当前位置:文档之家› 测量不确定度初学者指南如何表述测量答案举例说明不确定度的基本算法(六)

测量不确定度初学者指南如何表述测量答案举例说明不确定度的基本算法(六)

测量不确定度初学者指南如何表述测量答案举例说明不确定度的基本算法(六)
测量不确定度初学者指南如何表述测量答案举例说明不确定度的基本算法(六)

测量不确定度初学者指南如何表述测量答案举例说明不确定度的基本算法(六)

8.如何表述测量答案

表述测量答案是重要的,以便阅读者可以使用这个信息。要注意的主要事项有:

●测量结果要与不确定度值一起表述,例如"棍子长度为20cm±1cm"。

●对包含因子和置信概率作说明。推荐的说法为:"报告的不确定度是根据标准不确定度乘以包含因子k=2,提供的置信概率约为95%"。

●不确定度是如何估计的(你可以参考有阐述此法的出版物,如UKAS出版物M3003)。9.举例--不确定度的基本算法

以下举的是一个简单的不确定度分析例子。例子太详细并不显示,不过这意思是说简单有清晰的例子足以说明方法了。首先是阐述测量和不确定度分析。其次吧不确定度分析表示在一张表格上("填表模省?"或"不确定度汇总表")

9.1测量--一根绳子有多长?

假定你要仔细估计一根绳子的长度,按照6.2节所列步骤,过程如下。

---------------------------------------------------------------------------------------------------

例3计算一根绳子长度的不确定度

步骤一:确定你从你的测量中需要得到的是什么,为产生最终结果,要决定需要什么样

的实际测量和计算。你要测量长度而使卷尺。除了在卷尺上的实际长度读数外,你也许有必要考虑:

● 卷尺的可能误差

◇卷尺是否需要修正或者是否有了表明其正确读数的校准

◇那么校准的不确定度是多少?

◇卷尺易于拉长吗?

◇可能因弯曲而使其缩短吗?从它校准以来,它会改变多少?

◇分辨力是多少?即卷尺上得分度值是多少?(如mm)

● 由于被测对象的可能误差

◇绳子伸直了吗?欠直还是过直?

◇通常的温度或湿度(或任何其它因素)会影响其实际长度吗?

◇绳的两端是界限清晰的,还是两端是破损的?

● 由于测量过程和测量人员的可能误差

◇绳的起始端玉娟尺的起始端你能对的有多齐?

◇卷尺能放的与绳子完全平行吗?

◇测量如何能重复?

◇你还能想到其它问题吗?

步骤2:实施所需要的测量。你实施并纪录你的长度测量。为了格外充分,你进行重复测量总计10次,每一次都重新对准卷尺(实际上也许并不十分合理)。让我们假设你计算的平均值为5.017米,估计的标准不确定度为0.0021m(即2.1mm)。

对于仔细测量你还可以记录:

◇你在什么时间测量的

◇你是如何测的,如沿着地面还是竖直的,卷尺反向测量与否,以及你如何使卷尺对准绳子的其它详细情况

◇你使用的是哪一个卷尺

◇环境条件(如果你认为会影响你测量结果的那些条件)

◇其它可能相关的事项

步骤3:估计供给最终结果的各输入量的不确定度。以同类项(标准不确定度)表述所有的不确定度。你要检查所有的不确定度可能来源,并估计其每一项大小。假定是这样的情况:◇卷尺已校准过。虽然它没有修正必要,但校准不确定度是读数的0.1%,包含因子k=2(对正态分布)。在此情况下,5.017m的0.1%接近5mm。再除以2就给出标准不确定度(k=2)为u=2.55mm。

◇卷尺上得分度值为毫米。靠近分度线的读数给出的误差不大于±0.5mm。我们可以取其为均匀分布的不确定度(真值读数可能处在1mm间隔内的任何地方--即±0.5mm)。为求的标准不确定度u,我们将半宽(0.5mm)除以根号3,得到近似值u=0.3mm。

◇卷尺处于伸直状态,假定绳子不可避免地有一点点弯。所以测量很可能偏低估计绳子的长度。假定偏低估计约为0.2%。这就是说,我们应该用加上0.2%(即10mm)来修正测量结果。由于缺少更合适的信息,就假设不确定度是均匀分布。用不确定的半宽(10mm)除以根号3,得出标准不确定度u=5.8mm(取到最接近的0.1mm)。

以上是全部B类评定,下面是A类评定。

◇标准偏差告诉我们的是卷尺位置可重复到什么程度,及其对平均值的不确定度贡献了多少。10次读数平均值的估计的标准偏差用3.6节的公式来求:

让我们假定在本例中不需要考虑其它不确定度了。(实际上,很可能需要计入其它一些问题)。步骤4:确定各输入量的误差是否彼此不相关。(如果你认为有相关的,那么就需要某些额外的计算和信息)按本例情况,我们就说输入量都不相关。

步骤5:计算你的测量结果(包括对校准等事项的已知修正值)。改测量结构取自平均读数值,加上卷尺放的稍歪的必要修正值,即

5.017m+0.010m=5.027m

步骤6:根据所有各个方面情况求合成标准不确定度。求测量结果所用的唯一计算是加修正值,所以能以最简单的方式采用平房和法(7.2.1节所采用的公式)。标准不确定度被合成如下:合成标准不确定度=

步骤7:用包含因子(参见7.4节),与不确定度范围的大小一起,表述不确定度。并说明置信概率。对包含因子k=2,就用2乘以合成标准不确定度,则给出扩展不确定度为12.8 mm(即0.0128m)。这赋予的置信概率约为95%。

步骤8:记下测量结果和不确定度,并说明你是如何得到它们的。你可以记述如下:

"绳子的长度为5.027m±0.013m。报告的扩展不确定度是根据标准不确定度乘以包含因子k =2得出的,提供的置信概率约为95%。"

"报告的长度是对水平放置的绳子做10次重复测量的平均值。估计了测量时绳子放置不完全直的影响,而对测量结果作了修正。不确定度是按《测量不确定度初学者指南》的方法估算的?

----------------------------------------------------------------------------------------------------

9.2不确定度的分析--数据表格模式

为了有助于计算过程,按下表1填表方式总结不确定度分析或称"不确定度汇总表"。

表1表示成"不确定度汇总表"的数据表格模式

不确定度来源数值概率分布除数标准不确定度

校准不确定度5.0mm 正态2 2.5mm

分辨力(分度大小)0.5mm* 矩形根号3 0.3mm

绳子放置不完全值10.0mm* 矩形根号3 5.8mm

10次重复读数平均

值的标准不确定度0.7mm 正态1 0.7mm

合成标准不确定度假设的正态6.4mm

扩展不确定度假设的正态(k=2)12.8mm

测量不确定度初学者指南其它说明(例如对技术规范的符合性)(七)

10.其它说明(例如对技术规范的符合性)

在根据测量结果做出结论时,一定不要忘记测量不确定度。这在用测量结果检验是否符

合技术规范时是很重要的。

有时测量结果虽然清楚地落在技术规范限值的范围内或外,但不确定度会交叠在限值上。图7种的例解说明了四种结果。

图7测量结果及其不确定度相对于规定的技术规范限值所处位置的四种情况。(同样,不确定度还可能与规定的下限交叠)

情况(a),测量结果和不确定度都落在规定的上下限内,这归为"合格"类。

情况(b),无论测量结果还是不确定度范围的任何部分都没有落在规定的限值内,这就归为"不合格"类。

情况(b)和(c)即不完全在限值内,也非完全显现之外,对符合与否不能做出明确结论。在说明是否符合技术规范以前,总要核对一下技术规范。有是规范还包含多种性能,诸如外观、电接头、互换性等等,这些与已测的内容毫无关系。

测量不确定度初学者指南如何降低测量中的不确定度和一些良好的测量习惯(八)

11.如何降低测量中的不确定度

始终要记住,使不确定度降至最低与队不确定度定量通常都一样重要。由一些好的做法能有助于在一般做测量中降低不确定度,现推荐如下几点:

●校准测量仪器(或者你已有校准过的仪器)并使用证书上给出的校准的修正值。

●对你知道的任何(其它)误差做修正来补偿。

●使你的测量溯源到国家标准--采用校准方法,这可以通过不间断地测量链溯源到国家标准。如果通过测量认可(英国由UKAS负责)对测量做了质量保证,你对测量的溯源性就可特别信任。

●选择最好的测量仪器,并使用具有最小不确定度的校准设备。

●通过重复测量或不时地请他人做重复测量来检查测量,也可用其它检查方法。用不同方法进行检查可能是最好的方法。

●审核计算,并将数据另外抄录下来,再对其审核。

●用不确定度汇总表识别出最差的不确定度,并将它们提出来。

●要注意,在逐级的校准链中,不确定度是逐级增大的。

12.其它的一些良好的测量习惯

总的说来,要养成测量中公认的好习惯。

●要按照生产厂的说明书来使用和保养仪器。

●要用有经验的人员,并为测量提供培训。

●要对软件做核查或证实其有效,以确信其工作无误。

●在你的计算中要采用正确的修约方法。(参见13.4节)

●对你的测量和计算要保有良好纪录。测量中随时记下读书。要保持对可能有关系的任意额外信息的记载。如果在什么时候产生对过去测量的怀疑。这种记载就会非常有用。

在别处还详述了许多其它的测良好习惯。例如国际标准ISO/IEC17025《检测和校准实验室能力的通用要求》。参见16节"进一步读物"

测量不确定度初学者指南计算器的使用(九)

13.计算器的使用

在用计算器和计算机计算不确定度时,你必须了解如何在使用中避免出错。

13.1计算器的按键

(x杠)键给的是你输入计算器储存的数值的平均值(算术平均值)

(西格玛n减一)键(有时用符号s)给的是在你有限样本基础上的"总体"估计的标准偏差。(实际上,任何一组读数都是可能读数的"无限总体"中的一个小样本。),或者s,是标准偏差的估计值,这对本指南7.11节的"A类评定"在计算不确定度时是你应当采取的。

你的计算器可能还会有标有的键。对不确定度的估算你通常不会使用:给出的是样本本身的标准偏差,并不给出对你想要表征的较大"总体"的"估计值"。对非常多的读数。就非常接近。但是对只有适度次数读数的实际测量情况,你就用不着。

13.2计算器和软件的误差

计算器能出错?!实际上,在处理非常长的数字时,它们有时会给出意想不到的结果。例如有的计算器给出如下结果:

0.0 0002X0.000 0002=0(确实如此)

而正确答案是0.000 000 000 0004。(当然,这最好表述成。)甚

至计算机也会由这种修约误差的缺点。为了识别这个问题,就应通过典型的"手"算来检查数据表格软件已正式这两种方法是否相吻合。要避免这些修约方面的问题,在你的计算中采用"变换"数字是切实可行的(这种换算有时也叫比例换算或数字编码)。

13.3比例换算例4所示是如何做比例换算来避免软件和计算器的误差,而且在你计算中如果没有计算器,如何使你运算更容易。

例4对1.000 000 03,1.000 000 06和1.000 000 12求平均值和估计的标准偏差。

对全部数值的计算,你可以求3、6、12的平均值(平均值为7),然后再导出原数值的平均值为1.000 000 07。

逐步过程:你从1.000 000 03、1.000 000 06、1.000 000 12都减去整数1,得到

0.000 000 03 0.000 000 06 0.000 000 12

然后乘以100 000 000()把整个计算成为整数运算,即

3 6 12

去平均值接着反过来,把该平均值除以,即

7/100 000 000=0.000 000 07

再加上1,既有1.000 000 07

按类似的方法用"比例运算"来计算估计的标准偏差。换算数据如前:

3 6 12

去平均值

接着反过来,把该平均值除以,即

7/100 000 000=0.000 000 07

再加上1,既有1.000 000 07

按类似的方法用"比例运算"来计算估计的标准偏差。换算数据如前:

3 6 12

并有换算的平均值7。

用计算器或按如下的前述公式(见3.6节)来求估计的标准偏差:

求每一个数与平均值之差,既有

-4 -1 5

对每一个差值求平方,既有

16 1 25

求合并除以n-1,即

取平方根,既有

=4.6(取到一位小数)

然后将此结果(4.6)换算回原比例,得到估计的标准偏差为0.000 000 046。(注意,这不是1.000 000 046,因为移位数字组的标准偏差是不变的。)

13.4数字修约

计算器和数据表格软件都能对答案给到许多位小树。对结果的修约有一些推荐的做法:

对计算值采用修约到有意义位次。测量结果的不确定度可能规定你应报告到多少数位。例如,假设你的测量结果的不确定度是到小数点第一位,那么测量结果也应该表述到小数点一位,例如:20.1cm±0.2cm

使你的计算至少到比你最重要求得有效数字多一位。在你在做乘或除,或者更复杂的计算时,要意识到你需要用多少位有效数。

对数值的修约应在计算的最终进行,以避免有修约误差。举例来说,如果对2.346在计算中早一步就修约到2.35,那么后来就可能修约到2.4。但如果在整个运算中都用2.346,那么在最终就会正确的修约到2.3。

虽然计算结果最终修约乘或进或舍,这取决于最接近的数字*,但对不确定度修约的规则是与此不同的。对最终不确定度的修约都是尾数进位,而不是舍去。

测量不确定度初学者指南再学习并付诸实践(十)

14.再学习并付诸实践

现在你知道了不确定度评定的基础知识。但是在你能将这些知识用于实践以前,你还会需要进一步的指导。

在16节"进一步的读物"所列的文本中可以找到更多的信息。在UKAS(英国认可机构)出版的文件M3003"The Expression of Uncertainty and Confidence in Measurement"(《测量的不确定度与置信度的表述》)中,给出了关于如何正确而又充分的分析测量不确定度的细则。在EA-4102"Expression of Uncertainty of Measurement in Calibration"(《校准中测量不确定度的表述》)中也给出了类似的导则。这些文件的目标是对那些需求认可其校准或检测的实验室的。这些文件对估算测量不确定度做了全面说明,用多种不同类型测量的运算实例以完善这种说明。这些文件给出了关于不确定度方面术语的专业定义,并列出了相应的常用符号。它们还处理了一些特殊情况,以及为了对不确定度作全面正确的计算而必须考虑到的一些特别问题。

15.提醒话

不确定度分析是一个推进中的课题。这些年来已有了一些细微的变化。尤其,在本初学者指南中所给出的规则并不是"绝对的",有大量的特殊情况要应用一些略有不同规则。对如何说明特定不确定度的一些更细致观点甚至还有讨论的余地,不过本指南所提出的建议仍是常规实践中可行的。

本文介绍的并不是全面情况,文中并没有对一些特殊情况做处理。下列情况要用一些额外的规则:

●如果你对非常少量的数据(少于10个)要用统计方法;

●如果不确定度中的一个分量要比所有其它涉及的分量要大的多;

●如果有些要计算的输入量是相关的;

●如果数据散步或分布的形状不是常见的;

●如果不确定度不是对单一结果,而是对若干点拟和成一根曲线或直线。

这些特殊情况在下一节"进一步的读物"中所列的某些文本已经都涉及到了。

测量不确定度初学者指南进一步的读物(十一)

16.进一步的读物

1.BIPM,IECIFCC,ISO,IUPAC,OIML.Guide to the Expression of Uncertainty in Meas urement. International Organization for Standardization,Geneva.ISBN92-67-10188-9,Fi rst Edition 1993, corrected and reprinted 1995,(BSI Equivalent:BSI PD 6461:1995, V ocabulary of Metrology, Part 3. Guide to the Expression of Uncertainty in Measure ment. British Standards Institution, London.)

2.BIPM,IECIFCC,ISO,IUPAC,OIML.International Vocabulary of Basic and General T erms in Metrology Second Edition 1993.International Organization for Standardizatio n, Geneva.

3.Chatfield, C.(1983) Statistics for Technology. Third Edition.(New York: Chapman and Hall.)

4.Dietrich, C.F. (1991), Uncertainty, calibration and probability. Second Edition. (Br istol: Adam Hilger.)

5.EA-4/02 Expression of the Uncertainty of Measurement in Calibration, 1999, Eur opean co-operation for accreditation.

6.International Standard ISO 3534-1 Statistics - vocabulary and symbols - Part I: Probability and general Statistical Terms, First Edition 1993, International Organizati on for Standardization, Geneva.

7.PD 6461: Part I: 1995 Vocabulary of Metrology, Part 1. Basic and general term s (international), British Standards Institution, London.

8.EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement, S econd Edition 2000.

9.UKAS publication M 3003 The Expression of Uncertainty and Confidence in Me asurement Edition 1, December 1997.

10.International Standard ISO/IECA 17025 GeneralRequirements for the competen ce of testing and calibration laboratories, First Edition 1999, International Organizati on for Standardization, Geneva

测量不确定度初学者指南附录A 理解专用名词(十二)

附录A 理解专用名词

在以下的"名词汇编"中解释了少量重要词汇,这里并未做出精确的或严格的定义。这些都可在别处找到,例如《国际通用计量学基本术语》(International Vocabulary of Basic and General Terms in Metrology)。也可以在UKAS的出版物M3003《测量的不确定度与置信概率得表述》(The Expression of Uncertainty and Confidence in Measurement参见16节书目)中找到有效、正确的定义。

准确度

测量结果与真值之间的一致程度。

(测量仪器的)偏移

测量仪器示值的系统误差。置信概率

表示对测量结果可信程度的数值(如95%)。

修正值(校准修正值)

为了修正误差、剩余偏差或偏移而加到仪器读数上的数值。(同样,读数还可以乘以或除以修正因子来修正读数值。)

相关性

数据之间或被测量之间的关系或相互关联。

包含因子

为了给出特定置信概率下的扩展不确定度而乘以标准不确定度的数。

误差

对正确量值的剩余偏差值或偏差值(非正即负)。

估计的标准偏差*

根据有限样本对"总体"的标准偏差的估计值。

扩展不确定度

给定置信概率的包含因子乘以标准不确定度(或合成标准不确定度)。

高斯分布

(参见正态分布)

区间(置信区间)

可以认为被测"真值"以给定置信概率处于其间的范围。

平均值(算术平均值)

一组数值的平均数值

被测量

作为测量对象的特定量

正态分布

以量值落在接近平均值比离开平均值可能性要大为分散特征图形(高斯曲线)的量值分布。操作误差

操作出错

精度

一个表示"辨别精细程度"意思的名词,但常误用为"准确度"或"不确定度"的意思,应该尽可能避免用此词。

随机误差

观测其影响是无规则变化的误差。

范围

一组量值的最大值和最小值之差。

读数

在测量时观测到的或纪录到的值。

矩形分布

量值以相同可能性落在它们范围内任一处的分布。

(仪器或者测量结果的)重复性

在相同条件下,对同一特性重复测量值之间的一致性。

(仪器或者测量结果的)复现性

在改变测量条件下(如不同操作人员,或不同方法,或在不同时间等等),对同一特性进行测量,其结果之间的一致性。

分辨力

能够有效辨别的最小差值(如数字显示最后一位中1个字的变化)

(测量)结果

根据测量得到的值,该值或测量前修正,或测量后修正,或求其平均。

灵敏度

(仪器的)响应变化除以相应的激励变化。

标准偏差

对测量结果数集分散性的一种度量,代表性地描述了这些值与其数集的平均值的差异情况。这里,要得到测量结果的无穷数集是不可能的(实际上决不会有),所以我们用估计的标准偏差来代替。

标准不确定度

用区间等于正负一倍标准偏差表示的测量不确定度。

系统误差

对正确值的偏移值或剩余偏差值(非正即负)。

真值

由理想测量得到的值。

A类不确定度评定

用统计方法的不确定度评定。

B类不确定度评定

用非统计方法的不确定度评定。

不确定度汇总表

不确定度计算的一览表

测量不确定度

对测量结果怀疑程度的定量表示。

均匀分布

即矩形分布。

Why is it important? 不确定度之所以重要的原因?

The uncertainty is a quantitative indication of the quality of the result. It gives an a nswer to the question, how well does the result represent the value of the quantity being measured?

不确定度是结果质量的定量性指标,它回答了以下问题,即结果如何恰当地代表测量的量值?

It allows users of the result to assess its reliability, for example for the purposes of companson of results from different sources or with reference values. Confidence i n the comparability of results can help to reduce barriers to trade.

它允许结果的用户评定其可靠性,比如为了比对来源不同的结果或者与参考值进行比对。对结果相似性的置信水平能够降低贸易壁垒。

Often, a result is compared with a limiting value defined in a specification or regula tion. In this case, knowledge of the uncertainty shows whether the result is well wit hin the acceptable limits or only just makes it.

通常,一个结果要与标准或者规定中的一个设定限值相比较。这种情况下,不确定度就能显示出结果是否正好落在可接受范围内或者仅为临界值。

Occasionally a result is so close to the limit that the risk associated with the possi bility that the property that was measured may not fall within the limit, once the un certainty has been allowed for, must be considered.

有时候一个结果如此之接近限值,以至于与被测量性质的可能性有关的风险不会落在限值内。一旦不确定度被认可,则必须予以考虑。

Suppose that a customer has the same test done in more than one laboratory, per haps on the same sample, more likely on what they may regard as an identical sa mple of the same product. Would we expect the laboratories to get identical results? Only within limits, we may answer, but when the results are close to the specifica tion limit it may be that one laboratory indicates failure whereas another indicates a pass. From time to time accreditation bodies have to investigate complaints concer ning such differences. This can involve much time and effort for all parties, which i n many cases could have been avoided if the uncertainty of the result had been k nown by the customer.

假设一个客户在一个以上的实验室内做完同样的检测,可能检测一个样品,更可能是检测相同产品的相同样品。我们会期待实验室获得同一个结果吗?只有在限值内我们才能这么回答,但是当结果与标准值接近时,也许一个实验室指示出错,而另一个则显示通过检测。有时,认证机构必须调查与这些差别有关的错误。对各方来说这会牵涉许多时间和精力,如果客户已经了解结果的不确定度,大多数情况下就可以避免时间和精力的浪费。

ISO17025:2017实验室-测量不确定度评定程序

页次第 69 页共 6页文件名称测量不确定度评定程序发布日期2019年1月1日 1 目的 对测量结果不确定度进行合理的评估,科学表达检测结果。 2 范围 本程序适用于客户有要求时、新的或者修订的测试方法验证确认时、当报告值与合格临界值接近时需评定不确定度并在报告中注明。 3 职责 3.1 检测人员根据扩展不确定度评定的适用范围,按规定在记录和报告中给出测量结果的不确定度。 3.2 检测组组长负责审核测量不确定度评定过程和结果报告。 3.3 技术负责人负责批准测量不确定度评定报告。 4 工作程序 4.1 测量不确定度的来源 4.1.1 对被测量的定义不完善或不完整。 4.1.2 实现被测量定义的方法不理想。 4.1.3 取样的代表性不够,即被测量的样本不能代表所定义的被测量。 4.1.4 对被测量过程受环境影响的认识不周全,或对环境条件的测量与控制不完善。 4.1.5对模拟仪器的读数存在认为偏差(偏移)。 4.1.6测量仪器的分辨力或鉴定力不够。 4.1.7赋予测量标准和测量物质的值不准。 4.1.8用于数据计算的常量和其他参量不准。 4.1.9测量方法和测量程序的近似性和假定性。 4.1.10 抽样的影响。

页次 第 70 页 共 6页 文件名称 测量不确定度评定程序 发布日期 2019年1月1日 4.1.11在表面上看来完全相同的条件下,被测量重复观测值的变化。 4.2 测量不确定度的评定方法 4.2.1 检测组根据随机取出的样本做重复性测试所获得的结果信息,来推断关于总体性质时,应采用A 类不确定度评定方法,用符号A u 表示,其评定流程如下: A 类评定开始 对被测量X 进行n 次独立观测得到 一系列测得值 (i=1,2,…,n )i x 计算被测量的最佳估计值x 1 1n i i x x n ==∑计算实验标准偏差() k s x 计算A 类标准不确定度() A u x ()()() k A s x u x s x n == 4.2.2 检测组根据经验、资料或其他信息评估时,应采用B 类不确定度评定方法,用符号B u 表示,B 类不确定度评定的信息来源有以下六项: 4.2.2.1 以前的观测数据。 4.2.2.2 对有关技术资料和测量仪器特性的了解和经验。 4.2.2.3 相关部门提供的技术说明文件。 4.2.2.4 校准证书或其他文件提供的数据,准确度的等别或级别,包括目前暂

合成标准不确定度的计算修订稿

合成标准不确定度的计 算 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

第七讲合成标准不确定度的计算 减小字体增大字体作者:李慎安?来源:发布时间:2007-05-08 10:19:04 计量培训:测量不确定度表述讲座 国家质量技术监督局 李慎安 合成标准不确定u c的定义如何理解? 合成标准不确定度无例外地用标准偏差给出,其符号u以小写正体c作为下角标;如给出的为相对标准不确定度,则应另加正体小写下角标rel,成为u crel。按《JJF1001》定义为:当测量结果是由若干个其他量的值求得时,按其他各量的方差和协方差算得的标准不确定度。如各量彼此独立,则协方差为零;如不为零(相关情况下),则必须加进去。 上述定义可以理解为:当测量结果的标准不确定度由若干标准不确定度分量构成时,按方和根(必要时加协方差)得到的标准不确定度。有时它可以指某一台测量仪器,也可以指一套测量系统或测量设备所复现的量值。在某个量的不确定度只以一个分量为主,其他分量可忽略不计的情况下,显然就无所谓合成标准不确定度了。 什么是输入量、输出量 在间接测量中,被测量Y不能直接测量,而是通过若干个别的可以直接测量的量或是可以通过资料查出其值的量,按一定的函数关系得出: Y=f(X1,X2,…,X n) 其中X i为输入量,而把Y称之为输出量。 例如:被测量为一个立方体的体积V,通过其长l、宽b和高h三个量的测量结果,按函数关系 V=l·b·h计算,则l,b,h为输入量,V为输出量。 什么叫作线性合成 例如在测量误差的合成计算中,其各个误差分量,不论是随机误差分量还是系统误差分量,当合成为测量误差时,所有这些分量按代数和相加。这种合成的方法称为线性合成。 不确定度的各个分量如彼此独立,则恒用方和根的方式合成。但如果其中某两个分量彼此强相关,且相关系数r=+1,则合成时是代数相加,即线性合成而非方和根合成。 什么叫灵敏系数 当输出量Y的估计值y与输入量X i的估计值x1,x2,…x n之间有

测量不确定度评定报告

测量不确定度评定报告1、评定目的识别实验室定量项目检测结果不确定度的来源,明确评定方法,给临床检测结果提供不确定度依据。 、评定依据2CNAS-GL05《测量不确定度要求的实施指南》 JJF 1059-1999《测量不确定度评定和表示》 CNAS— CL01《检测和校准实验室能力认可准则》 、测量不确定度评定流程3 测量不确定度评定总流程见图一。

概述 建立数学模型,确定被测量Y与输入量 测量不确定度来源 标准不确定度分量评 B类评定评类A 计算合成标准不确定 评定扩展不确定 编制不确定度报告 图一测量不确定度评定总流程 测量不确定度评定方法、4建立数学模型 4.1.1 数学模型根据检验工作原理和程序建立,即确定被测量Y(输出量)与影响量(输入量)X,X,…,X间的函数关系f来确定,即:N21 Y=f(X,X,…,X)N12建立数学模型时应说明数学模型中各个量的含义和计量单位。必须注意, 数学模型中不能进入带有正负号(±)的项。另外,数学模型不是唯一的,若采用不同测量方法和不同测量程序,就可能有不同的数学模型。 4.1.2计算灵敏系数 偏导数Y/x=c称为灵敏系数。有时灵敏系数c可由实验测定,iii即通过变化第i个输入量x,而保持其余输入量不变,从而测定Y的变化i量。

不确定度来源分析 测量过程中引起不确定度来源,可能来自于: a、对被测量的定义不完整; b、复现被测量定义的方法不理想; c、取样的代表性不够,即被测量的样本不能完全代表所定义的被测量; d、对测量过程受环境影响的认识不周全或对环境条件的测量和控制不完善; e、对模拟式仪器的读数存在人为偏差(偏移); 、测量仪器的计量性能(如灵敏度、鉴别力阈、分辨力、死区及稳定性f 等)的局限性; 、赋予计量标准的值或标准物质的值不准确;g 、引入的数据和其它参量的不确定度;h 、与测量方法和测量程序有关的近似性和假定性;i 、在表面上完全相同的条件下被测量在重复观测中的变化。j 标准不确定度分量评定 对观测列进行统计分析所作的评估--4.3.1 A 类评定 , x进行n次独立的等精度测量,得到的测量结果为:a对输入量XI 1为xx,…x。算术平均值n2 n1 ∑xx = in n i=1 由贝塞尔公式计算:s(x单次测量的实验标准差)i 1 n ∑ i—i 2 ( xx )S(x)= n-1 i=1

测量不确定度评定实例

测量不确定度评定实例 一. 体积测量不确定度计算 1. 测量方法 直接测量圆柱体的直径D 和高度h ,由函数关系是计算出圆柱体的体积 h D V 4 2 π= 由分度值为0.01mm 的测微仪重复6次测量直径D 和高度h ,测得数据见下表。 表: 测量数据 计算: mm 0.1110h mm 80.010==, D 32 mm 8.8064 == h D V π 2. 不确定度评定 分析测量方法可知,体积V 的测量不确定度影响因素主要有直径和高度的重复测量引起的不确定都21u u ,和测微仪示值误差引起的不确定度3u 。分析其特点,可知不确定度21u u ,应采用A 类评定方法,而不确定度3u 采用B 类评定方法。

①.直径D 的重复性测量引起的不确定度分量 直径D 的6次测量平均值的标准差: ()mm 0048.0=D s 直径D 误差传递系数: h D D V 2 π=?? 直径D 的重复性测量引起的不确定度分量: ()3177.0mm D s D V u =??= ②.高度h 的重复性测量引起的不确定度分量 高度h 的6次测量平均值的标准差: ()mm 0026.0=h s 直径D 误差传递系数: 4 2 D h V π=?? 高度h 的重复性测量引起的不确定度分量: ()3221.0mm h s h V u =??= ③测微仪示值误差引起的不确定度分量 由说明书获得测微仪的示值误差范围mm 1.00±,去均匀分布,示值的标准不确定度 mm 0058.0301.0==q u 由示值误差引起的直径测量的不确定度 q D u D V u ??= 3

测量不确定度评定程序

1 目的 对检验方法和结果的测量不确定度进行评定和报告,进一步提高评价检验结果的可信程度,以满足客户与认可准则的要求。 2 适用范围 适用于检验中心开展的标准或非标准方法的检验结果的测量不确定度评定。 3 职责 3.1技术负责人负责测量不确定度的评定。 3.2技术负责人负责不确定度的评定的培训,以确保其在实验室检测活动中的运用水平; 3.3 检测员负责协助提供不确定度评定所需的检测数据; 4 控制程序 4.1 测量不确定评定检验项目的选择 4.1.1可能的情况下,实验室应对所有被测量进行不确定来源分析和评定,以确保测量结果的可信程度。 4.1.2技术负责人确定进行测量不确定评定的检验项目,确定进行评定的原则如下: a)当检验项目仅为定性分析时,不进行测量不确定度的评定。 b)对于公认的检验方法,检验项目已给出相应的测量不确定度及其来源时,可以不进行测量不确定度的评定。 c)除上述两种情况,各检验领域中关键、典型和重要的检验项目,均应进行测量不确定度的评定。 d)在评定测量不确定度时,对给定条件下的所有重要不确定度分量,均应采用适当的分析方法加以考虑。 e)当顾客对检验项目的测量不确定度提出要求时,应进行测量不确定度的评定。 f)在微生物检测领域,某些情况下,一些检测无法从计量学和统计学角度对测量不确定度进行有效而严格的评估,这时至少应通过分析方法,考虑它们对于检测结果的重要性,列出各主要的不确定分量,并作出合理的评估。有时在重复性和再现性数据的基础上估算不确定度也是合适的。 4.2测量不确定度的评定方法 本程序拟规定两种方法对测量不确定度进行评定。一种是GUM 法,另一种是top-down 评定方法。 Ⅰ 测量不确定度评定与表示 GUM 法 4.2.1 列出测量不确定度的来源 用GUM 法评定测量不确定度的一般流程见下图1。 图1 用GUM 法评定测量不确定度的一般流程

测量不确定度评定报告

测量不确定度评定报告 1、评定目的 识别实验室定量项目检测结果不确定度的来源,明确评定方法,给临床检测结果提供不确定度依据。 2、评定依据 CNAS-GL05《测量不确定度要求的实施指南》 JJF 1059-1999《测量不确定度评定和表示》 CNAS— CL01《检测和校准实验室能力认可准则》 3 、测量不确定度评定流程 测量不确定度评定总流程见图一。 图一测量不确定度评定总流程 4、测量不确定度评定方法 4.1建立数学模型 4.1.1 数学模型根据检验工作原理和程序建立,即确定被测量Y(输出量)与影

响量(输入量)X 1,X 2 ,…,X N 间的函数关系f来确定,即: Y=f(X 1,X 2 ,…,X N ) 建立数学模型时应说明数学模型中各个量的含义和计量单位。必须注意, 数学模型中不能进入带有正负号(±)的项。另外,数学模型不是唯一的,若采用不同测量方法和不同测量程序,就可能有不同的数学模型。 4.1.2计算灵敏系数 偏导数Y/x i =c i 称为灵敏系数。有时灵敏系数c i 可由实验测定,即通 过变化第i个输入量x i ,而保持其余输入量不变,从而测定Y的变化量。 4.2不确定度来源分析 测量过程中引起不确定度来源,可能来自于: a、对被测量的定义不完整; b、复现被测量定义的方法不理想; c、取样的代表性不够,即被测量的样本不能完全代表所定义的被测量; d、对测量过程受环境影响的认识不周全或对环境条件的测量和控制不完善; e、对模拟式仪器的读数存在人为偏差(偏移); f、测量仪器的计量性能(如灵敏度、鉴别力阈、分辨力、死区及稳定性等)的 局限性; g、赋予计量标准的值或标准物质的值不准确; h、引入的数据和其它参量的不确定度; i、与测量方法和测量程序有关的近似性和假定性; j、在表面上完全相同的条件下被测量在重复观测中的变化。 4.3标准不确定度分量评定 4.3.1 A 类评定--对观测列进行统计分析所作的评估 a对输入量X I 进行n次独立的等精度测量,得到的测量结果为: x 1,x 2 , (x) n 。 算术平均值x为 1 n x n= ∑x i n i=1 单次测量的实验标准差s(x i )由贝塞尔公式计算: 1 n S(x i )= ∑ ( x i — x )2 n-1 i=1

工业热电阻自动测量系统结果不确定度评定实例

工业热电阻自动测量系统结果不确定度评定实例 用于检定工业热电阻的自动测量系统,根据国家计量检定规程(JJG 229—1998)对不确定度分析时可以在0℃点,100℃点,现在A 级铂热电阻的测量为例. B1 冰点(0℃) B1.1 数学模型,方差与传播系数 根据规定,被检的R(0℃)植计算公式为 R(0℃)=R i 0 =??? ??t dt dR t i = R i 0=??? ??t dt dR * * *0=??? ??-t I dt dR R R ℃)( = R i - 0.00391R * (0℃)×) ℃(0 0.00391R 0* *℃) (R R I - = R i - 0.391×1 .00* *℃) (R R I - = R i - 0.39 [] ℃)( 0* *R R I - 式中: R(0℃)—被检热电阻在0℃的电 阻值,Ω; R i —被检热电阻在0℃附近的测得值,Ω; R *(0℃)—标准器在0℃的电阻值,通常从实测的水三点值计算,Ω; R * i —标准器在0℃附近测的值,Ω。 上式两边除以被检热电阻在0℃的变化率并做全微分变为 dt 0R =d ()391.0R i +d ??? ? ???-2500399.0** 0i R R =dt Ri +dt *0 R +dt *i R 将微小变量用不确定度来代替,合成后可得方差 u 20 R t =u 2i R t +u 2t *0R +u 2t *i R (B-2) 此时灵敏系数C 1=1,C 2=1,C 3=–1。

B1.2 标准不确定分量的分析计算 B1.2.1 u 2i R t 项分量 该项分量是检热电阻在0℃点温度t i 上测量值的不确定度。包括有: a) 冰点器温场均匀性,不应大于0. 01℃,则半区间为0.005℃。均匀分布,故 u 1.1= 3 005.0=0.003℃ 其估计的相对不确定度为20﹪,即自由度1.1ν=12,属B 类分量。 b) 由电测仪表测量被检热电阻所带入的分量。 本系统配用电测仪表多为6位数字表(K2000,HP34401等),在对100Ω左右测量时仍用100Ω挡,此时数字表准确度为 100×106×读数+40×106×量程 对工业铂热电阻Pt100来说,电测仪表带入的误差限(半宽)为 被δ=±(100×100×106-+100×40×106- =±0.014Ω 化为温度:391 .0014 .0±=±0.036℃ 该误差分布从均匀分布,即 u 2.1= 3 036.0=0.021℃ 估计的相对不确定度为10﹪,即1.1ν=50,属B 累类分量。 c) 对被检做多次检定时的重复性 本规范规定在校准自动测量系统时以一稳定的A 级被检铂热电阻作试样检3次,用极差考核其重复性,经实验最大差为4m Ω以内。通道间偏差以阻值计时应不大于2m Ω,故连同通道间差 异同向叠计在内时,重复性为6m Ω,约0.015℃,则 u 3.1= 69 .1015 .0=0.009℃ 3.1ν=1.8,属A 类分量。 d) 被检热电阻自然效应的影响。 以半区间估计为2m Ω计约5mK 。这种影响普遍存在,可视为两点分布,故 u 4.1=1 5=5mK 估计的相对不确定度为30﹪,即4.1ν=5,属B 类分量。

测量不确定度管理程序

1. 目的: 为了规范本机构开展测量不确定度的评定工作和应用测量不确定度评定结果, 更好的对本机构的测量结果及质量进行评定和表示,为被测产品符合相关要求 结果的有效性提供保证,制定本程序。 2. 适用范围: 本程序适用于本机构进行测量不确定度的评定活动。 3. 职责: 3.1 各检测领域项目工程师/测试经理负责该领域的测量不确定度评定工作,编制 各项目的测量不确定度评定方法。 3.2 科技技术发展中心负责审核各项目的测量不确定度评定方法。 3.3 技术负责人负责批准各项目的测量不确定度评定方法并批准。 3.4 质量控制中心负责各项目的测量不确定度评定方法的发放和控制。 3.5 各领域检验工程师及以上级别检验人员负责评定和报告单次检测的测量不确 定度。 4.要求 4.1 本机构对每一项有数值要求的测量结果进行测量不确定度评定,编制测量不确 定度评定方法。当不确定度与检测结果的有效性或应用有关、或在用户有要求 时、或当不确定度影响到对规范限度的符合性时、当测试方法中有规定时和 CNAS有要求时(如认可准则在特殊领域的应用说明中有规定),检测报告必须 提供测量结果的不确定度。 测量不确定度评定术语和定义见附录A。 4.2 对于不同的检测项目和检测对象,本机构采用不同的评定方法。 4.3 各领域在采用新的检测方法之前,应制定相关项目的测量不确定度的评定方 法。 4.4 各领域对所采用的非标准方法、实验室自己设计和研制的方法、超出预定使用范围的标准方法以及经过扩展和修改的标准方法重新进行确认时,其中应包括对测量不确定度的评定。

4.5 对于某些广泛公认的检测方法,如果该方法规定了测量不确定度主要来源的极 限值和计算结果的表示形式时,实验室只要按照该检测方法的要求操作,并出 具测量结果报告,即被认为符合测量不确定度相关要求。 4.6 由于某些检测方法的性质,决定了无法从计量学和统计学角度对测量不确定度 进行有效而严格的评定,这时至少应通过分析方法,列出各主要的不确定度分 量,并作出合理的评估。同时应确保测量结果的报告形式不会使用户造成对所 给测量不确定度的误解。 4.7 本机构理解测量不确定度评定所需的严密程度取决于: a)检测方法的要求; b)用户的要求; c)用来确定是否符合某规范所依据的误差限的宽窄。 4.8 为了便于用户比较实验室的能力和水平,对于一般应用,扩展不确定度应对应 95%的置信水平。在表述实验室的能力时,一般采用最佳测量能力,即根据 日常检测系统,被测样品接近理想状态时评定的最小测量不确定度,在检测报 告上出具测量结果的不确定度。 4.9 在计算设备允许误差引入的标准不确定度时,应采用设备说明书上相应的允许 误差。 4.10 在报告最终结果时,如果需要对不确定度进行修约,通常按四舍五入的修约规 则进行。特殊情况时,可能要将不确定度最末位后面的数都进位而不是舍去。 4.11 在报告最终结果时,测试结果应修约到与它们的不确定度的位数一致。 5 管理程序 5.1 各检验岗位人员应积极参加必要的测量不确定度知识培训,经考核合格方可上 岗。 5.2 各检测领域项目工程师/测试经理负责该检测领域的测量不确定度评定工作。 对每一项有数值要求的检测项目,均应建立测量模型,识别和确定不确定度来 源和分量,评定标准不确定度、合成标准不确定度、扩展不确定度。 测量不确定度评定的一般流程见附录B 检测实验室不确定度评估指南见附录C。 检测结果测量不确定度评定案例见《QP/GF.037-2002 电器检测不确定的若干 案例》。 5.3 项目工程师/测试经理负责对每一项有数值要求的检测项目编制文件化的测量

CNAS-CL07 测量不确定度评估和报告通用要求

CNAS—CL07 测量不确定度评估和报告通用要求General Requirements for Evaluating and Reporting Measurement Uncertainty 中国合格评定国家认可委员会

测量不确定度评估和报告通用要求 1.前言 1.1中国合格评定国家认可委员会(英文缩写:CNAS)充分考虑目前国际上与合格评定相关的各方对测量不确定度的关注,以及测量不确定度对测量、试验结果的可信性、可比性和可接受性的影响,特别是这种影响和关注可能会造成消费者、工业界、政府和市场对合格评定活动提出更高的要求。因此,CNAS在认可体系的运行中给予测量不确定度评估以足够的重视,以满足客户、消费者和其他各有关方的期望和需求。 1.2CNAS在测量不确定度评估和应用要求方面将始终遵循国际规范的相关要求,与国际相关组织的要求保持一致,并在国际规范和有关行业制定的相关导则框架内制订具体的测量不确定度要求。 2.适用范围 本文件适用于CNAS对校准和检测实验室的认可活动。同时也适用于其它涉及校准和检测活动的申请人和获准认可机构。 3.引用文件 下列文件中的条款通过引用而成为本文件的条款。以下引用的文件,注明日期的,仅引用的版本适用;未注明日期的,引用文件的最新版本(包括任何修订)适用。 3.1Guide to the expression of uncertainty in measurement(GUM).BIPM,IEC, IFCC,ISO,IUPAC,IUPAP,OIML,lst edition,1995.《测量不确定度表示指南》3.2International Vocabulary of Basic and General Terms in Metrology(VIM). BIPM,IEC,IFCC,ISO,IUPAC,IUPAP,OIML,2nd edition,1993.《国际通用计量学基本术语》 3.3JJF1001-1998《通用计量术语和定义》 3.4JJF1059-1999《测量不确定度评定和表示》

盲样测量不确定度评定报告

盲样测量不确定度评定报告 1、概述 1.1 测量依据 JJG119-2005《实验室(酸度)计检定规程》 1.2 环境条件: 温度(23±3)℃;相对湿度≤85%RH 1.3 测量标准: pH 标准缓冲溶液,中国计量测试技术研究院提供;酸度计:型号:pHS-3E ; 编号:600709040019;制造厂:上海精密科学仪器有限公司;量程:(0.00~14.00)pH;分辨率:0.01pH;电极编号:05598709J 1.4 被测对象:盲样(新疆维吾尔自治区计量测试研究院提供) 1.5 测量过程: 选用JJG119-2005《实验室(酸度)计检定规程》附录A 表1中规定的一种(或多种)标准溶液,在规定温度的重复性条件下,对pHS-3E 型酸度计进行校准后,测量盲样溶液,重复校准和测量操作6次,6次测量结果的平均值即为盲样的pH 值。 2、数学模型 y=x 3、输入量引入的标准不确定度 3.1测量重复性引入的标准不确定度分量u 1 按照贝塞尔公式计算单次测量的实验标准差: () 1 1 2 --= ∑=n pH pH s n i i (n=6) 平均值的实验标准差: u 1= 6

盲样检测 3.2酸度计引入的不确定度分量u2 用性能已知的pH(酸度)计,对未知pH值的盲样(酸度计溶液标准物质)进行测量。 选用JJG119-2005《实验室(酸度)计检定规程》参照酸度计使用说明书中校准点对传递的酸度计进行校准,用校准过的酸度计对盲样(酸度计溶液标准物质)进行测定6次,得出测量重复性引入的标准不确定度分量u 1 。结合酸度 计引入的不确定度分量u 2和盲样引入的标准不确定度分量u 3 得到合成标准不确 定度,扩展不确定度。

ISO17025:2017测量不确定度的评定控制程序

1. 目的 为了正确进行测量不确定度的评定,使检测结果能够处于合理的不确定度范围内,特制定本程序。 2. 范围 本程序适用于测量不确定度以及判断测量结果是否处于合理不确定度范围内的情况。不确定度评定的应用范围包括:检测方法要求、客户的要求、据以做出满足某规范决定的窄限、其它需进行不确定度评定的情况,如比对试验等。 3. 职责 3.1技术负责人会同有关人员进行检测结果的不确定度的评定。 3.2中心主任负责不确定度报告进行的审批。 3.3文件和档案管理员负责不确定度评定报告的整理、归档。 4. 工作程序 4.1 检测组按JJF1059-1999《测量不确定度评定与表示》进行不确定度的评定。具体如下: 4.1.1找出不确定度产生的原因,建立数学模型。 Y =f (X 1 X 2……Xn ) 其中Y — 被测量(输出量) X — 影响量(输入量) 不确定度的来源主要包括所用的标准物质(参考物质)、方法和设备、环境条件、被测物品的性能和状态以及操作人员等。 4.1.2给出每个影响量X i 的灵敏系数C i C i =i x ??? 4.1.3计算每个影响X i 的标准不确定度μ(Xi )和自由度V i 对于标准不确定度μ(Xi )的评定有两种类型:一是A 类评定、一是B 类评定。 A 类评定是对一级观测列进行统计分析,其μ(X )=S (X ) 如重复测量下得出几个观测结果x ki 则:

单个样本x k 的()()112--=∑=n x x S n k k x k 平均值x 的()x S =() n S k x =()()112 --∑=n n x x n k k ()1-=n v i 如被测量X i 在重复条件下进行了n 次独立测量x i1,x i2……x in ,其平均值i X ,标准差为S i 。 如有m 组这样的被测量,则 合并样本标准差()()()111 22 --==∑∑∑==n m x x m S x S m i n j i ij i i p ()1-=n m v i 对于B 类评定,按不同分布,找出其等价标准差()xi u 4.1.4计算每个影响量X i 的标准不确定度分量()y u i ()()xi i i u C y u ?= 4.1.5合成标准不确定度()y u c 及其有效自由度etf V ()()()()()j i j n i v i j i v i i c x x r y u y u y u y u ,2111 12 ∑∑∑-=+==+= 当各影响量独立无关时,相关系数r =0则 ()()y u y u N i i c ∑== 12 当被测量接近于正态分布时,计算有效自由度eH V 有效自由度 ()()∑==N i i i i c eH V x u y u V 1 44 4.1.6给出扩展不确定U 或U p 根据输出量(被测量)的分布情况和有效自由度,求出所要求的置信概率P 下的包含因子k ,则()y u k U c p =。多数情况下取P =95%。 如果Y 接近于正态分布,则()y u k U c p = 若不能判断y 的分布,则取k =2或3(一般取k =2)()y ku U c =

不确定度的计算方法(可编辑修改word版)

(U u )2 + (U w )2 u w = = = = 测量结果的正确表达 被测量 X 的测量结果应表达为: X = X ± U (仪仪 ) 表 1 常用函数不确定度合成公式 其中 X 是测量值的平均值,U 是不确定度。 例如: 用最小刻度为 cm 的直尺测量一长度最终结果为:L =(0.750±0.005)cm ; 测量金属丝杨氏模量的最终结果为:E =(1.15±0.07)×1011Pa 。 1. 不确定度的计算方法 2 N = X αY β Z γ U N = N 直接测量不确定度的计算方法 U = 1. 在函数关系是乘除法时,先计算相对不确定度( U N )比较方便.例如表中第二行 N 的公式. 2. 不确定度合成公式可以联合使用. 其中: S = 为标准差; sin θ u 例如: 若 τ ,令u sin θ , w 3φ 则 τ . 3φ w ?仪 是仪器误差,一般按仪器最小分度的一半计算,但是游标卡尺和角游标按最小 分度计算。也可按仪器级别计算或查表。 间接测量不确定度的合成方法 根据表中第二行公式,有: U τ = ; τ 间接测量 N = f (x , y , z ,??仪 的平均值公式为: N = f (x , y , z ,??仪 ; 根据表中第一行公式,有: U w = = 3U φ ; 不确定度合成公式为:U N = 根据表中第三行公式,有: 。 U u = cos θ ?U θ . 也可根据表 1 中的公式计算间接测量的不确定度。 所以, U τ = τ ? = τ S 2 + ? 2 仪 ∑ ( X - X ) 2 i n -1 ( ) ?U + ( ) ?U + ( ) ?U + ? N 2 2 ? N 2 2 ? N 2 2 ?X X ?Y Y ?Z Z α 2 (U X ) 2 + β 2 (U Y ) 2 + γ 2 (U Z ) 2 X Y Z 32U 2 φ

钢卷尺测量不确定度评定报告

钢卷尺测量不确定度评定报告 1测量方法及数学模型 1.1测量依据:依据JJG4-1999《钢卷尺检定规程》 钢卷尺的示值误差:△L=L a-L s+L a*αa*Δt-L s*αs*Δt 式中:L a——被检钢卷尺的长度; L s——标准钢卷尺的长度; αa——被检钢卷尺的膨胀系数; αs——标准钢卷尺的膨胀系数; Δt——被检钢卷尺和标准钢卷尺对参考温度20℃的偏离值。 由于L a-L s很小,则数学模型: △L= L a-L s +L s*△α*Δt 式中:△α——被检钢卷尺和标准钢卷尺的膨胀系数差 1.2方差及传播系数的确定 对以上数学模型各分量求偏导: 得出:c(L a)=1;c(L s)= -1+△α*Δt≈-1;c(△α)= L s*Δt;c(Δt)= L s*△α≈0 则:u c2 =u2(△L)=u2(L s)+ u2(L a) + (L s*Δt )2u2(△α) 2计算分量标准不确定度 2.1标准钢卷尺给出的不确定度u (L s) (1)由标准钢卷尺的测量不确定度给出的分量u (L s1) 根据规程JJG741—2005《标准钢卷尺》,标准钢卷尺的测量不确定度为: U=0.02mm其为正态分布,覆盖因子k=3,自由度v=∞,故其标准不确定度: u (L s1)= 0.02∕3 =0.007 (2)由年稳定度给出的不确定度分量u (L s2) 根据几年的观测,本钢卷尺年变动量不超过0.05mm,认为是均匀分布,则:L a≤5m:u (L s2)=0.05∕31/2 =0.029mm 估计u (L s2)的不可靠性为10%,则自由度v=1/2×(0.1)-2=50 (3)由拉力偏差给出的不确定度分量u (L s3) 由拉力引起的偏差为:△=L×103×△p/(9.8×E×F)

测量不确定度评定程序文件

1 目的 为评价中心检测/校准结果的可信程度,规范测量不确定度的评 定与表达方法,科学、合理、准确的进行测量不确定度评定 2 应用范围 适用于中心检测/校准结果的测量不确定度的评定与表示。 3 职责 3.1 技术负责人负责测量不确定度评定工作。 3.2 技术科组织实施测量不确定度的评定,负责拟定有关检测项目测量不确定度评定的作业指导书,指导测试人员控制各标准方法规定的影响量,编写《不确定度评定报告》,负责对检测结果测量不确定度报告的验证。 3.3 检测人员严格遵守方法标准和规范化作业技术,认真检查原始记录和检测结果。 4 程序 4.1化验中心采用公认的检测方法时应遵守该方法对不确定度的表述。 4.2化验中心采用非标准方法或偏离的标准方法时,应重新进行确认,并对方法的测量不确定度进行评定。 4.3由技术负责人组织或指定有关技术人员(可包括监督员、检测人员、设备责任人等)进行测量不确定度的评定工作。 4.4不确定度评定和报告根据JJF1059-2012《测量不确定度评定与表示》来实施。具体步骤如下: XX 公司化验中心 程序文件 第01版 第0次修订 第 页 共 页 测定不确定度评定程序 文 号 YYH/CX28-2014 颁布日期 2014年3月14日

4.1.1建立不确定度的数学模型 建立被测对象与其他对其有影响量的函数关系。以通过这些量的不确定度给出被测对象的不确定。 4.1.2确定不确定度的来源,找出构成不确定度的主要分量。 分析测试领域的测量不确定度的来源一般有以下几种: a.被测量量的定义不完整; b.被测样品代表性不够,即样品不能完全代表所定义的被测对象; c.复现被测量的测量方法不够理想; d.对测量过程受环境影响的认识不恰如其分,或对环境的测量与控制不完善; e.读数存在人为偏移; f.测量仪器的计量性能的局限性(如分辨率、灵敏度、稳定性、噪音水平等影 响,以及自动分析仪器的滞后影响和仪器检定校准中的不确定度); g.测量标准和标准物质的不确定度; h.引用的数据或其它参量的不确定度; i.包括在检测方法和程序中某些近似和假设,某些不恰当的校准模式选择,以及数据计算中的舍、入影响; j.测试过程中的随机影响等。 在确定这些影响不确定度的因素对总不确定度的贡献时,还要考虑这些因素相互之间的影响。 4.1.3量化不确定度分量 要对每一个不确定度来源通过测量或估计进行量化。首先估计每一个分量对合成不确定度的贡献,排除不重要的分量。可用下面几种方法进行量化: a.通过实验进行定量; b.使用标准物质进行定量; c.基于以前的结果或数据的估计进行定量; d.基于判断进行定量。 4.1.4计算合成标准不确定度 根据JJF1059-2012中第4、5、6节规定的方法,通过确定A类和B类标准不确

第八讲 扩展不确定度的计算

第八讲扩展不确定度的计算 减小字体增大字体作者:李慎安来源:https://www.doczj.com/doc/3b3066390.html, 发布时间:2007-05-08 10:33:45 计量培训:测量不确定度表述讲座 国家质量技术监督局李慎安 8.1 什么叫扩展不确定度? 按《JJF1001》扩展不确定度定义为:确定测量结果区间的量,合理赋予被测量之值分布的大部分可望含于此区间。也称展伸不确定度或范围不确定度。符号为大写斜体U,U P。当除以被测量之值后,称为相对扩展不确定度,符号为U rel,U prel。符号中的p为置信概率,一般取95%,99%,这时其符号成为U95,U99,U95rel或U99rel。定义中所指大部分,最常用的是95%和99%。 扩展不确定度过去曾称总不确定度(overall uncertainty),这一名称已为《导则》所禁止使用,因其从含义上易与合成不确定度混淆。 扩展不确定度是比合成标准不确定度大的一个参数,它等于合成标准不确定度乘以包含因子k后的值,对于合成标准不确定度而言,它是成倍地被扩大了的一个值。 8.2 扩展不确定度分成几种? 扩展不确定度根据所乘的包含因子k的不同,分成两大类。当包含因子k之值取2或3时,扩展不确定度U只是合成标准不确定度u C的k倍。在给出U时,必须指明k的取值。实际上,这时的U所包含的信息与u C一样,并未因乘以k后,其信息有所增多。此外,还有一种包含因子k p,它是为了使扩展不确定度所给出的区间内能有概率为p的合理赋予被测量之值含于其中所必须有的因子。所得到的扩展不确定度为U p。一般,只在被测量Y可能值y的分布类型可估计为正态时才给出U P。这时的k p之值,按u c(y)的有效自由度υeff,通过本讲座6.6中的表得出,即t p值,k p=t p(υ)。随υ的增大,k有所降低,随p的增大,k p有所增加。 与上述类似,相对扩展不确定度亦有两种。 8.3 什么情况下使用U,什么情况下使用U p来说明测量结果的不确定度? (1)根据有关测量仪器校准的技术规范。例如,以下技术规范规定取k=3,JJF2002,2003,2004,2018,2019,2025,2026,2030,2032~2041,2045,2446等,不一一例举。而以下技术规范规定取k=2,JJF2049,2050,2072,2089等。也有一些技术规范规定用U95,如JJF2006,2061,等。规定采用U99的如JJF2020,2056,146等。 (2)可以估计被测量Y估计值y之分布接近正态时,可给出U p,否则只能给出U。 8.4 什么情况下可用包含因子k95=2及k99=3? 如果y的分布是比较理想的正态分布,那么,当合成标准不确定度u C(y)的有效自由度充分大时,即可做出这样较简单的处理,例如,在p=95%时,自由度为12,这时,按本讲座6.6,k p=2.18,如取k p=2,其值小了不到十分之一,应该说就无足轻重了。当p=99%时,υeff无穷大的k p=2.58≈2.6,整化为k99=3,已较保守;而当υeff=20时,k99之值为2.85,它比2.6大约大十分之一,因此,这时如不用2.85而用2.6,所得U99也只小十分之一左右,应可忽略。因此,在《JJF1059》中所要求的有效自由度应充分大,拿十分之一作为可忽略的标准,则对于p=95%时,υeff应大于12,对于p=99%,应大于20。 8.5 什么情况下,虽未计算合成标准不确定度u c(y)的有效自由度,取包含因子k=2给出的扩展不确定度U可以估计是置信区间在p=95%的半宽,可否在检定证书中给出其值为U95? 虽未算出υeff,但其值估计不太小,例如,大于12,而且,可以估计Y的估计值的分布接近正态,这时,一般可以认为U=2u c(y)的置信概率p大约为95%。但是不能在证书上给出其值为U95之值。

测量不确定度评定报告(完整资料).doc

此文档下载后即可编辑 测量不确定度评定报告 1、评定目的 识别实验室定量项目检测结果不确定度的来源,明确评定方法,给临床检测结果提供不确定度依据。 2、评定依据 CNAS-GL05《测量不确定度要求的实施指南》 JJF 1059-1999《测量不确定度评定和表示》 CNAS— CL01《检测和校准实验室能力认可准则》 3 、测量不确定度评定流程 测量不确定度评定总流程见图一。

图一 测量不确定度评定总流程 4、测量不确定度评定方法 4.1建立数学模型 4.1.1 数学模型根据检验工作原理和程序建立,即确定被测量Y (输出量)与影响量(输入量)X 1,X 2,…,X N 间的函数关系f 来确定,即: Y=f (X 1,X 2,…,X N ) 建立数学模型时应说明数学模型中各个量的含义和计量单位。必须注意, 数学模型中不能进入带有正负号(±)的项。另外,数学模型不是唯一的,若采用不同测量方法和不同测量程序,就可能有不同的数学模型。 4.1.2计算灵敏系数 偏导数Y/x i =c i 称为灵敏系数。有时灵敏系数c i 可由 实验测定,即通过变化第i 个输入量x i ,而保持其余输入量不变,从而测定Y 的变化量。

4.2不确定度来源分析 测量过程中引起不确定度来源,可能来自于: a 、对被测量的定义不完整; b 、复现被测量定义的方法不理想; c 、取样的代表性不够,即被测量的样本不能完全代表所定义的被测量; d 、对测量过程受环境影响的认识不周全或对环境条件的测量和控制不完善; e 、对模拟式仪器的读数存在人为偏差(偏移); f 、测量仪器的计量性能(如灵敏度、鉴别力阈、分辨力、死区 及稳定性等)的局限性; g 、赋予计量标准的值或标准物质的值不准确; h 、引入的数据和其它参量的不确定度; i 、与测量方法和测量程序有关的近似性和假定性; j 、在表面上完全相同的条件下被测量在重复观测中的变化。 4.3标准不确定度分量评定 4.3.1 A 类评定--对观测列进行统计分析所作的评估 a 对输入量XI 进行n 次独立的等精度测量,得到的测量结果为: x 1,x 2,…x n 。算术平均值x 为 1 n x n = ∑x i

测量不确定度评定的方法以及实例

第一节有关术语的定义 3.量值value of a quantity 一般由一个数乘以测量单位所表示的特定量的大小。 例:5.34m或534cm,15kg,10s,-40℃。 注:对于不能由一个乘以测量单位所表示的量,可以参照约定参考标尺,或参照测量程序,或两者参照的方式表示。 4.〔量的〕真值rtue value〔of a quantity〕 与给定的特定量定义一致的值。 注: (1) 量的真值只有通过完善的测量才有可能获得。 (2) 真值按其本性是不确定的。 (3) 与给定的特定量定义一致的值不一定只有一个。 5.〔量的〕约定真值conventional true value〔of a quantity〕 对于给定目的具有适当不确定度的、赋予特定量的值,有时该值是约定采用的。 例:a) 在给定地点,取由参考标准复现而赋予该量的值人作为给定真值。 b) 常数委员会(CODATA)1986年推荐的阿伏加得罗常数值6.0221367×1023mol-1。 注: (1) 约定真值有时称为指定值、最佳估计值、约定值或参考值。 (2) 常常用某量的多次测量结果来确定约定真值。 13.影响量influence quantity 不是被测量但对测量结果有影响的量。 例:a) 用来测量长度的千分尺的温度; b) 交流电位差幅值测量中的频率; c) 测量人体血液样品血红蛋浓度时的胆红素的浓度。 14.测量结果 result of a measurement 由测量所得到的赋予被测量的值。 注: (1) 在给出测量结果时,应说明它是示值、示修正测量结果或已修正测量结果,还应表明它是否为几个值的平均。 (2) 在测量结果的完整表述中应包括测量不确定度,必要时还应说明有关影响量的取值范围。 15.〔测量仪器的〕示值 indication〔of a measuring instrument〕 测量仪器所给出的量的值。 注: (1) 由显示器读出的值可称为直接示值,将它乘以仪器常数即为示值。 (2) 这个量可以是被测量、测量信号或用于计算被测量之值的其他量。 (3) 对于实物量具,示值就是它所标出的值。 18.测量准确度 accuracy of measurement 测量结果与被测量真值之间的一致程度。

6测量不确定度评定方法.doc

测量不确定度的评定方法 1适用范围 本方法适用于对产品或参数进行检测时,所得检测结果的测量不 确定度的评 定与表示。 2编制依据 JJF 1059 —1999测量不确定度评定与表示 3评定步骤 3.1概述:对受检测的产品或参数、检测原理及方法、检测用仪器 设备、检测时的环境条件、本测量不确定度评定报告的使用作一简要的描述; 3.2建立用于评定的数学模型; 3.3根据所建立的数学模型,确定各不确定度分量(即数学模型中 的各输入量)的来源; 3.4分析、计算各输入量的标准不确定度及其自由度; 3.5计算合成不确定度及其有效自由度; 3.6计算扩展不确定度; 3.7给出测量不确定度评定报告。 4评定方法 4.1数学模型的建立 数学模型是指被测量(被检测参数)Y 与各输入量 X i之间的函数

关系,若被测量 Y 的测量结果为 y,输入量的估计值为x i,则数学模型为 y f x1 , x2 ,......, x n。 数学模型中应包括对测量结果及其不确定度由影响的所有输入 量,输入量一般有以下二种: ⑴ 当前直接测定的值。它们的值可得自单一观测、重复观测、 依据经验信息的估计,并包含测量仪器读数修正值,以及对周围温度、大气压、湿度等影响的修正值。 ⑵ 外部来源引入的量。如已校准的测量标准、有证标准物质、 由手册所得的参考数据。 4.2测量不确定度来源的确定 根据数学模型,列出对被测量有明显影响的测量不确定度来源,并要做到不遗漏、不重复。如果所给出的测量结果是经过修正后的结果,注意应考虑由修正值所引入的标准不确定度分量。如果某一标准不确定度分量对合成不确定度的贡献较小,则其分量可以忽略不计。 测量中可能导致不确定度的来源一般有: ⑴被测量的定义不完整; ⑵复现被测量的测量方法不理想; ⑶取样的代表性不够,即被测样本不能代表所定义的被测量; ⑷对测量过程受环境影响的认识不恰如其分或对环境的测量 与控制不完善; ⑸对模拟式仪器的读数存在人为偏移;

相关主题
文本预览
相关文档 最新文档