很多工具及理论以后亟待学习。它培养了我们严谨科学的思维,通过它架起了理论与实践的桥梁,加强和巩固了所学的知识,加深对理论知识的理解;培养了文献检索的能力,特别是如何利用Internet检索需要的文献资料;培养了综合分析问题、发现问题和解决问题的能力;培养了综合运用知识的能力和工程设计能力;培养了运用仿真软件的能力和方法;也培养了论文写作水平。

7 附录系统总图:

PWM-逆变器设计与仿真

PWM-逆变器设计与仿真

摘要 随着电力电子技术的不断发展,电力电子技术的各种装置在国民经济各行各业中得到了广泛应用。从电能转换的观点,电力电子的装置涵盖交流——直流变换、直流——交流变换、直流——直流变换、交流——交流变换。比如在可控电路直流电动机控制,可变直流电源等方面都得到了广泛的应用,而这些都是以逆变电路为核心。由于电力电子技术中有关电能的变换与控制过程,内容大多涉及电力电子各种装置的分析与大量的计算、电能变幻的波形分析、测量与绘制等,这些工作特别适合Matlab的使用。本次设计的题目是基于PWM逆变器的设计与仿真,所以在此次仿真就用的是Matlab软件,建立了基于Matlab的单相桥式SPWM逆变电路,采用IGBT作为开关器件,并对单相桥式电压型逆变电路和PWM控制电路的工作原理进行了分析,运用MATLAB中的simulink/simupowersystems对电路进行了仿真,给出了仿真波形,并运用MATLAB提供的powergui模块,分别用单极性SPWM和双极性SPWM的动态模型给出了仿真的实例与仿真结果,验证了模型的正确性,并展现了Matlab仿真具有的快捷,灵活,方便,直观的以及Matlab绘制的图形准确、清晰、优美的优点,从而进一步展示了Matlab的优越性。 关键字:PWM逆变器单极性SPWM 双极性SPWM MATLAB仿真

目录 摘要 绪论 (1) 第1章 MATLAB软件 (3) 1.1软件的介绍 (3) 1.2 电力电子电路的Matlab仿真 (4) 1.2.1实验系统总体设计 (5) 1.2.2电力电子电路Simulink仿真d特点 (5) 第2章逆变主电路的方案论证与选择 (6) 第3章 PWM逆变器的工作原理 (9) 3.1 PWM控制理论基础 (9) 3.1.1面积等效原理 (9) 3.2 PWM逆变电路及其控制方法 (11) 3.2.1计算法…………………………………………………… 11 3.2.2调制法…………………………………………………… 11 3.2.3 SPWM控制方式………………………………………… 15 第4章单相桥式PWM逆变器的仿真 (18) 4.1单相桥式PWM逆变器调制电路的Simulink模型 (18) 4.1.1单极性SPWM仿真模型图 (18)

pwm逆变电路仿真

题目如下: 使用IGBT完成逆变电路仿真,直流电压300V。阻感负载,电阻值1Ω,电感值3mH。调制深度m=0.5。输出基波频率50Hz,载波频率为基频15倍,即750Hz。分别按下列要求仿真输入输出波形,进行谐波傅里叶分析。绘制主要器件的工作波形。 1,单极性SPWM方式下的单相全桥逆变电路仿真,及双极性SPWM方式下的单相全桥逆变电路仿真。对比两种调制方式的不同。 题目中需要做单极性与双极型SPWM的单相全桥逆变电路仿真,那么首先了解一下SPWM的原理。 SPWM控制的基本原理 PWM(Pulse Width Modulation)控制就是对脉冲的宽度进行调制的技术。即通过对一系列脉冲的宽度进行调制,来等效地获得所需要的波形。PWM控制技术在逆变电路中的应用最为广泛,对逆变电路的影响也最为深刻,PWM控制技术在逆变电路中的应用也最具代表性。面积等效原理是PWM控制技术的重要理论基础,即在采样控制中,冲量相等而形状不同的窄脉冲加在具有惯性的同一环节上时,其效果基本相同。其中,冲量指的是窄脉冲的面积;效果基本相同是指环节的输出响应波形基本相同。如图1.1所示,三个窄脉冲形状不同,但是它们的面积都等于1, 图1.1 SPWM控制如下:

如图1-2是单相PWM逆变电路VT1~VT4是四个IGBT管,VD1~ VD4是四个二极管,调制电路作为控制电路控制IGBT导通与关断来得到所需要的波形。 图1-2 计算法和调制法: SPWM逆变电路主要有两种控制方法:计算法和调制法。计算法是将PWM脉冲宽度的波形计算出来,显然这种方法是很繁琐的,不采用。调制法是用一个三角波作为载波,将一正弦波作为调制信号进行调制。我们采用调制法。因为等腰三角波上下宽度与高度呈线性关系且左右对称,当它与一个平缓变化的正弦调制信号波相交时,在交点时刻就可以得到宽度正比于正弦信号波幅度的脉冲 单极性与双极型的控制方法如下: 1单极性PWM控制方式: 如图1-3所示,在u r和u c的交点时刻控制IGBT的通断 u r正半周,VT1保持通,VT2保持断 . 当u r>u c时使VT4通,VT3断,u o=u d当u r

单相桥式逆变电路设计

《电力电子技术》课程设计说明书单相桥式逆变电路的设计 院、部:电气与信息工程学院 学生姓名: 指导教师:桂友超职称副教授 专业:电气工程及其自动化 班级: 完成时间: 2014年6月

电力电子技术》课程设计任务书 一、课程设计的目的 通过课程设计达到以下目的 1、加强和巩固所学的知识,加深对理论知识的理解; 2、培养学生文献检索的能力,特别是如何利用Internet检索需要的文献资料; 3、培养学生综合分析问题、发现问题和解决问题的能力; 4、培养学生综合运用知识的能力和工程设计能力; 5、培养学生运用仿真软件的能力和方法; 6、培养学生科技写作水平。 二、课程设计的主要内容 1、关于本课程学习情况简述 2、主电路的设计、原理分析和器件的选择; 3、控制电路的设计; 4、保护电路的设计; 5、利用MATLAB软件对自己的设计进行仿真。 三、课程设计的要求 1、通过查阅资料,确定自己的设计方案; 2、按学号尾数定课题,即课题一的学号尾数为1,以此类推。自拟参数不能雷同; 3、要求最后图纸是标准的CAD图; 4、课程设计在第18周五前交上来。 四、课题

1、课题一:单相桥式可控整流电路的设计 已知单相交流输入交流电压220V,负载自拟,要求整流电压在0~100V连续可调,其它性能指标自定。 2、课题二:三相半波可控整流电路的设计 已知三相交流输入线电压380V,要求整流电压在0~100V连续可调,负载自拟,其它性能指标自定。 3、课题三:三相桥式可控整流电路的设计 已知三相交流输入线电压380V,要求整流电压在0~100V连续可调,负载自拟,其它性能指标自定。 4、课题四:直流降压斩波电路的设计 已知直流输入电压200V,负载自拟,要求输出电压在50~100V可调,其它性能指标自定。 5、课题五:直流升压斩波电路的设计 已知直流输入电压200V,负载自拟,要求输出电压在300~400V可调,其它性能指标自定。 6、课题六:直流升降压斩波电路的设计 已知直流输入电压200V,负载自拟,要求输出电压在100~300V连续可调,其它性能指标自定。 7、课题七:单相桥式逆变电路的设计 已知直流输入电压100V,负载自拟,要求交流输出电压频率范围在30~60HZ,电压在30~50V范围可调,其它性能指标自定。 8、课题八:单相交流调压电路设计 已知单相交流输入交流电压220V,负载自拟,要求输出交流电压在0~220V 可调,其它性能指标自定。 9、课题九:三相交流调压电路的设计 已知三相交流输入交流线电压380V,负载自拟,要求输出交流电压在0~200V可调,其它性能指标自定。 10、课题十:三相桥式逆变电路的设计 已知直流输入电压100V,负载自拟,要求交流输出电压频率范围在30~60HZ,电压在30~50V范围可调,其它性能指标自定。 注意:若已经按上课时我讲解的内容和安排的课题进行了设计,则不必再更改。 五、格式要求

单相桥式PWM逆变电路设计

指导教师评定成绩: 审定成绩: 重庆邮电大学 自动化学院 综合设计报告 设计题目:单相桥式PWM逆变电路设计 单位(二级学院):自动化学院 学生姓名:梁勇 专业:电气工程与自动化 班级: 0830702 学号: 07350225 指导教师:罗萍 设计时间:2010年10月 重庆邮电大学自动化学院制 目录 一、课程设计任务 (2) 二、SPWM逆变器的工作原理 (2) 1.工作原理 (3) 2.控制方式 (4) 3.单片机电源与程序下载模块 (7)

4.正弦脉宽调制的调制算法 (8) 5.基于STC系列单片机的SPWM波形实现 (11) 三、总结 (14) 四、心得体会 (15) 五、附录: (17) 1.程序 (17) 2.模拟电路图 (19) 3.电路图 (22) 摘要: 单片机控制逆变电路,以逆变器为主要元件,稳压、稳频输出的电源保护设备。采用面积等效的SPWM波,又单片机为主导,输出三角波和正弦波再由这两个波相叠加输出spwm波来控制逆变电路的触发,使其把直流编程频率可变的交流电 关键字:单片机逆变电源正弦波脉冲触发 单相桥式PWM逆变电路设计 一、课程设计任务 对单相桥式pwm逆变电路的主电路及控制电路进行设计,参数要求如下:直流电压为12 V,L=1mH,要求频率可调,输出为5V的正弦交流电。 设计要求:1.理论设计:了解掌握单相桥式PWM逆变电路的工作原理,设计单相桥式PWM逆变电路的主电路和控制电路。包括: IGBT电流,电压额定的选择 驱动电路的设计 画出完整的主电路原理图和控制原理图

列出主电路所用元器件的明细表 二、SPWM逆变器的工作原理 由于期望的逆变器输出是一个正弦电压波形,可以把一个正弦半波分作N 等分。然后把每一等分的正弦曲线与横轴所包围的面积都用个与此面积相等的等高矩形脉冲来代替,矩形脉冲的中点与正弦波每一等分的中点重合。这样,由N 个等幅不等宽的矩形脉冲所组成的波形为正弦的半周等效。同样,正弦波的负半周也可用相同的方法来等效。 这一系列脉冲波形就是所期望的逆变器输出SPWM波形。由于各脉冲的幅值相等,所以逆变器可由恒定的直流电源供电,逆变器输出脉冲的幅值就是整流器的输出电压。当逆变器各开关器件都是在理想状态下工作时,驱动相应开关器件的信号也应为与形状相似的一系列脉冲波形,这是很容易推断出来的。 从理论上讲,这一系列脉冲波形的宽度可以严格地用计算方法求得,作为控制逆变器中各开关器件通断的依据。但较为实用的办法是引用通信技术中的“调制”这一概念,以所期望的波形(在这里是正弦波)作为调制波(ModulationWave ),而受它调制的信号称为载波(Carrier Wave )。在SPWM中常用等腰三角波作为载波,因为等腰三角波是上下宽度线性对称变化的波形,当它与任何一个光滑的曲线相交时,在交点的时刻控制开关器件的通断,即可得到一组等幅而脉冲宽度正比于该曲线函数值的矩形脉冲,这正是SPWM所需要的结果。 1.工作原理 图2-4是SPWM变频器的主电路,图中VTl~VT6是逆变器的六个功率开关器件(在这里画的是IGBT),各由一个续流二极管反并联,整个逆变器由恒值直流电压U供电。图2-5是它的控制电路,一组三相对称的正弦参考电压信号由参考信号发生器提供,其频率决定逆变器输出的基波频率,应在所要求的输出频率范围内可调。参考信号的幅值也可在一定范围内变化,决定输出电压的大小。三角载波信号C U是共用的,分别与每相参考电压比较后,给出“正”或“零”的 饱和输出,产生SPWM脉冲序列波 ,, da db dc U U U 作为逆变器功率开关器件的 驱动控制信号。

PWM逆变器Matlab仿真设计

PWM逆变器MATLAB仿真 1设计方案的选择与论证 从题目的要求可知,输入电压为110V直流电,而输出是有效值为220V的交流电,所以这里涉及到一个升压的问题,基于此有两种设计思路第一种是进行DC-DC升压变换再进行逆变,另一种是先进行逆变再进行升压。除此之外,要得到正弦交流电压还要考虑滤波等问题,所以这两种方案的设计框图分别如下图所示: 图1-1方案一:先升压再逆变 图1-2方案二:先逆变,再升压 方案选择: 方案一:采用DC-DC升压斩波电路其可靠性高、响应速度、噪声性能好,效率高,但不适用于升压倍率较高的场合,另外升压斩波电路在初期会产生超调趋势(这一点将在后文予以讨论),在与后面的逆变电路相连时必须予以考虑,我们可以采用附加控制策略的办法来减小超调量同时达到较短的调节时间,但这将增加逆变器的复杂度和设计成本。 方案二:采用变压器对逆变电路输出的交流电进行升压,这种方法效率一般可达90%以上、可靠性较高、抗输出短路的能力较强,但响应速度较慢,体积大,波形畸变较重。 从以上的分析可以看出两种方案有各自的优缺点,但由于方案二设计较为简便,因此本论文选择方案二作为最终的设计方案,但对于方案一的相关容也会在后文予以讨论。 2逆变主电路设计 2.1逆变电路原理及相关概念

逆变与整流是相对应的,把直流电变为交流电的过程称为逆变。根据交流侧是否与交流电网相连可将逆变电路分为有源逆变和无源逆变,在不加说明时,逆变一般指无源逆变,本论文针对的就是无源逆变的情况;根据直流侧是恒流源还是恒压源又将逆变电路分为电压型逆变电路和电流型逆变电路,电压型逆变电路输出电压的波形为方波而电流型逆变电路输出电流波形为方波,由于题目要求对输出电压进行调节,所以本论文只讨论电压型逆变电路;根据输出电压电流的相数又将逆变电路分为单相逆变电路和三相逆变电路,由于题目要求输出单相交流电,所以本论文将只讨论单相逆变电路。 2.2逆变电路的方案论证及选择 从上面的讨论可以看出本论文主要讨论单相电压型无源逆变电路,电压型逆变电路的特点除了前文所提及的之外,还有一个特点即开关器件普遍选择全控型器件如IGBT,电力MOSFET等,有三种方案可供选择,下面分别予以讨论: 方案一:半桥逆变电路,如下图所示,其特点是有两个桥臂,每个桥臂有一个可控器件和一个反并联二极管组成。在直流侧接有两个相互串联的足够大的电容,两个电容的连接点为直流电源的中点。反并联二极管为反馈电感中储存的无功能量提供通路,直流侧电容正起着缓冲无功能量的作用。其优点为简单,使用器件少,缺点为输出交流电压的幅值仅为直流电源电压的一半,且直流侧需要两个电容器串联,工作时还要控制两个电容器电压的均衡,因此它只适用于几千瓦以下的小功率逆变电路。 VD2 图2-1 半桥逆变电路 方案二:全桥逆变电路,如下图所示:其特点是有四个桥臂,相当于两个半桥电路的组合,其中桥臂1和4作为一对,桥臂2和3作为一对,成对的两个桥臂同时导通,两对

电流源型单相全桥逆变电路

电流源型单相全桥逆变电路的设计 摘要 本次设计说明书首先介绍了电流源型单相全桥逆变电路的特点和原理,用单相桥式电流型逆变电路的原理图说明了该电路是采用负载换相方式工作的,要求负载电流略超前于负载电压,又详细分析该电路的工作过程,并用图给出该逆变电路的工作波形。最后根据以上分析运用仿真软件PSIM对电路进行仿真设计,得到波形图。 关键词:电流源型单相电路,逆变电路,PSIM仿真 ' 目录

. 1.电流源型单相全桥逆变电路研究-----------------------------------------3 逆变电路介绍----------------------------------------------------3 电流型逆变电路的主要特点----------------------------------------3 电流源型单相全桥逆变电路----------------------------------------3 电流源型单相全桥逆变电路工作过程--------------------------------4 2.电流源型单相全桥逆变电路设计------------------------------------------7 电路设计原理----------------------------------------------------7 电路仿真图------------------------------------------------------7 3.参数设定及仿真结果----------------------------------------------------8 直流侧仿真------------------------------------------------------8 ) 参数设定-------------------------------------------------8 仿真结果-------------------------------------------------8交流侧仿真------------------------------------------------------8 参数设定-------------------------------------------------8 仿真结果-------------------------------------------------9 4.小结------------------------------------------------------------------9 5.参考文献--------------------------------------------------------------10 :

PWM逆变电路设计

引言 随着控制技术的发展和对设备性能要求的不断提高,许多行业的用电设备不再直接接入交流电网,而是通过电力电子功率变换得到电能,它们的幅值、频率、稳定度及变化形式因用电设备的不同而不尽相同。如通信电源、电弧焊电源、电动机变频调速器、加热电源、绿色照明电源、不间断电源、充电器等等,它们所使用的电能都是通过对电网能进行整流和逆变变换后所得到的。因此,高质量的逆变电路已成为电源技术的重要研究对象。 采样控制理论中有一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。PWM控制技术就是以该结论为理论基础,对半导体开关器件的导通和关断进行控制,使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些脉冲来代替正弦波或其他所需要的波形。按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变输出频率。 PWM控制的基本原理很早就已经提出,但是受电力电子器件发展水平的制约,在上世纪80年代以前一直未能实现。直到进入上世纪80年代,随着全控型电力电子器件的出现和迅速发展,PWM控制技术才真正得到应用。随着电力电子技术、微电子技术和自动控制技术的发展以及各种新的理论方法,如现代控制理论、非线性系统控制思想的应用,PWM控制技术获得了空前的发展。 PWM控制技术在逆变电路中的应用最为广泛,对逆变电路的影响也最为深刻。现在大量应用的逆变电路中,绝大部分都是PWM逆变电路。可以说PWM控制技术正是有赖于在逆变电路中的应用,才发展得比较成熟,才确定了它在电力电子技术中的重要地位。

1PWM控制的基本原理 PWM控制技术在逆变电路中应用最广,应用的逆变电路绝大部分是PWM型,PWM 控制技术正是有赖于在逆变电路中的应用,才确定了它在电力电子技术中的重要地位。 本文主要以逆变电路为控制对象来介绍PWM控制技术。 1.1 理论基础 冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。冲量指窄脉冲的面积。效果基本相同,是指环节的输出响应波形基本相同。低频段非常接近,仅在高频段略有差异。 图1-1形状不同而冲量相同的各种窄脉冲 1.2 面积等效原理 分别将如图1-1所示的电压窄脉冲加在一阶惯性环节(R-L电路)上,如图1-2a所示。其输出电流i(t)对不同窄脉冲时的响应波形如图1-2b所示。从波形可以看出,在i(t)的上升段,i(t)的形状也略有不同,但其下降段则几乎完全相同。脉冲越窄,各i(t)响应波形的差异也越小。如果周期性地施加上述脉冲,则响应i(t)也是周期性的。用傅里叶级数分解后将可看出,各i(t)在低频段的特性将非常接近,仅在高频段有所不同。 用一系列等幅不等宽的脉冲来代替一个正弦半波,正弦半波N等分,看成N个相连的脉冲序列,宽度相等,但幅值不等;用矩形脉冲代替,等幅,不等宽,中点重合,面积(冲量)相等,宽度按正弦规律变化。 上述原理可以称为面积等效原理,它是PWM控制技术的重要理论基础。 下面分析用一系列等幅不等宽的脉冲来代替一个正弦半波。图1-3可以看到把半波分成N等份,就可以把正弦半波看成N个彼此相连的脉冲序列组成的波形,然后把脉冲序列利用相同数量的等幅而不等宽的矩形脉冲代替,使它们面积相等,就可以得到脉冲序列。根据面积等效原理,PWM波形和正弦半波是等效的。

三相桥式PWM逆变电路

《电力电子技术》课程设计说明书三相桥式PWM逆变电路的设计院、部:电气与信息工程 学生姓名:刘远治 指导教师:桂友超职称副教授 专业:电气工程及其自动化 班级:电气本1104班 完成时间:2014年06月

摘要 本文设计了一个三相桥式PWM控制的逆变电路。PWM控制就是对脉冲的宽度进行调制的技术,如果脉冲的宽度按正弦规律变化而和正弦波等效的PWM波形,也称为SPWM波形。该设计包括主电路、驱动电路、SPWM信号产生电路、过流保护等方面的设计。该逆变器主电路采用的开关器件是IGBT;如需实物制作,驱动电路可采用现在大功率MOSFET、IGBT专用驱动芯片IR2110;PWM信号产生电路可采用CD4538芯片控制产生。 关键词:三相桥式;主电路;IR2110;CD4538

Abstract This paper designed a three-phase PWM controlled inverter bridge circuit. PWM control is on the pulse width modulation technology, if the pulse width changes according to sine law and the sine wave PWM waveform equivalent, also known as SPWM waveform. The design includes the main circuit, driver circuit, SPWM signal generation circuit, over-current protection and other aspects of design. The inverter main circuit uses IGBT; If you need make it real, driver circuit can use high-power MOSFET, IGBT dedicated driver chip IR2110; PWM signal generation circuit controlled by the CD4538 chip produced。 Key words three-phase bridge; main circuit; IR2110; CD4538

单相全桥逆变电路原理

单相全桥型逆变电路原理 电压型全桥逆变电路可看成由两个半桥电路组合而成,共4个桥臂,桥臂1和4为一对,桥臂2和3为另一对,成对桥臂同时导通,两对交替各导通180° , 电压型全桥逆变电路输出电压uo 的波形和半桥 电路的波形uo 形状相同,也是矩型波,但幅值 高出一倍,Um=Ud 输出电流io 波形和半桥电路的io 形状相同,幅值增加一倍 VD1 、V1、VD2、V2相继导通的区间,分别对应VD1和VD4、V1和V4、VD2和VD3、V2和V3相继导通的区间 + - U VD 3 VD 4

单相半桥电压型逆变电路工作波形 ¥ 全桥逆变电路是单相逆变电路中应用最多的, 对电压波形进行定量分析将幅值为Uo 的矩形波 uo 展开成傅里叶级数,得 其中基波幅值Uo1m 和基波有效值Uo1分别为 上述公式对半桥逆变电路也适用,将式中的ud 换成Ud /2 d d o1m 27.14U U U == π d d 1o 9.022U U U == π O O ON u o U - U m i o 《 VD 1 VD 2 VD 1 VD 2 ?? ? ??+++= t t t U u ωωωπ5sin 513sin 31sin 4d o

uo 为正负电压各为180°的脉冲时,要改变输出电压有效值只能通过改变输出直流电压Ud 来实现 / t 1时刻前V 1和V 4导通,输出电压u o 为u d t 1时刻V 3和V 4栅极信号反向,V 4截止,因i o 不能突变,V 3不能立即导通,VD 3导通续流,因V 1和VD 3同时 导通,所以输出电压为零 各IGBT 栅极信号uG1~uG4及输出电压uo 、输出电流io 的波形 u u u u u i o o °正偏, 12补,V 3和V 4栅极信号互补 ? V 3的基极信号不是比V 1落后 180°,而是只落后 ( 0< <180°) ? V 3、V 4的栅极信号分别比V 2、V 1 VD 3 VD 4

pwm逆变电路的应用要点

《电力电子技术》课程大作业 设计题目: PWM电路的应用 学生所在系部:电子工程系 学生所在专业:自动化 学生所在班级: 学生姓名: #### 学生学号: ##### 任课教师姓名: 大作业成绩:

PWM逆变电路的应用 一、摘要 随着控制技术的发展和对设备性能要求的不断提高,许多行业的用电设备不再直接接入交流电网,而是通过电力电子功率变换得到电能,它们的幅值、频率、稳定度及变化形式因用电设备的不同而不尽相同。如通信电源、电弧焊电源、电动机变频调速器、加热电源、绿色照明电源、不间断电源、充电器等等,它们所使用的电能都是通过对电网能进行整流和逆变变换后所得到的。因此,高质量的逆变电路已成为电源技术的重要研究对象。 采样控制理论中有一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。PWM控制技术就是以该结论为理论基础,对半导体开关器件的导通和关断进行控制,使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些脉冲来代替正弦波或其他所需要的波形。按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变输出频率。 PWM控制的基本原理很早就已经提出,但是受电力电子器件发展水平的制约,在上世纪80年代以前一直未能实现。直到进入上世纪80年代,随着全控型电力电子器件的出现和迅速发展,PWM控制技术才真正得到应用。随着电力电子技术、微电子技术和自动控制技术的发展以及各种新的理论方法,如现代控制理论、非线性系统控制思想的应用,PWM控制技术获得了空前的发展。 PWM控制技术在逆变电路中的应用最为广泛,对逆变电路的影响也最为深刻。现在大量应用的逆变电路中,绝大部分都是PWM逆变电路。可以说PWM控制技术正是有赖于在逆变电路中的应用,才发展得比较成熟,才确定了它在电力电子技术中的重要地位。 二、基本设计指标: 冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。冲量指窄脉冲的面积。效果基本相同,是指环节的输出响应波形基本相同。低频段非常接近,仅在高频段略有差异。 图1-1形状不同而冲量相同的各种窄脉冲 1. 面积等效原理 分别将如图1-1所示的电压窄脉冲加在一阶惯性环节(R-L电路)上,如图1-2a所示。其输出电流i(t)对不同窄脉冲时的响应波形如图1-2b所示。从波形可以看出,在i(t)的上升段,i(t)的形状也略有不同,但其下降段则几乎完全相同。脉冲越窄,各i(t)响应波形的差异也越小。如果周期性地施加上述脉冲,则响应i(t)也是周期性的。用傅里叶级数分解后将可看出,各i(t)在低频段的特性将非常接近,仅在高频段有所不同。

单相桥式整流逆变电路的设计及仿真

单相桥式整流逆变电路的设计及仿真 辽宁工业大学 电力电子技术课程设计(论文)题目:单相桥式整流/逆变电路的设计及仿真 院(系):电气工程学院 专业班级:自动化111班 学号: 110302030 学生姓名: 指导教师:(签字) 起止时间:2013.12.30-2014.1.10

课程设计(论文)任务及评语 院(系):电气工程学院教研室:自动化 注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算

摘要 整流电路是把交流电转换为直流电的电路。大多数整流电路由变压器、整流主电路和滤波器等组成。逆变电路是把直流电变成交流电的电路,与整流电路相对应。无源逆变电路则是将交流侧直接和负载连接的电路。 此次设计的单相桥式整流电路是利用二极管来连接成“桥”式结构,达到电能的充分利用,是使用最多的一种整流电路。无源逆变是指逆变器的交流侧不与电网连接,而是直接接到负载,即将直流电逆变为某一频率或可变频率的交流电供给负载。 关键词:交直流转换;桥式整流;无源逆变电路;

目录 第1章绪论 (1) 第2章课程设计的方案 (2) 2.1概述 (2) 2.2系统组成方案 (2) 2.2.1单相桥式整流电路的结构 (2) 2.2.2单相桥式无源逆变电路的结构 (3) 第3章主电路设计 (4) 3.1单相桥式整流主电路 (4) 3.1.1单相桥式整流主电路图 (4) 3.1.2工作原理 (4) 3.2单相桥式无源逆变电路主电路 (5) 3.2.1单相桥式整流电路主电路图 (5) 3.2.2工作原理 (6) 第4章控制电路设计 (7) 4.1单相桥式整流电路控制 (7) 4.1.1触发电路 (7) 4.1.2保护电路 (8) 4.2单相桥式无源逆变电路控制电路 (9) 4.2.1驱动电路 (9) 4.2.2保护电路 (10) 第5章 MATLAB仿真 (12) 5.1单相桥式整流电路的仿真 (12) 5.2单相桥式无源逆变电路的仿真 (15) 第6章课程设计总结 (17) 参考文献 (18)

PWM逆变器Matlab仿真

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: PWM逆变器Matlab仿真 初始条件: 输入110V直流电压; 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1、得到输出为220V、50Hz单相交流电; 2、采用PWM斩波控制技术; 3、建立Matlab仿真模型; 4、得到实验结果。 时间安排: 课程设计时间为两周,将其分为三个阶段。 第一阶段:复习有关知识,阅读课程设计指导书,搞懂原理,并准备收集设计资料,此阶段约占总时间的20%。 第二阶段:根据设计的技术指标要求选择方案,设计计算。 第三阶段:完成设计和文档整理,约占总时间的40%。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要 (1) 1设计方案的选择与论证 (2) 2逆变主电路设计 (2) 2.1逆变电路原理及相关概念 (2) 2.2逆变电路的方案论证及选择 (3) 2.3建立单相桥式逆变电路的S IMULINK的仿真模型 (4) 2.3.1模型假设 (5) 2.3.2利用MATLAB/Simulink进行电路仿真 (5) 3正弦脉宽调制(SPWM)原理及控制方法的SIMULINK仿真 (6) 3.1正弦脉冲宽度调制(SPWM)原理 (6) 3.2SPWM波的控制方法 (7) 3.2.1双极性SPWM控制原理及Simulink仿真 (7) 3.2.2单极性SPWM控制原理及Simulink仿真 (9) 4升压电路的分析论证及仿真 (11) 4.1B OOST电路工作原理 (11) 4.2B OOST电路的S IMULINK仿真 (12) 5滤波器设计 (13) 6 PWM逆变器总体模型 (15) 7心得体会 (18) 参考文献 (19)

单相桥式PWM逆变电路设计说明

文理学院芙蓉学院课程设计报告 课程名称: 系部:电气与信息工程学院 专业班级:自动化0902班 学生:小龙 指导教师:熬章洪 完成时间: 报告成绩:

目录 一、课程设计任务 (2) 二、SPWM逆变器的工作原理 (2) 1.工作原 理 (3) 2.控制方式 (4) 3.单片机电源与程序下载模块 (7) 4.正弦脉宽调制的调制算法 (8) 5.基于STC系列单片机的SPWM波形实现 (11) 三、总结 (14) 四、心得体会 (15) 五、附录: (17) 1.程序 (17) 2.模拟电路图 (19)

3.电路图 (22) 摘要: 单片机控制逆变电路,以逆变器为主要元件,稳压、稳频输出的电源保护设备。采用面积等效的SPWM波,又单片机为主导,输出三角波和正弦波再由这两个波相叠加输出spwm波来控制逆变电路的触发,使其把直流编程频率可变的交流电 关键字:单片机逆变电源正弦波脉冲触发 单相桥式PWM逆变电路设计 一、课程设计任务 对单相桥式pwm逆变电路的主电路及控制电路进行设计,参数要求如下:直流电压为12 V,L=1mH,要求频率可调,输出为5V的正弦交流电。 设计要求:1.理论设计:了解掌握单相桥式PWM逆变电路的工作原理,设计单相桥式PWM逆变电路的主电路和控制电路。包括: IGBT电流,电压额定的选择 驱动电路的设计 画出完整的主电路原理图和控制原理图 列出主电路所用元器件的明细表 二、SPWM逆变器的工作原理 由于期望的逆变器输出是一个正弦电压波形,可以把一个正弦半波分作N 等分。然后把每一等分的正弦曲线与横轴所包围的面积都用个与此面积相等的等高矩形脉冲来代替,矩形脉冲的中点与正弦波每一等分的中点重合。这样,由N 个等幅不等宽的矩形脉冲所组成的波形为正弦的半周等效。同样,正弦波的负半周也可用相同的方法来等效。

单相桥式PWM逆变电路设计

单相桥式PWM逆变电路设计

指导教师评定成绩: 审定成绩: 重庆邮电大学 自动化学院 综合设计报告 设计题目:单相桥式PWM逆变电路设计 单位(二级学院):自动化学院 学生姓名:梁勇 专业:电气工程与自动化 班级:0830702 学号:07350225 指导教师:罗萍

设计时间:2010年10月 重庆邮电大学自动化学院制 目录 一、课程设计任务 (2) 二、SPWM逆变器的工作原理 (2) 1.工作原理 (3) 2.控制方式 (4) 3.单片机电源与程序下载模块 (7) 4.正弦脉宽调制的调制算法 (8) 5.基于STC系列单片机的SPWM波形实现 (11) 三、总结 (14) 四、心得体会 (15) 五、附录: (17) 1.程序 (17) 2.模拟电路图 (19) 3.电路图 (22)

摘要: 单片机控制逆变电路,以逆变器为主要元件,稳压、稳频输出的电源保护设备。采用面积等效的SPWM波,又单片机为主导,输出三角波和正弦波再由这两个波相叠加输出spwm波来控制逆变电路的触发,使其把直流编程频率可变的交流电 关键字:单片机逆变电源正弦波脉冲触发 单相桥式PWM逆变电路设计 一、课程设计任务 对单相桥式pwm逆变电路的主电路及控制电路进行设计,参数要求如下:直流电压为12 V,L=1mH,要求频率可调,输出为5V的正弦交流电。 设计要求:1.理论设计:了解掌握单相桥式PWM逆变电路的工作原理,设计单相桥式PWM逆变电路的主电路和控制电路。包括: IGBT电流,电压额定的选择 驱动电路的设计 画出完整的主电路原理图和控制原理图 列出主电路所用元器件的明细表 二、SPWM逆变器的工作原理 由于期望的逆变器输出是一个正弦电压波形,可以把一个正弦半波分作N 等分。然后把每一等分的正弦曲线与横轴所包围的面积都用个与此面积相等的等高矩形脉冲来代替,矩形脉冲的中点与正弦波每一等分的中点重合。这样,由N个等幅不等宽的矩形脉冲所组成的波形为正弦的半周等效。同样,正弦波的负半周也可用相同的方法来等效。 这一系列脉冲波形就是所期望的逆变器输出SPWM波形。由于各脉冲的幅值相等,所以逆变器可由恒定的直流电源供电,逆变器输出脉冲的幅值就是整流器的输出电压。当逆变器各开关器件都是在理想状态下工作时,驱动相应开关器件的信号也应为与形状相似的一系列脉冲波形,这是很容易推断出来的。 从理论上讲,这一系列脉冲波形的宽度可以严格地用计算方法求得,作为控制逆变器中各开关器件通断的依据。但较为实用的办法是引用通信技术中的

基于PWM的逆变电路分析

逆变器的仿真与特性研究 摘要:现在大量应用的逆变电路中,绝大部分都是PWM 型逆变电路。为了对PWM 型逆变电路进行研究,首先建立了逆变器单极性控制所需的电路模型,采用IGBT 作为开关器件,并对单相桥式电压型逆变电路和PWM 控制电路的工作原理进行了分析,运用MATLAB 中的SIMULINK 对电路进行了仿真,给出了仿真波形,并运用MATLAB 提供的powergui 模块对仿真波形进行了FFT 分析(谐波分析). 关键词:SPWM ;PWM ;逆变器;谐波;FFT 分析 1 引言 随着地球非可再生资源的枯竭日益以及人们对电力的日益依赖,逆变器在人们日常生活中扮演着越来越重要的角色.近年来,PWM 型逆变器的的应用十分广泛,它使电力电子装置的性能大大提高,并显示出其可以同时实现变频变压反抑制谐波的优越性,因此它在电力电子技术的发展史上占有十分重要的地位。PWM 控制技术正是有赖于在逆变电路中的成功应用,才确定了它在电力电子技术中的重要地位。 2 PWM 控制的基本原理 PWM (Pulse Width Modulation )控制就是对脉冲的宽度进行调制的技术,即通过对一系列脉冲的宽度进行调制,来等效地获得所需要的波形。PWM 控制技术的重要理论基础是面积等效原理,即:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。下面分析如何用一系列等幅不等宽的脉冲来代替一个正弦半波。把正弦半波分成N 等分,就可以把正弦半波看成由N 个彼此相连的脉冲序列所组成的波形。如果把这些脉冲序列用相同数量的等幅不等宽的矩形脉冲代替,使矩形脉冲的中点和相应正弦波部分的中点重合,且使矩形脉冲和相应的正弦波部分面积(冲量)相等,就可得到下图b 所示的脉冲序列,这就是PWM 波形。像这种脉冲的宽度按正弦规律变化而和正弦波等效的PWM 波形,也称为SPWM 波形。SPWM 波形如下图所示: 图(一):单极性PWM 控制方式波形 上图波形称为单极性SPWM 波形,根据面积等效原理,正弦波还可等效为下图中的PWM 波,即双极性SPWM 波形,而且这种方式在实际应用中更为广泛。 O U d -U

单相桥式PWM逆变电路 2

单相全桥逆变电路 ——过程分析与仿真 学院:电气工程学院 班级:电自卓越111班 组员:康宁李健方浩刘文娣

目录 1.摘要 (3) 2.关键词 (3) 3.问题描述 (4) 4.分析计算.............................第5-7页 5.仿真分析.............................第8-13页 6.结论 (14) 7.心得体会 (14) 8.参考文献 (18)

摘要 逆变电路的应用十分广泛,在已有的各种电源中,蓄电池、干电池、太阳能电池等都是直流电源,当需要这些电源向交流负载供电时,就需要逆变电路。在我们学习电力电子的最后阶段,为了更加深入的理解与掌握逆变电电路及PWM 控制技术,现针对单相VSI与PWM控制逆变分别进行研究、仿真、分析。 关键词:单相电压型逆变电路(VSI) PWM控制极性控制方式 Simulink仿真频谱分析

1.问题描述 对图1.1单相全桥逆变电路进行分析,其中U d =600V,R=10Ω,L=0.1H ,根据该电路所给参数回答下列问题: (1)电路采用180度导电方式,控制周期T C =20mS ,求)(o t u 、)(t i o ,并给出其频谱分布。 (2)采用SPWM 导电方式,f s =5000Hz ,u nef =2202sin (100πt ),求)(o t u 、)(t i o 及其频谱分布。 2.分析计算 2.1基本原理 针对问题(1): 单相全桥逆变电路的基本原理:主要由对角两组桥臂180°交替导通的控制方式,通过电压变向实现电流方向的交变(二极管在阻感负载时起续流作用)。分析计算时,我们将电路分作两个状态,即如图示: 图1.1单相逆变电 (1)负载端加正向电压;(2)负载端加正向电压;两状态都可以列出一阶微分 R L u iR dt di L o ==+τ;0

单相桥式PWM逆变电路设计

指导教师评定成绩: 审定成绩: 重庆邮电大学 自动化学院 综合设计报告 设计题目:单相桥式PWM逆变电路设计 单位(二级学院): 自动化学院 学生姓名: 梁勇 专业: 电气工程与自动化 班级: 0830702 学号: 07350225 指导教师: 罗萍 设计时间:2010年10月 重庆邮电大学自动化学院制 目录 一、课程设计任务…………………………………、、………、、2 二、SPWM逆变器的工作原理……………………………、2 1、工作原理 (3) 2、控制方式 (4) 3、单片机电源与程序下载模块 (7)

4、正弦脉宽调制的调制算法..............................、、、 (8) 5、基于STC系列单片机的SPWM波形实现………………、11 三、总结……………………………………………………、、 14 四、心得体会………………………………………………、、15 五、附录:…………………………………………………、17 1、程序 (17) 2、模拟电路图……………………………………………、、19 3、电路图………………………………………………、、22 摘要: 单片机控制逆变电路,以逆变器为主要元件,稳压、稳频输出的电源保护设备。采用面积等效的SPWM波,又单片机为主导,输出三角波与正弦波再由这两个波相叠加输出spwm波来控制逆变电路的触发,使其把直流编程频率可变的交流电 关键字:单片机逆变电源正弦波脉冲触发 单相桥式PWM逆变电路设计 一、课程设计任务 对单相桥式pwm逆变电路的主电路及控制电路进行设计,参数要求如下:直流电压为12 V,L=1mH,要求频率可调,输出为5V的正弦交流电。 设计要求:1、理论设计:了解掌握单相桥式PWM逆变电路的工作原理,设计单相桥式PWM逆变电路的主电路与控制电路。包括:

MOSFET单相全桥无源逆变电路要点

电力电子技术课程设计说明书 MOSFET单相桥式无源逆变电路设计 (纯电阻负载) 院、部:电气与信息工程学院 学生姓名: 指导教师:王翠职称副教授 专业:自动化 班级:自本1004班 完成时间:2013-5-24

本次基于MOSFET的单相桥式无源逆变电路的课程设计,主要涉及MOSFET的工作原理、全桥的工作特性和无源逆变的性能。本次所设计的单相全桥逆变电路采用MOSFET作为开关器件,将直流电压Ud 逆变为频率为1KHZ的方波电压,并将它加到纯电阻负载两端。 本次课程设计的原理图仿真是基于MATLZB的SIMULINK,由于MATLAB软件中电源等器件均为理想器件,使得仿真电路相对较为简便,不影响结果输出。设计主要是对电阻负载输出电流、电压与器件MOSFET输出电压的波形仿真。 关键词:单相;全桥;无源;逆变;MOSFET;

1 MOSFET的介绍及工作原理 (4) 2 电压型无源逆变电路的特点及主要类型 (5) 2.1电压型与电流型的区别 (5) 2.2逆变电路的分类 (5) 2.3有源与无源的区别 (5) 3 电压型无源逆变电路原理分析 (6) 4 主电路设计及参数选择 (7) 4.1主电路仿真图 (7) 4.2参数计算 (7) 4.3参数设置 (8) 5 仿真电路结果与分析 (11) 5.1触发电平的波形图 (11) 5.2电阻负载输出波形图 (12) 5.3器件MOSFET的输出波形图 (12) 5.4仿真波形分析 (14) 6 总结 (15) 参考文献 (16) 致谢 (17)

1 MOSFET的介绍及工作原理 MOSFET的原意是:MOS(Metal Oxide Semiconductor金属氧化物半导体),FET(Field Effect Transistor 场效应晶体管),即以金属层(M)的栅极隔着氧化层(O)利用电场的效应来控制半导体(S)的场效应晶体管。 功率场效应晶体管也分为结型和绝缘栅型,但通常主要指绝缘栅型中的 MOS 型(Metal Oxide Semiconductor FET),简称功率 MOSFET(Power MOSFET)。结型功率场效应晶体管一般称作静电感应晶体管(Static Induction Transistor——SIT)。其特点是用栅极电压来控制漏极电流,驱动电路简单,需要的驱动功率小,开关速度快,工作频率高,热稳定性优于 GTR,但其电流容量小,耐压低,一般只适用于功率不超过 10kW 的电力电子装置。 功率 MOSFET 的种类:按导电沟道可分为 P 沟道和 N 沟道。按栅极电压幅值可分为耗尽型和增强型,当栅极电压为零时漏源极之间就存在导电沟道的称为耗尽型;对于 N (P)沟道器件,栅极电压大于(小于)零时才存在导电沟道的称为增强型;功率 MOSFET主要是N沟道增强型。本次设计采用N沟道增强型。

相关主题
文本预览
相关文档 最新文档