当前位置:文档之家› 路堑边坡工程工程研究的现状与发展

路堑边坡工程工程研究的现状与发展

路堑边坡工程工程研究的现状与发展
路堑边坡工程工程研究的现状与发展

一、路堑边坡工程现状与发展

(一)边坡工程进步和发展

在土木工程生产实践活动中,随着铁路、公路、库区或场地等工程的建设和发展,涉及了大量的边坡工程技术课题,工程技术人员积极应用有关工程地质学、岩体力学、岩土工程学和土力学等学科的知识和成果,积累了丰富的边坡工程经验,在理论和实践两方面都取得了长足的进步和发展。近年来,随着高速公路建设向山区延伸和发展,由于其技术等级较高,且我国山区地形条件困难、地质结构复杂、地质环境背景脆弱,深挖高填十分普遍,边坡工程问题日益突出。同时也遭遇了不少边坡工程失败和损失。

(二)路堑边坡工程设计现状

设计现状有以下特点:具有数量集中、种类较多、性质繁杂、勘查不足等特点,但又存在一定的场区或区段规律;有别于重点复杂的边坡工程设计;缺乏实用的勘察设计工作程序和细则;直接危害公共安全,显著影响工程造价。

(三)福建地区边坡工程问题

福建地区,是我国多山省份之一,俗有“八山一水一分田”之称,山地灾害较为严重。上世纪90年代后期,积极开展山区高速公路建设,不可避免地遭遇路堑高边坡工程技术难题;特别是,由于福建地区一般地层风化深度较大,岩体结构破碎,覆盖层较厚,且江河沟谷发育,不良地质堆积广为分布,在切坡筑路过程中,经常遇到边坡变形和破坏问题,尤以土质路堑边坡或类土质路堑边坡更为严重。

(四)技术路线和实施对策

主要从以下几个方面进行考虑:明确边坡工程实用类型,抽象和归纳边坡工程地质模式,分析和研究其相关变形破坏机制,建立边坡稳定性分析计算方法,提出边坡坡形坡率设计原则和方法,建立相应防护加固工程措施或对策,进行动态设计与信息化施工。

(五)动态设计总体思路

设计总体思路如下:高边坡工程档案(预设计文件、地勘资料),高边坡工程地质调查(地形、地质、地下水等),防护加固工程方案(边坡类型、坡形坡率、稳定性分析计算、防护加固工程对策),现场校对和重点核查,施工图设计与审查,动态跟踪与设计调整,竣工稳定性评价。

二、路堑边坡工程实用分类

共分为以下几类:土质边坡,岩质边坡,二元结构边坡,复合结构边坡。

(一)土质边坡

土质边坡可分为:纯土质边坡,转载请保留此标记。边坡(非均质)。(二)岩质边坡

岩质边坡可分为:岩石边坡,破碎岩石边坡,顺层岩石边坡。

(三)二元结构边坡

二元结构边坡可分为:陡倾接触边坡,缓倾接触边坡,破碎接触边坡。(四)类土质路堑边坡

类土质路堑边坡可分为:坡残积土边坡,风化土边坡,崩滑流堆积边

坡,复杂结构边坡。

三、工程地质模式(坡体结构)

(一)坡残积土边坡工程地质模式

1.坡体结构由上覆坡积土层和下伏残积土层所组成,坡体变形和破坏一般体现上覆坡积层沿下伏残积层的坍滑变形和破坏。这种情况一般其接触界面倾角为25°~30°,如图1。

1.坡体结构由上覆坡积土层和下伏残积土层所组成,坡体变形和破坏一般体现上覆坡积层沿下伏残积层的坍滑变形和破坏。这种情况一般其接触界面倾角为25°~30°,

2.边坡坡面揭露地层为坡残积层,其下基座为基岩(边坡刷方线以下),组成坡体的坡残积土层,常常发生沿基岩顶面的变形和破坏。在这种情况下,基岩顶面产状一般顺倾坡面,倾角为20°~25°,如图2。

3.边坡主体由坡残积土层及下部风化土层组成,如果设计坡率较陡,或者因为持续暴雨作用,在防护工程不及时的情况下,容易产生局部台阶坍塌变形和破坏,甚至有可能在地下水的长期作用和影响下产生较大规模的滑动变形和破坏,如图3。

(二)风化土边坡工程地质模式

1.边坡开挖切削岩层风化壳,一般为全强风化土层,经常发生风化壳土层依附其下伏相对风化轻微岩层表面的滑动变形和破坏。这种情况,在花岗岩地区或凝灰岩地区较为常见;不均匀风化界面容易形成

地下水和粘性物质的聚集,在特定的形态组合下产生变形和破坏,见图4。

2.边坡主体由坡残积层及强风化土层组成,局部夹强至中风化岩体,由于地质构造作用和影响,常见一些强烈风化软弱带,如果其产状倾向坡面,在边坡开挖切削坡脚支撑并致使其软弱带临空暴露的情况下,极易产生上覆风化岩土体沿其下伏基岩顶面产生较大规模的滑动变形和破坏,见图5。

3.边坡主体由坡残积土层及砂土状强风化层组成,由于其原岩结构面发育,常见一组或多组陡倾角和缓倾角裂面长大贯通,并存在倾向临空的缓倾角结构面,在各不利结构面的组合作用下,经常发生陡缓裂面切割块体沿其下伏缓倾角裂面的变形和破坏,见图6。

(三)崩滑流堆积边坡工程地质模式

1.边坡主体由崩坡积体组成,根据崩塌地质现象的特点与规律,崩坡积体的自然稳定坡角一般为35°~38°,在路堑边坡的开挖过程中,常见其沿稳定坡角面的变形和破坏;或者,依附其堆积界面产生更大规模的滑动变形和破坏,见图7。

2.边坡主体由滑坡堆积体组成,结合滑坡地质现象的特点与规律,在路堑边坡的开挖过程中,常因路堑开挖滑坡中下部,致使滑坡坡脚失去支撑,破坏坡体力学平衡,从而导致滑坡中前部的复活变形和破坏,如不及时采取有效的治理工程措施,甚至引起更大规模的滑动变形和破坏,见图8。

3.边坡主体由泥石流堆积体组成,基于泥石流地质现象的特点,在

路堑边坡的开挖过程中,由于泥石流堆积体一般含水量普遍较高,地下水丰富,岩土强度较低,较易产生堑坡变形和破坏,如不及时采取有效的治理工程措施,甚至引起大规模的滑动变形和破坏,即滑坡地质灾害,见图9。

四、变形破坏机制(失稳类型)

主要从以下方面分析:力学基础,园弧或似园弧破坏,平面型破坏,折线型破坏,复合型破坏,其它形式破坏。

(一)力学基础

主要有:岩土性质-重度、摩擦角、粘聚力,极限坡高和极限坡角,不连续面,有效应力定律,非饱和土力学理论。

(二)园弧或似园弧破坏

主要有:均质土坡,坡残积土坡,砂土状强风化,碎块状强风化(碎裂),不良地质堆积体。对于类土质路堑边坡,我们经常发现,如不考虑地质不连续面的存在和影响,其坡体变形破裂面一般呈园弧或似园弧的形状。边坡呈园弧或似园弧破坏一般发生在均质土坡、坡残积土坡、砂土状强风化层、碎块状强风化层(碎裂结构)、以及不良堆积体内部的变形和破坏。

(三)平面型破坏

有两种情况:地质不连续面平行坡面,倾向临空;两个或两个以上不连续面组合,交线倾向临空(楔体破坏)。由于地质不连续面走向大体平行于坡面走向并倾向线路,其倾角小于边坡坡率,且大于其岩土抗剪强度所能维持的稳定坡度,这种情况一般发生平面型破坏。对于

具有两个或两个以上的地质不连续面组合的情况,一般是以一组不连续面为主控滑移面,其余为空间控制面,这种情况也可归纳为平面型破坏(在岩质边坡中,常称之为楔体破坏)。

(四)折线型破坏

一般指不利结构面的组合和崩滑流堆积等不良地质介面。在类土质路堑边坡坡体结构中,存在两个或两个以上的地质不连续面,其走向大体平行于坡面且倾向线路,由多个地质不连续面组成折线型破裂面,其上岩土以此为依附面产生滑移变形和破坏,这种情况下的边坡破坏为折线型破坏。

(五)复合型破坏

分为:平面型和园弧型的复合,折线型和园弧型的复合,崩滑流堆积等不良地质介面。由于边坡物质组成和坡体结构的特殊性和复杂性,单一破坏形式的发生往往较少,或者其规模相对较小,一般的边坡变形和破坏是上述几种基本破坏类型的复合,故称之为复合型破坏。复合型破坏可以简单地归纳为平面型和园弧型的复合和折线状复合形式,崩滑流等不良地质堆积体的变形和破坏,属于复合型破坏。(六)其它形式破坏

主要表现为风化剥落,流石、流泥和崩塌落石。

五、稳定性分析计算

从以下几个方面来分析:计算模式,计算指标,计算方法和其它问题。(一)计算模式

计算模式主要有:均匀层状型,基底控制型,结构面组合型和固定滑

面型。

均匀层状型当坡体组成地质不连续面相对平缓成层,层内岩土性质比较简单或均匀,这种情况可以抽象为均匀层状型计算模式。其相应边坡变形破坏机理类型为园弧或似园弧破坏,这样即可通过搜索最危险园弧滑裂面计算其边坡稳定系数,见图10。

基底控制型当坡体内部存在某种控制性不连续面时,这个不连续面可以是基岩顶面、不同成因或不同时期堆积界面、差异风化界面、地层层面、断层节理面、以及软弱破碎带控制界面,由于这种控制性地质不连续面的存在,在坡体稳定性分析计算中起决定性或控制性作用,这类边坡可以归纳为基底控制型计算模式。其相应边坡变形破坏机理类型主要体现为平面型破坏,或者平面型与园弧型的复合破坏形式。在具体分析计算过程中,是以基底控制界面为剪出依附面,结合园弧搜索,搜寻最危险滑裂面,从而计算确定边坡稳定系数,

结构面组合型当坡体内部存在两组或两组以上倾向线路的不利结构面时,其坡体的变形和破坏往往受其结构面组合形态与规律控制,常见有陡倾结构面与缓倾结构面的组合,这类边坡即归纳为结构面组合型计算模式。。理类型主要体现为折线型破坏或折线型与园弧型的复合破坏,据此搜索优势滑裂面,计算确定坡体稳定系数,

固定滑面型对于崩滑流堆积体,由于历史灾害原因存在不良地质界面,或岩土强度薄弱面在路堑边坡开挖过程中,极易沿其不良地质界面产生坡体变形和破坏,而这个面又是固定的,可以借助勘察手段查明,这种情况为固定滑面型计算模式。对于固定滑面型计算模式,其

危险滑裂面的确定较为准确,计算过程相对简单,计算结果更为可靠,(二)计算指标

主要有以下计算指标:室内试验指标,现场试验指标,相关经验指标和反算指标。

室内试验指标室内试验是结合边坡工程地质勘查,利用工程地质勘探孔取得原状样或扰动样,通过室内试验的方法,获取边坡岩土基本物理力学指标,求得岩土抗剪强度参数值。

现场试验指标现场试验是在边坡工程现场进行现场大型剪切试验,或者,给合工程地质勘探钻孔进行孔内现场剪切试验,对于软弱地层亦可采用十字板剪切试验,以及其它结构面强度现场试验方法等,从而求得边坡岩土现场试验指标。

相关经验指标在岩土工程勘查设计工作实践中,经验知识是不可或缺的重要内容之一,对于岩土强度指标,可以也应该通过工程地质类比的方法,利用既有工程中类似岩土的相关经验知识和指标数值,类比确定当前面临岩土工程强度指标。

反算指标指标反算是根据给定边坡工程变形性状,判断边坡稳定程度或稳定系数,采用数值反分析方法,经过反算确定边坡岩土主要强度指标。在类土质路堑边坡工程中,极限坡高与极限坡率状态反分析更为实用和可靠。

选择与确定力学性质指标的总体原则:以反算指标为主,有条件结合各种试验指标进行校核,考虑室内试验指标一般偏低,而现场试验指标一般偏高的特点,反算指标介于室内试验指标和现场试验指标之间

较为可靠;经验指标一般可以对拟定计算指标进行分析与判断,特别是,当发现反算指标与相关试验指标相冲突时,作为辅助手段,综合分析和判断确定计算指标。

(三)计算方法

主要有极限平衡法(推力传递法、摩根斯吞-普赖斯方法),图解法和工程地质比拟法。用摩根斯吞-普赖斯方法来进行边坡稳定性分析和边坡加固工程检算。

(四)其它问题

主要是指孔隙水压力,边坡渗流场和结构面强度问题。

六、坡形坡率设计原则和防护加固工程对策

(一)坡形坡率设计原则

坡形:台阶式边坡,台阶高度8~12m,完整岩体及顶级缓坡可设至15m左右。对于高边坡,常在坡体中部设置宽平台4~6m。

坡率:微风化岩0.25~0.50,中风化岩0.50~0.75,强风化岩0.75~1.00,坡残积层1.00~1.25,松散软弱土层1.25~1.50。

(二)防护加固工程对策

主要采取以下对策:坡面变形防护,浅表层变形防护,块体变形防护,深部变形防护,坡脚应力集中防护和地表、地下水引排处理。

坡面变形防护微~未风化岩体:岩面喷浆防护0.25~0.50;中~微风化岩体:挂网喷浆防护0.25~0.50;强~中风化岩体:护面墙防护0.50~0.75;全~强风化层:加厚拱型骨架防护0.75~1.00;坡残积层:拱型骨架防护、浆砌片石防护 1.00~1.25;松散土层:网

格骨架、浆砌片石、植草防护 1.25~1.50;绿色防护:人造景观,美化环境和生态工程。

浅表层变形防护下伏中~微风化岩:系统锚杆防护;上覆土层及强风化岩:锚杆框架防护。

块体变形防护以预应力锚杆框架及墩垫防护为主。

深部变形防护以预应力锚索框架及墩垫防护为主。

坡脚应力集中防护以坡脚设桩、墙等支挡结构防护为主,或加厚护面墙工程措施。

地表地下水引排处理对于坡体地下水引排,以仰斜平孔排水引排为主,结合墙背盲沟及结构泄水孔处理,有时还用边坡渗沟、支撑盲沟及重点部位引排等坡体地下水引排工程措施。对地表水引排,一般在路堑边坡堑顶均设有截排水天沟,坡面结合检查梯设急流槽,以及平台侧沟、路堑边沟等组成综合地表排水系统。

七、结语

1.大量工程实践表明,类土质路堑边坡与一般均质土边坡的变形和破坏具有明显的区别和不同。

2.类土质路堑边坡的稳定性分析和防护加固工程设计应基于其变形机制和破坏模式,根据不同的变形机制和潜在破坏模式设计相应的防护加固工程对策。

3.类土质路堑边坡变形破坏机理及其稳定性分析研究具有重要的理论意义和实用价值。

4.相关岩土测试技术尚需不断补充和完善。

边坡工程现状与发展

一、路堑边坡工程现状与发展 (一)边坡工程进步和发展 在土木工程生产实践活动中,随着铁路、公路、库区或场地等工程的建设和发展,涉及了大量的边坡工程技术课题,工程技术人员积极应用有关工程地质学、岩体力学、岩土工程学和土力学等学科的知识和成果,积累了丰富的边坡工程经验,在理论和实践两方面都取得了长足的进步和发展。近年来,随着高速公路建设向山区延伸和发展,由于其技术等级较高,且我国山区地形条件困难、地质结构复杂、地质环境背景脆弱,深挖高填十分普遍,边坡工程问题日益突出。同时也遭遇了不少边坡工程失败和损失。 (二)路堑边坡工程设计现状 设计现状有以下特点:具有数量集中、种类较多、性质繁杂、勘查不足等特点,但又存在一定的场区或区段规律;有别于重点复杂的边坡工程设计;缺乏实用的勘察设计工作程序和细则;直接危害公共安全,显著影响工程造价。 (三)福建地区边坡工程问题 福建地区,是我国多山省份之一,俗有“八山一水一分田”之称,山地灾害较为严重。上世纪90年代后期,积极开展山区高速公路建设,不可避免地遭遇路堑高边坡工程技术难题;特别是,由于福建地区一般地层风化深度较大,岩体结构破碎,覆盖层较厚,且江河沟谷发育,不良地质堆积广为分布,在切坡筑路过程中,经常遇到边坡变形和破坏问题,尤以土质路堑边坡或类土质路堑边坡更为严重。 (四)技术路线和实施对策 主要从以下几个方面进行考虑:明确边坡工程实用类型,抽象和归纳边坡工程地质模式,分析和研究其相关变形破坏机制,建立边坡稳定性分析计算方法,提出边坡坡形坡率设计原则和方法,建立相应防护加固工程措施或对策,进行动态设计与信息化施工。 (五)动态设计总体思路 设计总体思路如下:高边坡工程档案(预设计文件、地勘资料),高边坡工程地质调查(地形、地质、地下水等),防护加固工程方案(边坡类型、坡形坡率、稳定性分析计算、防护加固工程对策),现场校对和重点核查,施工图设计与审查,动态跟踪与设计调整,竣工稳定性评价。 二、路堑边坡工程实用分类 共分为以下几类:土质边坡,岩质边坡,二元结构边坡,复合结构边坡。 (一)土质边坡 土质边坡可分为:纯土质边坡,转载请保留此标记。边坡(非均质)。 (二)岩质边坡 岩质边坡可分为:岩石边坡,破碎岩石边坡,顺层岩石边坡。 (三)二元结构边坡 二元结构边坡可分为:陡倾接触边坡,缓倾接触边坡,破碎接触边坡。 (四)类土质路堑边坡 类土质路堑边坡可分为:坡残积土边坡,风化土边坡,崩滑流堆积边坡,复杂结构边坡。 三、工程地质模式(坡体结构) (一)坡残积土边坡工程地质模式 1.坡体结构由上覆坡积土层和下伏残积土层所组成,坡体变形和破坏一般体现上覆坡积层沿下伏残积层的坍滑变形和破坏。这种情况一般其接触界面倾角为25°~30°,如图1。1.坡体结构由上覆坡积土层和下伏残积土层所组成,坡体变形和破坏一般体现上覆坡积层沿下伏残积层的坍滑变形和破坏。这种情况一般其接触界面倾角为25°~30°,

逆向工程设计的最新国内外进展

逆向工程设计的最新国内外进展 逆向工程的现状及发展前景 逆向工程也称反求工程或反向工程,是根据已存在的产品或零件原型构造产品或零件的工程设计模型,并在此基础上对已有的产品进行剖析、理解和改进,是对已有设计的再设计。 逆向工程设计实施步骤如下: (1)设计前的准备工作。设计之前应确定设计的整体思路,对实物模型进行系统的分析,划分出模型的特征区,确定模型的基本构成形状的曲面类型,这些关系到相关软件的选择和软件模块的确定。 (2)零件原形的数字化。根据测量对象的特点确定扫描方法以及扫描设备,利用3D 扫描测量设备来获取零件实物表面点的三维坐标值。 (3)提取零件的几何特征。按测量数据的几何属性对其进行分割,分割方法一般可分为两类,一类是基于边界分割法,一类是基于区域分割法。区域分割法将相似几何特征的点划为同一区域,具有明确的几何意义,是较为常用的分割方法。 (4)零件CAD 模型的重建。将分割后的三维数据在CAD 系统中分别做表面模型的拟合,并通过表面片的拼接获取零件实物表面的CAD 模型。 (5)重建CAD 模型的检验与修正。由于测量得到的数据点往往存在一些数字误差,所以需要对曲面或曲线进行光顺处理,提高曲面质量。另外还要检验重建的CAD 模型是否满足精度或其他试验性能指标的要求,对不满足要求的应进行适当的调整修改,直至达到零件的标准 1.1接触式测量系统 接触式三坐标测量机(Coordinate Measure Machine,CMM) 可谓接触式测量的代表。接触式三坐标测量机通常是基于受力变形的原理,通过探头测取三维几何坐标数据。操作者事先设计规划好测量途径与方式,三坐标测量机便会按照所指定的路径测取三维几何坐标数据。一般来说,接触式三坐标测量机测量较稳定,易于定位,测量精度高,对被测物体的材质和色泽没有特殊要求。其主要缺点是测量效率低,测量探头的半径必须进行补偿,并且有可能会出现探头测不到的盲区。使用自动测量还有较多的参数必须决定,包括探头形状和大小、扫瞄间隔、步进距离、误差容许量、扫瞄速度、扫瞄方向等,这些都过分依赖操作者的经验,特别是在测量复杂产品零件时,确定最优的采样策略和路径较困难。另外,由于存在测量力,接触式三坐标测量机无法在一些软质表面进行测量。 1.2非接触式测量系统 非接触式测量根据测量原理的不同,大致有光学测量、超声波测量、电磁测量等方式。在逆向工程中最为常用是较为成熟的光学测量方法。其可分为:①基于光学三角形原理的激光扫描法;②基于相位偏移测量原理的莫尔条纹法;③基于工业CT 断层扫描图像法;④立体视觉测量方法。使用非接触测量产品零件测量速度快,不需要进行探头半径补偿。由于不存在测量力,可对橡胶、油泥、人体头像或超薄形物体进行扫描。但工件坐标定位较困难,测量精度较低,陡峭面不容易测量,另外被测产品零件表面特征(颜色、反光度、粗糙度、形状等) 对测量的精度影响较大2逆向工程的数据处理及常用软件数据处理是逆向工程的一个重要的技术环节,它决定了CAD 模型重建过程是否能够方便、准确地进行。使用测量设备测取的三维几何坐标数据都是一些离散点的点云数据,其中存在着噪声点,所以还需要相应的软件来处理点云数据。点云数据的处理包括噪声去除、多视对齐、数据精简、数据光

岩石路堑边坡稳定性分析

岩石路堑边坡稳定性分析 [摘要]本文主要阐述了影响岩石路堑边稳定性的主要因素,并且简要说明了岩石路堑边稳定性的分析方法,最后向大家介绍了,堑边路面稳定性的防治措施。 【关键词】堑边路面稳定性;分析方法;防治措施 1、影响岩石路堑边坡稳定性的主要因素 1.1岩石构造和地质类型 影响边坡稳定性的因素主要有地理因素和工程因素。地理因素包括岩石的结构密度,地貌特征等等因素。而工程因素主要包括人为因素,工程损伤和地震等不可预计的事件。在地理因素之中,岩性对边坡的稳定及其边坡的坡高和坡角起重要的控制作用。坚硬的岩石如花岗岩、石灰岩等可以形成非常稳定的堑边坡。而在淤泥集中的路段,由于淤泥的流动性非常强,几乎难以形成坚固的边坡。 不同的岩是层组成的边坡,其变形破坏的程度也有着很大的不同,以黄土地区为例,边坡的变形破坏形式以滑坡为主,而在花岗岩、厚层石灰岩、沙岩地区则以崩塌为主。在碎屑岩以及松散土层的地区,容易产生碎屑流或者泥石流等自然灾害。在区域构造比较复杂,褶皱比较强烈,新构造运动比较活动的地区,边坡稳定性差。断层带岩石破碎,风化严重,又是地下水最丰富和活动的地区极易发生滑坡。岩层结构的形状对边坡稳定也有很大影响,水平岩层的边坡稳定性较稳定,不过却存在陡倾的节理裂隙,则易形成崩塌和剥落。同向缓倾的岩质边坡的稳定性比反向倾斜的差。同向陡倾层状结构的边坡,一般稳定性较好,但由于是由薄层或软硬岩层的岩石组成,可能因蠕变而产生挠曲弯折或倾倒。比较稳定的山坡上反向倾斜的类型,但垂直层面走向的山坡则易产生切层滑坡[1]。 1.2影响堑边坡稳定性中水的作用 地表水和地下水是影响边坡稳定性的重要因素。不少滑动都是由于水的流动而引起的。处于水下的透水边坡将承受水的浮托力的作用,而不透水的边坡,将承受静水压力;充水的张开裂隙将承受裂隙水静水压力的作用;地下水的渗流,将对边坡岩体产生动水压力;水对边坡岩体还产生软化或泥化作用,使岩土体的抗剪强度大为降低;地表水的冲刷,地下水的溶蚀和潜蚀也直接对边坡产生破坏作用。此外,工程荷载、地震、爆破等因素对边坡稳定性也会产生很大的影响。 2、岩石路堑边的破坏类型及稳定性的分析方法 2.1岩石路堑边的破坏类型 岩坡的破坏类型分为平面滑动和楔形滑动以及旋转滑动三种。从形态上看来

(整理)路堑边坡防护

施工技术交底签证表 工程名称宁西二线(郑州局管段) NX5路基工程 交底编号 交底里程DK413+335-K413+660 交底项目路堑边坡防护 交底内容: 一、截、排水槽(轻型骨架)边坡防护 截、排水槽(轻型骨架)当路堑边坡高度小于3m时采用。根据图纸说明,每隔10m设置一道骨架,骨架内铺空心砖。具体里程为DK413+285~DK413+352.5两侧、DK413+517.5~DK413+585线路左侧,K413+617.5~K413+660线路左侧。1.路堑脚墙基础 (1)、边坡脚墙采用M7.5浆砌片石,路堑边坡坡率1:1.75~1:2.5,具体施工时可按图纸给出的坡率进行放坡。放坡时注意两坡率不同的断面平滑过渡。 (2)、当路堑挖土高度H<3m时采用截、排水槽(轻型骨架)内空心砖,空心砖内培土撒草籽、种灌木防护。坡脚墙采用M7.5浆砌片石,厚度为30cm,长度1-2m,顶底镶边,底镶边采用M7.5浆砌片石,顶镶边采用C25混凝土外露与空心砖平齐。尺寸如附图。每隔10m设置一道轻型骨架,骨架采用C25混凝土预制块,如图

2、混凝土空心砖 (1)、本空心砖采用C15混凝土预制,为正六边形,空心砖内撒草籽,种灌木。 (2)、施工前应整修好坡面,清除浮土,填补凹坑,使坡面大致平整。 (3)、混凝土空心砖自下而上铺设,铺设时用橡皮锤击打使砖与坡面密贴,不得使用铁锤等硬物。

(4)、砌筑完成后,在砖的空心部分回填适宜植物生长的黏性土。最后在黏性土上种植设计规定的或易于成活的植物,注意对植物进行适当保护和灌溉,保证其成活率,达到防护效果。空心砖植草灌用于路基边坡防护既可提高景观效果,又可防止地表水对路基边坡的直接冲刷。 (5)、空心砖铺设为满铺,从底镶边开始直至铺设到坡顶,若空心砖与顶镶边冲突,适当调整空心砖。如附图所示。施工时应先施工脚墙,当脚墙施工完成后方可铺设空心砖。 二、拱形截水骨架护坡 拱形截水骨架护坡分为两种形式,一种为M7.5浆砌片石护坡,另一种为C15混凝土护坡,根据图纸要求,M7.5浆砌片石拱形截水骨架铺设的里程为

逆向工程毕业设计开题报告

毕业论文开题报告 题目某典型零件的逆向工程与注塑模设计 学生姓名学号 所在院(系) 专业班级 指导教师 2013 年 3月 5 日

题目某典型零件的逆向工程与注塑模设计 一、选题的目的及研究意义: 逆向工程(reverse engineering,RE),又称为反求工程或反求设计,与传统工程的设计过程完全不同。他是从实物样本的获取产品数学模型并制造得到新产品的相关技术,已成为CAD/CAM系统中一个研究应用热点,并发展成为一个相对独立的技术领域。早在1980年始欧美国家许多学校及工业界开始注意逆向工程这块领域。1990年初期包括台湾在内,各国学术界团队大量投入逆向工程的研究并发表成果,直到20世纪90年代中期,逆向工程才在我国得到了迅速的发展与推广。 1、选题目的: 随着国民经济的飞速发展,传统的产品开发模式以不能满足经济社会的市场的需求。传统的产品开发过程遵循正向工程(或正向设计)的思维,从市场需求信息着手,按照“产品功能描述(产品规格及预期目标)-产品概念设计-产品总体设计及详细的零部件设计-制定生产工艺流程-设计、制造工夹具、模具等工装-零部件加工及装配-产品检验及性能测试”这样的步骤开展工作,是从未知到已知、从抽象到具体的过程。我国是一个制造大国但不是一个制造强国,沿海很多中小型企业都是为外国大企业进行贴牌生产,没有自己的产品。这样很难适应如今的国际经济形势。所以国家提出技术创新,要有自己的设计、创新的产品,并且要不断地推陈出新。采用逆向工程技术,可以直接在国内外已有的先进产品基础上进行性能分析、设计模型反求、在设计优化制造。这次注塑模具设计不是通过常规的方法设计,而是基于先进的制造技术逆向工程,一个“从有到无”的过程,为模具技术的迅速发展起着至关重要的作用。这样,不仅可以更好地消化和吸收国外先进技术,赶超发达国家,扩大在世界经济市场的占有份额,而且可以打破西方国家对我国进行的技术封锁,从而研制出更先进的产品,以提高我国的综合国力。 2、研究意义: 逆向工程是制造业实现快速产品创新设计的重要途径,实物原型的再现仅仅是逆向工程的初步阶段,在此基础上进行的基于原型的再设计、再分析、再提高,从而实现重大改型的创新设计,才是逆向工程的真正价值和意义所在。逆向工程技术在模具行业中的应用从逆向工程的概念和技术特点可以看出,逆向工程的应用领域主要是飞机、汽车、玩具和家电等模具相关行业。近年来随着生物、材料技术的发展,逆向工程技术也开始应用在人工生物骨骼等医学领域。但是其最主要的应用领域还是在模具行业。由于模具制造过程中经常需要反复试冲和修改模具型面。若测量最终符合要求的模具并反求出其数字化模型,在重复制造该模具时就可运用这一备用数字模型生成加工程序,可以大大提高模具生产效率,降低模具制造成本。逆向工程技术在我国,特别是以生产各种汽车、玩具配套件的地区、企业有着十分广阔的应用前景。因此,逆向工程技术的应用对我国企业缩短与发达国家的差距具有特别重要的意义。

逆向工程的现状及发展前景

逆向工程的现状及发展前景 逆向工程也称反求工程或反向工程,是根据已存在的产品或零件原型构造产品或零件的工程设计模型,并在此基础上对已有的产品进行剖析、理解和改进,是对已有设计的再设计。 逆向工程设计实施步骤如下: (1)设计前的准备工作。设计之前应确定设计的整体思路,对实物模型进行系统的分析,划分出模型的特征区,确定模型的基本构成形状的曲面类型,这些关系到相关软件的选择和软件模块的确定。 (2)零件原形的数字化。根据测量对象的特点确定扫描方法以及扫描设备,利用3D扫描测量设备来获取零件实物表面点的三维坐标值。 (3)提取零件的几何特征。按测量数据的几何属性对其进行分割,分割方法一般可分为两类,一类是基于边界分割法,一类是基于区域分割法。区域分割法将相似几何特征的点划为同一区域,具有明确的几何意义,是较为常用的分割方法。

(4)零件CAD模型的重建。将分割后的三维数据在CAD系统 中分别做表面模型的拟合,并通过表面片的拼接获取零件实物表面的 CAD模型。 (5)重建CAD模型的检验与修正。由于测量得到的数据点往往 存在一些数字误差,所以需要对曲面或曲线进行光顺处理,提高曲面 质量。另外还要检验重建的CAD模型是否满足精度或其他试验性能 指标的要求,对不满足要求的应进行适当的调整修改,直至达到零件 的标准 坐标测量机 接触式非接触式 机械手坐标测量机光学测量机声学测量机磁学测量机结构光法激光三角形法激光测距法干涉测量法图像分析法 1.1接触式测量系统 接触式三坐标测量机(Coordinate Measure Machine,CMM)可 谓接触式测量的代表。接触式三坐标测量机通常是基于受力变形的原 理,通过探头测取三维几何坐标数据。操作者事先设计规划好测量途 径与方式,三坐标测量机便会按照所指定的路径测取三维几何坐标数 据。一般来说,接触式三坐标测量机测量较稳定,易于定位,测量精

路堑边坡工程设计理论与实践

路堑边坡工程设计理论与实践 一、路堑边坡工程现状与发展 (一)边坡工程进步和发展 在土木工程生产实践活动中,随着铁路、公路、库区或场地等工程的建设和发展,涉及了大量的边坡工程技术课题,工程技术人员积极应用有关工程地质学、岩体力学、岩土工程学和土力学等学科的知识和成果,积累了丰富的边坡工程经验,在理论和实践两方面都取得了长足的进步和发展。 近年来,随着高速公路建设向山区延伸和发展,由于其技术等级较高,且我国山区地形条件困难、地质结构复杂、地质环境背景脆弱,深挖高填十分普遍,边坡工程问题日益突出。同时也遭遇了不少边坡工程失败和损失。 (二)路堑边坡工程设计现状 设计现状有以下特点:具有数量集中、种类较多、性质繁杂、勘查不足等特点,但又存在一定的场区或区段规律;有别于重点复杂的边坡工程设计;缺乏实用的勘察设计工作程序和细则;直接危害公共安全,显著影响工程造价。 (三)福建地区边坡工程问题 福建地区,是我国多山省份之一,俗有“八山一水一分田”之称,山地灾害较为严重。上世纪90年代后期,积极开展山区高速公路建设,不可避免地遭遇路堑高边坡工程技术难题;特别是,由于福建地区一般地层风化深度较大,岩体结构破碎,覆盖层较厚,且江河沟谷发育,不良地质堆积广为分布,在切坡筑路过程中,经常遇到边坡变形和破坏问题,尤以土质路堑边坡或类土质路堑边坡更为严重。 (四)技术路线和实施对策 主要从以下几个方面进行考虑:明确边坡工程实用类型,抽象和归纳边坡工程地质模式,分析和研究其相关变形破坏机制,建立边坡稳定性分析计算方法,提出边坡坡形坡率设计原则和方法,建立相应防护加固工程措施或对策,进行动态设计与信息化施工。 (五)动态设计总体思路 设计总体思路如下:高边坡工程档案(预设计文件、地勘资料),高边坡工程地质调查(地形、地质、地下水等),防护加固工程方案(边坡类型、坡形坡率、稳定性分析计算、防护加固工程对策),现场校对和重点核查,施工图设计与审查,动态跟踪与设计调整,竣工稳定性评价。 二、路堑边坡工程实用分类

逆向工程应用现状及研究方向

逆向工程应用现状及研究方向 [摘要] 近年来, 逆向工程作为一种新的产品设计思想和方法越来越广泛地用于工业领域, 并取得了不少成果。本文全面地总结了反向工程的环节、目前的研究应用状况及现有系统的不足之处, 进一步提出了今后逆向工程的研究方向。 [关键词] 逆向工程几何建模集成系统 引言 随着科技的发展和市场竞争的日益激烈,对产品的设计提出了更高的要求,即产品多样化、外形美观、更新换代周期短;同时也促进了产品制造过程的发展。近年来,许多产品的设计、制造要求基于现有的原型或实物,由此产生了逆向工程的概念。 逆向工程是指根据实物模型测定的数据,构造出CAD模型的过程。逆向工程为客户和制造者在并行工程环境下应用快速原型技术提供了强有力的工具,是缩短产品开发周期的有效途径,特别是形状复杂的物体或自由曲面组成的物体,例如:流线型物体、人体器官、雕塑品、模具等。这种技术在工程上正得到越来越广泛的应用。 1.逆向工程建模过程 由实物产生CAD设计模型的过程称为逆向工程的几何建模,是逆向工程的关键技术,也是逆向工程的研究重点,此过程分两个阶段:数据采集;CAD模型的建立。 1.1 数据采集 数据采集是由实物测量出数据点的过程,根据测量方式不同,数据采集方法分为接触式和非接触式测量两大类。接触式测量方法是通过传感器测头与样件的接触而记录样件表面点的坐标位置。非接触式测量方法主要是基于光学、声学、磁学等领域中的基本原理,将一定的物理模拟量通过适当的算法转换为样件表面的坐标点。使用的测量方法及测量设备不同,得到的测量数据组织方式也不同。 数据采集是逆向工程准确建模的基础,采集的质量受很多因素影响, 主要有以下几方面: 测量方法本身的精度、仪器的校准、测量范围的限制、定位的准确性、多视图问题、数据的局部丢失、被测表面的光洁度、零件数据的统计性分布等。由于以上原因, 测量数据需要进行预处理,包含多视拼合、噪声处理及数据精简等多方面的工作。经过预处理的数据才可进行曲面拟合及CAD 模型的建立。 1.2 CAD 建模

深挖路堑及高边坡防护的施工简介

深挖路堑及高边坡防护的施工简介 .概述: 1.工程简介: 赣定高速公路是江西省“两纵三横一斜”公路主骨架的“一纵”,是江西省“十五”交通重点建设项目,对江西省的改革开放,经济发展等具有重大的意义。 我单位施工的赣定高速公路A3— 2(1)标段,最大填筑路堤高17米,最大挖深路堑41米, 最大山体自然坡度72度。 2.地质、水文、气象: 我单位施工段以变质岩低丘区为主,地形起伏剧烈,侵蚀切割严重,山高谷深,自然坡度陡,一般在30~45度,山顶一般可见基岩强风化层,岩石以花岗岩、砂岩、泥质粉沙岩为主, 风化强烈,受多期构造运动的干扰而迭加,节理、裂隙较发育,松散岩类水和基岩裂隙水较丰富,常形成涓涓水流。 我单位施工段属赣南亚热带季风区,年平均气温19.5度,极端最低和最高气温分别为-4.0 度和39.4度,一月和七月平均气温为8.3度和29.1度,年平均降水量1517毫米,无霜期298 天,雨期降水量占年降水量的70%^上,7~8月和12月到次年2月为干热期和干冷期,降水量仅占年降水量的10~15%年蒸发量为800~1000毫米,年均相对湿度75~80%潮湿系数1.25~1.5 。 3.不良地质现象: 以岩质边坡坍塌、崩塌、高液限粘土、山间软土、全风化花岗岩、残积土层边坡、含煤层采空区、地下水等几类为主。 .深挖路堑的施工方法: 1.施工准备: 进场后,对全线红线范围内的施工环境、地形、地貌、水文等进行了多次的实地踏勘,初步拟定了便道修筑的方案,反复比较后,付诸实施。

根据设计要求:路堑开挖必须严格按从上向下,分级开挖并防护的顺序进行。我们用挖掘 机、推土机、斯太尔相互配合,在红线范围内修筑了一条施工便道,通往路堑顶。由于红线范 围有限,山坡自然 坡度陡,将便道修成“ S ”形,并在适当的地段设置错车平台,保证了自卸车 和其它施工机械能顺利上下行驶。 2. 场地布置: 路堑施工的场地按机械开挖进行布置,多开断面和便道,遵循轻车上、重车下的原则, 在石质路堑施工时,留有足够的爆破断面和机械调运的场地, 不管是何种路堑,在开挖边坡时, 都留有一定的防 护工作面,尽量遵循开挖一级,防护一级的原则,及时调配劳动力进行边坡的 护砌。 P 川=54+13+0.5x 10 + 20 +2咒(0.75x10) 第四阶控制点到线路中心距离: P iv = 52+b +0.5x 10+34 +2X (0.75X 10) +1 x (H s — H j — 30) (式中“30”为下面三阶开挖高度累计数 测量放线以第四阶段控制线路中心距离为路堑开挖的第一步工作,用全站仪在中桩或控制 点直接放出路堑开挖线。采用线路中心或导线控制点,放路堑开挖线时,开挖线都应在相对应 的桩号垂直方向进行 前后移动反射镜架。经过反复测量,计算出距离与实际距离相等,开挖线 位置就算放好。 4. 开挖方法: 3.路堑开挖线的测量控制:濒路中心 高度为IW 米,对于不同高度开挖线 ■ ■十■ ■ 度号26米,边沟加碎落台宽度b = 2米,平 台bp 2米。每个台阶垂直高度设计为10 坡比为-1: 0.5、仁:^ 绻、1: 0.75、1: 1。设计 :赃邑 吕: I 阶 开挖线处地面实测高程:’ ■亠 E 根据设计要求,我们在赣定高速公路施工的最大幵 的确定按以下设计要求进行。(图一)。已知 路肩高程H J , 第一阶控制点到线路中心距离: P i = % +b +0.5X 10 第二阶控制点到线路中心距离: P H =B 2+b+O.5x1O + bi+0.75x10 第三阶控制点到线路中心距离:

公路边坡稳定性评价方法及滑坡防治措施示范文本

公路边坡稳定性评价方法及滑坡防治措施示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

公路边坡稳定性评价方法及滑坡防治措 施示范文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 引言 近年来,随着国民经济的飞速发展,“村村通公路” 工程的进一步实施,在地形困难路段修建的公路越来越 多。受各种条件的限制,大填、大挖方路段频繁出现,相 伴而来出现了较多的路堤边坡失稳,边坡及路堑边坡坍塌 等地质灾难现象,给公路建设、运营带来巨大的经济损 失。因此在公路建设中需要选用合理的方法评价其边坡稳 定性,根据评价结果确定合理的边坡治理措施进而做到既 保证公路运营的安全,又节约投资。由此看来,稳定性评 价的方法显得至关重要。本文对边坡稳定性评价方法和滑 坡防治措施进行研究,为二程技术人员在实际工程中选用

合理的评价方法和防治措施提供参考。 1、公路边坡病害的分类 边坡病害可分为以下3类。 1、1滑坡 滑坡是路基山坡土体或岩体由于长期受地下水、地表水活动的影响使其结构逐渐失去支撑力,在自重的作用下,整体沿着一定软弱面向下滑动。滑坡按其引起滑动的力学特性来区分,可分为牵引式和推移式滑坡。牵引式滑坡是下部先滑动,使上部失去支撑而变形滑动,一般速度较慢,可延续相当长时间,横向张性裂隙发育,表面多呈阶梯状或陡坎状。推移式滑坡是上部岩土挤压下部岩土体产生变形,滑动速度较快,滑体表面波状起伏,多见于有堆积分布的斜坡地段。 1.2崩塌 所谓崩塌是整体岩土块脱离母体,忽然从较陡的斜坡

路基路面工程04章路基边坡稳定性习题参考答案

第四章路基边坡稳定性分析 一、名词解释 1.工程地质法:经过长期的生产实践和大量的资料调查,拟定不同土的类别及其所处状态下的边坡稳定值参考数据;在实际工程边坡设计时,将影响边坡稳定的因素作比拟,采用类似条件下的稳定边坡值作为设计值的边坡稳定分析方法。 2.圆弧法:假定滑动面为一圆弧,将圆弧滑动面上的土体划分为若干竖向土条,依次计算每一土条沿滑动面的下滑力和抗滑力,然后叠加计算出整个滑动土体的稳定性性系数的边坡稳定分析方法。 3.力学法(数解):假定几个不同的滑动面,按力学平衡原理对每个滑动面进行边坡稳定性分析,从中找出极限滑动面,按此极限滑动面的稳定程度来判断边坡稳定性的边坡稳定分析方法。 4.力学法(表解):在计算机和图解分析的基础上,制定成待查的参考数据表格,用查找参考数据表的方法进行边坡稳定性分析的边坡稳定分析方法。 5.圆心辅助线:为了较快地找到极限滑动面,减少试算工作量,根据经验而确定的极限滑动圆心位置搜索直线。 二、简答题 1.简述边坡稳定分析的基本步骤。 答:(1)边坡破裂面力学分析,包括滑动力(或滑动力矩)和抗滑力(或抗滑力矩);(2)通过公式推导给出滑动力和抗滑力的具体表达式; (3)分别给出滑动力和抗滑力代数和表达式,按照定义给出边坡稳定系数表达式; (4)通过破裂面试算法或极小值求解法获得最小稳定系数及其对应最危险破裂面; (5)依据最小稳定系数及其容许值,判定边坡稳定性。 2.简述圆弧法分析边坡稳定性的原理。 答:基本原理为静力矩平衡。 (1)假设条件:土质均匀,不计滑动面以外土体位移所产生作用力; (2)条分方法:计算考虑单位长度,滑动体划分为若干土条,分别计算各个土条对于滑动圆心的滑动力矩和抗滑力矩; (3)稳定系数:抗滑力矩与滑动力矩比值。 (4)判定方法:依据最小稳定系数判定边坡稳定性。 3.简述直线滑动面法和圆弧滑动面法各自适用条件? 答:直线滑动面法适用于砂类土。砂类土边坡渗水性强,粘性差,边坡稳定主要靠内摩擦力支承,失稳土体滑动面近似直线形态。

高速公路路堑高边坡工程施工安全风险评估指南

高速公路路堑高边坡工程 施工安全风险评估指南 中华人民共和国交通运输部 2014年12月

目 录 1 总则 (1) 2 术语与定义 (2) 3 总体风险评估 (5) 3.1 一般要求 (5) 3.2 专家调查评估法 (6) 3.3 指标体系法 (8) 4 专项风险评估 (18) 4.1 一般要求 (18) 4.2 风险辨识 (20) 4.3 风险分析 (23) 4.4 风险估测 (24) 4.5 重大风险源评估 (27) 5 风险控制 (53) 5.1 一般要求 (53) 5.2 风险控制措施 (54) 6 风险评估报告 (56) 6.1 一般要求 (56) 6.2 风险评估报告编制内容 (56) 6.3 风险评估报告评审 (59) 附录A 路堑高边坡评估单元工序分解表 (61) 附录B 评估单元(工程措施)与典型事故类型对照表 (63) 附录C 路堑高边坡施工安全风险控制措施建议 (64)

附录D 本指南用词说明 (77) 附件 《指南》条文说明 (78) 1 总则 (78) 3 总体风险评估 (80) 4 专项风险评估 (92) 5 风险控制 (108)

1 总则 1.0.1 为指导高速公路路堑高边坡工程(以下简称“路堑高边坡”)施工安全风险评估工作,有效控制施工安全风险,科学规避施工安全事故的发生,保障路堑高边坡的建设安全,编制本《指南》。 1.0.2 列入国家和地方基本建设计划的新建、改建、扩建的高速公路,在工程实施阶段应进行路堑高边坡施工安全风险评估。 1.0.3 施工安全风险评估分为总体风险评估和专项风险评估。总体风险评估应在施工图设计完成后、项目开工前完成。专项风险评估贯穿施工整个过程,可分为施工前专项风险评估和施工过程专项风险评估。 1.0.4 施工安全风险评估应根据路堑高边坡的特点,选择定性定量相结合的评估方法。本《指南》推荐量化的评估方法为指标体系法,对指标的选择及其重要性排序,应结合工点具体情况合理确定。 1.0.5 路堑高边坡施工安全风险评估工作除遵守本《指南》外,还应符合国家和行业相关法律、法规、标准、规范等相关规定。

路堑边坡支护工程设计

路堑边坡支护工程设计 发表时间:2015-12-24T17:06:50.720Z 来源:《基层建设》2015年19期供稿作者:唐璜 [导读] 深圳市市政设计研究院有限公司广东深圳该设计方案具有安全可靠、技术领先、造价经济、施工便捷,同时边坡设计应注重绿化、排水等措施。 唐璜 深圳市市政设计研究院有限公司广东深圳 518000 摘要:本文根据工程案例,对路堑边坡支护工程设计中应用坡率法与锚杆(索)设计,实现了经济合理的目的。关键词:路堑边坡;锚杆(索)支护设计 一、工程概况与地质条件 某道路沿现有道路走向(实质是对现有道路进行拓宽)。项目路基挖方形成的约740m边坡,根据勘察资料显示如下:<3-1>坡积粉质粘土:可塑,实测标贯击数N=4- 16击,经修正后N=415.3击,标准值4.9击;<3-2>残积粘性土:可塑一硬塑,实测标贯击数N=1227击,经修正后N=11.724.5击,标准值13.6击;<4-1>强风化钾长花岗岩:岩体极破碎,岩芯多呈碎块状,土石工程分级为IV级;<4-2>中风化钾长花岗岩:粗粒结构,块状构造,岩质新鲜,岩体较完整,岩芯多呈中短柱状,土石工程分级为IV - V。 A线路基段地下水位埋深4.5--8.3m,沿线边坡段钻孔均未见地下水位。地下水的补给来源主要为大气降水。二、边坡支护设计思路 路堑边坡设计主要内容为:现场调查、详细工程地质勘察、结构面特征及力学参数的确定、稳定性计算分析、确定设计方案。本边坡是由于道路向两侧拓宽挖方形成的边坡,其顶面覆盖有坡积土、残积土和土状强风化岩,是边坡治理的主要地层,坡体的下部也出露岩体,因此本边坡属于土岩混合边坡。 表1 地层物理力学指标 一般的岩土边坡,如果不受场地环境的制约,最经济和便捷的治理方式是放坡,但是对于最大高度达80m的超高边坡显然是不现实的。考虑到目前可供采用的边坡加固措施主要有:①减载;②排水与截水;③锚固;④支挡;⑤压坡等。结合本边坡地质和环境特点,从技术可行性、环境影响可行性、工期可行性和经济可行性着手,最终采用减载、锚杆(索)及排水和截水的支护方案。 三、边坡设计 (一)边坡高度。边坡高度和工程造价直接相关,经过多次线路调整及对道路路面标高调整,边坡高度最终为20}80m,边坡长度约740m。 (二)边坡形式。平面上以拟建道路边线外4.1m作为边坡坡脚边线,结合场地地貌,以10m为一个放坡阶梯,采用上缓下陡折线形,形成放坡坡面。每级边坡设2.0-4.0m宽的平台,要求尽量利用现状坡面,贯彻“不破坏就是最大的保护”的理念,避免大土方量修坡。(三)边坡坡率。根据边坡稳定性分析,下部边坡基本上位于中风化花岗岩层中,第1级边坡采用1:0.3坡率;第2-3级边坡采用1:0.5坡率;中部位于岩层和残积粘性土交界部位,采用1:0.75坡率;上部位于粘性土层,采用1:1.01:1.25坡率。典型剖面如图1所示。 图1 典型刨面图 (五)稳定性分析 由于本边坡属于土岩混合边坡,对土质边坡和类土质边坡可用传统的圆弧形破坏面进行计算,但沿土层界面滑动不一定是圆弧。岩质边坡,即使是强风化岩体,其破坏也要沿不利结构面组合,因此多为折线形,用推力传递法比较符合实际。其选用的计算参数C、值也应根据地质情况不同而分段选取。 针对上述特点,采用两种分析方法分别进行分析计算,即对于上部的土层坡体先采用简化Bishop圆弧滑动法搜索圆弧滑动面;又由于边坡高度大且陡坡体下部仍存在部分的岩层段坡体,采用简化Bishop法搜索折线形滑动面法。 (1)计算荷载。主要考虑坡体自重、地下水作用和渗透压力作用:①坡体自重,即坡体受到的重力,为滑坡的主要荷载之一,水位以上取天然重度,水位以下取浮重度计;②动水压力,即地下水渗流过程中对坡体产生的渗透压力,地下水位以下计算渗透压力;③静水压力,即裂隙充水后水柱作用在坡体上的侧压力,因滑体上的裂缝基本已被充填,故不考虑静水压力;④地震力,即坡体在水平地震加速度下所受的作用力,由于本边坡所处地理位置抗震烈度小于6度,因此不考虑地震力作用。 (2)安全系数及计算工况。对于路堑边坡,根据《公路路基设计规范》,其稳定安全系数应满足表2的要求。

路堑高边坡监测方案精编WORD版

路堑高边坡监测方案精 编W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

路堑高边坡监控量测技术方案 一、编制依据 1、昆磨高速小勐养至磨憨段两阶段施工图设计(第一册第二分册)。 2、公路路基施工技术规范(JTG F10-2006)。 3、公路工程质量检验评定标准(JTG F80/1-2004)。 4、公路工程施工安全技术规范(JTG F90-2015)。 二、工程概况 本合同段起点桩号为K4+620,终点桩号K12+070,路线长6.64km,位于景洪市勐养镇东侧。本标段内,深路堑边坡共计8处,最大边坡高度为46m。具体段落见下表: 深路堑段落一览表

项目测区地形以起伏的中低山地形为主,局部零星分布盆地和长条形的宽缓河谷。地形相对高差200~600m,全线海拔500~1600m,根据地貌特征分类,将测区划分为侵蚀堆积、构造侵蚀、构造溶蚀三大地貌类型。路线北侧山丘为构造剥蚀低山丘陵区,高程1000m以下,主要以粉质粘土、卵石、泥石为主,该路段地表水体较丰富。 本合同段由于拟建路线较长、地形起伏较大,且跨越不同的微地貌单元,加之地质条件较为复杂,为便于设计使用,现将路线按里程评述: 1、K4+620~K7+100段位于浅割低山丘陵地貌区,微地貌属山间河谷、缓坡及部分陡坡地貌,为新建双幅路线,沿线以粉质粘土、卵石,泥岩为主。该路段地表水体较丰富,沿线山间沟谷均有地表水分布,向西侧排泄至南养河。

沟谷地段地下水位埋深浅,坡面一般埋深较深,主要不良地质作用为K6+200~ K6+620段分布的滑塌体,对线路影响不大。 K6+815~K6+990段潜在不稳定土质边坡,岩石以卵石粉质粘土含大量卵石、漂石组成,均匀性、分选性极差。 2、边坡选取控制性K6+100断面进行检算,力学参数取值参考有关试验值,并结合工程经验确定,下表为设计指标采用值: 岩土层的设计力学参数建议值表 一级进行锚杆框格梁加固、二级、三级、四级边坡进行锚索框格梁加固、五级进行现浇拱

逆向工程论文

题目:浅谈逆向工程技术发展趋势及应用系(院):机械工程学院 专业: 12机自一班 学生姓名:王凯 学号: 1210111039 2015年10月

浅谈逆向工程技术发展趋势及应用 摘要:为适应先进制造技术的发展,越来越多的产品需要一体化的解决方案,即从样品一数据一产品,逆向工程技术的运用使得产品的异形曲面快速完成数字建模,加快了新产品问世的步伐,提高了产品的外观新颖性、复杂性及制造精度,并大大降低了产品研制开发的成本。逆向工程是专门为制造业提供了一个全新、高效的重构手段,实现从实际物体到几何模型的转换,成为现代企业开发新产品的重要设计手段。 关键词:逆向工程数字建模加快步伐降低成本 1 引言 从20世纪60年代末开始,设计领域中就开始相继出现一系列新兴理论与方法。为了区别过去常用的传统设计理论与方法,把这些新兴的理论与方法称之为现代设计。现代设计理论与方法的内容众多而丰富,它们是功能论、优化论、离散论、对应论、艺术论、系统论、信息论控制论、突变论、智能论和模糊论等方法学构成。 现代设计方法包括可靠性设计方法、化设计方法、并行设计、虚拟设计、绿色设计、动态设计等,这里重点介绍逆向工程设计。 逆向工程作为软件工程领域的一个新兴分支,是对已知的事物的有关信息进行充分的消化和吸收,在此基础上加以创新改型,通过数字化及数据处理后重构实物的三维模型,大大缩短了产品的问世周期。其主要作用是接收来自测量设备的产品数据,通过一系列的编辑操作,得到品质优良的曲线或曲面模型,并通过标准数据格式将这些曲线曲面数据输送到现有CAD/CAM系统中,在这些系统中完成最终的产品造型。 目前主流应用的四大逆向工程软件:Imageware、RapidForm、CopyCAD、Geomagic Studio。 2 逆向工程的发展历程及现状 20世纪60年代,逆向工程作为独立的新兴学科出现在国际工业界,1956年,英国Ferranti公司开发了世界上第一台三坐标测量机;1963年10月,DEA公司制造出世界上第一台龙门式测量机,开创了坐标测量技术的新领域。目前逆向工程已发展为CAD/CAM系统中的一个相对独立的研究分支,其相关领域包括几何测量、图像处理、计算机视觉、几何造型和数字化制造等。 3 逆向工程的应用 逆向工程主要应用于汽车、飞机、家电、玩具、模具等相关领域,它实现了制造技术的数字化,充分利用现有资源,使新产品的开发更加方便、快捷,也大大降低了开发和生产成本,缩短了设计生产周期。其主要应用有以下几个方面:

边坡稳定性分析

第一章 1简述边坡的概念,构成要素及分类?边坡:构成工程边界的倾斜的地坡面;边坡由坡顶、坡肩、坡面、坡脚、坡底、坡高、坡脚要素构成;边坡按成因可分为自然边坡和人工边坡;按材料可分为土质边坡和岩质边坡。2简述导致滑坡的因素?①应力过大:破坏了坡体力学平衡;②强度过低:导致坡面抗剪强度不足;③地质缺陷:岩坡主要是地质界面,土坡主要是孔隙; ④地下水:减小地质界面抗剪强度和土粒粘结力,产生静动水压力;⑤爆破震动:动力效应的影响;⑥人为破坏:切断了坡脚,降低了抗滑力;⑦地下开采:对疏水稳坡有利,对岩移失稳不利;⑧不利产状:裂隙等不利产状导致滑坡。3常见的边坡滑塌模式?平面滑动、楔体滑坡、圆弧滑坡、倾倒破坏4边坡滑塌的识别方法有哪些?弹性力学计算法、刚体极限平衡分析法、极射赤平投影识别法、石根华关键块体识别法5边坡稳定性安全系数?安全系数是指抗滑力与致滑力的比值。大于1表示致滑力小于抗滑力,可能不会成为实际滑塌体;等于1称为临界或极限状态;小于1,肯定称为实际滑塌体。6简述边坡稳定型设计思路?①工程地质勘察,包括工程地质和水文地质;②滑塌模式识别,识别潜在滑塌体和滑塌模式;③稳定性分析,计算潜滑体安全系数;④采取稳坡措施:包括疏干排水、削坡减载、机械加固等;⑤接受局部滑坡:进行监测、预报并计算危害、损失、影响;⑥最终决策:对④⑤进行比较,使经济效益,社会效益最优。第二章1简述工程地质调查内容?主要内容包括:收集原始资料、现场踏勘、结构面详查、深部和外围补充钻探、工程地质资料的综合分析(包括断层填图及节理统计)。2简述水文地质调查内容?场地水文地质、地下水赋存状态和运动规律、地下水渗流规律、场地水文条件的识别、修改补充矿坑地质特征及边坡综合平面图。3节理或结构面的统计方法有哪些? 结构面主要是断层,一般以填图法统计,内容包括断层结构、产状、厚度、破碎或 充填物及其胶结性渗水性等; 节理统计数量多,规模小,主要的统计方 法有:统计表或方框图、玫瑰花图、极点 密度等值线,极限赤平投影图等。 4节理或结构面的详查内容有哪些?① 测点和测线的位置和坐标②间断面产状 ③间断面延伸长度和开口宽度④间断面 弯曲程度或平直度⑤间断面干湿度⑥相 距间断面间距⑦间断面两壁间充填物和 粗糙度⑧间断面两壁的岩性 第三章1结构面抗剪强度测试方法有哪 些?⑴室内剪切实验①直剪仪②三轴剪 力仪③楔型剪⑵原位剪切实验 第四章1岩坡单平面滑动的几何条件? 滑动面走向与坡面平行或近似平行 (20°) 滑动面倾角β大于滑动面内摩擦角ψ而 小于坡面角α 滑体两侧有结构面,对滑体侧向阻力很 小,可忽略不计 2单平面滑动的假设条件? 滑动面和坡顶张裂隙的走向与坡面走向 平行;坡顶张裂隙是垂直的;滑动面水压 力分布从坡脚到张裂隙按三角分布; 滑体自重W、滑面的静水压(浮托)力U、 张裂隙中静水压力V均作用在滑体重心; 滑面抗剪强度遵循库仑定律; 受力分析研究对象为单位长度的滑体切 片。第五章1楔体滑动的几何条件?两组 相交结构面的交线的倾向和边坡倾向一 致;交线倾角大于滑动面内摩擦角小于坡 面角;组合交线穿过坡顶和坡面。2楔体 滑动的研究步骤?识别潜滑体-滑楔; 确定滑楔的空间形态和几何尺寸;识别滑 楔冲水情况及抗剪性能;滑楔稳定性分 析,受力分析及安全系数计算。 3滑楔和平面滑动都是由结构面引起的 破坏,简述两者的不同?两者的滑动模式 不一样,滑楔是沿着两结构面的交线向下 滑动,而平面滑动是沿结构面向下滑动, 因此他们的受力情况也不一样。 第六章1简述圆弧滑动的基本假设?平 面应变问题,取单位厚度切片计算;滑面 为圆弧面,滑体为圆柱体;滑体滑动时做 刚性移动。2圆弧滑动的分析方法有哪 些?瑞典圆弧法、毕肖普法、摩擦圆法、 简布法1何为路堑边坡?按材料分为哪 几类?在道路沿线由开挖山体或填方路 基形成的边坡称为路堑边坡按材料可分 为岩石路堑、石质土路堑、土质路堑。 2影响路堑边坡稳定性的因素有哪些? 边坡高度、倾角;岩土体性质;工程地质 (地质构造)岩石的风化、破碎程度;地 面水、地下水;施工方法及地震作用。 3路堑边坡设计应收集哪些基础资料? 岩土体的名称及性质;地质构造,各种软 弱面(断层、节理、层理、片理)的产状 及其与路线的关系; 岩石风化和破碎程度; 地下水和地面水的影响; 当地地质条件相似的自然极限山坡和人 工开挖边坡的坡度;施工方法与工艺;废 土的地点和废土堆的位置等。 4深路堑边坡的断面形式有哪几种?直 线形、折线形(上陡下缓形、上缓下陡形)、 台阶形5深路堑边坡的设计内容有哪 些?选择边坡横断面形状;确定边坡坡 度;设计必要的坡面防护工程;合理处理 废土。6何种条件下进行深路堑边坡设 计?当挖方路基的工程地质、水文地质条 件不良或边坡较高,特别是土质边坡高度 超过20m,石质土边坡高度超过20~30m、 岩质边坡高度超过30m,应进行专门的深 路堑边坡设计。 第八章1影响废石场稳定的因素有哪 些?废石堆的稳定主要取决于堆积散体 的物理力学性质、基底岩土层的承载能 力、废石场的水文地质条件及排土工艺 等。2简述废石场稳化措施有哪些?合理 调排土岩性分布;疏干排水;基底处理; 合理选择排土工艺、 3何为泥石流?可分为几类? 泥石流是指在山地沟谷或山区河谷中,由 于暴雨、冰雪融水等激发的,暂时性急水 流与大量土石相互作用的特殊洪流现象。 按物质组成分为泥流、泥石流、水石流; 按结构类型分为黏性泥石流、稀性泥石

相关主题
文本预览
相关文档 最新文档