当前位置:文档之家› 对有限元方法的认识

对有限元方法的认识

对有限元方法的认识
对有限元方法的认识

我对有限元方法的认识

1有限元法概念

有限元方法(The Finite Element Method, FEM)是计算机问世以后迅速发展起来的一种分析方法。每一种自然现象的背后都有相应的物理规律,对物理规律的描述可以借助相关的定理或定律表现为各种形式的方程(代数、微分、或积分)。这些方程通常称为控制方程(Governing equation)。

针对实际的工程问题推导这些方程并不十分困难,然而,要获得问题的解析的数学解却很困难。人们多采用数值方法给出近似的满足工程精度要求的解答。

有限元方法就是一种应用十分广泛的数值分析方法。

有限元方法是处理连续介质问题的一种普遍方法,离散化是有限元方法的基础。

这种思想自古有之:古代人们在计算圆的周长或面积时就采用了离散化的逼近方法:即采用内接多边形和外切多边形从两个不同的方向近似描述圆的周长或面积,当多边形的边数逐步增加时近似值将从这两个方向逼近真解。

近年来随着计算机技术的普及和计算速度的不断提高,有限元分析在工程设计和分析中得到了越来越广泛的重视,已经成为解决复杂的工程分析计算问题的有效途径,现在从汽车到航天飞机几乎所有的设计制造都已离不开有限元分析计算,其在机械制造、材料加工、航空航天、汽车、土木建筑、电子电器、国防军工、船舶、铁道、石化、能源、科学研究等各个领域的广泛使用已使设计水平发生了质的飞跃。

国际上早在 60 年代初就开始投入大量的人力和物力开发有限元分析程序。“有限单元”是由Clough R W于1960年首次提出的。但真正的有限元分析软件是诞生于 70 年代初期,随着计算机运算速度的提高,内、外存容量的扩大和图形设备的发展,以及软件技术的进步,发展成为有限元分析与设计软件,但初期其前后处理的能力还是比较弱的,特别是后处理能力更弱。

到 70 年代中期有限元界的先导就在有限元软件中引入了图形技术及交互式操作方式,使有限元的前后处理进入一个崭新的历史阶段。此时,用户就可以从繁琐的数据中解放出来。

到了 80 年代,随着 PC 机的发展,有限元程序开始从大中型计算机向小型、微型机上移植,并努力保持有限元软件在各种硬件平台上具有完全统—的用户界面。

进入九十年代后,随着计算机软硬件的飞速发展,线性、非线性有限元分析方法的日趋完善,有限元分析已从小规模线性问题转向大规模线性、非统性分析,从单个物理场分析转向多种物理场之间耦合的大规模线性、非线性分析。目前,国外大型通用有限元软件基本上是一个功能强大灵活的设计分析及优化软件包。它可浮动运行于从 PC 机、NT 工作站、 UNIX 工作站直至巨型机的各类计算机及操作系统中,数据文件在其所有的产品系列和工作平台上均兼容。

有限元法,是一种求解数学、物理问题的数值方法。其思想是将原结构划分为许多单元,用这些离散单元的集合体代替原结构,用近似函数表示单元内的真实场变量,从而给出离散模型的数值解。在众多数学家的共同努力下,这种方法摆脱了各种各样的工程背景而成为一种具有普遍意义的数学方法。

从选择未知量的角度看,有限元方法分为三类:位移法,力法和混合法。因位移法条理清晰,易于实现计算自动化,故应用较广。

2有限元法的基本步骤

有限元方法,其基本思路和解题步骤可归纳为:

(1)建立积分方程,建立与微分方程初边值问题等价的积分表达式。

(2)区域单元剖分,根据求解区域的形状及实际问题的物理特点,将区域剖分为若干相互连接、不重叠的单元。

(3)确定单元基函数,根据单元中节点数目及对近似解精度的要求,选择满足一定插值条件的插值函数作为单元基函数。

(4)单元分析,获得含有待定系数(即单元中各节点的参数值)的代数方程组——单元有限元方程。

(5)总体合成,在得出单元有限元方程之后,将区域中所有单元有限元方程按一定法则进行累加,形成总体有限元方程。

(6)边界条件,边界条件分为本质边界条件、自然边界条件、混合边界条件。自然边界条件:一般在积分表达式中可自动得到满足。本质边界条件和混合边界条件:需按一定法则对总体有限元方程进行修正满足。

(7)解有限元方程,根据边界条件修正的总体有限元方程组,是含所有待定未知量的封闭方程组,采用适当的数值计算方法求解,可求得各节点的函数值。

简单来说,有限元的基本步骤为:结构离散,单元分析,总体分析,数值求解。

3有限元模型建立、网格划分及求解

3.1有限元模型建立

有限元模型的建立可分为直接法和间接法(也称实体建模)。

直接法是直接根据机械结构的几何外形建立节点和元素,此法仅仅适用于简单的或有特殊要求的结构系统。

简单结构如上图

间接法是通过点、线、面、体积,先建立几何模型,再进行实体网格划分,以完成有限元模型的建立过程。

大部分的有限元分析模型都用实体模型建模。ANSYS以数学的方式表达结构的几何形状,用于在里面填充节点和单元。此法首先要建立几何实体,故又称实体建模。

从最低阶到最高阶,ANSYS实体建模图元的层次关系为:

●关键点(Keypoints);

●线(Lines);

●面(Areas);

●体(Volumes);

如果低阶的图元连在高阶图元上,则低阶图元不能删除。

实体建模的建立方法有:

1. 由下往上法(bottom-up Method)由建立最低单元的点到最高单元的体积,即建立点,再由点连成线,然后由线组合成面积,最后由面积组合建立体积;

2. 由上往下法(top-down method)及布尔运算命令一起使用。此方法直接建立较高单元对象,其

所对应的较低单元对象一起产生,对象单元高低顺序依次为体积、面积、线段及点。然后利用布尔运算为对象相互加、减、组合等以得到实体。

多数情况下,实体建模是这两种方法混合使用。

3.2有限元网格划分

几何实体模型并不参与有限元分析。所有施加在几何实体边界上的载荷或约束必须最终传递到有限元模型上(节点或单元上)进行求解。用有限元进行结构分析时,首先应该对结构的几何模型进行网格划分。由几何模型创建有限元模型的过程叫作网格划分(meshing)。当计算方法和边界条件确定以后,几何模型网格划分好坏,直接影响计算结果的准确性。通常有这样的说法:边界条件决定计算结果正确与否;网格划分决定计算结果的精确程度。因此,几何模型网格划分是有限元结构分析的重要环节。

网格划分可以从以下几个方面考虑。

(1)单元类型

对于梁结构,在两个节点之间可根据需要划分多个单元。但要注意:如果想得到中间节点的挠度,需将梁结构划分偶数等分。对于拉杆、拉索,在两个节点之间,一定不要再划分单元,即两节点之间只用一个单元,如果划分几个单元反而不能描述拉杆、拉索的真实变形。

对于面或体结构网格划分时,尽量采用高精度单元,不采用常应变单元。如果为了模拟复杂边界,对于平面尽量采用6节点三角形单元或8节点四边形单元,不采用3节点三角形单元或4节点四边形单元;对于四面体尽量采用10节点单元,不采用4节点单元;对于五面体尽量采用9节点单元或15节点单元,不采用6节点单元;对于六面体尽量20节点单元,不采用8节点单元。当然这些情况应该具体问题灵活处理,并不是绝对固定的。

(2)面或体单元形态

1)网格划分时,单元面内角度的变化用扭曲度描述,它代表了单元面内的扭转和面外翘曲程度。不同单元的扭曲度不同,其值由经验确定。

2)网格划分时,单元各边之间的比例不能太大,对于线性单元(例如:4节点四边形单元、8节点六面体单元等)要求小于3;对于二次单元(例如:8节点四边形单元、20节点六面体单元等)要求小于10等等。

(3)面或体单元大小

标准单元的边长通常以几何模型的最小尺寸确定,即如果几何模型的厚度是结构的最小尺寸,那么标准单元的边长至少应与这个厚度相当。高应力区和应力集中区的单元应该细分,单元大小取决于计算精度要求。

(4)面或体单元过渡

1)从小单元到大单元过渡时,应使同一节点所连接的单元不致相差太大,避免突然过渡现象。通常用计算结果调整,保证同一节点所连接的单元精度值至少在0.1以下。单元精度值根据单元内节点应力与节点平均应力的误差计算。

2)难于过度处最好使用过渡单元,过渡单元的使用要比用同一单元勉强过渡的计算结果要好。例如:对于复杂体结构间的过渡,最好使用“金子塔”单元过渡。

(5)面或体转接部位的单元

几何模型圆角过渡处的单元划分,根据弧长对应的圆心角和半径确定,对于半径为3mm左右、圆心角大于90度的转接弧长,通常至少要划分3~4个单元。

(6)高应力区的单元

对高应力区,要进行网格细分应力稳定性计算。即采用多次局部网格细分并进行计算,当前、后两次计算结果满足所需的精度要求时(通常要求小于0.03)确定网格。

总之,几何模型网格划分时,要在单元类型、单元形态、单元大小、单元过渡和局部应力稳定等方面下功夫,才能满足工程上的精度要求,达到预期的结果。

网格划分有三步:

第一步:定义单元属性。

单元有下列属性:单元类型TYPE、实常数REAL、材料属性MAT。

单元类型选项决定如下的单元特性:

1)自由度 (DOF)设置;例如,一个热单元类型有一个自由度:TEMP,而一个结构单元类型

可能有6个自由度: UX, UY, UZ, ROTX, ROTY, ROTZ;

2)单元形状——块,四面体, 四边形,三角形等;

3)维数——2-D (仅有X-Y 平面), 3-D;

4)假定的位移形函数——线性及二次。

注意:单元类型选择错误,结果肯定是错误的。

实常数用于描述那些由单元几何模型不能完全确定的几何形状。例如:

1)梁单元是由连接两个节点的线来定义的,这只定义了梁的长度。要指明梁的横截面属性,

如面积和惯性矩,就要用到实常数;

2)壳单元是由四面体或四边形来定义的,这只定义了壳的表面积,要指明壳的厚度,必须

用实常数;

3)许多 3-D 实体单元不需要实常数,因为单元几何模型已经由节点完全定义。

材料属性是定义材料的性质或参数。如EX,NUXY、应力-应变关系等。

第二步:定义网格控制。

设计网格划分的参数,主要是定义边界元素的大小和数目。这一步非常重要,将影响分析时的正确性和经济性。网格细也许会得到很好的结果,但会占用大量的分析时间,有时候,网格过细会造成不同网格划分时连接困难。因此需要在正确性和经济性之间找到平衡。

解决的办法是确定网格数对计算结果的影响趋势,然后选择合适的元素大小。

另外就是定义网格的形状如三角形、四边形和形式如自由网格还是映射网格等。

第三步:产生网格。

当实体模型建好并划分网格后,需要对模型加载与施加边界条件。加载方式有两种:直接在几何实体模型加载与在节点和单元上加载。

直接在实体模型加载有以下优点:1. 操作比较方便;2. 几何模型独立于有限元网格,重新划分

网格或局部网格修改时不影响载荷。

无论怎样加载,ANSYS求解器自动将载荷转化到有限元模型上。

3.3有限元模型求解

在求解初始化前,应进行分析数据检查,包括下面内容:

1)统一的单位;

2)单元类型和选项;

3)材料性质参数:考虑惯性时应输入材料密度;热应力分析时应输入材料的热膨胀系数;

4)实常数 (单元特性);

5)单元实常数和材料类型的设置;

6)模型中不应存在的缝隙;

7)节点坐标系;

8)集中、体积载荷;

9)面力方向;

10)温度场的分布和范围;

11)热膨胀分析的参考温度 (与 ALPX 材料特性协调)。

在求解过程中,可能会出现错误:有约束不够、结果不收敛、单元过于扭曲等。针对出现的error 对话框,查到问题所在。求解完毕,进入后处理对话框。并不是没有出现error的结果都是合理的。

1. 经验判断:

重力方向总是竖直向下的;

离心力总是沿径向向外的;

没有一种材料能抵抗 1,000,000 psi 的应力;

弯曲载荷造成的应力使一侧受压,另一侧受拉;

2. 结构受力是否平衡:

水平方向上的力与竖直方向的力都要平衡;

作用力与反作用力相等等。

4有限元软件的基本介绍

有限元分析(FEA,Finite Element Analysis)方法为解决复杂的工程分析计算问题提供了有效的途径

要用有限元方法的理论来解决实际问题离不开计算机(硬件)和程序(软件),大体要完成以下四方面的工作:

1)数据储存

2)数据管理

3)数值计算

4)前处理及后处理

国际上早20世纪在50年代末、60年代初就投入大量的人力和物力开发具有强大功能的有限分析程序。其中最为著名的是由美国国家宇航局(NASA)在1965年委托美国计科学公司和贝尔航空系统公司开发的NASTRAN有限元分析系统。该系统发展至今有几十个版本,是目前世界上规模最大、功能最强的有限元分析系统。

专用或通用有限元分析软件,主要有德国的ASKA、英国的PAFEC、法国的SYSTUS、美国的ABQUS、ADINA、ANSYS、BERSAFE、BOSOR、COSMOS、ELAS、MARC和STARDYNE等公司的产品。

5有限元法的发展现状及发展趋势

5.1有限元法的应用

有限元法的应用已由弹性力学平面问题扩展到空间问题、板壳问题,由静力平衡问题扩展到稳定问题、动力问题和波动问题,分析对象从弹性材料扩展到塑性、粘弹性、粘塑性和复合材料等,从固体力学扩展到流体力学、传热学、电磁学等领域。由于计算机的飞速发展,使得有限元法在工程中得到了广泛应用。

有限元法是一种求解复杂工程结构的非常有效的数值方法,是将所研究的工程系统转化成一个结构近似的有限元系统圈,该系统由节点及单元组合而成,以取代原有的工程系统。有限元系统可以转化成一个数学模式,并根据数学模式,进而得到该有限元系统的解答,并通过节点、单元表现出来。完整有限元模型除了节点、单元外,还包含工程系统本身所具有的边界条件、约束条件、外力负载等。

有限元法是目前工程技术领域中实用性最强,应用最为广泛的数值模拟方法。它的基本思想是将问题的求解域划分为一系列单元,单元之间仅靠节点连接。单元内部点的待求物理量可由单元节点物理量通过选定的函数关系插值求得。由于单元形状简单,易于由平衡关系或能量关系建立节点量之间的方程式,然后将各个单元方程“装配”在一起而形成总体代数方程组,加入边界条件后即可对方程组求解。

5.2有限元法的发展趋势

从发展上来说,国际上数值模拟软件发展呈现出以下一些趋势特征:

1)从单纯的结构力学计算发展到求解许多物理场问题。数值模拟分析方法最早是从结构化矩阵分析发展而来,逐步推广到板、壳和实体等连续体固体力学分析,实践证明这是一种非常有效的数值分析方法。近年来数值模拟方法已发展到流体力学、温度场、电传导、磁场、渗流和声场等问题的求解计算,最近又发展到求解几个交叉学科的问题。例如内爆炸时,空气冲击波使墙、板、柱产生变形,而墙、板、柱的变形又反过来影响到空气冲击波的传播……这就需要用固体力学和流体动力学的数值分析结果交叉迭代求解,即所谓“流——固耦合”的问题。

2)由求解线性工程问题进展到分析非线性问题。线性理论已经远远不能满足设计的要求,许多工程问题如材料的破坏与失效、裂纹扩展等仅靠线性理论根本不能解决,必须进行非线性分析求解。众所周知,非线性问题的求解是很复杂的,它不仅涉及到很多专门的数学问题,还必须掌握一定的理论知识和求解技巧,学习起来也较为困难。为此国外一些公司花费了大量的人力和物力开发非线性求解分析软件它们具有高效的非线性求解器、丰富而实用的非线性材料库。

3)与CAD软件的无缝集成。当今有限元分析软件的一个发展趋势是与通用CAD软件的集成使用,

即在用CAD软件完成部件和零件的造型设计后,能直接将模型传送到有限元分析软件中进行有限元网格划分并进行分析计算,如果分析的结果不满足设计要求则重新进行设计和分析,直到满意为止,从而极大地提高了设计水平和效率。

4)强大的网格处理能力。由于结构离散后的网格质量直接影响到求解时间及求解结果的正确性与否,近年来各软件开发商都加大了其在网格处理方面的投入,使网格生成的质量和效率都有了很大的提高。现在大多数软件都能采用映射、拖拉、扫略等功能生成六面体单元,但现在的有限元软件在自适应网格的建立时对于复杂模型还不能生成六面体单元,只能生成四面体单元。对于四面体单元,如果不使用中间节点,在很多问题中将会产生不正确的结果,如果使用中间节点将会引起求解时间、收敛速度等方面的一系列问题,因此人们迫切的希望自动六面体网格功能的出现。

5)程序面向用户的开放性。随着商业化的提高,各软件开发商为了扩大自己的市场份额,满足用户的需求,在软件的功能、易用性等方面花费了大量的投资,但由于用户的要求千差万别,不管他们怎样努力也不可能满足所有用户的要求,因此必须给用户一个开放的环境,允许用户根据自己的实际情况对软件进行扩充,包括用户自定义单元特性、用户自定义材料本构(结构本构、热本构、流体本构)、用户自定义流场边界条件、用户自定义结构断裂判据和裂纹扩展规律等等。

6)面向对象的工程数据及管理系统。可以将更多的计算模型、设计方案、标准规范和知识信息纳入有限元分析软件的数据库中,为使用者提供更多的选择。

7)智能化和专家系统。以智能化、本地化、易开发性为代表的易用实用性也是有限元法发展的重要特征。有限元分析软件是一种多学科的知识密集型的技术,任何一种软件都由数百到数千个程序组成,有几百、儿千个算法,其数据库存放着大量的设计力一案、标准构件、行业标准与规范,以及判别设计。和计算结果正确与否的知识性规则。任何一个使用者都不可能完全掌握这些知识。目前,产品的设计开发与有限元分析不能有一个人独立完成,必然存在人为因素的影响。解决方法是将所有算法智能化,帮助用户选择算法,分析流程,判断计算结果,从而消除人为因素。如有可能,可以做成支持用户正确使用的专家系统,它们将成为有限元分析的重要组成部分。

有限元法在机械工程中的应用

有限元法在机械工程中的应用 摘要:有限元法广泛应用于科学计算、设计、分析中,解决了许多复杂的问题。在机械设计中已成为一个重要的工具。在有限元基本原理的基础上,介绍了有限元的概念、分析了有限元的设计过程、介绍了有限元软件和其在机械设计中的应用。 关键词:有限元机械工程应用 前言 有限元方法诞生于20世纪中叶,随着计算机技术和计算方法的发展,已成为计算力学和计算工程领域里最为有效的计算方法。许多工程分析问题,如固体力学中的位移场和应力场分析、电磁学中的电磁场分析、振动特性分析、热学中的温度场分析、流体力学的流场分析等,都可归结为在给定边界条件下求解其控制方程的问题。有限元技术的出现为机械工程结构的设计、制造提供了强有力的工具,它可以解决许多以往手工计算根本无法解决的问题,为企业带来巨大的经济效益和社会效益。在现代机械工业中要设计生产出性能优越、可靠的机械产品,不应用计算及进行辅助设计分析是根本无法实现的,因此目前各生产设计部门都非常重视在设计制造过程中采用先进的计算机技术。 有限元法简介 有限元法最早是人们在研究固体力学的时候应运而生的,早在七八十年前,就有一些美国人在结构矩阵的分析方面有了一些研究发现,随后就有人研究出了钢架位移的方法,并将其推广应用到了弹性力学平面的分析当中,也就是把一些连续的整体划分为矩形和三角形,再将这些小的单元中的位移函数用近似的方法表达出来。后来,随着科学技术的不断发展,计算机的水平也有了很大的提高,有限元法也就相应的发展起来了,因为有限元法在产品的设计和研发的过程中起到了相当大的作用,所以有限元软件越来越受到相关专业人士的喜爱,而其在机械设计中的应用也是非常广泛的。 3.有限元法在机械工程中的应用 近年来,国内外许多学者对机械零部件的有限元分析进行了大量的研究,归纳起来主要是以下几个方面: (1)静力学分析。当作用在结构上的载荷不随时间变化或随时间的变化十分缓慢,应进行静力学分析。这是对机械结构受力后的应力、应变和变形的分析,是有限元法在机械工程中最基本、最常用的分析类型。 (2)动力学分析。机械零部件在工作时不仅受到静载荷作用,当外界有与其固有频率相近的激励时,还会引起共振,严重破坏结构从而引起失效。故零部件在结构设计时,对复杂结构,在满足静态刚度要求条件下,要检验动态刚度。

有限元理论方法

关于有限元分析法及其应用举例 摘要:本文主要介绍有限元分析法,作为现代设计理论与方法的一种,已经在 众多领域普遍使用。介绍了它的起源和国内外发展现状。阐述了有限元法的基 本思想和设计方法。并从实际出发,例举了有限元法的一个简单应用———啤 酒瓶的应力分析和优化,表明了利用有限元分析法的众多优点。随着计算机的 发展,基于有限元分析方法的软件开发越来越多。本文也在其软件开发方面进 行阐述,并简单介绍了一下主流软件的发展情况和使用范围。并就这一领域的 未来发展趋势进行阐述。 关键词:有限元分析法软件啤酒瓶 Abstract:This thesis mainly introduces the finite element analysis, as a modern design theory and methods used widely in in most respects. And this paper introduces its origins and development in world. It also expounds the basic thinking and approach of FEM..Proceed from the actual situation,this text holds the a simple application of finite-element method———the analysis and optimized of an beer bottle and indicate the the numerous benefits of finite element analysis .As computers mature and based on the finite element analysis of the software development is growing. This article introduces its application in the software development aspects as well, and briefly states the development and scope of the mainstream software. And it’s also prospect future development tendency in this area . Key: Finite Element Analysis Software Beer bottle 0 绪论 有限元法(Finite Element Method,FEM),是计算力学中的一种重要的方法,它是20世纪50年代末60年代初兴起的应用数学、现代力学及计算机科学相互渗透、综合利用的边缘科学。有限元法最初应用在工程科学技术中,用于模拟并且解决工程力学、热学、电磁学等物理问题。对于过去用解析方法无法求解的问题和边界条件及结构形状都不规则的复杂问题,有限元法则是一种有效的分析方法。有限元法的基本思想是先将研究对象的连续求解区域离散为一组有限个且按一定方式相互联结在一起的单元组合体。由于单元能按不同的联结方式进行组合,且单元本身又可以有不同形状,因此可以模拟成不同几何形状的求解小区域;

有限元分析理论基础

有限元分析概念 有限元法:把求解区域看作由许多小的在节点处相互连接的单元(子域)所构成,其模型给出基本方程的分片(子域)近似解,由于单元(子域)可以被分割成各种形状和大小不同的尺寸,所以它能很好地适应复杂的几何形状、复杂的材料特性和复杂的边界条件 有限元模型:它是真实系统理想化的数学抽象。由一些简单形状的单元组成,单元之间通过节点连接,并承受一定载荷。 有限元分析:是利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。并利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 线弹性有限元是以理想弹性体为研究对象的,所考虑的变形建立在小变形假设的基础上。在这类问题中,材料的应力与应变呈线性关系,满足广义胡克定律;应力与应变也是线性关系,线弹性问题可归结为求解线性方程问题,所以只需要较少的计算时间。如果采用高效的代数方程组求解方法,也有助于降低有限元分析的时间。 线弹性有限元一般包括线弹性静力学分析与线弹性动力学分析两方面。 非线性问题与线弹性问题的区别: 1)非线性问题的方程是非线性的,一般需要迭代求解; 2)非线性问题不能采用叠加原理; 3)非线性问题不总有一致解,有时甚至没有解。 有限元求解非线性问题可分为以下三类:

1)材料非线性问题 材料的应力和应变是非线性的,但应力与应变却很微小,此时应变与位移呈线性关系,这类问题属于材料的非线性问题。由于从理论上还不能提供能普遍接受的本构关系,所以,一般材料的应力与应变之间的非线性关系要基于试验数据,有时非线性材料特性可用数学模型进行模拟,尽管这些模型总有他们的局限性。在工程实际中较为重要的材料非线性问题有:非线性弹性(包括分段线弹性)、弹塑性、粘塑性及蠕变等。 2)几何非线性问题 几何非线性问题是由于位移之间存在非线性关系引起的。 当物体的位移较大时,应变与位移的关系是非线性关系。研究这类问题一般都是假定材料的应力和应变呈线性关系。它包括大位移大应变及大位移小应变问题。如结构的弹性屈曲问题属于大位移小应变问题,橡胶部件形成过程为大应变问题。 3)非线性边界问题 在加工、密封、撞击等问题中,接触和摩擦的作用不可忽视,接触边界属于高度非线性边界。 平时遇到的一些接触问题,如齿轮传动、冲压成型、轧制成型、橡胶减振器、紧配合装配等,当一个结构与另一个结构或外部边界相接触时通常要考虑非线性边界条件。 实际的非线性可能同时出现上述两种或三种非线性问题。

有限元法及其在工程中的应用

机械与汽车学院 曹国强 主要内容: 1、有限元法的基本思想。 2、结构力学模型的简化和结构离散化。 3、有限元法的实施过程。 一、有限元法的基本思想 有限元法是随着计算机的发展而发展起来的一种有效的数值方法。其基本思想是:将连续的结构分割成数目有限的小单元体(称为单元),这些小单元体彼此之间只在数目有限的指定点(称为节点)上相互连接。用这些小单元体组成的集合体来代替原来的连续结构。再把每个小单元体上实际作用的外载荷按弹性力学中的虚功等效原理分配到单元的节点上,构成等效节点力,并按结构实际约束情况决定受约束节点的约束。这一过程称为结构的离散化。其次,对每个小单元体选择一个简单的函数来近似地表示其位移分量的分布规律,并按弹性力学中的变分原理建立起单元节点力和节点位移之间的关系(单元刚度方程),最后,把全部单元的节点力和节点位移之间的关系组集起来,就得到了一组以结构节点位移为未知量的代数方程组(总体刚度方程),同时考虑结构的约束情况,消去那些结构节点位移为零的方程,再由最后的代数方程组就可求得结构上有限个离散节点的各位移分量。求得了结构上各节点的位移分量之后,即可按单元的几何方程和物理方程求得各单元的应变和应力分量。 有限元法的实质就是把具有无限个自由度的连续体,理想化为有限个自由度的单元的集合体,使问题简化为适合于数值解法的结构型问题。 经典解法(解析法)与有限元法的区别 解析法 { } 建立一个描述连续体性质的偏微分方程组 有限元解法 连续体 数目增加到∞ 大小趋于0 微元 有限元 离散化 (单元分析)集合 总体分析 求得近似解

二、结构力学模型的简化和结构离散化 (一)结构力学模型的简化 用有限元法研究实际工程结构问题时,首先要从工程实际问题中抽象出力学模型,即要对实际问题的边界条件、约束条件和外载荷进行简化,这种简化应尽可能地反映实际情况,不至于使简化后的解答与实际差别过大,但也不要带来计算上的过分复杂,在力学模型的简化过程中,必须判断实际结构的问题类型,是二维问题还是三维问题。如果是平面问题,是平面应力问题,还是平面应变问题。同时还要搞清楚结构是否对称,外载荷大小和作用位置,结构的几何尺寸和力学参数(弹性模量E、波松比μ等)。 (二)结构的离散化 将已经简化好的结构力学模型划分成只在一些节点连续的有限个单元,把每个单元看成是一个连续的小单元体,各单元之间只在一些点上互相联结,这些点称作节点,每个单元体称为一个单元。用只在节点处连接的单元的集合体代替原来的连续结构,把外载荷按虚功等效原理移置到有关受载的节点上,构成节点载荷,把连续结构进行这样分割的过程称为结构的离散化。现举例说明。 设一平面薄板,中间有一个园孔,其左端固定,右端受面力载荷q,试对其进行有限元分割和力学模型简化。

Hypermesh2017.2有限元分析的前处理1D单元连接

ALTAIR HYPERWORKS2017.2 有限元分析前处理 1D 单元和连接 Trainer’s Name Month XX, 2017

HMD Intro, 2017.2第5章: 1D 单元和焊点 5) 1D 单元和焊点 ?1D Meshing (1D单元) ?HyperBeam (梁截面) ?Connectors (焊点)

HMD Intro, 2017.2 1D 单元 ?1D 单元

HMD Intro, 2017.2示例 跟着示范做 (…\Model-Files\CH5-1D-MESHING\05a-1D-MESHING.hm)

? 2017 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved. HMD Intro, 2017.2 1D单元介绍 ?1D单元是节点之间简单连接,允许精确模拟连接关系(例如螺栓)和类似的杆 状或杆状对象,这些对象在FEA模型中可以建模为简单的线 ?可以从以下面板创建1D单元: ?目前支持的1D单元包括: bar2s, bar3s, rigid links, rbe3s, plots, rigids, rods, springs, welds, gaps and joints. ?显示单元可以在以下面板中创建: Edit Element, Line Mesh, Elem Offset, Edges, or Features panel.

?RIGID 刚性连接用于传递从主节点到从节点的运动. ?Rigids面板允许创建rigid 和rigid link 单元.

Abaqus-基础与应用-第一章概述

Abaqus-基础与应用-第一章概述

第1章概述 有限元分析是使用有限元方法来分析静态或动态的物体或系统。在这种方法中一个物体或系统被分解为由多个相互联结的、简单、独立的点所组成的几何模型。在这种方法中这些独立的点的数量是有限的,因此被称为有限元。 1.1有限元分析简介 本节首先简要介绍有限元分析的基本概念,然后简要阐述其发展和应用概况。 1.1.1有限元分析的基本概念 在工程技术领域内,有许多问题归结为场问题的分析和求解,如位移场、应力场、应变场、流场和温度场等。这些场问题虽然已经得出应遵循的基本规律(微分方程)和相应的限制条件(边界条件),但因实际问题的复杂性而无法用解析方法求出精确解。 由于这些场问题的解是工程中迫切所需要的,人们从不同角度去寻找满足工程实际要求的近似解,有限元方法就是随着计算机技术的发展和应用而出现的一种求解数理方程的非常有效的数值方法。 有限元分析的基本思想是用离散近似的概念,把连续的整体结构离散为有限多个单元,单元构成的网格就代表了整个连续介质或结构。这种离散化的网格即为真实结构的等效计算模型,与真实结构的区别主要在于单元与单元之间除了在分割线的交点(节点)上相互连接外,再无任何连接,且这种连接要满足变形协调条件,单元间的相互作用只通过节点传递。这种离散网格结构的节点和单元数目都是有限的,所以称为有限单元法。 在单元内,假设一个函数用来近似地表示所求场问题的分布规律。这种近似函数一般用所求场问题未知分布函数在单元各节点上的值及其插值函数表示。这样就将一个连续的有无限自由度的问题,变成了离散的有限自由度的问题。根据实际问题的约束条件,解出各个节点上的未知量后,就可以用假设的近似函数确定单元内各点场问题的分布规律。 有限元方法进行结构分析主要涉及三个问题: (1)网格剖分和近似函数的选取

对有限元方法的认识

我对有限元方法的认识 1有限元法概念 有限元方法(The Finite Element Method, FEM)是计算机问世以后迅速发展起来的一种分析方法。每一种自然现象的背后都有相应的物理规律,对物理规律的描述可以借助相关的定理或定律表现为各种形式的方程(代数、微分、或积分)。这些方程通常称为控制方程(Governing equation)。 针对实际的工程问题推导这些方程并不十分困难,然而,要获得问题的解析的数学解却很困难。人们多采用数值方法给出近似的满足工程精度要求的解答。 有限元方法就是一种应用十分广泛的数值分析方法。 有限元方法是处理连续介质问题的一种普遍方法,离散化是有限元方法的基础。 这种思想自古有之:古代人们在计算圆的周长或面积时就采用了离散化的逼近方法:即采用内接多边形和外切多边形从两个不同的方向近似描述圆的周长或面积,当多边形的边数逐步增加时近似值将从这两个方向逼近真解。 近年来随着计算机技术的普及和计算速度的不断提高,有限元分析在工程设计和分析中得到了越来越广泛的重视,已经成为解决复杂的工程分析计算问题的有效途径,现在从汽车到航天飞机几乎所有的设计制造都已离不开有限元分析计算,其在机械制造、材料加工、航空航天、汽车、土木建筑、电子电器、国防军工、船舶、铁道、石化、能源、科学研究等各个领域的广泛使用已使设计水平发生了质的飞跃。 国际上早在 60 年代初就开始投入大量的人力和物力开发有限元分析程序。“有限单元”是由Clough R W于1960年首次提出的。但真正的有限元分析软件是诞生于 70 年代初期,随着计算机运算速度的提高,内、外存容量的扩大和图形设备的发展,以及软件技术的进步,发展成为有限元分析与设计软件,但初期其前后处理的能力还是比较弱的,特别是后处理能力更弱。

有限元方法及其工程应用

《有限元方法及其工程应用》读书报告 数值分析技术是在力学理论、计算数学和计算机技术相互结合和渗透的基础上发展起来的一门应用数学学科。它主要借助计算机和软件技术实现大规模的计算分析。根据构造数值计算公式的原理不同,目前工程上常用的数值分析方法主要有:有限差分法、有限单元法和边界单元法等。与其它方法比较,有限元法在计算公式构造、计算精度及效率、求解过程的稳定性和适用性等方面具有明显的优势。有限元法的基本思想是把一个复杂实际问题划分成有限个简单问题的组合进行求解,由于实际问题已被较简单的问题所代替,故只能获得近似解。如对结构受力分析问题,首先把结构的求解区域看成是由有限(数量)个小的在节点处相互联系的子域(单元)组成,先对每一个单元假定一个合适的近似解,然后推导结构的整体平衡方程,在满足边界条件情况下就可获得近似解。当划分的子域(单元)尺寸变的越来越小时,其近似解就越来越逼近精确解。 弹性力学是进行工程结构承载分析的基本理论。建立与未知量相等的方程是进行应力分析的首要条件,此外还需满足协调方程(位移和应变连续)和边界条件(弹性结构表面的给定位移和力的条件)。弹性力学假设物体是完全弹性、连续、均匀和各向同性的,并且变形和位移是微小的。弹性力学有外力、应力、应变和位移等基本概念。弹性平面问题主要有平面应力问题和平面应变问题。平面应力问题主要应用于厚度尺寸与长度和宽度相比很小的板状结构体,如板架、机体等。这类物体只在板边受平行于板平面的外力,且外力沿厚度方向不变,体力也平行于板面并且不沿厚度变化。平面应力问题只有σXX ,σYY ,τXY =τYX 三个应力分量不为零,是一种二维函数问题。平面应变问题适用于截面不变化但长度很长的柱形结构体,如长圆柱体、高压容器、管道等。这类物体只受到平行于截面、并且沿长度不变化的体力和面力。平面应变问题只有三个应变分量:εXX ,εYY ,γXY =γY X 不为零。 弹性力学的控制方程有:平衡微分方程、几何方程和物理方程。其中弹性平面的 平衡微分方程为: ???????=+??+??=+??+??00Y y y X y x yy xy x y xx σττσ 几何方程为应变和位移的关系: ?????????+??=??=??=y u x v xy y v yy x u xx γεε, 物理方程为应力-应变关系(即三维条件下的广义虎克定律): ()[]zz yy xx xx v E σσσε+-=1 , xy xy G τγ1= 其它两个物理方程类似。 另外还有变形协调方程和边界条件。可见三维弹性问题总共有15个未知参数。 能量原理是力学的基本原理之一,弹性力学能量原理,就是利用能量的概念研究物体在外力的作用下应力、应变和位移参量之间的变化规律,以及外力作功与物体变形势能所涉及的能量转换过程。主要有泛函、变分的概念和虚位移原理和最小势能原理。在工程中除存在依赖与自变量变化的函数关系外,还存在另一类函数,其自变量也是一类函数,而不是有限个变量,这种函数的函数叫“泛函”。变分学就是研究这些“泛函”的极值性质,即在一组容许函数中选定一个函数,使给定的“泛函”获

有限元法分析过程

有限元法分析过程 有限元法分析过程大体可分为:前处理、分析、后处理三大步骤。 对实际的连续体经过离散化后就建立了有限元分析模型,这一过程是有限元的前处理过程。在这一阶段,要构造计算对象的几何模型,要划分有限元网格,要生成有限元分析的输入数据,这一步是有限元分析的关键。 有限元分析过程主要包括:单元分析、整体分析、载荷移置、引入约束、求解约束方程等过程。这一过程是有限元分析的核心部分,有限元理论主要体现在这一过程中。 有限元法包括三类:有限元位移法、有限元力法、有限元混合法。 在有限元位移法中,选节点位移作为基本未知量; 在有限元力法中,选节点力作为未知量; 在有限元混合法中,选一部分基本未知量为节点位移,另一部分基本未知量为节点力。 有限元位移法计算过程的系统性、规律性强,特别适宜于编程求解。一般除板壳问题的有限元应用一定量的混合法外,其余全部采用有限元位移法。因此,一般不做特别声明,有限元法指的是有限元位移法。 有限元分析的后处理主要包括对计算结果的加工处理、编辑组织和图形表示三个方面。它可以把有限元分析得到的数据,进一步转换为设计人员直接需要的信息,如应力分布状态、结构变形状态等,并且绘成直观的图形,从而帮助设计人员迅速的评价和校核设计方案。 附:FELAC 2.0软件简介 FELAC 2.0采用自定义的有限元语言作为脚本代码语言,它可以使用户以一种类似于数学公式书写和推导的方式,非常自然和简单的表达待解问题的微分方程表达式和算法表达式,并由生成器解释产生完整的并行有限元计算C程序。 FELAC 2.0的目标是通过输入微分方程表达式和算法之后,就可以得到所有有限元计算的程序代码,包含串行程序和并行程序。该系统采用一种语言(有限元语言)和四种技术(对象技术、组件技术、公式库技术生成器技术)开发而成。并且基于FELAC 1.0的用户界面,新版本扩充了工作目录中右键编译功能、命令终端输入功能,并且丰

第一章 计算机工程分析前处理和后处理

第一章计算机工程分析的前处理和后处理 本章教学任务要点:通过本章的系统学习,要求学生能够掌握有限单元法计算的前、后处理基本知识,基本原理和基本方法。 §1. 工程对象及选择 例1.工程对象:进行西安城区地裂缝模拟: 研究目标:未来100年,地裂缝活动特点、以及对市政规划的影响。 例 研究目标:未来100年,地裂缝活动特点、以及对市政规划的影响。 选择对象: A位置:隧道埋深 B位置:隧道埋深10m,地面为高层建筑。

例3.工程对象:煤层开采模拟 研究目标:采动后岩层运动规律、离层破坏高度 选择对象: §2. 有限元计算模型的原则:计算模型要能全面反映工程对象的主要特点,又必须具备能适应计算模拟的功能。 例一、工程对象:进行西安城区地裂缝模拟 例二、城市地铁隧道 例三、煤层开采模拟 有限元计算模型的建立主要指,1、将待分析的连续体,如结构物、固体等对象,用假想的点、线、面将连续体分割成有限多个、有限大小的子区域,这些子区域只有在特定点相互连接,从而使得连续体离散化为结构体。其中,这些子区域称为单元,单元与单元之间的连接点称为结点。 单元类型有: 直线单元曲线元 A一维单元

三角形 矩形四边形曲边形 B 二维单元 六面体单元柱体单元 C 三维单元 结点类型:结点与结点之间的连接可以有铰接、固接。如果结构体的一个结点位移或一个方向被限制,则结点上可以安装铰支座、或杆支座等。 上机 §3. 3.1 单元, 单元号,

例图巨型划分成小巨型格,也就是将巨型(1000X1000)划分成小巨型(5格X 5格),其中如:单元n、节点为A、B、C、D。该单元其坐标为: A(400,400),B(600,400),C(600,600),D(400,600)。 用传统解析方法定量地处理岩石力学问题,由于无法考虑复杂的岩石性态及某些明显的地质构造的影响,而存在着几乎是不可克服的困难,正是在这方面有限单元法具有突出的效能。 1)有限单元法使连续体离散化;可以反映复杂实际对象。 2)单元应力状态可以指定,因而可以反映岩体实际状态。 3)处理格式一致。 3.2 网格单元形式 实践证明,采用常应变三角形单元或具有线性应变的任意四边形单元均能达到工程所要求的精度。 在计算精度方面,高阶应变特性的单元对提高计算精度是有限度的,而三角形单元精度略次于四边形单元,且处理岩石某些性态及进行非线性分析时程序处理上不如四边形方便。 3.3 离散化 正确确定边界及其位置条件,网格的细度,对有限元分析结果有很大影响。在保证要求精度的情况下,确定一个最低限度的网格要求是很必要的。例如根据大量计算经验,对地下硐室围岩分析,网格的适度细化,按节点数来说,应不少300节点。对具有一个对称轴时,节点总数不少于150~200个;对具有两个对称轴时,节点数不少于600个。 对网格疏密度,在应力变化处,可密;否则疏。例如对地下硐室围岩1~1.5倍直径区域加密。 对研究范围的大小及边界位置:如圆孔应力集中问题中,计算精度与精确解的误差在10%以内,必要的边界条件,一般应在距坑硐中心不少于坑硐直径3.5 ~ 4倍。又如,对弹模很低(1×105以下)的岩石,则所取范围尚应适当增大。 应指明:采用“翻转应力法”模拟开挖,边界均以固定点来考虑。 3.4 网格剖分的处理方法 地下硐室围岩应力分布问题,单元划分情况可分两种类型。即取全部或部分对称部分。

ANSYS有限元分析在隧道工程中的应用

ANSYS有限元分析在隧道工程中的应用 摘要:结合某公路隧道的现场实际施工情况,利用ANSYS有限元分析软件,对隧道开挖引起的地表沉降、围岩应力变化、塑性区变化等进行了计算分析,研究结果对于现场施工起到了一定的指导意义,并值得类似工程的借鉴。 关键字:ANSYS软件;有限元分析;隧道工程 1.引言 隧道工程处于地面以下,岩土的构成复杂,且难于直接观察,而有限元分析则可把数值结果形象化,把内部结构相互作用过程展示出来,有很大的实用价值。诸如隧道开挖过程中较为普遍的塌方冒顶现象,若根据地质勘察,了解场地断层、裂隙和节理的走向与密度,借助于试验方法,可以确定岩石本身的力学性能及岩体夹层和界面的力学特性、强度条件。在此基础上,通过有限元分析可以确定开挖过程中硐室的应力分布、判断硐室是否稳定[4]。隧道开挖有限元计算的重点是评估隧道开挖引起的地面沉降,研究和评估整体和局部结构由此产生的反应,研究施工过程中隧道衬砌和岩土体的相互作用。 2. 工程背景及有限元模型的建立 2.1隧道工程概况 某隧道为上下行分离的双向八车道高速公路隧道,建筑限界宽度为17.25m,净高5m。左右主线隧道均采用四车道,最大毛洞开挖跨度为19.9m,高度10.838m,项目场址区属低山丘陵地貌,地形起伏大,线路沿北西向穿越低山丘陵区,地质复杂,施工难度大。隧道左洞全长319m;右洞全长315m。左洞拱顶埋深最大为18.182m,右洞拱顶埋深最大为8.732m,两隧道中心线间距31.37m。隧道左右隧道间距为小净距(最小11m左右),为特大断面小净距隧道。 图2.1隧道设计断面图 图2.2魁岐隧道出洞口图 2.2材料参数选择 根据已有现场施工、勘察资料,近似将场地分为四类岩土层,最上一层为坡积亚粘土层,其下部分别为强风化花岗岩层、弱风化花岗岩层、微风化花岗岩层。

北京科技大学《工程中的有限元方法》-上课笔记

肯定有bug。仅供参考。 1401052200 隐式方法与显式方法:== 静态隐式方法:不适用于短时高速下的大变形。基于虚功原理,一般需要迭代(除迭代法外还有直接法)。可能遇到迭代过程不收敛,以及方程组病态无确定解的问题。ANSYS默认使用的方法。 动态显式方法:可用于短时、高速下的大变形。基于动力学方程,每步计算形成新的刚度矩阵,无需迭代,不存在收敛性问题。LS-DYDA模块(ANSYS中也包含)默认使用。 如何判断有限元的分析结果是正确的? 1.有限元分析的结果能否与模型简化后存在的解析解对应; 2.有限点处的计算结果与实验结果吻合; 3.结果收敛; 4.与实际经验吻合;……【结合书上P168】 力学应力、温度热学分析提倡使用对称性,但不是所有的情况都能使用对称性,比如结构件的振动。 有限元方法:求解偏微分方程,基础为加权残值法。 求解有限元方程本质为解线性方程组。 ADD:要求所ADD的为同一种材料。 低阶单元:只有角节点,没有边中点或面内点的单元。(目前已不使用面内点) 高阶单元:不但有角节点,还有边中点或面内点的单元。 静态小变形使用高阶单元。 动态大变形使用低阶单元。 连续介质单元:求解得到位移。 结构单元:求解得到位移和转角。 求解结果的位移精度大于应力精度。 网格类型:三角形,四边形;四面体(三棱锥),五面体(三棱柱),六面体。 根据自由度关系,单元节点间存在铰接(自由度不同)和刚接(自由度相同)的关系。 连续介质单元也有一维单元(如接触关系)。 工字钢既可以使用梁单元,也可以使用连续介质单元。 对于直接法的求解效率: 带宽解法:ANSYS的默认求解法;尽量减小单元内节点号差值从而减小带宽。 波阵解法:ABAQUS的默认求解法;尽量减小绕一节点所连接的单元号的差值从而减小波阵

有限元方法及国内外研究现状(最新整理)

现代机械设计理论与方法 有限元方法 学院:机械工程学院 日期:2012年12月8日

目录 摘要 (3) 关键词 (3) Abstract (3) Key Words (4) 1 有限元方法的国内外研究现状及应用实例 (4) 1.1 有限元的发展趋势 (4) 1.2 有限元的应用实例 (4) 2 有限元方法的分析过程 (5) 2.1 有限元分析的三个阶段 (5) 2.2 有限元分析的七个步骤 (5) 2.3 有限元软件的分析过程 (6) 3 参考文献 (8)

有限元方法 摘要:有限元方法法的基本概念是用较简单的问题代替复杂问题后再求解。有限元法的基本思想是先化整为零﹑再积零为整,也就是把一个连续体分割成有限个单元;即把一个结构看成由若干通过节点相连的单元组成的整体,先进行单元分析,然后再把这些单元组合起来代表原来的结构进行整体分析。 关键词:有限元方法;单元;节点 Finite Element Method Abstract:The basic concepts of the finite element method is solving complex problems with a simple question instead.The basic idea of the finite element method is dismembered, and then plot the parts into a whole, that is divided a continuum into a finite number of unit; that is to regard a structure as a whole connected by many nodes,first to analysis unit,then analysis the overall combined by these units,which represents the original structure. Key Words:finite element method;unit;node 1 有限元方法的国内外研究现状及应用实例 “有限单元法”这一名称是克拉夫(Clough)在1960年首先引用的。它是随着电子计算机的发展而迅速发展起来的一种现代计算方法。它虽然是50年代首先在连续体力学领域—飞机结构静、动态特性分析中应用过的一种有效的数值分析方法,但是,由于它所依据理论的普遍性,已经能够成功地用来求解其它工程领域中的许多问题[1]。随后很快广泛的应用于求应力场、位移场、电磁场、温度场、流体场等连续性问题。涉及了很多的工程学科,如机械设计、声学、电磁学、岩土力学、流体力学等。在机械工程领域,有限元被广泛的应用于机构、振动和传热问题上。 1.1 有限元的发展趋势 纵观当今国际上有限元软件的发展情况,可看出有限元软件的一些发展趋势:与CAD软件的无缝集成;更为强大的网格处理能力;由求解线性问题发展到求解非线性问题;由单一结构场求解发展到耦合场问题的求解;程序面向用户开放性等。 1.2 有限元的应用实例 1.2.1地铁振动预测的周期性有限元—边界元耦合模型 Jones利用有限元—无限元耦合二维模型计算了铁路隧道内及周围土体的动力响

有限元分析方法在工程中的应用

有限元分析方法在工程中的应用 Application of finite element analysis method in Engineering 一、引言 从20世纪50年代诞生到现在,有限元方法和技术经历了60年的发展历程,已经成为当今科学与工程领域中分析和求解微分方程的系统化数值计算方法。由于有限元分析方法适用性强、形式简单、理论可靠等众多优点,近年来已被推广应用到航空航天、土木建筑、机械等相关科学领域。本文以ANSYS软件为例,介绍其功能和应用,包括几何建模技术、网格划分与有限元建模技术、施加载荷与求解过程、结果后处理技术等。图1是用有限元方法分析工程问题时的具体步骤[1]。 本文以车轮钢的疲劳性能研究为例,介绍有限元分析方法在其中的应用。 图1. 有限元方法进行计算机辅助工程分析的步骤 二、ANSYS操作步骤 ANSYS的基本操作步骤包括建模、划分网格、加载求解和后处理等步骤。进入ANSYS系统后有六个系统,提供使用者和软件之间的交流凭借这六个窗口可以实现输入命令、检查模型的建立、观察分析结果及图形输出与打印。ANSYS

各窗口及工具条如图2所示。 图2. ANSYS的窗口及工具条 1、建立模型 首先必须指定作业名和分析标题,接着使用PREP7前处理器定义单元类型、单元实常数、材料特性,然后建立几何模型。需要注意的是,ANSYS的GUI界面下没有类似WORD中的后退操作按钮,所以就出现了一个常见问题:做错一步操作如何后退?这里可以采用三种方法:(1)建模阶段可以使用Delete(删除)图元命令,划分网格阶段可以使用Clear(清除)单元命令。(2)每完成一个模块的操作,都用SA VE AS保存数据到不同名的数据库文件中,出错后点击Resum Form恢复。(3)使用命令:UNDO,ON以便激活ANSYS内部的返回命令。 本文以车轮钢为例,建立好的模型与图2类似,只是未划分网格。 2、单元网格划分 一个实体模型进行网格划分(meshing)之前必须指定所产生的单元属性(element attribute)。ANSYS有限元网格划分是进行数值模拟分析至关重要的一步,它直接影响着后续数值计算分析结果的精确性。ANSYS软件平台提供了映射网格划分和自由网格划分的策略。映射网格划分用于曲线、曲面、实体的网格划分方法,自由网格划分方法用于空间自由曲面和复杂实体。

有限元分析中的一些问题

有限元分析的一些基本考虑-----单元形状对于计算精度的影响 笔者发现,在分析复杂问题时,我们所可能出现的错误,竟然是一些很根本的错误,这些根本错误是由于对有限元的基本理论理解不清晰而造成的。 鉴于这个原因,笔者决定对一些基本问题(例如单元形状问题,单元大小问题,应力集中问题等)展开调查,从而形成了一系列文章,本篇文章是这些系列文章中的第一篇。 本篇文章先考虑有限元分析中的第一个基本问题:单元形状问题。 我们知道,单元形状对于有限元分析的结果精度有着重要影响,而对单元形状的衡量又有着诸多指标,为便于探讨,这里首先只讨论第一个最基本的指标:长宽比(四边形单元的最长尺度与最短尺度之比),而且仅考虑平面单元的长宽比对于计算精度的影响。 为此,我们给出一个成熟的算例。该算例是一根悬臂梁,在其端面施加竖直向下的抛物线分布载荷,我们现在考察用不同尺度的单元划分该梁时,对于A点位移的影响。 这五种不同的划分方式,都使用矩形单元,只不过各单元的长宽比不同。 例如第一种(1)AR=1.1,就是长宽比接近1; 第二种(2)AR=1.5,就是长宽比是1.5.其它类推。 第五种(5)AR=24,此时单元的长度是宽度的24倍。 现在我们看看按照这五种单元划分方式对于A点位移的影响,顺便我们也算出了B点的位移,结果见下表。

我们现在仔细查看一下上表,并分析其含义。 我们先考虑第一行,它是第一种单元划分情况,此时每个单元的长宽比是1.1,由此我们计算出A点,B点的垂直位移,可以看到,A点的竖直位移是-1.093英寸,而B点的竖直位移是-0.346英寸。而这两点我们都是可以用弹性力学的方式得到精确解的,其精确解分别是-1.152以及-0.360.这样,我们可以得到此时A点位移误差的百分比是 [(-1.093)-(-1.152)]/1.152 = 5.2%. 对于其它情况,也采用类似的方式得到A点位移误差的百分比。 从上表可以看出来,随着长宽比的增加,位移误差越来越大,竟然大到56%。因此,如果我们是用长宽比为24的单元进行划分的话,那么我们的结果可以说是完全错误的。 下面按照上表绘制出一张图,该图从形象的角度表达了上表的含义。 由此可见,长宽比越接近于1,那么结算结果越精确,越远离1,则误差越大。

有限元在汽车工程中的应用

有限元在汽车工程中的应用 摘要:现代汽车工业技术快速发展,计算机技术不断推陈出新,使分析仿真技术以其快速高效和低成本的强大优势,成为汽车设计的重要手段,各种分析软件成为CAE技术广泛应用的工具。 关键词:有限元分析汽车CAE技术 1. 前言 汽车由底盘、发动机、车身三大总成构成。在这三大总成中,车身总成比底盘和发动机总成要复杂得多,车身的设计过程也相对复杂,涉及到工业造型、工程材料、生产工艺、结构力学、人机工程等众多学科。所以直到今日,车身设计尚无通用的标准和规范的设计过程可以遵循。CAE技术将“基于物理样机试验的传统设计方法”带入基于“虚拟样机仿真的现代设计方法”,大幅缩短了产品开发周期,并可以获得比试验更多的数据。 2. 正文 随着中国汽车工业的发展,自主品牌轿车日渐成为国内汽车厂家的发展战略目标,轿车数字化设计成为必经之路。现代设计方法表明,产品设计虽然只占产品整个成本的5%,但它却影响整个成本的70%,CAE模拟分析技术可以很好地解决产品设计中的问题,并做到快速修正。在汽车底盘设计中,后桥设计很关键。由于后桥零部件受力比较复杂且相互关联,在概念设计完成后,只有通过CAE仿真分析,才可以快速、全面了解后桥各零部件受力和相互影响情况,并指导优化设计,以保证后桥零部件具有足够的刚度和强度,同时满足结构型式要求。 在汽车发展历史上,至今还没有什么技术能与CAE技术相比,为汽车企业带来巨大的回报。统计结果表明,应用CAE 技术后,新车开发期的费用占开发成本的比例从80%~90%下降到8%~12%。例如:美国福特汽车公司2000年应用CAE 后,其新车型开发周期从36个月降低到12~18个月;开发后期设计修改率减少50%;原型车制造和试验成本减少50%;投资收益提高50%。汽车行业是一个高速发展的行业,其竞争也日趋激烈,在这种情况下,新产品推出的速度也越来越快,这也对行业的CAE应用提出了越来越高的要求。CAE技术为汽车行业的高速发展提供具有中心价值地位的技术保障,可以为企业带来巨大的技术经济效益。 2.1有限元方法在汽车上的应用 有限元方法在汽车上主要有以下几种应用: (1)结构静力分析:这是在车辆及其发动机的各种零部件设计中最常见的问题,也是应用最为广泛的领域,即分析计算结构与时间无关的应力分布与变形情况。例如齿轮轮齿、钢板弹簧、车架、发动机缸体、缸套、进(排)气阀、活塞、飞轮的静力分析。 (2)结构动力学问题:可分为两类问题:一类是求解结构或系统本身的动态特性,如固有频率、振型等,这对分析与解决振动问题是十分重要的;另一类是强迫响应分析,即结构在动载荷的作用下的响应,这较静力分析更接近于车辆及其发动机中的许多零部件的实际工作情况,但一般计算量也将增加许多倍。随着对环境问题的日益重视,在车辆及发动机的设计中已普遍采用各种分析工具,采取各种有效措施,来改善和减少车辆的振动和噪声。例如车辆动力装置的动态性分析等。

有限元法的概述

有限元法的概述 有限元方法(Finite Element Method)是力学,数学物理学,计算方法,计算机技术等多种学科综合发展和结合的产物。在人类研究自然界的三大科学研究方法(理论分析,科学试验,科学计算)中,对于大多数新型领域,由于科学理论和科学实践的局限性,科学计算成为一种最重要的研究手段。在大多数工程研究领域,有限元方法是进行科学计算的重要方法之一;利用有限元方法几乎可以对任意复杂的工程结构进行分析,获取结构的各种机械性能信息,对工程结构进行评判,对工程事故进行分析。有限元法在设计过程中有极为关键的作用。 人们对各种力学问题进行分析求解,其方法归结起来可以分为解析法(Analytical Method)和数值法(Numeric Method).如果给定一个问题,通过一定的推导可以用具体的表达式来获得问题的解答,这样的求解方法就称为解析法。但是由于实际结构物的复杂性,除了少数极其简单的问题外,绝大多数科学研究和工程计算问题用解析法求解式极其困难的。因此,数值法求解便成为了一种不可替代的广泛应用的方法,并取得了不断的发展,如有限元法,有限差分法,边界元方法等都是属于数值求解方法。其中有限元法式 20 世纪中期伴随着计算机技术的发展而迅速发展起来的一种数值分析方法,它的数学逻辑严谨,物理概念清晰,应用非常广泛,能活灵活现处理和求解各种复杂的问题。有限元方法采用矩阵式来表达基本公式,便于计算机编程,这些优点赋予了它强大的生命力。 有限元方法的实质是将复杂的连续体划分成为有限多个简单的单元体,化无限自由度问题为优先自由度问题,将连续场函数的(偏)微分方程的求解问题转化为有限个参数的代数方程组的求解问题。用有限元方法分析工程结构的问题时,将一个理想体离散化后,如何保证其数值的收敛性和稳定性是有限元理论讨论的主要内容之一,而

有限元分析-清华大学教程

8.1 进入工程分析模块 8.2施加约束 8.3 施加载荷 8.4 静态有限元计算过程和后处理 8.5动态分析的前处理和显示计算结果8.6有限元分析实例 习题

工程分析指的是有限元分析,包括静态分析(Static Analyses)和动态分析。动态分析又分为限制状态固有频率分析(Frequency Analyses)和自由状态固有频率分析(Free Frequency Analyses),前者在物体上施加一定约束,后者的物体没有任何约束,即完全自由。 8.1 进入工程分析模块 1. 进入工程分析模块前的准备工作 (1)在三维实体建模模块建立形体的三维模型,为三维形体添加材质,见4.7。 (2)将显示模式设置为Shading(着色)和Materials(材料),这样才能看到形体的应力和变形图,详见2.11.6。

2. 进入工程分析模块 选择菜单【Start】→【Analysis & Simulation】→【Generative Structural Analysis】弹出图8-1所示新的分析实例对话框。 在对话框中选择静态分析(Static Analyses)、限制状态固有频率分析(Frequency Analyses)还是自由状态固有频率分析(Free Frequency Analyses),单击OK按钮,将开始一个新的分析实例。 图8-1新的分析实例对话框

3.有限元分析的过程 有限元分析的一般流程为: (1)从三维实体建模模块进入有限元分析模块。(2)在形体上施加约束。 (3)在形体上施加载荷。 (4)计算(包括网格自动划分),解方程和生成应力应变结果。 (5)分析计算结果,单元网格、应力或变形显示。(6)对关心的区域细化网格、重新计算。 上述(1)~(3)过程是有限元分析预(前)处理,(4)是计算过程,(5)、(6)是有限元后处理。 有限元文件的类型为CATAnalysis。

相关主题
文本预览
相关文档 最新文档