当前位置:文档之家› 复合材料在土木工程中的发展与应用研究

复合材料在土木工程中的发展与应用研究

复合材料在土木工程中的发展与应用研究
复合材料在土木工程中的发展与应用研究

复合材料在土木工程中的发展与应用研究

复合材料在20世纪50年代左右开始兴起,在当时有很多专家对复合材料展开了研究。在当前的土木过程中,复合材料有着十分广泛的应用,具有质量轻、性能优越、耐腐蚀、强度高等优势。因此文章将针对复合材料在土木工程中的发展与应用展开分析。

标签:复合材料;土木工程;发展;应用

土木工程项目的范围十分广泛,在很多施工过程中都需要保证建筑材料的质量符合相关标准。而随着建设行业的不断发展,建筑材料也有着很大的提高和改进。复合材料是当前最为流行的建筑材料之一,具有良好的性能,可以在施工中发挥出现良好的功能性。

1 、复合材料在土木工程项目中的应用发展

1.1、基本概念

随着社会经济水平的不断提升,社会对土木工程建设质量提出更高要求,因此建筑领域的研发力度不断加大,并且涌现出诸多先进的建筑材料,从而满足社会的应用需求。近年来复合材料逐渐出现在人们的视野中,并且在土木工程中得到广泛应用,极大满足建筑领域对材料性能的需求。复合材料是由多种物质混合而成的,主要包括碳纤维、芳纶、玻璃纤维、玄武岩纤维等,这些物质都具有很高的树脂性能和纤维性能,经过混合加工能够显示出巨大的性能优势,主要表现为质量小、重量轻、强度高,而且还具有极高的耐腐蚀性能,因此能够在土木工程中得到广泛应用。现阶段复合材料多用于钢筋混凝土结构的施工过程中,对提高工程质量具有关键作用,随着理论研究和实践应用的不断成熟,复合材料在其他结构工程的施工中也得到有效应用。

1.2、发展历程

复合材料在土木工程中的应用研究可以追溯到20世纪50年代至60年代,当时很多研究人员对民用建筑的复合材料应用进行实践探索,例如英国某教堂的塔尖部分初次尝试利用复合材料建造,建筑人员还在人工天桥上利用复合材料进行施工;20世纪50年代末,我国采用玻璃纤维在混凝土结构中进行施工,使钢筋材料得到有效替代;20世纪80年代,我国进一步加深对复合材料的研究,并且将其应用于雷达天线罩、公路桥的施工,显示出巨大的材料性能优势,极大程度上增强工程的牢固性和稳定性。现阶段复合材料在土木工程中的应用已经相对成熟,因此很多建筑工程中大量使用复合材料,使土木工程的建设水平有效提升。

2、复合材料在土木工程中的应用

2.1、在加固工程项目中的应用

第1章 土木工程材料_基本性质

第一章土木工程材料的基本性质 本章导学 学习目的:土木工程材料有无机材料、有机材料及复合材料,它具有结构或功能的作用。而土木工程包括建筑工程、道路工程、桥梁工程、地下工程、岩土工程等,土木工程材料为这些工程服务,通过学习其基本性质,了解土木工程基本性质与工程特性的关系。 教学要求:通过工程实例说明土木工程材料的分类;通过各种土木工程特点的分析,说明土木工程材料的物理、力学性质及耐久性;重点讲解土木工程材料的密度、与水有关的性质、强度、弹性、粘性与塑性。 1.1土木工程材料的分类 土木工程材料是指在土木工程中所使用的各种材料及其制品的总称。它是一切土木工程的物质基础。由于组成、结构和构造不同,土木工程材料品种繁多、性能各不相同、在土木工程中的功能各异,而且价格相差悬殊,在土木工程中的用量很大,因此,正确选择和合理使用土木工程材料,对土木工程结构物安全、实用、美观、耐久及造价有着重大的意义。

由于土木工程材料种类繁多,为了研究、使用和论述方便,常从不同角度对它进行分类。最通常的是按材料的化学成分及其使用功能分类。 1.1.1按化学成分分类 根据材料的化学成分,可分为有机材料、无机材料以及复合材料三大类,如表1-1所示。

1.1.2按使用功能分类 根据材料在土木工程中的部位或使用性能,大体上可分为二大类,即土木工程结构材料(如钢筋混凝土、预应力混凝土、沥青混凝土、水泥混凝土、墙体材料、路面基层及底基层材料等)和土木工程功能材料(如吸声材料、耐火材料、排水材料等)。 1.土木工程结构材料 土木工程结构材料主要指构成土木工程受力构件和结构所用的材料。如梁、板、柱、基础、框架、墙体、拱圈、沥青混凝土路面、无机结合料稳定基层及底基层和其它受力构件、结构等所用的材料都属于这一类。对这类材料主要技术性能的要求是强度和耐久性。目前所用的土木工程结构材料主要有砖、石、水泥、水泥混凝土、钢材、钢筋混凝土和预应力钢筋混凝土、沥青和沥青混凝土。在相当长的时期内,钢材、钢筋混凝土及预应力钢筋混凝土仍是我国土木工程中主要结构材料;沥青、沥青混凝土、水泥混凝土、无机结合料稳定基层及底基层则是我国交通土建工程中主要路面材料。随着土建事业的发展,轻钢结构、铝合金结构、复合材料、合成材料所占的比例将会逐渐加大。

土木工程材料复习资料(全)

一.名词解释: 1.密度、表观密度、体积密度、堆积密度; 2.亲水性、憎水性; 3.吸水率、含水率; 4.耐水性、软化系数; 5.抗渗性; 6.抗冻性; 7.强度等级、比强度; 8.弹性、塑性; 9.脆性、韧性;10.热容量、导热性;11.耐燃性、耐火性;12.耐久性 二.填空题 1.材料的吸水性、耐水性、抗渗性、抗冻性、导热性分别用吸水率、软化系数、抗渗等级或抗渗系数、抗冻等级和导热系数表示。 2.当材料的孔隙率一定时,孔隙尺寸越小,材料的强度越高,保温性能越差,耐久性越好。 3.选用墙体材料时,应选择导热系数较小、热容量较大的材料,才能使室内尽可能冬暖夏凉。 4.材料受水作用,将会对其质量、强度、保温性能、抗冻性能及体积等性能产生不良影响。 5.材料的孔隙率较大时(假定均为开口孔),则材料的表观密度较小、强度较低、吸水率较高、抗渗性较差、抗冻性较差、导热性较差、吸声性较好。 6.材料的软化系数愈大表明材料的耐水性愈好。软化系数大于0.85 的材料被认为是耐水的。 7.评价材料是否轻质高强的指标为比强度,它等于抗压强度于体积密度的比值,其值越大,表明材料质轻高强。 8.无机非金属材料一般均属于脆性材料,最宜承受静压力。 9.材料的弹性模量反映了材料抵抗变形的能力。 10.材料的吸水率主要取决于孔隙率及空隙特征,孔隙率较大,且具有细微而又连通孔隙的材料其吸水率往往较大。 11.材料的耐燃性按耐火要求规定分为不燃材料、难燃材料和易燃材料类。材料在高温作用下会发生热变质和热变形两种性质的 变化而影响其正常使用。 12.材料在使用环境中,除受荷载作用外,还会受到物理作用、化学作用和生物作用等周围自然因素的作用而影响其耐久性。 13.材料强度试验值要受试验时试件的形状、尺寸、表面状态、含水率、加荷速度 和温度等的影响。 14.对材料结构的研究,通常可分为宏观、细观和微观三个结构层次 三.选择题(单选或多选) 1.含水率4%的砂100克,其中干砂重 C 克。 A. 96 B. 95.5 C. 96.15 D 97 2.建筑上为使温度稳定,并节约能源,应选用 C 的材料。 A.导热系数和热容量均小 B.导热系数和热容量均大 C.导热系数小而热容量大 D.导热系数大而热容量小 3.对于组成相同具有下列不同特性的材料一般应有怎样的孔隙结构(均同种材料):⑴强度较高的应是BDF ;⑵吸水率小的应是BD ;⑶抗冻性好的应是BDF ;⑷

金属填充复合材料修补金属件知识讲解

金属填充复合材料修 补金属件

金属填充复合材料修补金属件 金属填充复合材料修补金属件 一、为什么使用Loctite? Fixmaster?金属填充复合材料? Loctite? Fixmaster? 金属填充复合材料可为设备因冲击及机械损伤造成的缺陷提供维修解决方案,如套的裂纹,轴及套的磨损等。 Loctite? Fixmaster?金属填充复合材料可有效修复和重建机械设备的损伤不需要加热和焊接。 传统方式 VS. 现代解决方案 传统方式如硬表面堆焊需大量的时间,成本昂贵。Loctite? Fixmaster?金属填充复合材料操作方便,具有优良的抗压强度。可以给设备提供有效的保护。Loctite? Fixmaster?金属填充复合材料和Loctite? Nordbak?耐磨防护剂可修复不同类的磨损,使其可重新投入使用。 二、Loctite? Fixmaster?金属填充复合材料的优点: (1)、快速维修 (2)、可选择钢粉、铝粉或非金属填充 (3)、低收缩率 (4)、耐久维修 (5)、使用方便 (6)、高抗压强度 (7)、不需加热

(8)、可在线维修 (9)、类似金属色 (10)、固化后可钻孔、攻丝和机械加工 (12)、与金属,陶瓷,木材.玻璃和部分塑料良好的粘结力 三、选择Loctite? Fixmaster?金属填充复合材料时需考虑的关键因素 金属修补Loctite? Fixmaster?复合材料填充钢粉或铝粉等不同金属粉末,使在维修时尽可能接近设备本体性能,非金属填充的产品用于修复磨损严重的场合。产品一致性产品粘度满足客户的不同需求,Loctite? Fixmaster?产品粘度分为浇铸型、膏状及棒状可供选择。 特殊需求对于一些特殊场合的应用,汉高拥有一些有特殊性能的产品,如高抗压强度,耐高温或耐磨产品可供选择。 四、表面处理正确的表面处理是这些产品成功应用的关键因素。 好的表面处理可以增加Loctite? Fixmaster?复合材料与部件的粘附力;防止金属表面与Loctite? Fixmaster?复合材料之间锈蚀;延长产品使用寿命。 正确的表面处理必须干净和干燥;无表面及内部化学污染;无锈蚀;表面粗糙度75um以上。 五、产品应用 Loctite? Fixmaster?金属填充复合材料是双组合环氧产品,应用之前必须按正确的比例混合至颜色均一为止。 膏状产品使用时必须紧刮于设备表面且达到所需要的厚度,请注意使用过程中需防止气泡的混入。

土木工程材料(简答题含答案)讲课讲稿

简答题 1.简述土木工程材料的主要类型及发展方向。 (1).主要类型:①土木工程材料按使用功能可分为:承重材料、围护材料、保温隔热材料、防水材料和装饰材料等5种;②按化学成分可分为:有机材料、无机材料和复合材料等3种。 (2).发展方向:①从可持续发展出发;②研究和开发高性能材料;③在产品形式方面积极发展预制技术;④在生产工艺方面要大力引进现代技术。 2.简述发展绿色建筑材料的基本特征。 ①建材生产尽量少使用天然资源,大量使用尾矿、废渣、垃圾等废弃物;②采用低能耗、无污染环境的生产技术;③在生产过程中不得使用甲醛、芳香族、碳氢化合物等,不得使用铅、镉、铬及其化合物制成的颜料、添加剂和制品;④产品不仅不损害人体健康,而且有益于人体健康;⑤产品具有多功能,如抗菌、灭菌、除霉、除臭、隔热、保温、防火、调温、消磁、防射线、抗静电等功能;⑥产品可循环和回收利用,废弃物无污染排放以防止二次污染。 3.简述石灰的主要特点及用途。 (1).特点:①可塑性和保水性好;②硬化速度慢,强度低;③耐水性差,硬化时体积收缩大。 (2).用途:①配制石灰砂浆和灰浆;②配制石灰土和三合土;③生产硅酸盐制品;④制造碳化制品; ⑤生产无熟料水泥。 4.简述建筑石膏的主要特性及应用。 (1).特性:①凝结硬化快;②硬化时体积微膨胀;③硬化后孔隙率较大,表观密度和强度较低;④防火性能好;⑤具有一定的调温、调湿作用;⑥耐水性、抗冻性和耐热性差。 (2).应用:①制作石膏抹面灰浆;②制作石膏装饰品;③制作各种石膏板制品。 5.简述水玻璃的主要特性及应用。 (1).特性:①黏结性能良好;②耐酸腐蚀性强;③耐热性良好;④抗压强度高。 (2).应用:①涂刷建筑物表面;②用于土壤加固;③配制速凝防水剂;④配制水玻璃矿渣砂浆;⑤配制耐酸、耐热砂浆及混凝土。 6.简述孔隙对材料性质的影响。 ①孔隙率越大材料强度越低、表观密度越小;②密实的材料且为闭口孔隙的材料是不吸水的,抗渗性、抗冻性好;③粗大的孔隙因水不易留存,吸水率常小于孔隙率;④细小且孔隙率大、开口连通的孔隙具有较大的吸水能力,抗渗性、抗冻性差。 7.土木工程材料的基本性质包括哪些?各性质之间有何内在联系及相互影响? (1).基本性质:①材料的物理性质:密度、表观密度、毛体积密度、堆积密度、密实度、孔隙率、填充率、空隙率、间隙率;②材料的力学性质:强度、比强度、弹性变形和塑性变形、徐变、脆性、韧性、硬度、耐磨性;③材料与水有关的性质:亲水性、憎水性、吸水性、吸湿性耐水性、抗渗性、抗冻性;④材料的热物理性质:导热性、热容量、温度变形;⑤材料的耐久性;⑥材料的安全性。 (2).内在联系及相互影响:(空)

土木工程材料实例分析

工程实例分析 1、石膏饰条粘贴失效 现象:某工人用建筑石膏粉拌水为一桶石膏浆,用以在光滑的天花板上直接粘贴,石膏饰条前后半小时完工。几天后最后粘贴的两条石膏饰条突然坠落,请分析原因。 原因分析: ①建筑石膏拌水后一般于数分钟至半小时左右凝结,后来粘贴石膏饰条的石膏浆已初凝,粘结性能差。可掺入缓凝剂,延长凝结时间;或者分多次配制石膏浆,即配即用。 ②在光滑的天花板上直接贴石膏条,粘贴难以牢固,宜对表面予以打刮,以利粘贴。或者,在粘结的石膏浆中掺入部分粘结性强的粘结剂。 2、石膏制品发霉变形 现象:某住户喜爱石膏制品,全宅均用普通石膏浮雕板作装饰。使用一段时间后,客厅、卧室效果相当好,但厨房、厕所、浴室的石膏制品出现发霉变形。请分析原因。 原因分析: 厨房、厕所、浴室等处一般较潮湿,普通石膏制品具有强的吸湿性和吸水性,在潮湿的环境中,晶体间的粘结力削弱,强度下降、变形,且还会发霉。 建筑石膏一般不宜在潮湿和温度过高的环境中使用。欲提高其耐水性,可于建筑石膏中掺入一定量的水泥或其它含活性SiO2、Al2O3及CaO的材料。如粉煤灰、石灰。掺入有机防水剂亦可改善石膏制品的耐水性。 3、水玻璃表面处理 现象:把水玻璃涂在粘土砖表面,可以提高抗风化能力;但涂在石膏制品表面则会使石膏制品破坏,请讨论其原因。 原因分析: 水玻璃浸入粘土砖表面,可使材料更致密,提高风化能力;但浸入石膏制品,水玻璃与石膏反应生成硫酸钠晶体,在制品孔隙内产生体积膨胀,使石膏制品破坏。 4、挡墙开裂与水泥的选用 现象:某大体积的混凝土工程,浇注两周后拆模,发现挡墙有多道贯穿型的纵向裂缝。该工程使用某立窑水泥厂生产42.5Ⅱ型硅酸盐水泥,其熟料矿物组成如下: C3S 61%;C2S 14%;C3A 14%;C4AF 11% 原因分析: 由于该工程所使用的水泥C3A和C3S含量高,导致该水泥的水化热高,且在浇注混凝土中,混凝土的整体温度高,以后混凝土温度随环境温度下降,混凝土产生冷缩,造成混凝土贯穿型的纵向裂缝。 防止措施: 首先,对大体积的混凝土工程宜选用低水化热,即C3A和C3S的含量较低的水泥。其次,水泥用量及水灰比也需适当控制。 4、某机场道肩混凝土破坏 现象:某机场道肩混凝土于1995年7-11月施工,当年10月就发现网状裂缝,次年6月表面层开始剥落。该混凝土使用某立窑水泥厂生产的普通硅酸盐水泥。该厂当时生产的熟料呈暗红色,还有一些白色物质。钻取破坏与未破坏的混凝土各加工成试件,未被破坏混凝土强度可满足设计要求、密实、颜色为正常的青灰色。而已破坏的混凝土强度大大下降,低于设计值,劈开可见砂浆层与集料之间粘结疏松。经X射线衍射分析可知,已破坏混凝土试样有大量Ca(OH)2和大量CaCO3。 原因分析: 经有关单位研究认为,该混凝土破坏主要是由于水泥质量不稳定所致,水泥中有一定

复合材料在土木工程中的发展与应用_0

复合材料在土木工程中的发展与应用 伴随着社会科学技术和社会经济的飞速前进,我国现代化建设进程不断推进,土木工程建设行业得到了快速发展。建设企业不断引入新技术、新材料以提升工程建设效率和建设质量,降低工程施工成本。复合材料作为一种新型的建筑材料,在土木工程中的应用也有了十分迅猛的发展。因此,本文对复合材料在土木工程中的发展与应用进行了简要论述。 标签:复合材料;土木工程;发展;应用 复合材料即纤维增强复合材料,在国际上用英文缩写FRP表示,它是一种通过特定的加工工序将等高性能纤维与树脂机体进行复合而形成的新型结构材料,其中主要的高性能纖维有碳纤维、玻璃纤维、芳纶、玄武岩纤维等。复合纤维有着密度小、易塑性、强度高、抗腐蚀等优异性能,在土木工程建设中与钢筋、混凝土等传统建筑材料共同使用,能够有效补充传统材料的不足,降低工程成本投入的同时提升土木工程的建筑质量,资源利用率较高。利用复合材料进行施工建设已经成为土木工程的主流发展趋势。 1复合材料在土木工程中的发展 随着科学技术的不断进步,复合材料在土木工程中的应用也有了较大的发展。我国20世纪中期开始了将复合材料应用于土木工程方面的探索,其发展可大致分为四个阶段。到20世纪70年代为第一阶段,对纤维增强复合材料在结构工程中的应用进行研究,并大量投入使用;到20世纪末为第二阶段,我国的复合材料发展迅速,成效显著,典型的代表工程是瑞士的Ibach桥;到20世纪末为第三阶段,我国土木工程施工中,复合材料的用量增长迅速,使用总量超过了500吨。随着社会科学技术和社会经济的飞速前进,我国复合材料在土木工程中的应用也有了十分迅猛的发展,实践成果显著。未来,复合材料在土木工程中会得到更广泛、更深入的应用,推动我国建筑行业的快速稳定发展。 2复合材料在土木工程中的应用 2.1工程结构加固补强 使用复合材料对工程结构进行加固补强主要是针对不同的构件,使用对应的方法将FRP附着在构件表面受力,以提升构件的受力能力。在土木工程中主要是使用复合材料实现混凝土结构的粘贴和加固。我国于1998年首次使用FRP进行工程加固,为FRP在土木工程中的应用开启了先河,在之后的工程建设中,FRP应用越来越广泛,尤其是在汶川大地震后,FRP材料在震后的结构修复及加固和新建筑的建设中发挥了重要的作用。FRP对土木工程结构进行加固补强的主要方式为:(1)使用FRP布捆绑混凝土柱,增强混凝土的强度,提升混凝土柱的抗震能力,达到加固、提升强度的目的。(2)在建筑物的梁或者板的表面粘贴片状的FRP,使混凝土的密实程度更高,可以有效的预防裂缝,提高混凝土载重

复材零件修补方法探索

龙源期刊网 https://www.doczj.com/doc/3e7444884.html, 复材零件修补方法探索 作者:武彬彬 来源:《科技风》2017年第07期 摘要:随着对飞机性能要求的不断提高,复合材料零件将更加广泛的应用于飞机的各个结构中。已经迅速发展为继铝合金、钛合金之后的又一航空结构材料。但是复合材料零件固然有很多优点,但是,复合材料零件的缺陷修补一直是制约复合材料零件发展的制约条件之一。本文对复合材料零件在实际使用过程中常见的缺陷进行了分类分析,对修补方法进行了初步的研究,为其制定合适的修补方法,减少浪费,降低复合材料应用成本。 关键词:复合材料;缺陷;修补 复合材料零件加工制造过程不同于金属零件,在成型过程中,装配过程中,使用过程中均会出现不同的缺陷。在生产实践中,即使是经过研究和试验制定的合理工艺,在结构件的制造过程还可能产生缺陷,引起质量问题,严重时还会导致整个结构件的报废,造成重大经济损失。因此,研究复合材料,尤其是国产碳纤维复合材料结构件的缺陷分类及维修方法是目前迫切需要解决的问题。 随着我国飞机数量的增加和换代速度的加快,复合材料用量也越来越大,修补的重要性也就越来越凸显。但是,国内在修补方面还是参考国外的一些文献和资料,照葫芦画瓢。而且目前国内对复合材料零件的修补还是没有进行验证,产品设计对此领域还是持保守状态。 对复合材料结构提出的修补要求主要有: ①恢复结构的70%承载能力和使用功能,即恢复结构的基本完整性; ②修理后重量不能增加太多; ③尽量保证原结构外形。 一、缺陷类型 根据目前国内复合材料制件结构及形成时段状态,缺陷存在的类型可以分为以下几类: ①实体层压板缺陷类型:零件分层、贫胶、皱折、鼓包、分层、杂质、打磨过分或伤及纤维的损伤、边缘分层损伤等缺陷。 ②针对复合材料蜂窝夹层件的缺陷类型:蜂窝芯格压缩、蜂窝芯凹陷、芯子与蒙皮分层等缺陷。

浅谈土木工程材料的发展趋势

浅谈土木工程材料的发展趋势 发表时间:2018-12-27T15:46:57.457Z 来源:《防护工程》2018年第29期作者:徐梅 [导读] 土木工程材料是我国经济发展和社会进步的重要基础原材料之一。土木工程材料是一切土木工程的物质基础。 摘要:土木工程材料是我国经济发展和社会进步的重要基础原材料之一。土木工程材料是一切土木工程的物质基础。无论在性能、质量还是经济方面,土木工程材料的使用对建筑物都有着重要影响。随着人类文明及科学技术的发展,土木工程材料也在不断进步与改善。因此了解土木工程材料的的发展状况、把握土木工程材料的发展趋势显得尤为重要。本文主要针对国内外土木工程材料的发展以及土木工程材料的发展趋势与设想展开讨论。 关键词:土木工程材料;发展;新型材料;绿色 1 近代的土木工程材料 1.1水泥 水泥作为一种无机胶凝材料,是混凝土重要的原料之一,水泥的性质对混凝土的物理性能和力学性能都有重要影响。水泥以石灰石和粘土为主要原料,经破碎、配料、磨细制成生料,然后喂入水泥窑中煅烧成熟料,再将熟料加适量石膏(有时还掺加混合材料或外加剂)磨细而成墙体材料。发达国家由于工业和技术水平的优势以及对墙体材料产品的性能与使用要求较高,墙体材料的发展起步较早,且在短期内迅速的发展起来。纵观发达国家墙体材料的发展,总的特点是:产品结构合理化;生产技术高层化;生产设备大型化、规模化;生产过程机械化、自动化。 水泥的发明带动了整个建筑行业的发展和革新,使人类能够造出更高更好的建筑,时至今日,水泥在整个建筑领域都占据重要位置。但是水泥生产的能耗很大,对环境和能源都是严峻的考验。尤其是在目前能源危机和环境问题日益严重的今天,对水泥生产工艺的改革创新对建筑行业的发展具有深远意义。 1.2混凝土 简称为“砼(tóng)”:是指由胶凝材料将集料胶结成整体的工程复合材料的统称。通常讲的混凝土一词是指用水泥作胶凝材料,砂、石作集料;与水(可含外加剂和掺合料)按一定比例配合,经搅拌而得的水泥混凝土,也称普通混凝土,它广泛应用于土木工程。 混凝土具有原料丰富,价格低廉,生产工艺简单的特点,因而使其用量越来越大。混凝土结构主要包括素混凝土、钢筋混凝土和预应力混凝土,具有整体性好,可灌筑成为一个整体;可模性好,可灌筑成各种形状和尺寸的结构;耐久性和耐火性好,工程造价和维护费用低等优点。其中预应力混凝土在原有基础上具有更好的强度,进一步拓宽了混凝土结构的适用范围。例如,预应力混凝土梁的受拉区不易产生裂缝,相应地提高了其耐久性和跨度。 1.3钢材 钢,是对含碳量质量百分比介于0.02%至2.04%之间的铁合金的统称目前钢的冶炼方法主要有氧气转炉炼钢、平炉炼钢和电炉炼钢三种,其中氧气转炉炼钢为现代炼钢的主要方法。按化学成分分类,钢可分为碳素钢和合金钢,其中碳素钢在建筑工程中应用最多;按冶炼时脱氧程度分类,钢分为沸腾钢、镇静钢、半镇静钢和特殊镇静钢四种。 2 现代土木工程材料 现代土木工程材料主要有沥青,沥青制品,玻璃,新型复合材料以及绿色建材。这些材料使土木工程的功能和外观发生根本的改变。高速公路不如说是沥青路,城市以建筑繁荣昌盛,而玻璃使建筑光彩照人。与其余的新型材料一起使人民的生活更加完美。 3 我国土木工程材料工业与世界先进水平的主要差距 3.1总体水平分析 我国土木工程材料就产量来说,可以称为世界大国。但无论是产品结构、产品品种、档次、质量、性能、配套水平,还是工艺,技术装备,管理水平等均与世界先进水品相差甚远,是一个“大而不强”,甚至是“大而落后”的典型产业。 土木工程装饰装修材料虽然起步较晚,但起点较高,因此,相对与其他几类材料而言,水平较高,与世界先进水平差距不很突出。 在防水材料方面,虽然国际市场上现有的主要产品国内都有生产,但先进产品的量并不大,而且生产技术和装备水平都十分落后。 在保温材料方面,无论就其产品结构还是技术水平等方面的差距都很大。 3.2土木工程材料工业与世界先进年水平的差距 我国是墙体材料的生产大国,但又是粘土砖的生产王国,就整体而言,与世界先进水平差距很大。主要表现在:产品落后,结构很不合理。装备陈旧落后、机械化程度低、劳动生产率低、产品强度低、质量差。 4 土木工程材料的发展趋势 随着科学技术的进步和建筑工业发展的需要,一大批新型土木工程材料应运而生,,而社会的进步、环境保护和节能降耗及建筑业的发展,又对土木工程材料提出了更高的要求。因而,今后一段时间内,土木工程材料将向以下几个方向发展。 (1)高性能化。将研制轻质、高强、高耐久性、高抗震性、高保温性、高吸声性、优异装饰性及优异防水性的材料,实现结构―功能(智能)一体化。这对提高建筑物的安全性、适用性、艺术性、经济性及使用寿命等有着非常重要的作用。例如,现今钢筋混凝土结构材料自重大(每立方米重约2500kg),限制了建筑物向高层、大跨度方向进一步发展。通过减轻材料自重,及尽量减轻结构物自重,可提高经济效益。目前,世界各国都在大力发展高强混凝土、加气混凝土、轻骨料混凝土、空心砖、石膏板等材料,以适应土木工程发展的需要。 (2)智能化。所谓智能化材料,是指材料本身具有自感知、自调节、自清洁、自修复,实现构筑物自我监控的功能,以及可重复利用性。土木工程材料向智能化方向发展,是人类社会向智能化发展过程中降低成本的需要。 (3)复合化、多功能化。利用复合技术生产多功能材料、特殊性能材料及高性能材料,这对提高建筑物的使用功能、经济性及加快施工速度等有着十分重要的作用。

土木工程材料知识点)

1、孔隙率及孔隙特征对材料的表观密度、强度、吸水性、抗渗性、抗冻性、导热性等性质有何影响? 对表观密度的影响:材料孔隙率大,在相同体积下,它的表观密度就小。而且材料的孔隙在自然状态下可能含水,随着含水量的不同,材料的质量和体积均会发生变化,则表观密度会发生变化。 对强度的影响:孔隙减小了材料承受荷载的有效面积,降低了材料的强度,且应力在孔隙处的分布会发生变化,如:孔隙处的应力集中。 对吸水性的影响:开口大孔,水容易进入但是难以充满;封闭分散的孔隙,水无法进入。当孔隙率大,且孔隙多为开口、细小、连通时,材料吸水多。 对抗渗性的影响:材料的孔隙率大且孔隙尺寸大,并连通开口时,材料具有较高的渗透性;如果孔隙率小,孔隙封闭不连通,则材料不易被水渗透。 对抗冻性的影响:连通的孔隙多,孔隙容易被水充满时,抗冻性差。 对导热性的影响:如果材料内微小、封闭、均匀分布的孔隙多,则导热系数就小,导热性差,保温隔热性能就好。如果材料内孔隙较大,其内空气会发生对流,则导热系数就大,导热性好。 2、建筑钢材的品种与选用 建筑钢材的主要钢种 1)碳素结构钢:牌号的表示方法: Q 屈服点数值—质量等级代号脱氧程度代号Q235—BZ Q235——强度适中,有良好的承载性,又具有较好的塑性和韧性,可焊性和可加工性也较好,是钢结构常用的牌号,大量制作成钢筋、型钢和钢板用于建造房屋和桥梁等。Q235良好的塑性可保证钢结构在超载、冲击、焊接、温度应力等不利因素作用下的安全性,因而Q235能满足一般钢结构用钢的要求 Q235-A一般用于只承受静荷载作用的钢结构。含C0.14~0.22% Q235-B适用于承受动荷载焊接的普通钢结构,含C0.12~0.20% Q235-C适用于承受动荷载焊接的重要钢结构,含C≤0.18% Q235-D适用于低温环境使用的承受动荷载焊接的重要钢结构。含C≤0.17% 2)低合金高强度结构钢:牌号的表示方法:Q 屈服点数值质量等级代号 由于合金元素的强化作用,使低合金结构钢不但具有较高的强度,且具有较好的塑性、韧性和可焊性。低合金高强度结构钢广泛应用于钢结构和钢筋混凝土结构中,特别是大型结构、重型结构、大跨度结构、高层建筑、桥梁工程、承受动力荷载和冲击荷载的结构。 3、常用建筑钢材 1)低碳钢热轧圆盘条:强度较低,但塑性好,便于弯折成形,容易焊接。主要用做箍筋,以及作为冷加工的原料,也可作为中、小型钢筋混凝土结构的受力钢筋。 2)钢筋混凝土用热轧钢筋:钢筋混凝土用热轧钢筋共分为四级钢筋,根据其表面状态分为光圆钢筋和带肋钢筋。I级钢筋为光圆钢筋,其余三级为带肋钢筋。I级钢筋不带肋,与混凝土的握裹力不好,其末端需做180?弯钩。 I级钢筋由碳素结构钢轧制,其余均由低合金钢轧制。I级钢筋的强度较低,但塑性及焊接性能很好,便于各种冷加工,因而广泛用作普通钢筋混凝土构件的受力筋及各种钢筋混凝土结构的构造筋。 HRB335级和HRB400级钢筋的强度较高,塑性和焊接性能也较好,故广泛用作大、中型钢筋混凝土结构的受力钢筋。 HRB500级钢筋强度高,但塑性和可焊性较差,可用作预应力钢筋。

土木工程材料教学大纲

《土木工程材料》课程教学大纲 一、课程的性质和学习目的 1、本课程的性质和任务 《土木工程材料》是土木工程专业的一门重要专业技术基础课, 是直接为土木工程实际问题服务的一门重要的学科。 《土木工程材料》是研究土木工程用材料结构、性能、标准及相互关系的一门科学,并且研究如何选用和组配复合材料。通过本课程的学习,使学生掌握各种材料内部组成、结构、技术性能、技术标准及其相互关系。培养学生合理选用和组配新型复合材料的能力。 2、课程的基本要求: (1)掌握砂石材料、水泥、水泥混凝土、沥青混合料的组成结构、技术性质及其关系;掌握矿质混合料、水泥混凝土、沥青混合料配合比设计; (2)熟悉石灰、沥青及钢材的组成结构、技术性质及技术要求; (3)了解各种外加剂的性能;了解部分新建筑材料的技术性能及发展趋向; (4)了解石灰、水泥凝结硬化原理;沥青混凝土强度理论;集料的级配理论;沥青乳化机理。 (5)了解土木工程中合成高分子材料的主要制品及应用、了解建筑功能材料的主要类型及特点。 3、本课程与其他课程的关系 在学习本课程之前, 应学完《数学》、《物理》、《化学》、《材料力学》、《工程地质》等课程,以便同学在学习本课程的过程中充分运用过去学过的知识。它是后续专业课的基础。二、本课程学习和考核的内容 绪论(2学时) 教学内容:土木工程材料发展概况,土木工程材料在土木工程建筑结构物中的作用,以及在经济发展中的意义;课程研究的对象和内容、要求和学习方法。 教学目标:了解土木工程材料在土木工程建筑结构物中的作用,以及在经济发展中的意义;明确本课程在本专业中的地位,了解本课程研究的对象和内容、要求和学习方法。 重点:土木工程材料在土木工程建筑结构物中的作用,土木工程材料的发展概况。 难点:土木工程材料在土木工程建筑结构物中的作用 (一)土木工程材料的基本性质(2学时) 教学内容:材料学的基本理论,材料的物理性质、力学性质、材料的耐久性。 教学目标:了解材料学的基本理论,掌握材料的物理性质、力学性质,掌握材料的物理—力学性质相互间的关系及在土木工程中的应用,掌握材料耐久性的基本概念。 重点:材料的物理—力学性质相互间的关系及在土木工程中的应用。 难点:材料的物理性质。 (二)天然石料(2学时) 教学内容:岩石的组成与分类、岩石的力学性能与测试方法、常用石料品种

土木工程材料向绿色生态建材的发展

土木工程材料向绿色生态建材的发展 摘要:本文简介了土木工程材料的研究现状,指出了土木工程材料在生产、质量方面存在的一些问题,提出了土木工程材料的发展趋势,并阐述了绿色建材的的意义和优势。 关键词:土木工程材料绿色建材环境节约 古往今来,土木工程与人类社会的发展息息相关。由于社会的进步和人们生活水平的上升,人们对各种建筑的利用和需求也有所提高。土木工程材料的发展也出现绿色、环保的趋势。土木工程材料为土木工程提供物质基础,对土木工程的质量和寿命有决定性的作用。土木工程材料是指在工程中所应用的各种制品。它包括有机材料、无机材料和复合材料。近几年来,随着人们对土木工程材料性能标准的提升,人们越来越关心其对健康和环境的影响。 人类只有一个地球。降低能耗,保护有限地球资源已成为维系人类社会持续发展的共识;低碳、节能减排、资源节约、再生能源利用已成为世界性重大课题。我们应在能源消耗、资源消耗最高的建筑领域,开创性的研制出系列低碳型新材料,有力推动能效建筑、生态建筑、智慧建筑的发展,并以成品化的型建材促进住宅产业化进程。 1 土木工程材料发展现状 作为传统的土木工程材料,木材、石灰、水泥、沥青、混凝土、砌筑材料、钢筋混凝土等构筑了工业和民用建筑的基础。随着材料科学与工程学的形成发展,土木工程材料性能和质量不断改善,品种不断增加,以有机材料为主的化学建材异军突起,一些具有特殊功能的新型土木工程材料,如绝热材料、吸声隔声材料、各种装饰材料、耐热防火材料、防水抗渗材料以及耐磨、耐腐蚀、防爆和防辐射材料等应运而生。 随着城市化、工业化进程的加快和生产力水平的大幅度提高,全球性资源匮乏和能源短缺现象日益严重,大量的建筑废弃物等待处理,废旧物品的再生利用成为亟待解决的问题。“环保、生态、绿色、健康”,已成为21世纪人类生活的主题。 因此,现阶段土木工程材料的使用,不仅要满足轻质、高强、耐用、多功能的优良技术性能和美观的美学功能,更要具备健康、安全、环保的基本特征。也

土木工程材料考试题-18页精选文档

土木工程材料考试题 班级:0902 学号:010******* 姓名:陈佼佼 一、填空题(每空0.5分,共10分) 1、在已知岩石类别时,评定石料等级的依据是抗压强度和磨耗率。 2、当粗骨料最大粒径为50mm时,水泥混凝土抗压强度试件尺寸应为200x200x200mm的立方体。 3、为保证混凝土的耐久性,在混凝土配合比设计中要控制最大水灰比和最小胶凝材料用量。 4、在混凝土配合比设计中,单位用水量是根据坍落度、石子最大粒径、粒形和级配查表确定。 5、沥青的针入度、延度、软化点依次表示沥青的粘滞性、塑性和温度敏感性。 6、沥青混凝土混合料和沥青碎(砾)石混合料统称为沥青混合料。 7、在水泥混凝土配合比设计中,砂率是依据粗骨料品种、最大粒径、砂的细度模数和水灰比来确定的。 8、就试验条件而言,影响混凝土强度的因素主要有组成材料的特性与配合比、浇灌与养护条件和生产工艺与条件。 9、水泥混凝土试验室调整的内容包括工作性、密度和强度复核。 二、单项选择题(每小题1分,共10分) 1、石油沥青老化后,其软化点较原沥青将(②)。

①保持不变;②升高;③降低;④先升高后降低 2、饱和度是用来评价沥青混合料的(③)。 ①高温稳定性;②低温抗裂性;③耐久性;④抗滑性 3、在蜡质量与含蜡量关系图上,若三个点恰好在一斜率为正的直线上,已知蜡质量为0.05g和0.10g时,含蜡量依次为1.5%和2.5%,该沥青含蜡量为(②)。 ①1.5%;②2.0%;③2.5%;④无法确定 4、在设计混凝土配合比时,配制强度要比设计要求的强度等级高,提高幅度的多少,取决于(④) ①设计要求的强度保证率;②对坍落度的要求;③施工水平的高低; ④设计要求的强度保证率和施工水平的高低 5、沥青混合料中,掺加矿粉的目的是为了(②) ①提高密实度;②提高稳定度;③增加流值;④改善工艺性 6、当配制水泥混凝土用砂由粗砂改为中砂时,其砂率(①) ①应适当减小;②不变;③应适当增加;④无法判定 7、通常情况下,进行沥青混合料矿料合成设计时,合成级配曲线宜尽量接近设计要求的级配中值线,尤其应使(④)mm筛孔的通过量接近设计要求的级配范围的中值。 ①0.075;②2.36;③4.75;④①、②和③ 8、规范将细度模数为1.6~3.7的普通混凝土用砂,按(②)划分为3个级配区。 ①细度模数;②0.63mm筛孔的累计筛余百分率;③1.25mm筛孔的累计

复合材料在土木工程中的发展与应用研究

复合材料在土木工程中的发展与应用研究 复合材料在20世纪50年代左右开始兴起,在当时有很多专家对复合材料展开了研究。在当前的土木过程中,复合材料有着十分广泛的应用,具有质量轻、性能优越、耐腐蚀、强度高等优势。因此文章将针对复合材料在土木工程中的发展与应用展开分析。 标签:复合材料;土木工程;发展;应用 土木工程项目的范围十分广泛,在很多施工过程中都需要保证建筑材料的质量符合相关标准。而随着建设行业的不断发展,建筑材料也有着很大的提高和改进。复合材料是当前最为流行的建筑材料之一,具有良好的性能,可以在施工中发挥出现良好的功能性。 1 、复合材料在土木工程项目中的应用发展 1.1、基本概念 随着社会经济水平的不断提升,社会对土木工程建设质量提出更高要求,因此建筑领域的研发力度不断加大,并且涌现出诸多先进的建筑材料,从而满足社会的应用需求。近年来复合材料逐渐出现在人们的视野中,并且在土木工程中得到广泛应用,极大满足建筑领域对材料性能的需求。复合材料是由多种物质混合而成的,主要包括碳纤维、芳纶、玻璃纤维、玄武岩纤维等,这些物质都具有很高的树脂性能和纤维性能,经过混合加工能够显示出巨大的性能优势,主要表现为质量小、重量轻、强度高,而且还具有极高的耐腐蚀性能,因此能够在土木工程中得到广泛应用。现阶段复合材料多用于钢筋混凝土结构的施工过程中,对提高工程质量具有关键作用,随着理论研究和实践应用的不断成熟,复合材料在其他结构工程的施工中也得到有效应用。 1.2、发展历程 复合材料在土木工程中的应用研究可以追溯到20世纪50年代至60年代,当时很多研究人员对民用建筑的复合材料应用进行实践探索,例如英国某教堂的塔尖部分初次尝试利用复合材料建造,建筑人员还在人工天桥上利用复合材料进行施工;20世纪50年代末,我国采用玻璃纤维在混凝土结构中进行施工,使钢筋材料得到有效替代;20世纪80年代,我国进一步加深对复合材料的研究,并且将其应用于雷达天线罩、公路桥的施工,显示出巨大的材料性能优势,极大程度上增强工程的牢固性和稳定性。现阶段复合材料在土木工程中的应用已经相对成熟,因此很多建筑工程中大量使用复合材料,使土木工程的建设水平有效提升。 2、复合材料在土木工程中的应用 2.1、在加固工程项目中的应用

试述复合材料在土木工程中的发展与应用

试述复合材料在土木工程中的发展与应用 发表时间:2018-06-21T10:09:52.587Z 来源:《基层建设》2018年第11期作者:于海明[导读] 摘要:近年来,随着社会经济的发展与科学技术的进步,使得我国的土木工程向前迈进了一大步,各项目施工中也采用了更为先进和科学的材料与技术,这不仅仅有效提高了我国工程项目的质量,使人们的生命财产安全有了更大的保障,也为我国土木工程事业的建设与发展开辟了一条创新发展的道路。 德州永安置业有限公司 251200 摘要:近年来,随着社会经济的发展与科学技术的进步,使得我国的土木工程向前迈进了一大步,各项目施工中也采用了更为先进和科学的材料与技术,这不仅仅有效提高了我国工程项目的质量,使人们的生命财产安全有了更大的保障,也为我国土木工程事业的建设与发展开辟了一条创新发展的道路。本文在简述的复合材料基本内涵的基础上,分析了复合材料在土木工程中的发展与应用,希望本文能对之后复合材料在土木工程中的应用与发展研究起到抛砖引玉的效果。关键词:复合材料;土木工程;发展一、复合材料的简述复合材料,简称FRP,指的是纤维增强复合材料,例如常使用的玻璃纤维、碳纤维、芳纶纤维等等,而复合材料主要是由这些增强纤维材料与集体材料相缠绕、模压或是拉挤等其他工艺形式而形成的复合材料。一般说来,复合材料具有比强度高、比模量大,材料设计性能好,抗腐蚀性及耐久性等特点,也正因如此,复合材料能够满足现代土木工程建设中的多种需要,所以被得到了广泛的运用。 二、复合材料在土木工程中的应用与发展 1. 纤维增强复合材料加固补强。当前,粘贴加固混凝土结构是复合材料加固补强的主要形式,且对于该结构的研究从1991年至今取得了一定的成果。而粘贴加固混凝土结构在实际应用中由主要分为以下几类:其一,复合材料布缠绕加固混凝土柱。该方式主要是通过约束以增强混凝土的变形能力,从而提高混凝土机构的抗震性,同时又可加强高柱的抗剪能力。复合材料布缠绕加固混凝土形式,其实际效用在国内外得到了有效验证,但也在实践应用中发现,复合材料布对混凝土柱的约束效果与其截面有着直接的联系,对一般的矩形截面柱的受压承载力提高十分有限。其二,在梁、板受拉面粘贴复合材料片材,该形式主要是是提高梁板的抗弯承载力,以达到有效控制裂缝的效果。但在实即应用中,该形式也表现出一定的问题。首先,复合材料片材发挥的受拉效果时,梁板的扰度变形已经很大,存在着安全隐患,因而该复合材料片材主要是作为受弯加固的一种安全储备进行使用。其次,原配筋梁的质量会直接影响复合材料片材的受弯加固程度。同时,复合材料片材在受弯加固时,容易产生剥离破坏。其三,对梁柱结构采用复合材料片材包裹或是U型箍包裹,该种加固形式效果显著,但同样受构建原配箍率的影响,且就一般而言,复合材料片材的强度只能发挥到30%左右。以上三种为复合材料加固的中常见形式,但也有利用复合材料布与其他材料相组合进行加固的形式,其方式的选择应具体结合建筑结构的需求。 2. 复合材料筋索和预应力复合材料筋混凝土结构。与传统钢筋材料相比,复合材料筋索的纤维比重大,起重量轻,强度高且具有较好的耐腐蚀性能。正因为复合材料筋索这些优势特点,使得当前部分传统钢筋材料被替代,这也有效避免了传统钢筋材料出现生锈的情况,且有效保护了整个建筑结构的质量,在一定程度上也降低了材料成本。同时,当前某些工程建设的过程中会提出无磁性要求,而复合材料正具有这一无磁性特点,由此看来,复合材料的特性更容易满足现代土木工程建设中的要求。复合材料筋索在土木工程混凝土结构中的使用,可结合不同的使用方法,以提高复合材料筋索与混凝土的粘连性,而当前复合材料筋索又分为以下几种:其一,GFRP 筋。其重要作用是对表面进行沙化处理;其二,CFRP 预应力筋。该类型的复合材料筋索多用于多股之间进行环氧粘接,与钢绞线较为相似;其三,即通过滚花或是压痕处理的复合材料筋;其四,对纤维进行交错编制的复合材料筋。 3. 复合材料组合结构。该结构模式主要是将不同的复合材料制品与、钢筋、混凝土进行组合,以实现优势互补,从而提高工程质量。一般而言,工程施工建设中所采用的复合材料组合结构有以下几种:其一,复合材料管混凝土结构。该类型结构主要是将混凝土填充于缠绕成型的复合材料管之中,而此时的复合材料管也充当着模板的作用,又提升了施工效率。同时,复合材料管混凝土结构具有较好的耐久性,当前在工程的桩、柱结构中得到了较为广泛的使用;其二,复合材料、钢管、混凝土结构。该类型结构主要是在整个构构件的中心位置设置空心钢管,在钢管外面包裹复合材料,并在钢管与复合材料之间适当填充混凝土,这样不仅能有效避免钢管生锈,又能有效增强组合构件的变形和承载能力;其三,复合材料组合梁板。该类型使受弯的复合材料组合结构,主要是通过上部混凝土受压,下部复合材料受拉的形式,同时确保复合材料与混凝土两者协同工作的剪力连接件效用,使组合复合材料优势发挥得更加充分;其四,复合材料、木材组合构件。两者均具有受力点相似的优势,将其进行组合复合材料可作为增强部分,而木材作为填充部分,使其力学性能得到最大限度的发挥。复合材料组合结构相对传统结构,具有耐腐蚀、轻量化、造价低的优势特点,不仅增强了构件的整体性能,且提高了工程的经济效益,因而当前世界范围内都在加强复合材料组合结构的研究,使其更为体系化。 4. 全复合材料结构。复合材料的明显优势使其在土木工程中得到了广泛的应用,而全复合材料结构在使用中主要包括了如下类型:其一,复合材料桥面体系。即在桥梁面板部分直接采用复合材料,以减轻桥身自重,从而延长使用年限;其二,复合材料编织网结构。该类型结构主要是利用复合材料的张拉作用,对其进行编制,以形成新的且更具柔韧性的机构体系,其一般应用与跨度较大的工程结构之中;其三,复合材料杆件空间结构,其实现形式为网架结构,复合材料网架的杆件主体由不同角度层叠粘贴的CFRP片材构成,因而具有重量轻、抗腐蚀性强、温度效应小的特点;其四,复合材料曲面结构。形态多样化的曲面结构不仅成本较低且效能高,为各种建筑形态的实现提供了可能。结语: 综上所述,复合材料因其自身优势特点在现代土木工程中得到了广泛的应用。与此同时,随着社会发展角度的加快,对于复合材料的探究也应进一步深入,以不断提高复合材料技术水平,使复合材料的开发应用更具针对性、实用性与科学性,使复合材料在土木工程建设发展中发挥出更大的作用与价值。参考文献:

复合材料力学

复合材料力学 论文题目:用氧化铝填充导热和电绝缘环氧 复合材料的无缺陷石墨烯纳米片 院系班级:工程力学1302 姓名:黄义良 学号: 201314060215

用氧化铝填充导热和电绝缘环氧复合材料的无缺陷石墨烯纳米片 孙仁辉1 ,姚华1 ,张浩斌1 ,李越1 ,米耀荣2 ,于中振3 (1.北京化工大学材料科学与工程学院,有机无机复合材料国家重点实验室北京 100029;2.高级材料技术中心(CAMT ),航空航天,机械和机电工程学院J07,悉尼大学;3.北京化工大学软件物理科学与工程北京先进创新中心,北京100029) 摘要:虽然石墨烯由于其高纵横比和优异的导热性可以显着地改善聚合物的导热性,但是其导致电绝缘的严重降低,并且因此限制了其聚合物复合材料在电子和系统的热管理中的广泛应用。为了解决这个问题,电绝缘Al 2O 3用于装饰高质量(无缺陷)石墨烯纳米片(GNP )。借助超临界二氧化碳(scCO 2),通过Al(NO 3)3 前体的快速成核和水解,然后在600℃下煅烧,在惰性GNP 表面上形成许多Al 2O 3纳米颗粒。或者,通过用缓冲溶液控制Al 2(SO 4)3 前体的成核和水解,Al 2(SO 4)3 缓慢成核并在GNP 上水解以形成氢氧化铝,然后将其转化为Al 2O 3纳米层,而不通过煅烧进行相分离。与在scCO2的帮助下的Al 2O 3@GNP 混合物相比,在缓冲溶液的帮助下制备的混合物高度有效地赋予具有优良导热性的环氧树脂,同时保持其电绝缘。具有12%质量百分比的Al 2O 3@GNP 混合物的环氧复合材料表现出1.49W /(m ·K )的高热导率,其比纯环氧树脂高677%,表明其作为导热和电绝缘填料用于基于聚合物的功能复合材料。 关键词:聚合物复合基材料(PMCs ) 功能复合材料 电气特性 热性能 Decoration of defect-free graphene nanoplatelets with alumina for thermally conductive and electrically insulating epoxy composites Renhui Sun 1,Hua Yao 1, Hao-Bin Zhang 1,Yue Li 1,Yiu-Wing Mai 2,Zhong-Zhen Yu 3 (1.State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; 2.Centre for Advanced Materials Technology (CAMT), School of Aerospace, Mechanical and Mechatronic Engineering J07, The University of Sydney, Sydney, NSW 2006, Australia; 3.Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China) Abstract:Although graphene can significantly improve the thermal conductivity of polymers due to its high aspect ratio and excellent thermal conductance, it causes serious reduction in electrical insulation and thus limits the wide applications of its polymer composites in the thermal management of electronics and systems. To solve this problem, electrically insulating Al 2O 3is used to decorate high quality (defect-free) graphene nanoplatelets (GNPs). Aided by supercritical carbon dioxide (scCO 2), numerous Al 2O 3 nanoparticles are formed

相关主题
文本预览
相关文档 最新文档