当前位置:文档之家› 第章高频局部放电检测技术

第章高频局部放电检测技术

第章高频局部放电检测技术
第章高频局部放电检测技术

《电网设备状态检修技术(带电检测分册)》

弟五章咼频局部放电检测技术

目录

第 1 节高频局部放电检测技术概述

发展历程

高频局部放电检测方法是用于电力设备局部放电缺陷检测与定位的常用测量方法之一,其检测频率范围通常在3MHz到30MHz之间。高频局部放电检测技术可广泛应用于电力电缆及其附件、变压器、电抗器、旋转电机等电力设备的局放检测,其高频脉冲电流信号可以由电感式耦合传感器或电容式耦合传感器进行耦合,也可以由特殊设计的探针对信号进行耦合。

高频局部放电检测方法,根据传感器类型主要分为电容型传感器和电感型传感器。电感型传感器中高频电流传感器(High Frequency Current Transformer ,HFCT具有便携性强、安装方便、现场抗干扰能力较好等优点,因此应用最为广泛,其工作方式是对流经电力设备的接地线、中性点接线以及电缆本体中放电脉冲电流信号进行检测,高频电流传感器多采用罗格夫斯基线圈结构。

罗格夫斯基线圈(Rogowski coils ,简称罗氏线圈)用于电流检测领域已有几十年历史。早在1887 年英国布里斯托大学的茶托克教授即进行了研究,把一个长而且形状可变的线圈作为磁位差计,并且通过测量磁路中的磁阻,试图研究更加理想的直流发电机。罗格夫斯基线圈检测技术在20 世纪90 年代被英国的公立电力公司(CEGB用在名为“ El-Cid ”的新技术里,用于测试发电机和电动机的定子[1]。罗氏线圈自公布起就受到了很多学者的重视,对于罗格夫斯基线圈的应用也越来越广泛,1963 年英国伦敦的库伯在理论上对罗格夫斯基线圈的高频响应进行了分析,奠定了罗格夫斯基线圈在大功率脉冲技术中应用的理论基础[2]。20 世纪中后期以来,国外一些专家学者和公司纷纷对罗氏线圈在电力上的应用进行了大量的研究,并取得了显着的成果。如法国ALSTHO公司有一些基于罗氏线圈电流互感器产品问世,其主要研究无源电子式互感器,在20世纪80 年代英国Rocoil 公司实现了罗格夫斯基线圈系列化和产业化。总而言之,在世界范围内对于罗格夫斯基线圈传感器的研究,于20 世纪60 年代兴起,在80 年代取得突破性进展,并有多种样机挂网试运行,90 年代开始进入实用化阶段。尤其进入21 世纪以来,微处理机和数字处理器技术的成熟,为研制新型的高频电流传感器奠定了基础。20 世纪90年代欧洲学者将罗氏线圈应用于局部放电检测,效果良好,并得到了广泛应用。例如意大利的博洛尼亚大学的. Montanari 和 A.

Cavallini等人及TECHIM公司成功研制了高频局部放电检测仪,并被广泛应用。

近几年国内的一些科研院所和企业均开始研制基于罗氏线圈传感器以及高频局放检测装置,虽然起步比较晚,有些技术还处于跟踪国外大公司的水平,但随着发展罗氏线圈电子式传感器的时机逐渐成熟,国内如清华大学、西安交通大学、上海交通大学、华北电力大学等对于罗氏线圈传感器进行了深入的研究和探索,并取得了大量成果[4]。

技术特点

技术优势及局限性

高频局放检测技术的技术优势及局限性主要表现在以下几个方面:

(1)可进行局部放电强度的量化描述。由于高频局放检测技术应用高频电流传感器,与传统的脉冲电流法具有类同的检测原理,若传感器及信号处理电路相对确定的情况下,可以对被测局部放电的强度进行理化描述,以便于准确评估被检测电力设备局部放电的绝缘劣化程度。

(2)具有便于携带、方便应用、性价比高等优点。高频电流传感器作为一种常用的传感器,可以设计成开口CT的安装方式,在非嵌入方式下能够实现局放脉冲电流的非接触式检测,因此具有便于携带、方便应用的特点。

(3)检测灵敏度较高。高频电流传感器一般由环形铁氧体磁芯构成,铁氧

体配合经磁化处理的陶瓷材料,对于高频信号具有很高灵敏度。局部放电发生后,放电脉冲电流将沿着接地线的轴向方向传播,即会在垂直于电流传播方向的平面上产生磁场,电感型传感器是从该磁场中耦合放电信号。除此之外利用HFCT进行测量,还具有可校正的优点。

局限性

(1)高频电流传感器的安装方式也限制了该检测技术的应用范围。由于高频电流传感器为开口CT的形式,这就需要被检测的电力设备的接地线或末屏引下线具有引出线,而且其形状和尺寸能够卡入高频电流传感器。而对于变压器套管、电流互感器、电压互感器等容性设备来说,若其末屏没有引下线,则无法应用高频局放检测技术进行检测。

2)抗电磁干扰能力相对较弱。由于高频电流传感器的检测原理为电磁感应,周围及被测串联回路的电磁信号均会对检测造成干扰,影响检测信号的识别

及检测结果的准确性。这就需要从频域、时域、相位分布模式等方面对干扰信号进行排除。

适用范围

高频法仅适用于具备接地引下线电力设备的局部放电检测,主要包括电力电缆、变压器铁心及夹件、避雷器、带末屏引下线的容性设备等。

应用情况

随着高频局部放电检测技术的不断成熟,国网公司在高频局部放电检测应用实践上积累了大量的宝贵经验,发现了大量潜在缺陷,目前该方法已广泛应用于电力电缆及其附件、变压器、电抗器、旋转电机等电力设备局部放电检测。随着状态检修工作的不断深入,高频局部放电检测技术已列入状态检修试验规程,成为提前发现电力设备潜在缺陷的重要手段。

国家电网公司在推广应用高频局部放电检测技术方面做了大量卓有成效的工作。2010 年,在充分总结部分省市电力公司试点应用经验的基础上,结合状态检修工作的深入开展,国家电网公司颁布了《电力设备带电检测技术规范(试行)》和《电力设备带电检测仪器配置原则(试行)》,在国家电网公司范围内统一了高频局部放电检测的判据、周期和仪器配置标准,初步建立起完整的高频局

部放电检测技术标准体系,高频局部放电检测技术在国家电网公司范围全面推开。

第 2 节高频局部放电检测技术基本原理

罗氏线圈基本知识

罗格夫斯基线圈(Rogowski coils ),简称罗氏线圈,又被称为磁位计,最早被用于磁路的测量。一般情况下罗氏线圈为圆形或矩形,线圈骨架可以选择空心或磁性骨架,导线均匀绕制在骨架上。罗氏线圈的结构示意图如所示。

图5-1 罗氏线圈结构示意图

罗氏线圈的原边为流过被测电流的导体,副边为多匝线圈。当有交变的电流流过穿过线圈中心的导体时,会产生交变的磁场。副边线圈与被测电流产生的磁

通相交链,整个罗氏线圈副边产生的磁链正比于导体中流过的电流大小。变化的磁链产生电动势,且电动势的大小与磁链的变化率成正比。令流过导体的电流为

l(t),线圈副边感应出的电动势为e(t),基于安培环路定律和法拉第电磁感应定律,可

由Maxwell方程⑹解得:

e(t) M

t( 5-1) 其中M为罗氏线圈的互感系数。

根据罗氏线圈负载的不同,线圈可分为外积分式和自积分式[9]。外积分式罗氏线圈又称作窄带型电流传感器,具有较好的抗干扰能力。当采用外积分式罗氏线圈时,为得到电流I(t)的波形,线圈的输出通常需要经过无源RC外积分电路、由运放构成的有源外积分电路,以及数自积分电路等负载。外积分式罗氏线圈受积分电路

频率性能影响较大,测量频率上限受到限制,一般用于测量兆赫兹以下的中低频率

电流。自积分式罗氏线圈又称作宽带型电流传感器,具有相对较宽的检测频带。由于其直接采用积分电阻,因此频率响应较快,适用于测量上升时间较短的脉冲电流

信号。

罗氏线圈根据其结构不同可分为挠性罗氏线圈、刚性罗氏线圈和PCB型罗氏

线圈[10-11]。挠性罗氏线圈以能够完全的挠性材料作为线圈骨架,将导线均匀绕在骨

架上。测量时将骨架弯曲成一个闭合的环,使通电导体冲线圈中心穿过。这种线圈使用方便,但测量精确度低、稳定性不高。刚性罗氏线圈采用刚性结构线圈骨架,

在结构上更容易使得绕线能够均匀分布,大大提高了抗外磁场干扰的能力,从而提

高了测量的精确度。这种线圈的测量精确度和可靠性较高,但在实际使用中会受到现场安装条件的限制。PCB型罗氏线圈是一种基于印刷电路板(PCB 骨架的罗氏线圈,相比传统的罗氏线圈,其线圈密度、骨架截面积以及线圈截面与中心线的垂直

程度都有极大提高,是一种高精度的罗氏线圈。这种线圈现在还处于起步阶段,其实际应用还有一定的距离。

咼频局部放电检测基本原理

用于局部放电检测的罗氏线圈称为高频电流传感器,其有效的频率检测范围一

般为3MH?30MHz由于所测量的局部放电信号是微小的高频电流信号,传感器需要

在较宽的频带内有较高的灵敏度。因此HFCT选用高磁导率的磁芯作为线

圈骨架,并通常采用自积分式线圈结构[13]。使用HFCT 进行局部放电检测的等效 电路图如2所示。其中丨⑴为被测导体中流过的局部放电脉冲电流, M 为被测导 体与HFCT 线圈之间的互感,L s 为线圈的自感,艮为线圈的等效电阻,C 为线圈 的等效杂散电容,R 为负载积分电阻,u o (t)为HFCT 专感器的输出电压信号。

图5-2高频电流传感器局部放电检测等效电路图

在传感器参数满足自积分条件的情况下,忽略杂散电容

C s ,计算可得系统的 传递函数为[15]:

其中N 为线圈的绕线匝数。

因此,在满足自积分条件的一段有效频带内, HFCT 的传递函数是与频率无

关的常数。并且,HFCT 勺灵敏度与绕线匝数N 成反比,与积分电阻R 成正比。

事实上,在高频段C s 的影响是不能忽略的。在考虑 C 影响的情况下,系统 的

传递函数H(S)为:

HFCT 等效电路类似于高频小信号并联谐振回路,采用高频小信号并联谐振 回路

理论分析可得电流传感器的频带为:

下限截止频率:

R R s

R R s 2 (L s RF S C S ) 2 L s 上限截止频率:

L s RF S C s 1

2 L s RC s 2 RC s 在实际使用中,一般希望 HFCT 有尽可能咼的灵敏度,并且在较宽的频带范

围内有平滑的幅频响应曲线。同时要求 HFCT 有较强的抗工频的磁饱和能力,这 是因为实际检测时不可避免有工频电流流过, 而此时不应因磁芯饱和而影响检测 结果。 H(S) U o (S) 7W M R L S N (5-2)

H(S) U o (S)

I(S) MS (5-3)

(5-4)

(5-5)

L S C S S 2 R S C S )S R S 1 R

高频局部放电检测装置组成及原理

常用的高频局部放电检测装置包括:传感器、信号处理单元、信号采集单元

和数据处理终端。高频局部放电检测装置结构如 3 所示,装置实物图如图5-4 所示。

图5-3 高频局部放电检测装置结构图

图5-4 高频局部放电检测装置实物图

(一)传感器

高频局部放电检测HFCTt感器按安装位置不同主要分为接地线HFCT和电缆本体HFCT安装在电力设备接地线或电缆交叉互联系统上的HFCT专感器,内径一般为几十毫米;安装在单芯电力电缆本体上的HFCT传感器,内径一般在100 毫米以上,传感器灵敏度相对接地线HFCT较低。

接地线HFCT传感器又可根据检测需要分为分体式和整体式。分体式HFCT 线圈可开合,方便测试时安装和拆卸,可以使用一个传感器对设备多个位置进行测量。整体式HFCT传感器需要在设备接地线安装时同时进行安装,适合长期监测用。现有的HFCT传感器下限截止频率大多在1MHz以下,上限截止频率为几十MHz 一般要求传感器的-6 dB下限截止频率不高于 1 MHz,上限截止频率不低于20 MHz在输入10 MHz正弦电流信号时传输阻抗不小于5mV/mA(频带以及传输阻抗定义见GB/T 7354)。

(二)信号处理单元

针对传感器的输出信号,需要进行滤波和放大。实际测量中会有各类噪声和干扰信号,因此需要配合硬件滤波器或后续数字滤波功能进行滤波。滤波过后信号幅值会有一定程度的衰减,须经过宽带放大器放大,从而达到提高局部放电信号信噪比的目的。对于具有电压同步功能的高频局部放电检测装置,可以通过外部触发信号为检测装置提供电压同步。同步信号可由分压电容、电源或工频电流互感器提供。某些设备还会对经过滤波放大的局部放电脉冲信号进行检波处理,从而降低对后续信号处理的要求。信号处理单元的性能主要由上、下限截止频率和放大倍数来衡量。一般要求仪器能够在叠加40kHz~500kHz固定频率正弦信号的情况下能够有效检测出100pC放电量。

(三)信号采集单元

信号采集单元主要有数据采集卡构成,将实际采集到的模拟信号转化为可供进

入侵检测技术 课后答案

精品文档 . 第1章入侵检测概述 思考题: (1)分布式入侵检测系统(DIDS)是如何把基于主机的入侵检测方法和基于网络的入侵检测方法集成在一起的? 答:分布式入侵检测系统是将主机入侵检测和网络入侵检测的能力集成的第一次尝试,以便于一个集中式的安全管理小组能够跟踪安全侵犯和网络间的入侵。DIDS的最初概念是采用集中式控制技术,向DIDS中心控制器发报告。 DIDS解决了这样几个问题。在大型网络互联中的一个棘手问题是在网络环境下跟踪网络用户和文件。DIDS允许用户在该环境中通过自动跨越被监视的网络跟踪和得到用户身份的相关信息来处理这个问题。DIDS是第一个具有这个能力的入侵检测系统。 DIDS解决的另一个问题是如何从发生在系统不同的抽象层次的事件中发现相关数据或事件。这类信息要求要理解它们对整个网络的影响,DIDS用一个6层入侵检测模型提取数据相关性,每层代表了对数据的一次变换结果。 (2)入侵检测作用体现在哪些方面? 答:一般来说,入侵检测系统的作用体现在以下几个方面: ●监控、分析用户和系统的活动; ●审计系统的配置和弱点; ●评估关键系统和数据文件的完整性; ●识别攻击的活动模式; ●对异常活动进行统计分析; ●对操作系统进行审计跟踪管理,识别违反政策的用户活动。 (3)为什么说研究入侵检测非常必要? 答:计算机网络安全应提供保密性、完整性以及抵抗拒绝服务的能力,但是由于连网用户的增加,网上电子商务开辟的广阔前景,越来越多的系统受到入侵者的攻击。为了对付这些攻击企图,可以要求所有的用户确认并验证自己的身份,并使用严格的访问控制机制,还可以用各种密码学方法对数据提供保护,但是这并不完全可行。另一种对付破坏系统企图的理想方法是建立一个完全安全的系统。但这样的话,就要求所有的用户能识别和认证自己,还要采用各种各样的加密技术和强访问控制策略来保护数据。而从实际上看,这根本是不可能的。 因此,一个实用的方法是建立比较容易实现的安全系统,同时按照一定的安全策略建立相应的安全辅助系统。入侵检测系统就是这样一类系统,现在安全软件的开发方式基本上就是按照这个思路进行的。就目前系统安全状况而言,系统存在被攻击的可能性。如果系统遭到攻击,只要尽可能地检测到,甚至是实时地检测到,然后采取适当的处理

局部放电缺陷检测典型案例和图谱库

电缆线路局部放电缺陷检测典型案例 (第一版) 案例1:高频局放检测发现10kV电缆终端局部放电 (1)案例经过 2010年5月6日,利用大尺径钳形高频电流传感器配Techimp公司PDchenk 局放仪,在某分界小室内的10kV电缆终端进行了普测,发现1-1路电缆终端存在局部放电信号,随后对不同检测位置所得结果进行对比分析,初步判断不同位置所得信号属于同一处放电产生的局放信号,判断为电缆终端存在局放信号。 2010年6月1日通过与相关部门协调对其电缆终端进行更换,更换后复测异常局放信号消失。更换下来的电缆终端经解体分析发现其制作工艺不良,是造成局放的主要原因。 (2)检测分析方法 测试系统主机和软件采用局放在线检测系统,采用电磁耦合方法作为大尺径高频传感器的后台。 信号采集单元主要有高频检测通道、同步输入及通信接口。高频检测通道共有3个,同时接收三相接地线或交叉互联线上采集的局部放电信号,采样频率为100 MHz,带宽为16 kHz~30 MHz,满足局部放电测试要求。同步输入端口接收从电缆本体上采集的参考相位信号,通过光纤、光电转换器与电脑的RS232串口通信,将主机中的数据传送至电脑中,从而对信号进行分离、分类及放电模式识别。 利用局部放电测试系统,在实验电缆中心导体处注入图1-1的脉冲信号,此传感器可直接套在电缆屏蔽层外提取泄漏出来的电磁波信号,在电缆中心导体处注入脉冲信号,耦合到的信号如图1-2所示。 图1-1 输入5 ns脉冲信号图1-2输入5 ns脉冲信号响应信号 将传感器放置不同距离时耦合的脉冲信号如图1-3所示。距电缆终端不同距离耦合的脉冲信号随其距离的增长而减小(见图1-4),这样就可以判断放电是来

华测检测认证集团股份有限公司-招投标数据分析报告

招标投标企业报告华测检测认证集团股份有限公司

本报告于 2019年11月30日 生成 您所看到的报告内容为截至该时间点该公司的数据快照 目录 1. 基本信息:工商信息 2. 招投标情况:中标/投标数量、中标/投标情况、中标/投标行业分布、参与投标 的甲方排名、合作甲方排名 3. 股东及出资信息 4. 风险信息:经营异常、股权出资、动产抵押、税务信息、行政处罚 5. 企业信息:工程人员、企业资质 * 敬启者:本报告内容是中国比地招标网接收您的委托,查询公开信息所得结果。中国比地招标网不对该查询结果的全面、准确、真实性负责。本报告应仅为您的决策提供参考。

一、基本信息 1. 工商信息 企业名称:华测检测认证集团股份有限公司统一社会信用代码:91440300757618160G 工商注册号:440301102822273组织机构代码:757618160 法定代表人:万峰成立日期:2003-12-23 企业类型:/经营状态:存续 注册资本:/ 注册地址:深圳市宝安区新安街道兴东社区华测检测大楼1号楼101 营业期限:2003-12-23 至 / 营业范围:一般经营项目是:实验室检测/校准,检验,检查,货物查验,技术服务(法律、行政法规、国务院决定禁止的项目除外,限制的项目须取得许可后方可经营)。,许可经营项目是: 联系电话:*********** 二、招投标分析 2.1 中标/投标数量 企业中标/投标数: 个 (数据统计时间:2017年至报告生成时间) 933

2.2 中标/投标情况(近一年) 企业近十二个月中,中标/投标最多的月份为,该月份共有个投标项目。 2019年08月40 仅展示最近10条投标项目 序号地区日期标题中标情况 1中山2019-11-27中山市重点行业企业和工业园区土壤污染状况调查样品采集、流 转、保存及分析服务供应商采购项目 中标 2洛阳2019-11-26洛阳市工商局委托华测检测认证集团股份有限公司合同中标3深圳2019-11-25深圳市2019年省级网土壤环境监测项目中标4深圳2019-11-25深圳市2019年省级网土壤环境监测项目中标5东营2019-11-25雅砻江两河口水电站施工及运行期水生生态监测服务中标6深圳2019-11-25深圳市2019年省级网土壤环境监测项目中标7深圳2019-11-21宝安区土壤环境质量保护技术支撑服务中标8江门2019-11-19恩平市市场监督管理局2019年食品抽检工作增加项目未中标 9杭州2019-11-15THZB-19HW60270000000000000关于2019年电子商务产品质量违法 企业线索摸排入围的合同 中标 10湖北2019-11-12环境样品检测分析与污染源走航监测分析项目中标

入侵检测技术课后答案

第1章入侵检测概述 思考题: (1 )分布式入侵检测系统(DIDS )是如何把基于主机的入侵检测方法和基于网络的入侵检测方法集成在一起的? 答:分布式入侵检测系统是将主机入侵检测和网络入侵检测的能力集成的第一次尝试,以便于一个集中式的安全管理小组能够跟踪安全侵犯和网络间的入侵。DIDS的最 初概念是米用集中式控制技术,向DIDS中心控制器发报告。 DIDS 解决了这样几个问题。在大型网络互联中的一个棘手问题是在网络环境下跟踪网络用户和文件。DIDS 允许用户在该环境中通过自动跨越被监视的网络跟踪和得到 用户身份的相关信息来处理这个问题。DIDS是第一个具有这个能力的入侵检测系统。 DIDS解决的另一个问题是如何从发生在系统不同的抽象层次的事件中发现相关数据或事件。这类信息要求要理解它们对整个网络的影响,DIDS用一个6层入侵检测模 型提取数据相关性,每层代表了对数据的一次变换结果。 (2)入侵检测作用体现在哪些方面? 答:一般来说,入侵检测系统的作用体现在以下几个方面: 监控、分析用户和系统的活动; 审计系统的配置和弱点; 评估关键系统和数据文件的完整性; 识别攻击的活动模式; 对异常活动进行统计分析; 对操作系统进行审计跟踪管理,识别违反政策的用户活动。 (3)为什么说研究入侵检测非常必要? 答:计算机网络安全应提供保密性、完整性以及抵抗拒绝服务的能力,但是由于连网用户的增加,网上电子商务开辟的广阔前景,越来越多的系统受到入侵者的攻击。为了对付这些攻击企图,可以要求所有的用户确认并验证自己的身份,并使用严格的访问控制机制,还可以用各种密码学方法对数据提供保护,但是这并不完全可行。另一种对付破坏系统企图的理想方法是建立一个完全安全的系统。但这样的话,就要求所有的用户能识别和认证自己,还要采用各种各样的加密技术和强访问控制策略来保护数据。而从实际上看,这根本是不可能的。 因此,一个实用的方法是建立比较容易实现的安全系统,同时按照一定的安全策略建立相应的安全辅助系统。入侵检测系统就是这样一类系统,现在安全软件的开发方式基本上就是按照这个思路进行的。就目前系统安全状况而言,系统存在被攻击的可能性。 如果系统遭到攻击,只要尽可能地检测到,甚至是实时地检测到,然后采取适当的处理措施。入侵检

国内外几种电缆局部放电在线检测方法技术分析

国内外几种电缆局部放电在线检测方法技术分析 李华春周作春张文新从光 北京市电力公司 100031 [摘要]:本文简要的介绍国内外几种电缆局部放电在线检测方法的原理和特点,并进行了简单的分析比较。结合国内外电缆局部放电在线检测方法研究和应用情况提出当前XLPE电缆局部放电在线监测存在的问题以及在高压XLPE电缆附件局部放电在线检测研究方面今后还需要做的工作。 [关键词]:电缆、局部放电、在线检测、分析 前言 常规XLPE电缆局部放电测量多采用IEC60270法,但是其测量频带较低,通常在几十到几百kHz范围内,易受背景干扰的影响,抗干扰能力差。理论研究表明,XLPE电力电缆局部放电脉冲包含的频谱很宽,最高可达到GHz数量级。因此,选择在信噪比高的频段测量有可能有效地避免干扰的影响。目前国内外已把电缆局部放电测量的焦点转移到高频和超高频测量上。 [2][1]。 迄今为止,国内外用于XLPE电缆局部放电检测的方法有很多。但由于X LPE电缆局部放电信号微弱,波形复杂多变,极易被背景噪声和外界电磁干扰噪声淹没,所以研究开发电缆局部放电在线检测技术的难度在所有绝缘在线检测技术中是最高的。由于电缆中间接头绝缘结构复杂,影响其绝缘性能的原因很多,发生事故的概率大于电缆本体,同时在电缆中间接头处获取信号比从电缆本体获取信号灵敏度要高且容易实现,因

此通常电缆局部放电在线检测方法亦多注重于电缆附件局部放电的检测,或者在重点检测电缆中间接头和终端的同时兼顾两侧电缆局部放电的检测。电缆局部放电在线检测方法中主要的检测方法有差分法 耦合法[6、7、8、9][3、4]、方向耦合法、电磁[13、14、15、16][5]、电容分压法[10]、REDI局部放电测量法 [18][11、12]、超高频电容法、超高频电感法[17]、超声波检测法等。在众多检测方法中,差分法、方向耦合法、电 磁耦合法检测技术目前已成功应用到现场测量中。下面简要的介绍这些方法的原理和特点。 1. 电缆局部放电在线检测方法中主要的检测方法 1.1. 差分法(the differential method) 差分法是日本东京电力公司和日立电缆公司共同开发的一种方法。其基本原理见图1。将两块金属箔通过耦合剂分别贴在275kV XLPE电缆中间接头两侧的金属屏蔽筒上(此类中间接头含有将两端金属屏蔽筒连接隔断的绝缘垫圈),金属箔与金属屏蔽之间构成一个约为1500~2000pF 的等效电容。两金属箔之间连接50欧姆的检测阻抗。金属箔与电缆屏蔽筒的等效电容、两段电缆绝缘的等效电容(其电容值基本认为相等)与检测阻抗构成检测回路。当电缆接头一侧存在局部放电,另一侧电缆绝缘的等效电[3] 容起耦合电容作用,检测阻抗便耦合到局部放电脉冲信号。耦合到的脉冲信号将输入到频谱分析仪中进行窄带放大并显示信号。研究发现,频谱分析仪中心频率设在10~20MHz时,信噪比最高。差分法的检测回路

电气设备局部放电检测技术的思考

电气设备局部放电检测技术的思考 发表时间:2018-05-02T11:44:18.290Z 来源:《科技中国》2017年11期作者:安军红[导读] 摘要:在电气设备中,局部放电检测技术是一种公认的绝缘状态评判办法,目前该技术的应用尤为广泛,且成效显著。设备局部放电过程中,会在周边的空间中产生电气、声、光等变化,而伴随着这些变化的产生,可为设备绝缘状态提供相应的检测信号。本文主要对电气设备局部放电检测技术进行了研究和思考。 摘要:在电气设备中,局部放电检测技术是一种公认的绝缘状态评判办法,目前该技术的应用尤为广泛,且成效显著。设备局部放电过程中,会在周边的空间中产生电气、声、光等变化,而伴随着这些变化的产生,可为设备绝缘状态提供相应的检测信号。本文主要对电气设备局部放电检测技术进行了研究和思考。 关键词:电气设备;局部放电;检测技术;绝缘介质;高场强区域前言:局部放电与闪络和击穿不同,其属于绝缘部分区域的微小击穿。而电器设备中的绝缘材料通常都是由有机材料构成,如环氧、绝缘纸等等,由于其在运行过程时常出现杂质和气泡问题,进而使绝缘介质表面产生高场强区域,最终出现了局部放电的现象。 1电气设备局部放电检测技术局部放电测量工作通常都是在设备运行、现场试验以及设备出厂的过程中进行,借助局部放电定位、模式以及强度等因素,对测量结果的精准性进行判断。在此过程中,检测技术处于基础与核心的地位。结合上述几个重要因素,可对介质的绝缘状态进行精准、合理的评估。具体分析如下: 1.1脉冲电流法 目前,该方式是唯一具有国际认证标准的检测方法,其主要是借助设备的接地点和中性点,对局部放电所导致的脉冲电流进行测量,由此可精准获得放电频次、放电相位以及实际放电量等信息。在传统的测量方式中,通常可分为窄带测量和宽带测量2种。前者频带宽度较窄,通常保持在9~30KHz之内,具有强大的抗干扰能力和较高的灵敏度,但缺陷在于信息丰富度低和脉冲的分辨率低等等。后者在应用过程中,检测频率范围在30~100KHz之间,具有信息量丰富、脉冲分辨率高峰优势,但缺陷在于噪音比较低。 基于上述两种检测方式中存在的缺陷和不足,目前,相关学者尝试将更高检测频率应用于实践测量工作中,如测量阻抗,其宽带频率为30KHz,该方式主要借助了特殊的数据处理办法,对噪声加以剔除,并结合脉冲表现特征中局部脉冲和噪声脉冲之间的差别,实现了脉冲在频域和时域的变换,并对各脉冲的等效时间和宽带进行精准计算。该方式目前的应用十分广泛,其在局部放电识别、分离等领域也具有着十分突出的效果[1]。 1.2特高频检测法 设备在局部放电过程中,所产生的电磁波谱特性与放电间隙绝缘强度和电源的几何波形之间存在着十分密切的关系。若实际的放电间隙较小,则高频电磁波的辐射水平也就比较高。 特高频检测方式起初在气体组合电器(GIS)中应用较为广泛,据相关研究实验表明,在GIS中局部放电中,信号通常都是以横磁波、横电波以及横电磁波等形式传播。发生于变压器中的局部放电,由于绝缘结构具有一定的复杂性,进而导致电磁波在传播的过程中出现了衰减和折反射的现象,与此同时,变压器内箱壁同样也会影响电磁波传播,进而大幅度增加了局部放电测量工作的难度。基于上述情况,相关研究人员又开展了一系列的实验研究,如将特制的高频天线应用于变压器油阀中,使油箱内壁和天线保持在同一平面,并借助波导结构将所获取的信号导入到检测装置中,以此降低电磁波传播过程中产生的衰减,从而大幅度提升测量结果的精准性和测量过程的灵敏性。与此同时,研究人员还对变压器进行了深入分析和实验,即在其顶部开设介质窗,特高频天线便可借助该窗口对局部放电信号进行提取,该方式的实践应用效果尤为显著[2]。 1.3超声波检测法 GIS、变压器等设备在产生局部放电现象的过程中,通常都会经历电荷中和的过程,与此同时,也会产生一定的电流脉冲,最终产生类似于“爆炸”的现象,在结束放电之后,发生膨胀的区域才会慢慢恢复至原有体积。局部放电主要是脉冲形成,由此也会产生一系列的声波,另外,超声波检测法在具体应用的过程中,还可实现对机械波的检测,并以此判断颗粒实际的运动状态。 局部放电过程中,声波频率通常在10~107Hz,随着电气设备、环境条件、传播媒介、放电状态的不断变化,声波频率也会随之发生一定改变。在GIS中,局部放电不仅会产生声波,同时还伴有操作、机械振动、颗粒碰撞等产生的声波,但频率通常都比较低,在检测GIS局部放电的过程中,超声波传感器的谐振频率通常保持在25kHz左右,但在变压器中,则通常保持在150kHz左右。 相关研究人员借助超声传感器,实现了模型内部缺陷的检测,并通过超声符号的分量和幅值等因素,对缺陷类型进行精准定性,通过对超声信号进行分析,可对自由颗粒的实际移动方向进行精准推测。而变压器局部放电测量装置的诞生主要是依靠了LABVIEW平台,通过实验室研究,发现该装置在应用的过程中,可精准的获取局部放电量、模式以及放电位置等信息。 2局部放电检测技术存在的不足及未来发展途径电气设备局部放电检测技技术经常长时间的发展和应用,目前已经逐渐形成完善的检测流程和方法,其中,具有代表性的要数超声检测法和特高频检测法,其与常规的检测技术存在较大差别。在实际应用的过程中,可查找出很多绝缘缺陷问题,降低了事故问题的发生概率。但局部放电的故障和缺陷往往是针对于电气设备而言,若设备的电压等级较高,则一般无法从根本上解决顽疾问题。具体缺陷和发展途径分析如下:第一,在线监测和带电检测在具体应用的过程中,最显著的问题在于其自身存在的不可靠性,且缺乏完善的测试标准和准入机制,进而直接对监测低结果造成不良影响。解决该问题的办法,一方面要确保装置本身的灵敏性、精准性和可靠性,为此,需对信号分析技术、数据采集技术以及传感器技术等进行深入分析;另一方面,还应强化装置的检测力度,并对其质量加以控制[3]。 第二,GIS、变压器等设备在局部放电的过程中,最为常见的测量方式为超声波法和特高频法。但在实践应用的过程中,发现上述两种测量方式并不能发现设备内部的所有缺陷,可见,其仍存在较多缺陷问题。基于上述情况,相关研究人员已将检测技术的深入研究作为工作重点,且也开发出很多全新的检测方式,如光检测法、化学检测法等等,虽然这些技术目前均处于应用的初级阶段,存在一定的缺陷和不足之处,但随着科学技术的不断发展以及人员研究力度的不断加大,检测技术在未来发展过程中必定更加完善,其应用效果也会得到显著提升。

第章高频局部放电检测技术

《电网设备状态检修技术(带电检测分册)》 弟五章咼频局部放电检测技术 目录

第 1 节高频局部放电检测技术概述 发展历程 高频局部放电检测方法是用于电力设备局部放电缺陷检测与定位的常用测量方法之一,其检测频率范围通常在3MHz到30MHz之间。高频局部放电检测技术可广泛应用于电力电缆及其附件、变压器、电抗器、旋转电机等电力设备的局放检测,其高频脉冲电流信号可以由电感式耦合传感器或电容式耦合传感器进行耦合,也可以由特殊设计的探针对信号进行耦合。 高频局部放电检测方法,根据传感器类型主要分为电容型传感器和电感型传感器。电感型传感器中高频电流传感器(High Frequency Current Transformer ,HFCT具有便携性强、安装方便、现场抗干扰能力较好等优点,因此应用最为广泛,其工作方式是对流经电力设备的接地线、中性点接线以及电缆本体中放电脉冲电流信号进行检测,高频电流传感器多采用罗格夫斯基线圈结构。 罗格夫斯基线圈(Rogowski coils ,简称罗氏线圈)用于电流检测领域已有几十年历史。早在1887 年英国布里斯托大学的茶托克教授即进行了研究,把一个长而且形状可变的线圈作为磁位差计,并且通过测量磁路中的磁阻,试图研究更加理想的直流发电机。罗格夫斯基线圈检测技术在20 世纪90 年代被英国的公立电力公司(CEGB用在名为“ El-Cid ”的新技术里,用于测试发电机和电动机的定子[1]。罗氏线圈自公布起就受到了很多学者的重视,对于罗格夫斯基线圈的应用也越来越广泛,1963 年英国伦敦的库伯在理论上对罗格夫斯基线圈的高频响应进行了分析,奠定了罗格夫斯基线圈在大功率脉冲技术中应用的理论基础[2]。20 世纪中后期以来,国外一些专家学者和公司纷纷对罗氏线圈在电力上的应用进行了大量的研究,并取得了显着的成果。如法国ALSTHO公司有一些基于罗氏线圈电流互感器产品问世,其主要研究无源电子式互感器,在20世纪80 年代英国Rocoil 公司实现了罗格夫斯基线圈系列化和产业化。总而言之,在世界范围内对于罗格夫斯基线圈传感器的研究,于20 世纪60 年代兴起,在80 年代取得突破性进展,并有多种样机挂网试运行,90 年代开始进入实用化阶段。尤其进入21 世纪以来,微处理机和数字处理器技术的成熟,为研制新型的高频电流传感器奠定了基础。20 世纪90年代欧洲学者将罗氏线圈应用于局部放电检测,效果良好,并得到了广泛应用。例如意大利的博洛尼亚大学的. Montanari 和 A.

深圳市华测检测技术股份有限公司中国总部及华南检测基地建设项目

深圳市华测检测技术股份有限公司中国总部及华南检测基地建设项目 可行性研究报告 二○一○年三月 目录 第1章项目概 要 . (3) 一、项目建设内 容 (3) 二、项目建设目 标 (3) 三、研究结 论 (3) (一)经济指 标 (3) (二)研究结 论 (3) 第2章项目投资必要 性 (5) 一、拥有自有土地及物业,可避免租赁物业到期后对公司稳定经营和战略发展带来的限制和

风 险; ....................................................................................................................................... . (5) 二、拥有自有土地及物业,公司可进行集约化管理,并因无须支付物业租金而可有效降低公 司经营成本,提升公司盈利水 平; (5) 第3章项目建设方 案 . (6) 一、项目建设内 容 (6) 二、项目建设目 标 (6) 三、项目建设地点及规 模 (7) 四、项目建设规 划 (7) 五、时间安 排 (7) 第4章项目管理与人力资源配 置 (8) 一、项目管 理 (8)

二、人员编 制 (8) 第5章项目投资估算与资金筹 措 (9) 一、项目总投资估算及筹 措 (9) 二、投资回报估 算 (9) 第1章项目概要 一、项目建设内容本项目计划投资约18,285万元,用于建设华测中国总部及华南检测基地。投资中1,800万元用于土地的购置;16,485万元用于总部办公场楼和实验室大楼的建设。 二、项目建设目标华测中国总部将按照甲级写字楼标准进行规划和设计。 华南检测基地将按照国际一流检测实验室的标准要求进行规划设计,设计理念遵循:适度超前、模块建设、可持续发展的原则。 项目预期需要18个月的时间进行规划设计、工程报建、土建施工、室内外装修以及设备安装等,所有的项目建设工作分成若干模块,实验室建设完成之后迅速进行设备安装调试,设备的搬迁、购置和安装调试根据业务的需要分批次进行,在装修完工后三个月内完成,随后进入实际运营。 三、研究结论 (一)经济指标 项目建设总投资为18,285万元,投资回收期约为22年。(二)研究结论

变压器局部放电的原因分析

变压器局部放电的原因分析 其一,由于变压器中的绝缘体、金属体等常会带有一些尖角、毛刺,致使电荷在电场强度的作用下,会集中于尖角或毛刺的位置上,从而导致变压器局部放电;其二,变压器绝缘体中一般情况下都存在空气间隙,变压器油中也有微量气泡,通常气泡的介电系数要比绝缘体低很多,从而导致了绝缘体中气泡所承受的电场强度要远远高于和其相邻的绝缘材料,很容易达到被击穿的程度,使气泡先发生放电;其三,如果导电体相互之间电气连接不良也容易产生放电情况,该种情况在金属悬浮电位中最为严重。 局部放电的危害及主要放电形式 2.1 局部放电的危害 局部放电对绝缘设备的破坏要经过长期、缓慢的发展过程才能显现。通常情况下局部放电是不会造成绝缘体穿透性击穿的,但是却有可能使机电介质的局部发生损坏。如果局部放电存在的时间过长,在特定的情况下会导致绝缘装置的电气强度下降,对于高压电气设备来讲是一种隐患。 2.2 局部放电的表现形式 局部放电的表现形式可分为三类:第一类是火花放电,属于脉冲型放电,主要包括似流注火花放电和汤逊型火花放电;第二类是辉光放电,属于非脉冲型放电;第三类为亚辉光放电,具有离散脉冲,但幅度比较微小,属于前两类的过渡形式。 3 变压器局部放电检测方法 变压器局部放电的检测方法主要是以局部放电时所产生的各种现象为依据,产生局部放电的过程中经常会出现电脉冲、超声波、电磁辐射、气体生成物、光和热能等,根据上述的这些现象也相应的出现了多种检测方法,下面介绍几种目前比较常见的局部放电检测方法。 3.1 脉冲电流检测法 这种方法是目前国内使用较为广泛的变压器局部放电检测方法,其主要是通过电流传感器检测变压器各接地线以及绕组中产生局部放电时引起的脉冲电流,并以此获得视在放电量。电流传感器一般由罗氏线圈制成。主要优点是检测灵敏度较高、抗电磁干扰能力强、脉冲分辨率高等;缺点是测试频率较低、信息量少。 3.2 化学检测法 化学检测法又被称为气相色谱法。变压器出现局部放电时,会导致绝缘材料被分解破坏,在这一过程中会出现新的生成物,通过对这些生成物的成分和浓度进行检测,能够有效的判断出局部放电的状态。这种方法的优点是抗电磁干扰较强,基本上能够达到不受电磁干扰的程度,也比较经济便捷,还具有自动识别功能;但该检测方法也存在一些缺点:由于生成物的产生过程时间较长,故此延长了检测周期,只能发现早期故障,无法检测突发故障,并且该

目前国家认可的第三方检测中心

目前,CPSC认可的中国区第三方检测机构有: BACL(Shenzhen) 倍科(深圳)电子技术服务有限公司https://www.doczj.com/doc/4115800702.html, Beijing PONY Testing Center 北京谱尼测试中心https://www.doczj.com/doc/4115800702.html, Bureau Veritas Consumer Products Services (Guangzhou) Co. Ltd. 必维消费品服务(广州)有限公司https://www.doczj.com/doc/4115800702.html,/cps Bureau Veritas Consumer Products Services Shanghai Co., Ltd. 必维消费品服务上海有限公司https://www.doczj.com/doc/4115800702.html,/cps Bureau Veritas Shenzhen Co., Ltd. 必维深圳有限公司https://www.doczj.com/doc/4115800702.html,/cps Centre Testing International 华测检测https://www.doczj.com/doc/4115800702.html, Centre Testing International (Shanghai Branch) 华测检测上海分公司https://www.doczj.com/doc/4115800702.html, CMA Testing and Certification Laboratories (Shanghai) Co., Ltd 联合厂商会检定中心(上海)有限公司https://www.doczj.com/doc/4115800702.html, Consumer Testing Laboratories (Shenzhen) Co., Ltd.

康玛产品测试(深圳)有限公司https://www.doczj.com/doc/4115800702.html, CTS (Ningbo) Testing Service Technology Co., Ltd. CTS宁波测试https://www.doczj.com/doc/4115800702.html, CTT Technology Co. Ltd. 中鼎检测机构https://www.doczj.com/doc/4115800702.html, Dongguan EMTEK Co., Ltd 东莞信测科技有限公司https://www.doczj.com/doc/4115800702.html, Dongguan Reliance Technical Service Ltd. 东莞启汇技术服务有限公司https://www.doczj.com/doc/4115800702.html,/ Eco-industrial and Environmental Test Center, Graduate School at Shenzhen, Tsinghua University 清华大学深圳研究生院工业生态与环境检测中心 https://www.doczj.com/doc/4115800702.html,/index.jsp Guangzhou GRG Metrology and Test Technology Co., Ltd. (GRGT) 广州广电计量测试技术有限公司https://www.doczj.com/doc/4115800702.html, Guangzhou Vkan Certification & Testing Institute (CVC) 国家日用电器质量监督检验中心广州威凯检测技术研究院https://www.doczj.com/doc/4115800702.html, Guangzhou Worldwide Standards and Testing Co. Ltd. 广州环宇标准及检测技术公司https://www.doczj.com/doc/4115800702.html,

入侵检测技术 课后答案

习题答案 第1章入侵检测概述 思考题: (1)分布式入侵检测系统(DIDS)是如何把基于主机的入侵检测方法和基于网络的入侵检测方法集成在一起的? 答:分布式入侵检测系统是将主机入侵检测和网络入侵检测的能力集成的第一次尝试,以便于一个集中式的安全管理小组能够跟踪安全侵犯和网络间的入侵。DIDS的最初概念是采用集中式控制技术,向DIDS中心控制器发报告。 DIDS解决了这样几个问题。在大型网络互联中的一个棘手问题是在网络环境下跟踪网络用户和文件。DIDS允许用户在该环境中通过自动跨越被监视的网络跟踪和得到用户身份的相关信息来处理这个问题。DIDS是第一个具有这个能力的入侵检测系统。 DIDS解决的另一个问题是如何从发生在系统不同的抽象层次的事件中发现相关数据或事件。这类信息要求要理解它们对整个网络的影响,DIDS用一个6层入侵检测模型提取数据相关性,每层代表了对数据的一次变换结果。 (2)入侵检测作用体现在哪些方面? 答:一般来说,入侵检测系统的作用体现在以下几个方面: ●监控、分析用户和系统的活动; ●审计系统的配置和弱点; ●评估关键系统和数据文件的完整性; ●识别攻击的活动模式; ●对异常活动进行统计分析; ●对操作系统进行审计跟踪管理,识别违反政策的用户活动。 (3)为什么说研究入侵检测非常必要? 答:计算机网络安全应提供保密性、完整性以及抵抗拒绝服务的能力,但是由于连网用户的增加,网上电子商务开辟的广阔前景,越来越多的系统受到入侵者的攻击。为了对付这些攻击企图,可以要求所有的用户确认并验证自己的身份,并使用严格的访问控制机制,还可以用各种密码学方法对数据提供保护,但是这并不完全可行。另一种对付破坏系统企图的理想方法是建立一个完全安全的系统。但这样的话,就要求所有的用户能识别和认证自己,还要采用各种各样的加密技术和强访问控制策略来保护数据。而从实际上看,这根本是不可能的。 因此,一个实用的方法是建立比较容易实现的安全系统,同时按照一定的安全策略建立相应的安全辅助系统。入侵检测系统就是这样一类系统,现在安全软件的开发方式基本上就是按照这个思路进行的。就目前系统安全状况而言,系统存在被攻击的可能性。如果系统遭到攻击,只要尽可能地检测到,甚至是实时地检测到,然后采取适当的处理 –– 1

局部放电测试方法

局部放电测试方法

局部放电测试方法 随着电力设备电压等级的提高,人们对电力设备运行可靠性提出了更加苛刻的要求。我国近年来110kV以上的大型变压器事故中50%是属正常运行下发生匝间或段间短路造成突发事故,原因也是局部放电所致。局部放电检测作为一种非破坏性试验,越来越得到人们的重视。 虽然局部放电一般不会引起绝缘的穿透性击穿,但可以导致电介质(特别是有机电介质)的局部损坏。若局部放电长期存在,在一定条件下会导致绝缘劣化甚至击穿。对电力设备进行局部放电试验,不但能够了解设备的绝缘状况,还能及时发现许多有关制造与安装方面的问题,确定绝缘故障的原因及其严重程度。因此,高压绝缘设备都把局部放电的测量列为检查产品质量的重要指标,产品不但在出厂时要做局部放电试验,而且在投入运行之后还要经常进行测量。对电力设备进行局部放电测试是一项重要预防性试验。 根据局部放电产生的各种物理、化学现象,如电荷的交换,发射电磁波、声波、发热、光、产

生分解物等,可以有很多测量局部放电的方法。总的来说可分为电测法和非电测法两大类,电测法包括脉冲电流法、无线电干扰法、介质损耗分析法等,非电测法包括声测法、光测法、化学检测法和红外热测法等。 一、电测法 局部放电最直接的现象即引起电极间的电荷移动。每一次局部放电都伴有一定数量的电荷通过电介质,引起试样外部电极上的电压变化。另外,每次放电过程持续时间很短,在气隙中一次放电过程在10 ns量级;在油隙中一次放电时间也只有1μs。根据Maxwell电磁理论,如此短持续时间的放电脉冲会产生高频的电磁信号向外辐射。局部放电电检测法即是基于这两个原理。常见的检测方法有脉冲电流法、无线电干扰法、介质损耗分析法等。 1.脉冲电流法 脉冲电流法是一种应用最为广泛的局部放电测试方法。脉冲电流法的基本测量回路见图3-5 。图中C x代表试品电容,Z m(Z'm)代表测量阻抗,C k代表耦合电容,它的作用是为C x与

第三方检测公司

转载:近年来,检测行业成为全球发展较快的行业之一,年增长在15%左右。而我国检测行业已经接近900亿元人民币的规模,年平均增长率在20%左右。目前获得CNAS、CMA认可的实验室已经超过2万余家,现经权威机构综合评估,评选出2014年中国市场第三方检测机构排行榜。 1、微谱技术 微谱技术是中国未知成分分析领域的开创者者,掌握顶尖的微观谱图分析技术,拥有强大的微观谱图解析数据库,微谱技术总部位于上海,在广州设有分公司,已成长为国内未知成分分析领域无可争议的领导者!在国内率先将微观谱图分析技术大规模推广应用到工业生产领域,是中国化工技术服务领域的领导者配方分析的开创者,微观谱图数据库300万余、服务于10000余家客户满意率95%以上,配方需求、检测需求、了解成分以及工业诊断、异物分析、未知物剖析、科研仪器使用需求等,帮助企业完成新产品开发、产品改进等。 2、天祥(Intertek) 目前 Intertek 已在全球100 个国家拥有1,000 多个办事处及实验室,共有超过27,000 名全职专业人员,为各行业客户提供测试、检验、认证及各类产品的其他相关服务。Intertek 是第一家进入中国的国际商业检验机构,自1989 年以来已在全国建立了20 多个分支机构及具有国际水准的实验室,拥有超过4,000名专业技术人才,业务领域覆盖分析服务、商用及电子电气、消费品、工业服务、矿产品、石油、化工及农产品服务等行业。 3、中国检验认证集团(CCIC) 中国检验认证集团是经国家质量监督检验检疫总局许可、国家认证认可监督管理委员会资质认定、中国合格评定国家认可委员会认可,以“检验、鉴定、认证、测试”为主业的独立第三方检验认证机构。中国质量认证中心即隶属于CCIC。CCIC的服务范围主要涵盖石油、化工、农产品、工业品、消费品、食品、汽车、建筑、物流、零售等行业。目前,CCIC 已在全球拥有约300 家分支机构和200 家合作实验室,员工逾16,000 人,运营网络已覆盖全球20 余个国家和地区。4、谱尼测试(PONY) PONY谱尼测试是国内大型综合性检测机构,检测报告得到美国、英国、德国等70多个国家及地区认可,具有国际公信力。总部位于中国北京,下设天津、青岛、上海、苏州、宁波、武汉、深圳、广州、厦门、香港公司,及健康与环保、

第章 高频局部放电检测技术

《电网设备状态检修技术(带电检测分册)》第五章高频局部放电检测技术 目录

第1节高频局部放电检测技术概述 发展历程 高频局部放电检测方法是用于电力设备局部放电缺陷检测与定位的常用测量方法之一,其检测频率范围通常在3MHz到30MHz之间。高频局部放电检测技术可广泛应用于电力电缆及其附件、变压器、电抗器、旋转电机等电力设备的局放检测,其高频脉冲电流信号可以由电感式耦合传感器或电容式耦合传感器进行耦合,也可以由特殊设计的探针对信号进行耦合。 高频局部放电检测方法,根据传感器类型主要分为电容型传感器和电感型传感器。电感型传感器中高频电流传感器(High Frequency Current Transformer ,HFCT)具有便携性强、安装方便、现场抗干扰能力较好等优点,因此应用最为广泛,其工作方式是对流经电力设备的接地线、中性点接线以及电缆本体中放电脉冲电流信号进行检测,高频电流传感器多采用罗格夫斯基线圈结构。 罗格夫斯基线圈(Rogowski coils,简称罗氏线圈)用于电流检测领域已有几十年历史。早在1887年英国布里斯托大学的茶托克教授即进行了研究,把一个长而且形状可变的线圈作为磁位差计,并且通过测量磁路中的磁阻,试图研究更加理想的直流发电机。罗格夫斯基线圈检测技术在20世纪90年代被英国的公立电力公司(CEGB)用在名为“El-Cid”的新技术里,用于测试发电机和电动机的定子[1]。罗氏线圈自公布起就受到了很多学者的重视,对于罗格夫斯基线圈的应用也越来越广泛,1963年英国伦敦的库伯在理论上对罗格夫斯基线圈的高频响应进行了分析,奠定了罗格夫斯基线圈在大功率脉冲技术中应用的理论基础[2]。20世纪中后期以来,国外一些专家学者和公司纷纷对罗氏线圈在电力上的应用进行了大量的研究,并取得了显着的成果。如法国ALSTHOM公司有一些基于罗氏线圈电流互感器产品问世,其主要研究无源电子式互感器,在20世纪80年代英国Rocoil公司实现了罗格夫斯基线圈系列化和产业化。总而言之,在世界范围内对于罗格夫斯基线圈传感器的研究,于20世纪60年代兴起,在80年代取得突破性进展,并有多种样机挂网试运行,90年代开始进入实用化阶段。尤其进入21世纪以来,微处理机和数字处理器技术的成熟,为研制新型的高频电流传感器奠定了基础。20世纪90年代欧洲学者将罗氏线圈应用于局部放电检测,效果良好,并得到了广泛应用。例如意大利的博洛尼亚大学的. Montanari和A.

紫外检测法用于电气设备局部放电

紫外检测法用于电气设备局部放电 1.1概述 随着工业发展和社会进步,电力系统向大容量、超高压和特高压方向发展,对系统运行可靠性要求越来越高。电力设备是组成电力系统的基本元件,其工作状况直接关系到电力系统的安全经济运行。电气设备绝缘材料多为有机材料,如矿物油,绝缘纸或各种有机合成材料,绝缘体各区域承受的电场一般是不均匀的,而电介质本身通常也是不均匀的,有的是由不同材料组成的复合绝缘体,如气体一固体复合绝缘、液体一固体复合绝缘以及固体一固体复合绝缘等。有的虽是单一的材料,但是在制造或使用过程中会残留一些气泡或其他杂质,于是在绝缘体内部或表面就会出现某些区域的电场强度高于平均电场强度,或某些区域的击穿场强低于平均击穿场强,因此在某些区域就会先发生放电,而其他区域仍然保持绝缘特性,这就形成了局部放电。 在电场作用下,导体间绝缘仅部分区域被击穿的电气放电现象称为局部放电。对于被气体包围的导体附近发生的局部放电,可称之为电晕。局部放电可能发生在导体边缘,也可能发生在绝缘体的表面或内部,发生在表面的称为表面局部放电,发生在内部的称为内部局部放电。实践证明局部放电是造成高压电气设备最终发生绝缘击穿的主要原因,故对电气设备局部放电的监测尤为重要。 局部放电对电气设备会带来严重的危害,主要表现在由于放电产生的局部发热、带电粒子的撞击、化学活性生成物以及射线等因素对绝缘材料的损害。虽然局部放电能量很小,但在运行电压作用下长期发展,最终会导致绝缘击穿,对设备的安全运行构成威胁,甚至造成电力设备运行时出现故障造成供电中断,其经济损失不可估量。我国曾对110kV及以上的变压器统计表明,50%的事故是匝间绝缘事故;1971-1974年我国对170台6kV及以上的电机事故进行统计,发现绝缘事故占60%,对1984-1987年间的发电机事故调查表明,定子绕组绝缘击穿和相间短路占定子事故的48.4%。面对电力系统口趋完善的保护措施,要求提高对设备的在监检测能力,对不同的电力设备制定出有效的测试及判断标准,在事故发展初期提出改善措施,以保证高压设备的运行安全,节约维修费用。 1. 2局部放电检测的常用方法及存在的问题 局部放电测量的方法很多,主要是根据放电过程中发生的物理化学效应,通过测量局部放电所产生的电荷交换、能量的损耗、发射的电磁波、声音和光以及生成的新物质来表征部放电的状态。常见的检测方法有:脉冲电流法、色谱分析

华测检测发展之路的启示

华测检测发展之路的启示 以华测检测发展的成功案例为切入点进行深入的分析与总结,为计量检定机构改革、事业单位的转型发展方向提出一些思考。 标签:华测检测计量检定改革市场需求 深圳市华测检测技术股份有限公司(以下简称“华测检测”)是国内一家第三方检测服务机构,上市公司,主要工作是为多种行业和产品提供一站式的全面质量解决方案,提升自身产品品质,保证企业综合竞争实力。其所涉及的领域十分广泛,主要包括消费品、工业品、生命科学和贸易保障等方面的技术检测。在全国各地拥有30余家分支机构,旗下实验室囊括了电磁类、物理类、化学类、机械类等多领域,这些实验室均得到了CNAS国家合格评定委员会和检查机构的认可,并且取得了CMA计量认证,同时遵从国际ISO17025 、ISO17020的统一管理。 1 计量检定机构及华测检测的发展历程 1.1 计量检定机构计量发展已有五千年的历史,新中国成立后,我国政府高度重视计量工作,基本建立了一个包含法律法规、行政管理和技术保障的计量体系。计量行政管理以国家质检总局和省、地(市)、县三级质量技术监督局为主,负责组织《计量法》的实施,行政授权的法定计量技术检定机构承担着包括科学计量、法制计量、工程计量三方面的任务。 1.2 华测检测2002年经过修订的《中华人民共和国进出口商品检验法》明确指出,获取国家合法商检部门认证的检测机构可以接受国外检验检测机构或对外贸易关系人的合法委托,对所出口的商品进行质量检测。从此,检测行业由国家一统的局面被打破,民营资本正式涌入检测行业。据不完全统计,2002年以后,检测行业逐渐成为服务业中前景最好、发展速度最快的一支。在公开资料统计中可以看出,民营和外资的第三方检测机构以平均每年28%的增长势头发展,2013年第三方检测市场规模超过550亿元。而华测检测的成功之处就在于能够把握住市场动向,及时搭上了政府体制改革的顺风车,成为第三方检测机构发展的“领头羊”。一是市场导向与技术导向结合,通过初期在市场的“高举高打”取得一定的市场成功后,便及时地设立研究院进行前沿领域的研究,开展检验检测等以技术为导向的业务;二是利益相关方的整合,和政府共建测试平台、实行内部持股的激励措施、使客户多了检测渠道的选择,形成利益相关方共赢的局面;三是宏观经济环境所要求,华测投入大量的资金使检测能力与资质能够及时地做到与时俱进,赢得更多的生存和发展的空间,强者恒强。 2 两种检测体制的对比 2.1 体制的对比2003年以前,法定计量检测机构伴随着国家计划经济,长期在各个行业履职检测职能,为国民生产提供量值传递、保障量值准确发挥了有

相关主题
文本预览
相关文档 最新文档