当前位置:文档之家› 高硫铝土矿脱硫的方法

高硫铝土矿脱硫的方法

高硫铝土矿脱硫的方法
高硫铝土矿脱硫的方法

高硫铝土矿脱硫的方法

火电厂脱硫的几种方法

火电厂脱硫的几种方法(总12 页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

火电厂脱硫的几种方法(1) 通过对国内外脱硫技术以及国内电力行业引进脱硫工艺试点厂情况的分析研究,目前脱硫方法一般可划分为燃烧前脱硫、燃烧中脱硫和燃烧后脱硫等3类。 其中燃烧后脱硫,又称烟气脱硫(Flue gas desulfurization,简称FGD),在FGD 技术中,按脱硫剂的种类划分,可分为以下五种方法:1、以CaCO3(石灰石)为基础的钙法,2、以MgO为基础的镁法,3、以Na2SO3为基础的钠法,4、以NH3为基础的氨法,5、以有机碱为基础的有机碱法。世界上普遍使用的商业化技术是钙法,所占比例在90%以上。按吸收剂及脱硫产物在脱硫过程中的干湿状态又可将脱硫技术分为湿法、干法和半干(半湿)法。A、湿法FGD技术是用含有吸收剂的溶液或浆液在湿状态下脱硫和处理脱硫产物,该法具有脱硫反应速度快、设备简单、脱硫效率高等优点,但普遍存在腐蚀严重、运行维护费用高及易造成二次污染等问题。B、干法FGD技术的脱硫吸收和产物处理均在干状态下进行,该法具有无污水废酸排出、设备腐蚀程度较轻,烟气在净化过程中无明显降温、净化后烟温高、利于烟囱排气扩散、二次污染少等优点,但存在脱硫效率低,反应速度较慢、设备庞大等问题。C、半干法FGD技术是指脱硫剂在干燥状态下脱硫、在湿状态下再生(如水洗活性炭再生流程),或者在湿状态下脱硫、在干状态下处理脱硫产物(如喷雾干燥法)的烟气脱硫技术。特别是在湿状态下脱硫、在干状态下处理脱硫产物的半干法,以其既有湿法脱硫反应速度快、脱硫效率高的优点,又有干法无污水废酸排出、脱硫后产物易于处理的优势而受到人们广泛的关注。按脱硫产物的用途,可分为抛弃法和回收法两种。 1脱硫的几种工艺 (1)石灰石——石膏法烟气脱硫工艺

天然气脱硫技术论文

摘要川渝地区天然气田多数为含硫甚至高含硫气田,有的还含有较多二氧化碳和有机硫,这些气田的开发需要解决与天然气净化相关的技术问题。中石油西南油气田公司天然气研究院在该技术领域的研究中,已在醇胺溶剂、物理化学溶剂、配方溶剂、液相氧化还原、干法等脱硫技术及硫磺回收技术方面取得了一系列成果,并在天然气净化中获得成功应用。目前围绕高含硫天然气开发问题,开展了多项天然气净化课题的研究。 关键词天然气净化脱硫硫磺回收 随着国民经济的快速发展,能源消耗量呈现出“加速度”的趋势。预计到2020 年,我国天然气供需缺口将达到800 ×108 m3。川渝地区是我国天然气生产的重要基地,预计到年底,西南油气田公司天然气年产量就将超过97 ×108 m3 ,约占全国天然气总产量的27% ,它承担着川渝地区和“两湖”地区的安全平稳供气,在我国的能源安全中占有重要位置。虽然目前川渝地区天然气连续增长最快的时期,但仍然难以满足市场需求,今年缺口达到了8 ×108 m3。据已掌握的资料预测,即使2010年西南油气田分公司上产到150×108 m3 ,仍是一个供不应求的局面。川渝地区天然气田属含硫甚至高含硫气田,90%以上天然气都含硫化氢,有的气井硫化氢高达17%以上,有的CO2 /H2 S比值达20%以上,有的还含高达500 mg/m3 的有机硫。近年西南油气田公司在川东北发现的渡口河、罗家寨、铁山坡、飞仙关等气田皆属特殊含硫气质气田,目前探明的这类天然气储量至少2 777. 5 ×108m3 ,它是川渝地区新增天然气的重要气田。还有部分边远、分散气井也需进行开发,以满足对天然气的需求。开发这些含硫气田,需对含硫天然气进行净化处理,使之达到GB17820 - 1999“天然气”标准规定的天然气的技术指标,才能成为商品气供用户使用。但由于不同气田的天然气中硫化氢、二氧化碳、有机硫含量不同,所采用的净化工艺也存在差异,由此要求开发适用于不同气质的经济合理的工艺技术。特别是高含硫天然气的净化问题,国内尚无成熟的技术可借鉴,它已成为天然气开发的瓶颈。因此天然气净化技术是天然气工业中的重要研究内容之一。中石油西南油气田公司天然气研究院(以下简称天研院)长期从事天然气净化技术领域的研究工作,在脱硫工艺、溶剂合成、分析测试、硫磺回收与尾气处理工艺及催化剂、基础研究等方面,具有良好的基础和优势,初步形成了一套天然气净化技术,并在生产中获得成功应用。近年来,为了适应川渝地区高含硫天然气净化需求,结合生产实际,开展了一系列相关课题的研究。本文简要介绍了天然气脱硫工艺、硫磺回收与尾气处理、催化剂研究等成果。 1溶剂脱硫技术开发研究 溶剂脱硫技术包括物理溶剂、化学溶剂和物理化学溶剂等脱硫技术。醇胺法脱硫是天然气脱硫最常用的方法,早期胺法脱硫一般采用伯胺或仲胺,如单乙醇胺(MEA)或二乙醇胺(DEA) 。MEA、DEA 具有碱性强、与酸气反应迅速、价格较便宜等优点,但不足之处是装置腐蚀较严重,溶剂只能在较低浓度下使用,以及与酸气的反应热较大导致溶剂循环量大及能耗高。上世纪80年代以来,具有一定选吸能力的二异丙醇胺(D IPA) ,甲基二乙醇胺(MDEA)等脱硫工艺逐渐进入工业应用。由于MDEA 具有高使用浓度、高酸气负荷、低腐蚀性、抗降解能力强、高脱硫选择性、低能耗等优点,因此受到重视,它的推广应用是上世纪80年代天然气净化工业最显著的技术进步之一。但MDEA也存在有三个固有的弱点:其一是与伯、仲胺相比,其碱性较弱,在较低的吸收压力下净化气中H2 S含量不易达到20 mg/m3 的管输标准;其二是若CO2 /H2 S比值高,这时MDEA与CO2 的反应速率较低,净化气中CO2 含量不易达到≤3%的管输要求;其三是如果需要深度脱碳,仅采用MDEA不能达到要求。为了克服此类弱点,开发配方溶剂脱硫脱碳新工艺是近年来胺法脱硫的发展方向之一。

四种脱硫方法工艺简介

一、石灰石/石灰-石膏法脱硫工艺 一)、工作原理 石灰石/石灰-石膏法烟气脱硫采用石灰石或石灰作为脱硫吸收剂,石灰石经破碎磨细成粉状与水混合搅拌成吸收浆液,当采用石灰为吸收剂时,石灰粉经消化处理后加水制成吸收剂浆液。在吸收塔内,吸收浆液与烟气接触混合,烟气中的二氧化硫与浆液中的碳酸钙以及鼓入的氧化空气进行化学反应从而被脱除,最终反应产物为石膏。 二)、反应过程 1、吸收 SO 2+ H 2 O—>H 2 SO 3 SO 3+ H 2 O—>H 2 SO 4 2、中和 CaCO 3+ H 2 SO 3 —>CaSO 3 +CO 2 + H 2 O CaCO 3+ H 2 SO 4 —>CaSO 4 +CO 2 + H 2 O CaCO 3+2HCl—>CaCl 2 +CO 2 + H 2 O CaCO 3+2HF—>CaF 2 +CO 2 + H 2 O 3、氧化 2CaSO 3+O 2 —>2 CaSO 4 4、结晶 CaSO 4+ 2H 2 O—>CaSO 4 〃2H 2 O 三)、系统组成 脱硫系统主要由烟气系统、吸收氧化系统、石灰石/石灰浆液制备系统、副产品处理系统、废水处理系统、公用系统(工艺水、压缩空气、事故浆液罐系统等)、电气控制系统等几部分组成。 四)、工艺流程 锅炉/窑炉—>除尘器—>引风机—>吸收塔—>烟囱 来自于锅炉或窑炉的烟气经过除尘后在引风机作用下进入吸收塔,吸收塔为逆流喷淋空塔结构,集吸收、氧化功能于一体,上部为吸收区,下部为氧化区,经过除尘后的烟气与吸收塔内的循环浆液逆向接触。系统一般装3-5台浆液循环泵,每台循环泵对应一层雾化喷淋层。当只有一台机组运行时或负荷较小时,可以停运1-2层喷淋层,此时系统仍保持较高的液气比,从而可达到所需的脱硫效果。吸收区上部装二级除雾器,除雾器出口烟气中的游离水份不超过75mg/Nm3。吸收SO 2 后的浆液进入循环氧化区,在循环氧化区中,亚硫酸钙被鼓入的空气氧化成石膏晶体。同时,由吸收剂制备系统向吸收氧化系统供给新鲜的石灰石浆液,用于补充被消耗掉的石灰石,使吸收浆液保持一定的pH值。反应生成物浆液达到一定密度时排至脱硫副产品系统,经过脱水形成石膏。 五)、工艺特点 1、脱硫效率高,可保证95%以上; 2、应用最为广泛、技术成熟、运行可靠性好; 3、对煤种变化、负荷变化的适应性强,适用于高硫煤; 4、脱硫剂资源丰富,价格便宜; 5、可起到进一步除尘的作用。 六)、应用领域 燃煤发电锅炉、热电联产锅炉、集中供热锅炉、烧结机、球团窑炉、焦化炉、玻璃窑炉等烟气脱硫。 友情提示:该工艺应用最为广泛,技术成熟,对烟气负荷、煤种变化适应性好,脱硫效率高,对于高硫煤和环保排放要求严格的工况尤为适合,但系统相对复杂,投资费用较高,烟囱需要进行防腐处理。

高含硫天然气净化技术应用研究

高含硫天然气净化技术应用研究 发表时间:2018-04-04T10:39:20.197Z 来源:《建筑学研究前沿》2017年第31期作者:鲁金孝[导读] 本文从高含硫天然气净化技术的现状入手,以普光气田为例,探究高含硫天然气的实际应用情况。 长庆油田分公司第一采气厂第四净化厂陕西延安 716000 摘要:天然气净化技术一直是行业核心研究对象,它对于现代社会消耗量极大的天然气能源的使用具有重大意义。但伴随着天然气田的广泛开发,大量高含硫的天然气混杂其中,这些有毒气体根本无法满足社会和民众的使用需求,因此有必要采取科学高效的方法来对高含硫天然气进行净化操作,以适应行业的发展要求并妥善应用于实际生产生活中。本文从高含硫天然气净化技术的现状入手,以普光气田为例,探究高含硫天然气的实际应用情况。关键词:高含硫天然气净化技术应用研究随着现代社会对于环保意识的不断提升,人们对于生活质量的要求也越来越高,而天然气作为广泛使用的能源,其含有的大量污染物质给生存环境带来了巨大负面影响,所以相关的净化处理势在必行。根据行业标准,现有的天然气对于含硫总量的规定为60mg/m3,同时,对来自于尾气排放装置和硫磺回收过程中的二氧化硫含量的规定为500mg/m3,这些硬性规定给天然气净化工作带来了极大挑战,所以有必要进行深入研究。 一、高含硫天然气净化技术的现状(一)对硫磺回收技术的分析 高含硫天然气的一个显著特点就是:成分复杂且硫化氢或二氧化碳含量较高,硫磺回收技术正是根据这一特点进行脱硫处理,以有效降低硫化氢含量,同时形成酸气。通常情况下,硫化氢含量越多,硫磺回收装置进行脱硫的效果越好,并且生成的难以转化的副产物也较少,继而导致二氧化硫在尾气中的排放量也随之降低。一般来说,行业多采用三级克劳斯硫磺回收装置对含硫量处于中低层水平的天然气进行脱硫操作,这样得到的二氧化硫含量大致在50%~80%之间,硫磺回收率可以达到97%,含硫副产物的量控制在0.2%以内。更进一步,如果将硫磺回收装置与水解技术进行结合使用,可以将硫的损失降到更低水平。考虑到我国大部分油气田开发中硫化氢和二氧化硫的含量较高,为了提升天然气的净化水平以及增加硫磺的产量,必须对硫磺回收装置和脱硫过程进行持续、细致的研究,以提高硫磺的回收率。以年产量为100×108m3的天然气为例,其硫化氢含量在20%左右,现有的净化装置使得尾气排放中的二氧化硫含量高达5000t左右,远远不能满足行业规定和社会对环境保护的要求。有鉴于此,环保部门对于规模较大的高含硫天然气净化厂进行了重点监控,目的就是要优化硫磺回收技术,提升其回收效率。(二)对脱硫脱碳技术的分析 对高含H2S和CO2的“双高”天然气进行脱硫脱碳操作的常用方法是甲基二乙醇胺法(MDEA)或二乙醇胺(DEA)法之类的化学溶剂脱硫法,也有基于MDEA技术而研制出的脱硫脱酸溶剂法。举例来说,俄罗斯某气田开发出的天然气中硫化氢含量在20.8%~22.7%之间,二氧化碳含量在17.8%~21.6%之间,该天然气加工厂混合使用了MDEA法和DEA法,通过两种化学溶剂的结合使用来弥补单一技术存在的不足之处,从而形成一个全新的脱硫脱碳技术,使得天然气净化量每天稳定在500×104m3左右;再比如加拿大某气田开发出的天然气中硫化氢含量和二氧化碳含量约在10%左右,且伴随一定的有机硫。这种情况下由于天然气中的有机硫含量较高,所以该天然气加工厂基于MDEA法和DEA法的混合使用,配合硅胶吸附器来进行脱硫操作。这样的改进措施使得原有的脱硫装置运行效果更好,还由于分子筛和硅胶吸附器等装备的加入,使得含硫有机物被快速脱除,从而实现高效的天然气净化操作。 二、高含硫天然气净化技术的应用以普光气田的天然气净化厂为例分析高含硫天然气净化技术的实际应用过程:(一)设置基本的联合装置 一套完整的联合装置由两个完全相同的系列组成,每一个系列都包含天然气脱硫、硫磺回收、尾气处理、天然气脱水、酸水汽提等单元,其中后两个单元是共用的。普光净化厂使用了六套这样的联合装置,既优化了整个净化过程的运行、管理和维护工作,又因为天然气脱水单元和酸水汽提单元的共同使用而降低了成本,节约了设备用地面积,实现了节能、高效的净化理念。(二)对有机硫产物采用气相水解法进行脱硫处理产自于普光气田的天然气中有机硫产物的含量为340.6 mg/m3,这其中包含绝大多数的羰基硫和极少量的硫醇。因此,脱硫工作主要针对羰基硫(COS),所采用的方法为气相水解法,所涉及的技术是气相固定床水解专利技术。COS在气相固定床反应器中,受到催化剂的作用水解为H2S和CO2,且都能被MDEA吸收脱除。根据实际运行反馈,COS脱除率在水解温度为121~129℃时,可实现接近完全脱硫的状态,使得净化气中的含硫总量小于70 mg/m3。可以看出,气相水解法比常规的物理溶剂吸收法的脱硫效果更好,原因在于前者不需要加入新溶剂,也不需要增设相关的再生装置,简化了操作步骤并节约了投资成本。(三)利用两级吸收——级间冷却技术进行脱碳处理由于所开发出的天然气中存在8%~10%左右的CO2,且行业要求只需部分脱除,因此使用两级吸收——级间胺液冷却专利技术进行对CO2吸收的控制。具体来说,是以一级、二级主吸收塔为装置主体,通过加入级间冷却系统来降低胺液进入一级吸收塔时的容器温度,从而抑制CO2的吸收,并且增强H2S的吸收。这种方法的好处是:部分CO2被吸收塔留在经处理后的天然气中,使得胺液循环量和由再生所生成的酸气量有所降低,从而节约了装置的能耗。根据实际运行反馈,胺液对CO2的选择性吸收在胺液冷却温度为38~39℃时达到最佳,此时得到的净化天然气中CO2含量稳定在2%左右。(四)利用串级吸收——联合再生技术对尾气进行脱硫处理上述净化操作中,在脱硫和尾气处理单元使用了MDEA溶液进行吸收,但尾气处理单元中H2S的含量并不高,因此使用串级吸收——联合再生技术将尾气吸收塔底部的半富胺液运输到脱硫单元的一级主吸收塔进行串级利用,以提升溶剂的使用效率并降低胺液总循环量。这种方法的好处是:只需要一套胺液再生系统即可满足运行,降低了能耗并减少了投资费用。(五)使用能量回收设备来节约能源

各种脱硫工艺比较

一、煤化工中各种脱硫工艺比较 1、AS煤气净化工艺 AS流程就是以煤气中自身的NH3。为碱源,吸收煤气中的H2S,吸收了NH3。和H2S的富液到脱酸蒸氨工段,解析出NH3。和H2S气体,贫液返回洗涤工段循环使用,氨气送氨分解炉生产低热值煤气后返回吸煤气管线,酸气送克劳斯焚烧炉生产硫磺。 优点:环保效果好、工艺流程短、脱硫效率高、煤气中的氨得到充分利用、加碱效果明显、热能利用高 缺点:洗氨塔后煤气含氨量高、洗液温度对脱硫影响较大、富液含焦油粉尘高、硫回收系统易堵塞(克劳斯焚烧炉生产硫磺) 2、低温甲醇洗(Rectisol,音译为勒克梯索尔法) 低温甲醇洗与NHD法都属于物理吸收法,可以脱硫和脱碳。 低温甲醇洗所选择的洗涤剂是甲醇,在温度低于273 K下操作,因为甲醇的吸收能力在温度降低的情况下会大幅度地增加,并能保持洗涤剂损失量最少。低温甲醇洗适合于分离和脱除酸性气体组分CO2、H2S及COS,因为这些组分在甲醇中具有不同的溶解度,而这种选择性能得到无硫的尾气。例如有尿素合成工序的话,如果遵守环境保护规则,就可以直接排人大气或用于生产CO2。 低温甲醇洗在大型化装置中的生产业绩、工艺气的净化指标、溶剂损耗、消耗和能耗、CO2产品质量有其优势. 3、NHD法脱硫 NHD化学名为聚乙二醇二甲醚是一种新型高效物理吸收溶剂。 NHD法脱硫原理:NHD法脱硫过程具有典型的物理吸收特征。H2S、CO2在NHD中溶解度较好的服从亨利定律,它们岁压力升高、温度降低而增大。因此宜在高压、低温下进行 H2S和CO2的吸收过程,当系统压力降低、温度升高时,溶液中溶解的气体释放出来,实现溶剂的再生过程。 NHD法脱硫工艺特点:能选择性吸收H2S、CO2、COS且吸收能力强;溶剂具有良好的化学稳定性和热稳定性;NHD不起泡,不需要消泡剂;溶剂腐蚀性小;溶剂的蒸汽压极低,挥发损失低;NHD工艺不需添加活化剂,因此流程短。 4、PDS法脱硫(PDS催化剂) 原理:煤气依次进入2台串联的脱硫塔底部,与塔顶喷淋的脱硫液逆向接触,脱除煤气中的大部分H2S。在PDS催化剂的作用下,可脱除无机硫与有机硫,同时促使NaHCO3进一步参加反应。 从2台脱硫塔底排出的脱硫液经液封槽进入溶液循环槽,用循环泵将脱硫液分别送入2台再生塔底部,与再生塔底部鼓入的压缩空气接触使脱硫液再生。再生后的脱硫液从塔上部经液位调节器流回脱硫塔循环使用,浮于再生塔顶部扩大部分的硫泡沫靠液位差自流入硫泡沫槽,用泵将硫泡沫连续送往离心机,离心后的硫膏外运,离心液经过低位槽返回脱硫系统。 脱硫影响因素:煤气及脱硫液的温度控制;脱硫吸收液的碱含量。PDS法脱硫过程的实质就是酸碱中和反应;液气比对脱硫效率的影响;二氧化碳的影响;再生空气量与再生时间;煤气中杂质对脱硫效率的影响。

张月天然气脱硫技术工艺综述

张月——天然气脱硫技术工艺综述 关键字:脱硫净化醇胺法 摘要:本文主要讲述了天然气的脱硫的主要方法,及其应用。 引言: 中国天然气产业生产-消费现状 进入二十一世纪的第二个十年之后,中国对天然气的消费呈直线上升趋势,据了解,2012年天然气消费同比增长12.8%,2013年天然气消费同比增长高达13.9%,国家能源局预计称,2014年我国天然气表观消费量1930亿立方米,增长14.5%。 我国目前天然气1/3以上都含有硫,为改善环境质量,实现可持续发展。故发展天然气必须先解决其净化问题。 1、天然气脱硫技术的现状及发展趋势 1.1含硫天然气净化研究现状 自18世纪末英国就开始使用干式氧化铁法从气流中脱除硫化物,但直到上世纪30年代醇胺类溶剂应用于气体脱硫以后,天然气脱硫才成为独立的工业分支。经过70多年的发展,目前国内外报道的脱硫方法已有百余种[1]。 1.2天然气脱硫技术的目的 天然气净化的目的是脱除含硫天然气中的H2S、CO2、水份及其它杂质(如有机硫等),使净化后的天然气气质符合GB17820-1999国家标准,并回收酸气中的硫,且使排放的尾气达到GB16297-1996《大气污染物综合排放标准》的要求。 1.3高含硫天然气净化工艺的发展趋势 国外对高含硫天然气的开发已有几十年的丰富经验,天然气净化技术也有了进一步的发展。目前,国外针对高含硫天然气的处理技术已向大型化、自动化、组合化方向发展,用以节约投资、降低能耗、提高装置的适应能力和运行维护的可靠性。国外针对高含硫天然气处理普遍采用以下工业技术路线[2]: (1)当原料气有机硫含量高(为满足总硫要求,必须脱除有机硫)建议采用Sulfional —M法进行脱硫。 (2)当原料气中有机硫含量低(将H2S脱除后,总硫即可满足要求)建议采用MDEA 法进行脱硫。 2、天然气脱硫方法的分类 通常用于天然气脱除酸性组分的方法有化学溶剂法、物理溶剂法、物理化学溶剂法、直接化学溶解法、直接转化法、非再生性法和膜分离及其的低温分离法等。 2.1天然气净化中化学溶剂法 2.1.1醇胺法:

铝土矿

铝土矿 中国铝土矿资源丰度属中等水平,产地310处,分布于19个省(区)。总保有储量矿石22.7亿吨,居世 界第7位。山西铝资源最多,保有储量占全国储量41%;贵州、广西、河南次之,各占17%左右。铝土矿 的矿床类型主要为古风化壳型矿床和红土型铝土矿床,以前者为最重要。古风化壳型铝土矿又可分贵州 修文式、遵义式、广西平果式和河南新安式4个亚类。从成矿时代来看,古风化壳铝土矿主要产于石炭 纪和二叠纪地层之中,为一水型铝土矿。福建漳浦式红土型铝土矿为由第三系到第四系玄武岩受近代风 化作用形成的残积红土型铝矿床,为三水型铝土矿。 1.1.1铝土矿的化学组成与矿物组成 铝元素在自然界中分布极广,地壳中铝的含量约为7.3%,仅次于氧和硅,居第三位。而在各种金属元素中, 铝的含量居首位。铝的化学性质活泼,在自然界仅以化合物状态存在。地壳中含铝矿物总计有250多种, 其中主要的是铝硅酸盐化合物,如高岭土、霞石、云母、黏土等。另一类重要的含铝矿物是氧化铝的水 合物。目前,铝土矿是氧化铝生产最主要的矿物资源,世界上98%以上的氧化铝出自铝土矿,现在世界上只 有俄罗斯有以霞石等为原料生产氧化铝的工厂。铝土矿是一种主要由氧化铝水合物组成的矿石,氧化铝 水合物包括三水铝石、一水软铝石和一水硬铝石。依据上述矿物的含量可将铝土矿分为三水铝石型、一 水软铝石型、一水硬铝石型和各种混合型,其中混合型包括三水铝石-一水软铝石混合型、一水软铝石- 一水硬铝石混合型铝土矿等。有的一水硬铝石型铝土矿中还含有少量刚玉。鉴别铝土矿类型的主要方法

是通过矿石的X射线衍射分析、差热分析、结晶光学分析以及矿物学形态分析等,以确定铝土矿中氧化铝 水合物的类型。 铝土矿中氧化铝含量变化很大,低的在40%以下,高者可达70%。除氧化铝外,铝土矿中所含杂质,主要是氧 化硅、氧化铁和氧化钛,此外,还含有少量或微量的钙、镁、钾、钠、钒、铬、锌、磷、镓、钪、硫等元 素的化合物及有机物等。镓在铝土矿中含量虽少,但在氧化铝生产过程中会逐渐在分解母液中累积,从而 可以有效地自母液中回收镓。 除了氧化铝的水合物(三水铝石、一水软铝石、一水硬铝石)之外,铝土矿中还含有含硅矿物、含铁矿物 、含钛矿物、含硫矿物及碳酸盐矿物等杂质矿物。这些杂质矿物都会对氧化铝的生产过程产生不同程度 的影响。含硅矿物是铝土矿中的主要杂质矿物,一般以高岭石、伊利石、叶蜡石、鲕绿泥石及长石等铝 硅酸盐矿物形态存在,有的铝土矿中还含有石英。铝土矿中通常会有2%~4%的TiO2,以锐钛矿、金红石和 板钛矿等矿物形态存在。铁矿物也是铝土矿中存在的主要杂质,主要的含铁矿物为赤铁矿α-Fe2O3和针 铁矿α-FeO(OH)。 铝土矿的质量主要取决于其中氧化铝存在的矿物形态和有害杂质的含量,不同类型的铝土矿其拜耳法溶 出性能差别很大。衡量铝土矿的质量,一般从以下几个方面考虑[1]。 (1)铝土矿的铝硅比:铝硅比是指矿石中Al2O3含量与SiO2含量的质量比,一般用A/S表示。氧化硅是碱法( 特别是拜耳法)生产氧化铝过程中最有害的杂质,所以在矿石供应许可的情况下铝硅比越高越好。

各种脱硫方法简介

新型脱硫方法简介 1 炭基催化法烟气脱硫技术 2 石灰石——石膏法烟气脱硫工艺 3 旋转喷雾干燥烟气脱硫工艺 4 磷铵肥法烟气脱硫工艺 5 炉内喷钙尾部增湿烟气脱硫工艺 6 氨水洗涤法脱硫工艺 7 海水脱硫工艺海水脱硫工艺 炭基催化法烟气脱硫技术 该技术是以四川大学国家烟气脱硫工程技术研究中心多项专利为技术支撑,主要针对目前国内工业生产企业在生产过程中所产生的二氧化硫污染,如化工厂、钢铁厂、冶炼厂、电厂的生产过程及锅炉燃烧过程中排放的含二氧化硫的废气,利用农作物秸秆、菌渣及废旧轮胎等生活及生产废弃物制作炭基催化剂,将废气经除尘、调质后通过炭基催化剂层,使SO2在催化剂表面与O2进行催化反应,最后将其转化为硫酸,从而达到减少污染排放,回收硫资源的目的。 其技术优势在于催化剂原料来源广泛且脱硫效果显著、脱硫工艺集成度高、工艺流程短、副产物为硫酸以及硫酸盐复合肥料,实现了以废治废、清洁脱硫、节能减排的目的,为改变传统的“高开采、高消耗”的污染治理模式提供了一条新的技术模式。目前该技术已被列为国家“当前优先发展的高技术产业化重点领域”项。 石灰石——石膏法烟气脱硫工艺 石灰石——石膏法脱硫工艺是世界上应用最广泛的一种脱硫技术,日本、德国、美国的火力发电厂采用的烟气脱硫装置约90%采用此工艺。它的工作原理是:将石灰石粉加水制成浆液作为吸收剂泵入吸收塔与烟气充分接触混合,烟气中的二氧化硫与浆液中的碳酸钙以及从塔下部鼓入的空气进行氧化反应生成硫酸钙,硫酸钙达到一定饱和度后,结晶形成二水石膏。经吸收塔排出的石膏浆液经浓缩、脱水,使其含水量小于10%,然后用输送机送至石膏贮仓堆放,脱硫后的烟气经过除雾器除去雾滴,再经过换热器加热升温后,由烟囱排入大气。由于吸收塔内吸收剂浆液通过循环泵反复循环与烟气接触,吸收剂利用率很高,钙硫 比较低,脱硫效率可大于95% 。 旋转喷雾干燥烟气脱硫工艺 喷雾干燥法脱硫工艺以石灰为脱硫吸收剂,石灰经消化并加水制成消石灰乳,消石灰乳由泵打入位于吸收塔内的雾化装置,在吸收塔内,被雾化成细小液滴的吸收剂与烟气混合接触,与烟气中的SO2发生化学反应生成CaSO3,烟气中的SO2被脱除。与此同时,吸收剂带入的水分迅速被蒸发而干燥,烟气温度随之降低。脱硫反应产物及未被利用的吸收剂以干燥的颗粒物形式随烟气带出吸收塔,进入除尘器被收集下来。脱硫后的烟气经除尘器除尘后排放。为了提高脱硫吸收剂的利用率,一般将部分除尘器收集物加入制浆系统进行循环利用。该工艺有两种不同的雾化形式可供选择,一种为旋转喷雾轮雾化,另一种为气液两相流。喷雾干燥法脱硫工艺具有技术成熟、工艺流程较为简单、系统可靠性高等特点,脱硫率可达到85%以上。该工艺在美国及西欧一些国家有一定应用范围(8%)。脱硫灰渣可用作制砖、筑路,但多为抛弃至灰场或回填废旧矿坑。

高含硫脱硫技术

高含硫天然气脱硫技术 由于从油气井井口采出或从矿场分离器分出的天然气除含有水蒸气外,往往 S)、硫化羰(COS)、硫醇还含有一些酸性组分。这些酸性组分一般是硫化氢(H 2 (RSH)及二硫化物(RSSR’)等,通常也叫酸气或酸性气体(acid gas)。天然 S、COS。为示区别。 气中最常见的酸性组分是H 2 天然气中含有酸性组分时,会造成金属腐蚀,并且污染环境。当天然气用作化 工原料时,它们还会引起催化剂中毒,影响产品质量。 当天然气中的酸性组分含量超过管输气或商品气质量要求时,必须采用合适的方法脱除后才能管输或成为商品气。从天然气中脱除酸性组分的工艺过程称为脱硫、脱碳,习惯上统称为天然气脱硫。脱硫后的天然气通常称为净气或净化气,而脱出的酸性组分一般还应回收其中的硫元素(硫磺回收)。当回收硫磺后的尾气不符合向大气排放的标准时,还应对尾气进行处理。 对于管输天然气,要求其H2S含量不应大于20mg/m3。当天然气用作合成氨或 合成甲醇原料气时,其硫含量要求小于1mg/m3。如天然气采用深冷分离的方法回收凝液时,其CO2含量(φ)往往要求很低。因此,对天然气硫含量要求很严的天然气化工厂,需要设置二次脱硫装置。 目前,国内外报道过的脱硫方法有近百种。这些方法一般可分为间歇法、化学吸收法、物理吸收法、联合吸收法(化学一物理吸收法)、直接转化法。其中,采用

溶液或溶剂作脱硫剂的脱硫方法习惯上又统称为湿法,采用固体作脱硫剂的脱硫方法又统称为干法。 间歇法:其脱硫原理又可分为化学反应法与物理吸附法两种,其特点是反应或 吸附过程都是间歇进行的。属于前者的有海绵铁法、氧化铁浆液法、锌盐浆法法及苛性钠法。由于脱硫剂在使用失效后即废弃掉,因而仅适用于H2S含量很低及流量很小的天然气脱硫。属于后者的有分子筛法,它适用于天然气中酸性组分含量低及同时脱水的场合。海绵铁法及分子筛法因采用固体脱硫剂,故又都属于干法,通常也统称为固体床脱硫法。 化学吸收法:这类方法又称化学溶剂法。它以碱性溶液为吸收溶剂(化学溶剂),与天然气中的酸性组分(主要是H2S和CO2)反应生成某种化合物。吸收了酸性组分的富液在温度升高、压力降低时,该化合物又能分解释放出酸性组分。 这类方法中最有代表性的是醇胺(烷醇胺)法和碱性盐溶液法。属于前者的有 一乙醇胺法、二乙醇胺法、二甘醇胺法、二异丙醇胺法、甲基二乙醇胺法,以及一些有专利权的方法如胺防护法等。醇胺法是最常用的天然气脱硫方法。此法适用于从天然气中大量脱硫,如果需要的话,也可用于脱除CO2。 物理吸收法:这类方法又称为物理溶剂法。它们采用有机化合物为吸收溶剂(物理溶剂),对天然气中的酸性组分进行物理吸收而将它们从气体中脱除。在物理吸收过程中,溶剂的酸气负荷与原料气中酸性组分的分压成正比。吸收了酸性组分的富剂在压力降低时,随即放出所吸收的酸性组分。物理吸收法一般在高压和较低温度下进行,溶剂酸气负荷高,故适用于酸性组分分压高的天然气脱硫。此外,物理吸收法还具有溶剂不易变质、比热容小、腐蚀性小以及能脱除有机硫化物等优点。由于物理溶剂对天然气中的重烃有较大的溶解度,故不宜用于重烃含量高的原料气,且多数方法因受溶剂再生程度的限制,净化度不如化学吸收法。当净化度要求较高时,则需采用汽提或真空闪蒸等再生方法。物理吸收法的溶剂通常靠多级闪蒸进行再生,不需蒸汽和其它热源,还可同时使气体脱水。

铝土矿矿资源量估算

资源量估算 1 勘查类型的确定 1.1 矿床勘查类型的划分 根据《铝土矿、冶镁菱镁矿地质勘查规范》(DZ/T0202—2002)技术要求,划分矿床勘查类型应依据矿体规模、矿体形态复杂程度、矿体厚度稳定程度、矿体内部结构复杂程度及构造影响程度等五个主要地质因素及其类型系数来确定。五个地质因素类型系数之和为××,根据矿床勘查类型的具体划分,第Ⅱ勘查类型的五个地质因素类型系数之和为1.9~2.4,由此确定本矿床为第Ⅱ勘查类型。 第Ⅰ勘查类型:为简单型,五个地质因素类型系数之和为2.5~3.0。主矿体规模大到巨大,形态简单到较简单,厚度稳定到较稳定,内部结构简单,无夹层或天窗,构造对矿体影响小。 第Ⅱ勘查类型:为中等型,五个地质因素类型系数之和为1.9~2.4。主矿体规模中等到大,形态较简单,厚度不稳定,,内部结构较简单,有少量夹层或天窗,构造对矿体影响不大。 第Ⅲ勘查类型:为复杂型,五个地质因素类型系数之和为1~1.8。主矿体规模小到中等,形态复杂,厚度不稳定,内部结构复杂,构造对矿体形状影响明显到严重。 1.2 勘查工程间距的确定 勘查工程间距的确定取决于矿床的勘查类型。本矿床属第Ⅱ勘查类型,根据《铝土矿、冶镁菱镁矿地质勘查规范》技术要求,控制的勘查工程间距:沿走向140米,沿倾向140米。 矿体出露地表时,地表工程间距应比深部工程间距适当加密。 1.3 勘查方法和手段的选择: 应根据矿床类型和地形条件而定。本矿属第Ⅱ勘查类型,以钻探工程探求控制的资源量(332)。 2 资源量估算范围及工业指标 2.1 资源量估算范围 本矿床资源量估算范围沿走向西自×线,东至×线东,走向长×米;沿倾向位于×米标高之上。 2.2 工业指标

铝土矿石的配矿方法主要有哪几种

铝土矿石的配矿方法主要有哪几种? 长期以来,铝土矿石的配矿方法主要有采场内配矿、矿仓配矿、储矿堆场配矿和联合法配矿等。应用中,视供求矿量和供矿条件,选用适宜的方法进行配矿。 (1)采场内配矿 这种配矿方法适合高与低品位的铝土矿石均产自一个采场内。在回采矿石中,有计划、按比例地开采富矿与贫矿,往氧化铝厂运矿时,按氧化铝生产的实际需要供求高品位与低品位的矿石。该配矿方法具备简便易行、配矿成本低等优点,但需严格采矿工作面的监测,方可保证供矿质量。 (2)矿仓配矿 此种配矿方法适用于铝土矿高、低品位采场相距不远,离配矿仓又近的情况下进行配矿。作为配矿用的矿仓,在设置上与普通矿仓有所不同。这种矿仓的容积主要按配矿量进行设计与分格。也就是按氧化铝生产每天所需的矿量,计算出不同品位矿石的配矿用量,按矿量设计矿仓的容量与格板。我国山东铝厂是最早采用矿仓配矿的单位。该厂曾把供矿矿仓分为14格,每格储矿石14吨,其中两格是A/S4~5的矿石,另外两格储A/S2.6~3的矿石,其余10个格是已达到供矿品位(A/S3.5+/-0.2)的矿石。在正常情况下,铝厂所用矿石从后10格内提取,前4格供配矿用,以补充其不足的部分矿石。 (3)储矿堆场配矿 当矿山以采低品位(A/S2.5~3.4)铝土矿为主时,为满足氧化铝厂供矿品位(A/S3.5~4.5)的要求,又须从远道运来的一定数量的品味较高的矿石(A/S4.5~6)进行配矿,常用储矿堆场进行配矿。该配矿方法和主要特点是在运矿专用线或氧化铝厂附近设置储矿堆场,把按矿品位进行配矿,使配矿后的矿石达到或率高于供矿品位。这种配矿方法,一方面可满足氧化

铝厂所需矿量,另一方面可起到调解矿山产量的作用。配矿实践证明,一座适宜的储矿堆场,其储矿量不宜超过年开采总量的55%~60%;总容量可控制在30万㎡。否则,过多的储矿将影响资金的周转,造成不应有的损失。例如,我国某铝厂,把所需的铝土矿石分为四堆存放,总储矿量不超过9万吨。其中A/S3~4的矿堆为2.8万吨,A/S5与大宇5的为1.4万吨。现用现配,达到供矿品品位后供铝厂使用。 储矿堆场配矿,可以起到矿石转运、储存、分级和配矿多种作用,适合多数铝厂采用。该种配矿的不足之处是增加了二次装运的费用,但可从氧化铝厂的效益获得补偿。 (4)联合法配矿 这种配矿方法是矿仓与储矿堆场配矿的联合,常称作“二级配矿”,多在生产初期采用矿仓配矿可以满足氧化铝生产供矿品位要求。随着矿山开采年限的延续,高品位矿越来越少,必须从远道运来高品位矿,并有一定的储备,所以常在矿仓近处设置高品位矿堆场,供矿仓配矿用。由此成为联合配矿法,以满足氧化铝生产要求的供矿品位。 除设高品位堆场外,也可设不同品位的储矿堆场。这样,矿仓需要何种品位矿石时,可随时供应。可见,联合配矿法更具有灵活性,使供矿质量更高。

大型高含硫气田安全开采及硫磺回收技术实用版

YF-ED-J6956 可按资料类型定义编号 大型高含硫气田安全开采及硫磺回收技术实用版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

大型高含硫气田安全开采及硫磺 回收技术实用版 提示:该解决方案文档适合使用于从目的、要求、方式、方法、进度等都部署具体、周密,并有很强可操作性的计划,在进行中紧扣进度,实现最大程度完成与接近最初目标。下载后可以对文件进行定制修改,请根据实际需要调整使用。 摘要:我国高含硫天然气资源丰富,开采 潜力大,但其资源利用面临腐蚀性强、成本 高、毒性大、事故后果严重等难题。为此,总 结了中国石油天然气集团公司近年来在深层高 温、高压、大产量高含硫天然气开采中产能测 试、完井及改造、集输与腐蚀控制、脱硫与硫 磺回收、安全环境风险防控等方面开展技术攻 关所取得的创新成果:①高含硫气井产能测试 技术非稳态测试用时减少50%,平均误差为 7.5%,试井测试深度达7 000 m,硫化氢测试

含量达230 g/m3;②高含硫气井完井裸眼封隔器分段工具的分段级数达12级,不动管柱水力喷射分段工具的分段级数达9级;③高含硫气田气液密闭混输工艺和腐蚀控制技术体系长效膜缓蚀剂的膜持续时间为45 d;④高含硫天然气净化技术体系的改良低温克劳斯硫磺回收工艺的硫磺回收率达99.45%,高含硫天然气脱硫技术及工艺计算模型的有机硫脱除率达85%,催化剂硫化氢的转化率为96%,总硫转化率为98%。最后还提出了加快建设高含硫气田开采国家级研发平台以推动本领域技术进步的建议。 关键词:川渝地区高含硫气田开采产能测试完井及改造腐蚀控制脱硫硫磺回收风险防控 1 高含硫气田概况 天然气属于清洁能源,大力发展天然气工

铝土矿资源

我国具有较丰富的铝土矿资源,迄今已探明保守储量23亿吨,位居世界第4,具备发展氧化铝工业的资源条件。据2004年以来的不完全统计,国内已公布的氧化铝投资项目达26个,测算总规模达1604.1万t。即使不考虑利用国外铝土矿资源和到海外投资办厂的项目,总规模也达到2814.1万t。2006年底,中铝公司氧化铝生产952万t,除目前已公布在建的氧化铝规模外,全国还有拟建氧化铝总规模1992万t接近国外所有拟建(扩建)氧化铝项目的总和。氧化铝工业的迅速发展不同于以往的低水平重复建设,而是上规模、高水平,优化了结构,极大地提升了我国氧化铝工业整体水平和竞争力。但是,如果这种投资热继续无序膨胀,势必造成产品相对过剩。目前我国氧化铝企业达40多家,已建和在建产能达4350多万吨/年,其中处理国内铝土矿的产能为3250万吨/年。2010年全国氧化铝产量2896万吨,是世界第一大氧化铝生产国。投资氧化铝工业的风险性与电解铝等其他行业在以下方面又有所不同: 氧化铝工艺技术相对复杂 通常情况下,项目从设计,开工到形成产能需要2~3年时间左右的时间,投入高,风险较高。 现货市场的氧化铝价格跌宕起伏 而供求双方的信息不对称又进一步加剧了氧化铝价格起伏不定的局势,进而将影响氧化铝项目的投资收益。 需要许多技术工人 在项目试车、投产和日后生产组织管理等方面,需要一大批精通氧化铝工艺技术和具有实践经验的老专家和技术工人。 对资源和能源的依赖度日趋增强 随着国内外资源竞争日趋激烈,适合氧化铝工业发展的优质资源日渐稀缺,投资氧化铝工业必须考虑项目的经济服务年限。 编辑本段建议 针对目前氧化铝工业发展迅速,避免电解铝行业所出现的无序膨胀问题,有以下5点建议: 根据资源保障程度控制氧化铝建设总规模 氧化铝工业是资源、资金、技术密集型原材料产业,因生产过程中要产生大量的尾矿和赤泥(至今未有较好的处理办法添加到水泥原料中,产品也只能用于工业),对环境的影响非常大,铝土矿作为不可再生资源,其保障程度直接制约着一个地区氧化铝工业的总量与生存周期。因此,各级政府和有关部门,必须准确把握氧化铝工业的发展形势,资源与环境制约状况和基本规律,按照总量控制的要求,严格控制新建氧化铝项目,坚决制止盲目发展和低水平重复建设,努力实现氧化铝工业发展与资源充分利用,优化生态环境相统一。 优化氧化铝工业布局 矿产资源主管部门要对铝土矿存量资源进行全面核查,推进铝土矿资源勘查工作,在资源储量有较大幅度提高的情况下,发展计划部门视情况增加布点或同意扩大布点内企业的

《脱硫方法综合比较说明书》

脱硫方法综合比较说明书(钙法、镁法、氨法) 2015年5月21日

目录 1 脱硫方法简介 (1) 2 脱硫方法工艺技术简介 (2) 2.1湿式钙法脱硫 (2) 2.1.1钙法脱硫工艺原理 (2) 2.1.2钙法脱硫工艺流程 (2) 2.1.3钙法脱硫工艺简图 (5) 2.2 氧化镁法脱硫 (5) 2.2.1氧化镁法脱硫原理 (5) 2.2.2氧化镁法脱硫工艺流程 (6) 2.2.3氧化镁法脱硫工艺简图 (9) 2.3 湿式氨法脱硫 (9) 2.3.1 湿式氨法脱硫原理 (9) 2.3.2 湿式氨法脱硫工艺简述 (10) 2.3.3 湿式氨法脱硫工艺简图 (11) 3 脱硫方法优缺点比较 (12) 3.1 石灰(石)/石膏法湿法脱硫 (12) 3.1.1钙法工艺主要优点 (12) 3.1.2钙法工艺主要缺点 (12) 3.2 氧化镁法脱硫 (14) 3.2.1 氧化镁法脱硫优点 (14) 3.2.2 氧化镁法脱硫缺点 (15) 3.3氨法脱硫 (16) 3.3.1 氨法脱硫主要优点 (16) 3.3.2 氨法脱硫主要缺点 (18) 4实例分析不同脱硫方法的技术经济性 (19) 4.1 技术经济性对比 (19) 4.2 运行费用对比 (20) 5 结论 (21)

1 脱硫方法简介 目前,工业应用的烟气脱硫技术可分为干法(含半干法)脱硫和湿法脱硫。 干法脱硫是使用固体吸收剂、吸附剂或催化剂除去废气中的SO2,常用的方法有活性炭吸附法、分子筛吸附法、氧化法和金属氧化物吸收法等。 干法脱硫的最大优点是治理中无废水、废酸的排出,减少了二次污染;缺点是脱硫效率低,设备庞大。 湿法脱硫采用液体吸收剂洗涤烟气以除去SO2,常用的方法有石灰石/石膏法、氧化镁吸收法、氨吸收法等。湿法脱硫所用设备比较简单,操作容易,脱硫效率高。目前多数火电厂、焦化厂等烟气脱硫采用湿法脱硫。 本技术方案主要针对湿法脱硫中常用的钙法、氧化镁法、氨法等技术在工艺特点、设备投资、运行费用等方面做综合比较。

高含硫天然气净化工艺技术解析

高含硫天然气净化工艺技术解析 摘要:高含硫天然气净化,可通过几种方式实现,如溶剂吸收法、膜分离法等,每种技术都有自己的优势和特征,本文针对高含硫天然气净化工艺技术给出了详 细分析。 关键词:含硫天然气;净化工艺;技术 我国陆上有四大天然气主产区,包括川渝、陕甘宁、塔里木以及柴达木。在 川渝区域当中的天然气属于高含硫气田,例如:罗家寨以及飞仙关等,均属于特 殊含硫气制气田。有些气井内部的H2S,已经到达了17%以上;有些CO2/H2S的 比值超过了20%,甚至有机硫的含量达到了500mg/m3,为了对这类具有危险性 且复杂的气田进行环保、科学、安全、有效的开发,需要对当前经济合理并且可 靠成熟的工艺进行应用。 1、溶剂吸收法 1.1MDEA法 在天然气脱硫当中,从上世纪80年代后期开始,便对该项方法进行了广泛应用。在原料气MDEA当中存在的CO2/H2S比值会非常高。因为H2S具有的能力为选择性反应,所以很多的CO2会在净化器当中有所保留,其产生的节能效果十分 显著,化学稳定性,溶剂出现降解变质并不容易,且产生的溶液发泡倾向以及存 在的腐蚀性,与其他醇胺溶液相比,也更加突出,损失的气体气相比较小,只对 装置产生轻微的腐蚀效果。MDEA水溶液当中的具体浓度,可达到50%,酸气负 荷大约为0.5~0.6,也可以达到更高,并且有着比较低的凝固点,蒸气压不大。溶 剂在挥发过程中并没有较大损失。当前,在川渝区域当中的净化厂,对于该溶剂 脱除H2S的应用十分广泛[1]。 普光气田当中存在的天然气属于含硫量非常高的天然气,其中的H2S含量, 大约占据了14%,CO2占据的含量大概为8.64%。借助脱硫原则工艺,具体流程 如图一所示。其溶液为MDEA,使用的吸收工艺为串级吸收工艺。 图一:脱硫原则工艺流程 1.2砜胺法 该项方法需要借助溶剂当中存在的物理以及化学溶剂,其中环丁砜的使用为 物理溶剂;醇胺化合物的应用属于化学溶剂,一般应用的都是DIPA和MDEA,该 项工艺方式被称作为Sulfinol-D及Sulfinol-M,两种溶剂的应用,并没有较大的腐 蚀作用,生成的降解产物并不敏感。吸收溶液当中存在的环丁砜含量,通常为42%左右,还有大概50%的水含量,剩下皆为DIPA。该溶剂最突出的特征便是有非常 高的酸气负荷,能耗以及溶剂损失量都比较小。此外,砜胺溶剂产生的溶解能力 非常强,可有效溶解有机硫化合物。所以,当原料气当中存在的有机硫化合物含 量较高时,使用该项方法产生的净化作用非常理想。但该溶剂溶解重烃的能力非 常强,通过闪蒸不容易被释出,所以当原料气当中含有的重烃含量比较高时,不 能对该项方法进行应用。 2、膜分离法 该项技术属于选择性渗透膜当中的一种,借助气体渗透性能存在的差距,使 得气体分离的方式得以实现,该项方法对于原料气流量低的处理非常合适[2]。并且,如果天然气的酸气浓度比较高,产生的处理效果也非常理想,其中最突出的 特征包括:

相关主题
文本预览
相关文档 最新文档