当前位置:文档之家› abaqus接触动力学分析

abaqus接触动力学分析

abaqus接触动力学分析
abaqus接触动力学分析

部件模态综合法

随着科学和生产的发展,特别是航空、航天事业的发展,越来越多的大型复杂结构被采用,这使得建模和求解都比较困难。一方面,一个复杂结构势必引入较多的自由度,形成高维的动力学方程,使一般的计算机在内存和求解速度方面都难以胜任,更何况一般的工程问题主要关心的是较低阶的模态。仅为了获取少数的几个模态,必须为求解高维方程付出巨大的代价也是不合适的。另一方面,正是由于结构的庞大和复杂,一个完整的结构往往不是在同一地区生产完成的,可能一个结构的各个主要零部件不得不由不同的地区、不同的厂家生产。而且由于试验条件的限制只能进行部件的模态实验,而无法对整体结构进行模态实验。针对这些主要的问题,为了获得大型、复杂结构的整体模态参数,于是发展了部件模态综合法。

部件模态综合法又叫子结构耦合法。它的基本思想是按工程观点或结构的几何轮廓,并遵循某些原则要求,把完整的结构进行人为抽象肢解成若干个子结构(或部件);首先对子结构(或部件)进行模态分析,然后经由各种方案,把它们的主要模态信息(常为低阶主模态信息)予以保留,并借以综合完整结构的主要模态特征。它的主要有点是,可以通过求解若干小尺寸结构的特征问题来代替直接求解大型特征值问题。同时对各个子结构可分别使用各种适宜的数学模型和计算程序,也可以借助试验的方法来获得他们的主要模态信息。

对于自由振动方程在数学上讲就是固有(特征)值方程。特征值方程的解不仅给出了特征值,即结构的自振频率和特征矢量——振兴或模态,而且还能使结构在动力载荷作用下的运动方程解耦,即所谓的振型分解法或叫振型叠加法。因此,特征值问题的求解技术,对于解决结构振动问题来说吧,是非常重要的。

考虑阻尼的振型叠加法

振型叠加法的定义:将结构各阶振型作为广义坐标系,求出对应于各阶振动的结构内力和位移,经叠加后确定结构总响应的方法。

振型叠加法的使用条件:

?(1)系统应该是线性的:线性材料特性,无接触条件,无非线性几何效应。

?(2)响应应该只受较少的频率支配。当响应中各频率成分增加时,例如撞击和冲击问题,振型叠加技术的有效性将大大降低。

?(3)载荷的主要频率应在所提取的频率范围内,以确保对载荷的描述足够精确。

?(4)由于任何突然加载所产生的初始加速度应该能用特征模态精确描述。

?(5)系统的阻尼不能过大。

所以本种方法不适。

如果想在分析中模拟非线性,必须使用隐式动力程序对运动方程进行直接积分。

频率提取分析

频率提取分析的目的是得到结构的振型和固有频率,在使用各种振型叠加法进行线性动态分析时,都首先要完成频率提取分析。

有阻尼系统的自由振动:(粘性阻尼振动)

粘性阻尼的特点是阻尼力与运动速度成正比。自由振动的运动微分方程为:

()()()0Mu

t Cu t Ku t ++= 其中,12[,,,]T N u u u u =…为广义位移向量,()Cu

t 为粘性阻尼力。M 为质量矩阵,K 为刚度矩阵。

M 质量矩阵的物理意义

因系统的动能

1=02

T T u Mu > 且有

2ij ji i j T m m u

u ?==?? 由此可见:(1)质量矩阵反映了系统的动能;(2)质量矩阵是正定的;(3)质量矩阵是对称矩阵。

K 刚度矩阵的物理意义

由于系统的弹性势能为

1=02

T U u Ku ≥ 且有

2ij ji i j

U k k u u ?==?? 由此可见:(1)刚度矩阵反映了系统的势能;(2)刚度矩阵是半正定的(对应于刚体位移,系统弹性势能为零);(3)刚度矩阵是对称矩阵。

另外,可以证明刚度矩阵的逆是柔度矩阵,而且刚度矩阵反映了功的互等原理。 瑞利阻尼

实用中如果用实测手段来确定阻尼矩阵是相当困难的,通常是把阻尼矩阵假定为满足正交条件的某种形式,以下介绍一种常用的形式——瑞利阻尼。

瑞利阻尼是一种模拟阻尼的简单方法,它基于结构中刚度或质量的总量是总阻尼的一种度量。

瑞利阻尼假设阻尼矩阵是质量矩阵和刚度矩阵的线性组合,

C M K αβ=+

其中α和β是用户定义的常数。尽管假设阻尼正比于质量和刚度没有严格的物理基础,但实际上我们对阻尼的分布知之甚少,也就不能保证使用更为复杂的阻尼模型是正确的。一般来讲,这个模型对于大阻尼系统——也就是临界阻尼超过10%时,是失效的。相对于其他形式的阻尼,可以精确地定义系统每阶模态的瑞利阻尼。

阻尼的选择

在大多数线性动力学问题中,恰当地定义阻尼对于获得精确的结果是十分重要的。但是阻尼只是对结构吸收能量这种特性的近似描述,而不是去仿真造成这种效果的物理机制。所以,确定分析中所需要的阻尼数据是很困难的。有时,可以从动力试验中获得这些数据,但是在多数情况下,不得不通过经验或参考资料获得数据。在这些情况下,要仔细地分析计算结果,应该通过参数分析来评价阻尼系数对于模拟的敏感性。

特征方程

对于一个多自由度系统,认为各个自由度上的运动都是互不相同的,但每个自由度上的运动都是在其各自平衡位置附近做简谐振动。因此,运动微分方程式的解的形式为:

()cos()u t U t ωα=-

将上式代入式()()()0Mu

t Cu t Ku t ++= (C M K αβ=+)得: 2()0K M U ω-=

上式即是所谓的代数特征问题。

对于式2()0K M U ω-=要使U 有非零解,必须:

2det()0K M ω-=

即是特征方程。记:

2λω=

则:

()p K M λλ=-

即是特征多项式。

求解特征方程或特征多项式以及代数特征值问题,是结构动力学最基本的、也是最重要的任务。因为特征值问题的解反映结构振动系统内部最本质的固有特性,固有特性问题在数学上又叫本征值问题。

非线性动态分析

前面提到过,模态动力程序只适用于线性问题。如果对非线性动力响应感兴趣,必须对运动方程进行直接积分。在ABAQUS/Standard 中运动方程的直接积分由一个隐式动力程序来完成。在使用这个程序时,在每个时间点上都要建立质量、阻尼和刚度矩阵并求解动力平衡方程。由于这些操作的计算量很大,因此直接积分的动力分析要比模态方法昂贵。

由于ABAQUS/Standard 中的非线性动力程序采用隐式的时间积分,所以适用于求解非线性结构动力问题。例如,某一突然事件(如冲击)激发的结构的动态响应,再例如由

于塑性或粘性阻尼造成大量的能量耗散的结构响应问题。在这些问题中,高频响应由于模型的耗能机制而迅速地衰减,这一点对于振动初期是十分重要的。

当应力波在模型中传播时,显式算法是一次一个单元地扩展计算结果。因此,这很适合于求解应力波的影响非常重要的问题以及所模拟的突发事件的持续时间很短(典型的是小于1秒)的问题。

和ABAQUS/Standard相比,显式算法的另一个优点是它能更容易地模拟非连续的非线性,例如接触和失效问题。而大型、高度非连续性的问题,即使响应是准静态的,采用ABAQUS/Explicit一般的会很容易地予以模拟。

显式非线性动态分析

在前面的章节中,已经考察了显式动态程序的基本内容;在本章中,将对这个问题进行更详细的讨论。显式动态程序对于求解广泛的、各种各样的非线性固体和结构力学问题是一种非常有效的工具。它常常对隐式求解器是一个补充,如ABAQUS/Standard;从用户的观点来看,显式与隐式方法的区别在于:

?显式方法需要很小的时间增量步,它仅依赖于模型的最高固有频率,而与载荷的类型和持续的时间无关。通常的模拟需要取10,000至1,000,000个增量步,每个增量步的计算成本相对较低。

?隐式方法对时间增量步的大小没有内在的限制;增量的大小通常取决于精度和收敛情况。典型的隐式模拟所采用的增量步数目要比显式模拟小几个数量级。然而,由于在每个增量步中必须求解一套全域的方程组,所以对于每一增量步的成本,隐式方法远高于显式方法。

了解两个程序的这些特性,能够帮助你确定哪一种方法是更适合于你的问题。ABAQUS/Explicit适用的问题类型

在讨论显式动态程序如何工作之前,有必要了解ABAQUS/Explicit适合于求解哪些类问题。贯穿这本手册,我们已经提供了贴切的例题,它们一般是应用ABAQUS/Explicit求解的如下类型问题:

高速动力学(high-speed dynamic)事件

最初发展显式动力学方法是为了分析那些用隐式方法(如ABAQUS/Standard)分析起来可能极端费时的高速动力学事件。作为此类模拟的例子,在第10章“材料”中分析了一块钢板在短时爆炸载荷下的响应。因为迅速施加的巨大载荷,结构的响应变化的非常快。对于捕获动力响应,精确地跟踪板内的应力波是非常重要的。由于应力波与系统的最高阶频率相关联,因此为了得到精确解答需要许多小的时间增量。

复杂的接触(contact)问题

应用显式动力学方法建立接触条件的公式要比应用隐式方法容易得多。结论是ABAQUS/Explicit能够比较容易地分析包括许多独立物体相互作用的复杂接触问题。

ABAQUS/Explicit是特别适合于分析受冲击载荷并随后在结构内部发生复杂相互接触作用的结构的瞬间动态响应问题。在第12章“接触”中展示的电路板跌落试验就是这

类问题的一个例子。在这个例子中,一块插入在泡沫封装中的电路板从1m 的高度跌落到地板上。这个问题包括封装与地板之间的冲击,以及在电路板和封装之间的接触条件的迅速变化。

复杂的后屈曲(postbuckling )问题

ABAQUS/Explicit 能够比较容易地解决不稳定的后屈曲问题。在此类问题中,随着载荷的施加,结构的刚度会发生剧烈的变化。在后屈曲响应中常常包括接触相互作用的影响。

高度非线性的准静态(quasi-static )的问题

由于各种原因,ABAQUS/Explicit 常常能够有效的解决某些在本质上是静态的问题。准静态过程模拟问题包括复杂的接触,如锻造、滚压和薄板成型等过程一般地属于这类问题。薄板成型问题通常包含非常大的膜变形、褶皱和复杂的摩擦接触条件。块体成型问题的特征有大扭曲、瞬间变形以及与模具之间的相互接触。在第13章“ABAQUS/Explicit 准静态分析”中,将展示一个准静态成型模拟的例子。

材料退化(degradation )和失效(failure )

在隐式分析程序中,材料的退化和失效常常导致严重的收敛困难,但是ABAQUS/Explicit 能够很好地模拟这类材料。混凝土开裂的模型是一个材料退化的例子,其拉伸裂缝导致了材料的刚度成为负值。金属的延性失效模型是一个材料失效的例子,其材料刚度能够退化并且一直降低到零,在这段时间中,单元从模型中被完全除掉。 这些类型分析的每一个问题都有可能包含温度和热传导的影响。

动力学显式有限元方法

这一节包括ABAQUS/Explicit 求解器的算法描述,在隐式和显式时间积分之间进行比较,并讨论了显式方法的优越性。

显式时间积分

ABAQUS/Explicit 应用中心差分方法对运动方程进行显示的时间积分,应用一个增量步的动力学条件计算下一个增量步的动力学条件。在增量步开始时,程序求解动力学平衡方程,

表示为用节点质量矩阵M 乘以节点加速度u

等于节点的合力(在所施加的外力P 与单元内力I 之间的差值):

Mu

=P -I 在当前增量步开始时(t 时刻),计算加速度为:

1()()|()()|t t -=?-u

M P I 由于显式算法总是采用一个对角的、或者集中的质量矩阵,所以求解加速度并不复杂;不必同时求解联立方程。任何节点的加速度是完全取决于节点质量和作用在节点上的合力,使得节点计算的成本非常低。

对加速度在时间上进行积分采用中心差分方法,在计算速度的变化时假定加速度为常数。应用这个速度的变化值加上前一个增量步中点的速度来确定当前增量步中点的速度:

()()()()()22(||)|||2t t t t t t t t t t +???+-?+?=+u u u

速度对时间的积分并加上在增量步开始时的位移以确定增量步结束时的位移:

()()()()2||||t t t t t t t t +?+??+=+?u u u

这样,在增量步开始时提供了满足动力学平衡条件的加速度。得到了加速度,在时间上“显式地”前推速度和位移。所谓“显式”是指在增量步结束时的状态仅依赖于该增量步开始时的位移、速度和加速度。这种方法精确地积分常值的加速度。为了使该方法产生精确的结果,时间增量必须相当小,这样在增量步中加速度几乎为常数。由于时间增量步必须很小,一个典型的分析需要成千上万个增量步。幸运的是,因为不必同时求解联立方程组,所以每一个增量步的计算成本很低。大部分的计算成本消耗在单元的计算上,以此确定作用在节点上的单元内力。单元的计算包括确定单元应变和应用材料本构关系(单元刚度)确定单元应力,从而进一步地计算内力。

这里给出了显式动力学方法的总结:

1. 节点计算 a. 动力学平衡方程

1()()()()()t t t -=?-u

M P I b. 对时间显式积分

()()()()22()2

t t t t t t t t t t +???+-?+?=+u u u ()()()()2t t t t t t t t +?+??+=+?u u u

2. 单元计算

a. 根据应变速率ε ,计算单元应变增量d ε

b. 根据本构关系计算应力σ

()()(,)t t t f d σσε+?=

c. 集成节点内力()t t +?I 3. 设置时间 t 为t t +?,返回到步骤1。

比较隐式和显式时间积分程序

对于隐式和显式时间积分程序,都是以所施加的外力P 、单元内力I 和节点加速度的形式定义平衡:

Mu

=P -I 其中M 是质量矩阵。两个程序求解节点加速度,并应用同样的单元计算以获得单元内力。两个程序之间最大的不同在于求解节点加速度的方式上。在隐式程序中,通过直接求解的方法求解一组线性方程组,与应用显式方法节点计算的相对较低成本比较,求解这组方程组的计算成本要高得多。

在完全Newton 迭代求解方法的基础上,ABAQUS/Standard 使用自动增量步。在时刻t t ?+增量步结束时,Newton 方法寻求满足动力学平衡方程,并计算出同一时刻的位移。由于隐式算法是无条件稳定的,所以时间增量t ?比应用于显式方法的时间增量相对地大一

些。对于非线性问题,每一个典型的增量步需要经过几次迭代才能获得满足给定容许误差的解答。每次Newton 迭代都会得到对于位移增量j u ?的修正值j c 。每次迭代需要求解的一组瞬时方程为

j j j j j j u M I P c K --=?

对于较大的模型,这是一个昂贵的计算过程。有效刚度矩阵j

K ?是关于本次迭代的切向刚度矩阵和质量矩阵的线性组合。直到一些量满足了给定的容许误差才结束迭代,如力残差、位移修正值等。对于一个光滑的非线性响应,Newton 方法以二次速率收敛,描述如下: 迭代 相对误差

1 1

2 10-2

3 10-4

. .

. .

. .

然而,如果模型包含高度的非连续过程,如接触和滑动摩擦,则有可能失去二次收敛,而是可能需要大量的迭代过程。为了满足平衡条件,减小时间增量的值可能是必要的。在极端情况下,在隐式分析中的求解时间增量值可能与在显式分析中的典型稳定时间增量值在同一量级上,但是仍然承担着隐式迭代的高昂求解成本。在某些情况下,应用隐式方法甚至可能不会收敛。

在隐式分析中,每一次迭代都需要求解大型的线性方程组,这一过程需要占用相当数量的计算资源、磁盘空间和内存。对于大型问题,对这些方程求解器的需求优于对单元和材料的计算的需求,对于在ABAQUS/Explicit 中的分析这是类似的。随着问题尺度的增加,对方程求解器的需求迅速地增加,因此在实践中,隐式分析的最大尺度常常取决于给定计算机中的磁盘空间的大小和可用内存的数量,而不是取决于需要的计算时间。

显式时间积分方法的优越性

显式方法特别地适用于求解高速动力学事件,它需要许多小的时间增量来获得高精度的解答。如果事件持续的时间是非常短,则可能得到高效率的解答。

在显式方法中可以很容易地模拟接触条件和其它一些极度不连续的情况,并且能够一个节点一个节点地求解而不必迭代。为了平衡在接触时的外力和内力,可以调整节点加速度。

显式方法最显著的特点是没有在隐式方法中所需要的整体切线刚度矩阵。由于是显式地前推模型的状态,所以不需要迭代和收敛准则。

自动时间增量和稳定性

稳定性限制了ABAQUS/Explicit 求解器所能采用的最大时间步长,这是应用ABAQUS/Explicit 进行计算的一个重要因素。下面一节将描述稳定性限制并讨论在ABAQUS/Explicit 中如何确定这个值,还将讨论影响稳定性限制的有关模型设计参数的问题,这些模型参数包括模型的质量、材料和网格剖分。

显式方法的条件稳定性

应用显式方法,基于在增量步开始时刻t 的模型状态,通过时间增量t ?前推到当前时刻的模型状态。这个使得状态能够前推并仍能够保持对问题的精确描述的时间是非常短的。如果时间增量是大于这个最大的时间步长,则此时间增量已经超出了稳定性限制(stability limite )。超过稳定性限制的一个可能后果就是数值不稳定,它可能导致解答不收敛。由于一般不可能精确地确定稳定性限制,因而采用保守的估计值。因为稳定性限制对可靠性和精确性有很大的影响,所以必须一致性和保守地确定这个值。为了提高计算的效率,ABAQUS/Explicit 选择时间增量,使其尽可能地接近而且又不超过稳定性限制。 稳定性限制的定义

以在系统中的最高频率(ωmax )的形式定义稳定性限制。无阻尼的稳定性限制由下式

定义 stable max 2t ω?=

而有阻尼的稳定性限制由下面的表达式定义

stable max 2)t ξω?=

式中,ξ是最高频率模态的临界阻尼部分。(回顾临界阻尼,它定义了在自由的和有阻尼的振动关系中在有振荡运动与无振荡运动之间的限制。为了控制高频振荡,ABAQUS/Explicit 总是以体积粘性的形式引入一个小量的阻尼。)这也许与工程上的直觉相反,阻尼通常是减小稳定性限制的。

在系统中的实际最高频率是基于一组复杂的相互作用因素,而且是不大可能计算出确切的值。代替的办法是应用一个有效的和保守的简单估算。我们不是考虑模型整体,而是估算在模型中每个个体单元的最高频率,它总是与膨胀模态有关。可以证明,由逐个单元为基础确定的最高单元频率总是高于有限元组合模型的最高频率。

基于逐个单元的估算,稳定极限可以用单元长度e L 和材料波速d c 重新定义: stable e d

L t c ?= 因为没有明确如何确定单元的长度,对于大多数单元类型,例如一个扭曲的四边形单元,上述方程只是关于实际的逐个单元稳定极限的估算。作为近似值,可以采用最短的单元尺寸,但是估算的结果并不一定是保守的。单元长度越短,稳定极限越小。波速是材料的一个特性。对于泊松比为零的线弹性材料

d c =

其中,E 是杨氏模量,ρ是密度。材料的刚度越大,波速越高,导致越小的稳定极限;密度越高,波速越低,导致越大的稳定极限。

这种简单的稳定极限定义提供了某些直觉上的理解。稳定极限是当膨胀波通过由单元特征长度定义的距离时所需要的时间。如果我们知道最小的单元尺寸和材料的波速,我们就能

够估算稳定极限。例如,如果最小单元尺寸是5 mm,和膨胀波速是5000 m/s,稳定的时间增量就是在1×10-6 s的量级上。

在ABAQUS/Explicit中的完全自动时间增量与固定时间增量

在分析的过程中,ABAQUS/Explicit应用在前一节讨论过的那些方程调整时间增量的值,使得基于模型的当前状态的稳定极限永不越界。时间增量是自动的,并不需用户干涉,甚至不需要建议初始的时间增量。稳定极限是从数值模型得来的一个数学概念。因为有限元程序包含了所有的相关细节,所以能够确定出一个有效的和保守的稳定极限。然而,ABAQUS/Explicit容许用户不必顾及自动时间增量。在第9.7节“摘要”中简要地讨论了人工时间增量控制。

在显式分析中所采用的时间增量必须小于中心差分算子的稳定极限。如果未能使用足够小的时间增量则会导致不稳定的解答。当解答成为不稳定时,求解变量(如位移)的时间历史响应一般会随着振幅的增加而振荡。总体的能量平衡也将发生显著的变化。如果模型只包含一种材料,则初始时间增量是直接与网格中的最小单元尺寸成正比。如果网格中包含了均匀尺寸的单元但是却包含有多种材料,那么具有最大波速的单元将决定初始的时间增量。

在具有大变形和/或非线性材料响应的非线性问题中,模型的最高频率将连续地变化,并因而导致稳定极限的变化。对于时间增量的控制,ABAQUS/Explicit有两种方案:完全的自动时间增量(程序中考虑了稳定极限的变化)和固定的时间增量。

应用两种估算方法确定稳定极限:逐个单元法和整体法。在分析开始时总是使用逐个单元估算法,并在一定的条件下转变为整体估算法。

逐个单元估算法是保守的;与基于整体模型最高频率的真正的稳定极限相比较,它将给出一个更小的稳定时间增量。一般说来,约束(如边界条件)和动力学接触具有压缩特征值响应谱的效果,而逐个单元估算法没有考虑这种效果。

另一方面,整体估算法应用当前的膨胀波波速确定整个模型的最高阶频率。这种算法为了得到最高频率将连续地更新估算值。整体估算法一般地将允许时间增量超出逐个单元估算法得到的值。

在ABAQUS/Explicit中也提供了固定时间增量算法。确定固定时间增量的值或者采用在分析步中初始的逐个单元稳定性估算法,或者采用由用户直接指定的时间增量。当要求更精确地表达问题的高阶模态响应时,固定时间增量算法可能是更有用的。在这种情况下,可能采用比逐个单元估算法更小的时间增量值。当在分析步中应用了固定时间增量,ABAQUS/Explicit将不再检查计算的响应是否稳定。通过仔细地检查能量历史和其他的响应变量,用户应当确保得到了有效的响应。

质量缩放以控制时间增量

由于质量密度影响稳定极限,在某些情况下,缩放质量密度能够潜在地提高分析的效率。例如,许多模型需要复杂的离散,因此有些区域常常包含着控制稳定极限的非常小或者形状极差的单元。这些控制单元常常数量很少并且可能只存在于局部区域。通过仅增加这些控制单元的质量,就可以显著地增加稳定极限,而对模型的整体动力学行为的影响是可以忽略的。

在ABAQUS/Explicit中的自动质量缩放功能,可以阻止这些有缺陷的单元不影响稳定极限。质量缩放可以采用两种基本方法:直接地定义一个缩放因子或者给那些质量需要缩放的单元逐个地定义所需要的稳定时间增量。这两种方法都容许对稳定极限附加用户控制,详细介绍请参考ABAQUS分析用户手册第7.15.1节“Mass scaling”。然而,当采用质量缩放时也要小心,因为模型质量的显著变化可能会改变问题的物理模型。

材料对稳定极限的影响

材料模型通过它对膨胀制波波速的限制作用来影响稳定极限。在线性材料中,波速是常数;所以,在分析过程中稳定极限的唯一变化来自于最小单元尺寸的变化。在非线性材料中,例如产生塑性的金属材料,当材料屈服和材料的刚度变化时波速发生变化。在整个分析过程中,ABAQUS/Explicit 监督在模型中材料的有效波速,并应用在每个单元中的当前材料状态估算稳定性。在屈服之后刚度下降,减小了波速并因而相应地增加了稳定极限。 网格对稳定极限的影响

因为稳定极限大致与最短的单元尺寸成比例,所以应该优先使单元的尺寸尽可能的大。遗憾的是,对于精确的分析采用一个细划的网格常常是必要的。为了在满足网格精度水平要求的前提下,尽可能地获得最高的稳定极限,最好的方法是采用一个尽可能均匀的网格。由于稳定极限是基于在模型中最小的单元尺寸,甚至一个单独的微小单元或者形状极差的单元都能够迅速地降低稳定极限。为了便于发现问题, ABAQUS/Explicit 在状态文件(.sta )中提供了网格中具有最低稳定极限的10个单元的清单。如果在模型中包含了一些稳定极限比网格中其它单元小得多的单元,将模型网格重新划分使其更加均匀可能是值得的。 数值不稳定性

在大多数情况下,ABAQUS/Explicit 对于大多数单元保持了稳定。但是,如果定义了弹簧和减振器单元,它们在分析过程中有可能成为不稳定。因此,能够在你的分析过程中识别是否发生了数值不稳定性是非常有用的。如果确实发生了数值不稳定,典型的情况是结果是无界的,没有物理意义的,而且常常解是振荡的。

中心差分法

中心差分法是工程中常用的有效方法,中心差分法编程计算的一般步骤:

A . 初始计算:

1. 形成刚度矩阵[]K ,质量矩阵[]M 和阻尼矩阵[]C 。

2. 计算初始值0{}U ??,0{}U ?

,0{}U 。

3. 选择时间步长t ?,cr t t ?

111,,2,2a a a a a t t a ====?? 4. 计算0003{}{}{}{}t U U t U a U ???

-?=-?+。

5. 形成有效的质量矩阵[][]01?M a M a C ??=+??

。 6. 对?M ????进行三角分解:[][][]?M L D L ??=??

B.对于每个时间步长:

1.计算在时刻t 有效载荷:

{}{}[][]()[][]()201{}{}t t t t t P P K a M U a M a C U -?=--+-+

2.求解在时刻的位移:

[][][]

{}{}T t t t L D L U P +?= 3.如果需要,计算在时刻t 的位移速度和加速度: {}()0

{}2{}{}t t t t t U a U U U -?+?=-+ {}()1{}{}t t t t U a U U -?+?=-+

使用中心差分法要求时间步长t ?小于临界值cr t ?,即

n cr T t t n

?

ABAQUS(显式动力学)求解子弹侵彻

ABAQUS显式动力求解子弹侵入(基于米制国际单位)1. part模块 创建靶part-target及子弹part-bullet模型如上 2. 属性模块 2.1 柔性损伤 力学>>延性金属损伤>>柔性损伤: 2.31 - 3.33 0.001 2.31 -0.3333 0.001 2.18 -0.267 0.001 2.06 -0.2 0.001 1.95 -0.133 0.001 1.85 -0.0667 0.001 1.76 0 0.001 1.67 0.0667 0.001 1.59 0.133 0.001 1.52 0.2 0.001 1.46 0.267 0.001 1.4 0.333 0.001 1.35 0.4 0.001 1.3 0.467 0.001

1.26 0.533 0.001 1.23 0.6 0.001 1.2 0.667 0.001 1.15 0.73 0.001 1.06 0.851 0.001 0.945 1.02 0.001 0.816 1.24 0.001 0.685 1.51 0.001 0.202 3.33 0.001 子选项>>损伤演化>>能量>>指数>>最大>>断裂能>>500 2.2 剪切损伤 力学>>延性金属损伤>>剪切损伤: Ks=0.03 0.86 -10 0.001 0.86 1.7 0.001 0.859 1.72 0.001 0.86 1.73 0.001 0.865 1.75 0.001 0.874 1.77 0.001 0.886 1.78 0.001 0.901 1.8 0.001 0.921 1.81 0.001 0.944 1.83 0.001 0.97 1.85 0.001 1 1.86 0.001 1.04 1.88 0.001 1.08 1.89 0.001 1.12 1.91 0.001 1.17 1.92 0.001 1.22 1.94 0.001 1.28 1.96 0.001 1.34 1.97 0.001 1.41 1.99 0.001 1.48 2 0.001 1.56 2.02 0.001 1.56 10 0.001 子选项>>损伤演化>>能量>>指数>>最大>>断裂能>>500 2.3 密度 7800 2.4 弹性 2.1e11 0.3

Abaqus-中显示动力学分析步骤

Abaqus-中显示动力学分析步骤

准静态分析——ABAQUS/Explicit 准静态过程(guasi-static process) 在过程进行的每一瞬间,系统都接近于平衡状态,以致在任意选取的短时间dt内,状态参量在整个系统的各部分都有确定的值,整个过程可以看成是由一系列极接近平衡的状态所构成,这种过程称为准静态过程。无限缓慢地压缩和无限缓慢地膨胀过程可近似看作为准静态过程。准静态过程是一种理想过程,实际上是办不到的。 准静态原为一个热力学概念,在这里引用主要是指模型在加载的过程中任意时刻所经历的中间状态都可近似地视为静力状态,因此当加载过程进行得无限缓慢时,在各个时刻模型所处的状态就可近似地看作是静态,该过程便是准静态过程。准静态啮合过程仿真主要考虑的是弧齿锥齿轮副在加载时的接触状态,以及齿面和齿根的应力变化规律,其前提是不考虑齿轮副惯性的影响。 ABAQUS/Explicit准静态分析 显式求解方法是一种真正的动态求解过程,它的最初发展是为了模拟高速冲击问题,在这类问题的求解中惯性发挥了主导性作用。当求解动力平衡的状态时,非平衡力以应力波的形式在相邻的单元之间传播。由于最小稳定时间增量一般地是非常小的值,所以大多少问题需要大量的时间增量步。 在求解准静态问题上,显式求解方法已经证明是有价值的,另外ABAQUS/Explicit在求解某些类型的静态问题方面比ABAQUS/Standard更容易。在求解复杂的接触问题时,显式过程相对于隐式过程的一个优势是更加容易。此外,当模型很大时,显式过程比隐式过程需要较少的系统资源。 将显式动态过程应用于准静态问题需要一些特殊的考虑。根据定义,由于一个静态求解是一个长时间的求解过程,所以在其固有的时间尺度上分析模拟常常在计算上是不切合实际的,它将需要大量的小的时间增量。因此,为了获得较经济的解答,必须采取一些方式来加速问题的模拟。但是带来的问题是随着问题的加速,静态平衡的状态卷入了动态平衡的状态,在这里惯性力成为更加起主导作用的力。目标是在保持惯性力的影响不显著的前提下用最短的时间进行模拟。 准静态(Quasi-static)分析也可以在ABAQUS/Standard中进行。当惯性力可以忽略时,在ABAQUS/Standard中的准静态应力分析用来模拟含时间相关材料响应(蠕变、膨胀、粘弹性和双层粘塑性)的线性或非线性问题。关于在ABAQUS/Standard中准静态分析的更多信息,请参阅ABAQUS分析用户手册(ABAQUS Analysis User’s Manual)的第6.2.5节“Quasi-static analysis”。 1. 显式动态问题类比 假设两个载满了乘客的电梯。在缓慢的情况下,门打开后你步入电梯。为了腾出空间,邻近门口的人慢慢地推他身边的人,这些被推的人再去推他身边的人,如此继续下去。这种扰动在电梯中传播,直到靠近墙边的人表示他们无法移动为止。一系列的波在电梯中传播,直到每个人都到达了一个新的平衡位置。如果你稍稍加快速度,你会比前面更用力地推动你身边的人,但是最终每个人都会停留在与缓慢的情况下相同的位置。 在快速情况下,门打开后你以很高的速度冲入电梯,电梯里的人没有时间挪动位置来重新安排他们自己以便容纳你。你将会直接地撞伤在门口的两个人,而其他人则没有受到影响。

abaqus接触问题技巧整理

接触问题技巧整理 1、塑性材料和接触面上都不能用C3D20R和C3D20单元,这可能是你收敛问题的主要原因。如果需要得到应力,可以使用C3D8I (在所关心的部位要让单元角度尽量接近90度),如果只关心应变和位移,可以使用C3D8R, 几何形状复杂时,可以使用C3D10M. 2、接触对中的slave surface应该是材料较软,网格较细的面。 3、接触面之间有微小的距离,定义接触时要设定“Adjust=位置误差限度”,此误差限度要大于接触面之间的距离,否则ABAQUS会认为两个面没有接触:*Contact Pair, interaction="SOIL PILE SIDE CONTACT", small sliding, adjust=0.02 4、定义tie时也应该设定类似的position tolerance: *Tie, name=ShaftBottom, adjust=yes, position tolerance=0.1 5、msg文件中出现zero pivot说明ABAQUS无法自动解决过约束问题,例如在桩底部的最外一圈节点上即定义了tie,又定义了contact, 出现过约束。解决方法是在选择tie或contact 的slave surface时,将类型设为node region, 然后选择区域时不要包含这一圈节点(我附上的文件中没有做这样的修改)。 6、接触定义在哪个分析步取决于你模型的实际物理背景,如果从一开始两个面就是相接触的,就定义在initial或你的第一个分析步中;如果是后来才开始接触的,就定义在后面的分析步中。边界条件也是这样。 7、我在前面上传的文件里用*CONTROL设了允许的迭代次数18,意思是18次迭代不收敛时,才减小时间增量步(ABAQUS默认的值是12)。一般情况下不必设置此参数,如果在msg 文件中看到opening和closure的数目不断减小(即迭代的趋势是收敛的),但12次迭代仍不足以完全达到收敛,就可以用*CONTROL来增大允许的迭代次数。 8、桩头掉在了地表下,说明接触定义得不正确。可能接触面的距离还是大于*contact pair 中的adjust=0.02, 可改为adjust=0.2 9、原则上,90度的圆弧应该划分10个单元,适当少一些可能也行。 *contact pair中的adjust=0.005,还是太小,在后处理时可以看到,接触面之间的距离大于0.005。把adjust设置大一些没关系,比如adjust=0.1。 10、网格不好也可能产生过约束问题,不要只考虑边界条件啊! 11、NUMERICAL SINGULARITY WHEN PROCESSING NODE 15294 D.O.F. 2 RATIO = 2.48305E+11", 说明NODE 15294 所在的实体在方向2上出现无限大的刚体位移。 可以在此实体上的任意一点和地面之间定义一个很软的弹簧,以消除刚体位移。方法是:interaction模块,菜单special / springs-dashpots / create, 选connect points to ground, 选节点,Degree of freedom 设为出现了刚体位移的自由度,spring stiffness为一个较小的值(太小则不足以消除刚体位移,太大则会影响变形)。 如果多个方向上出现了刚体位移,就要分别在相应的方向上各定义一个弹簧。spring 所在的节点在弹簧方向的位移乘以spring stiffness,就是弹簧所分担的载荷,它应该远远小于在此方向上的外载荷。如果模型位移很小,我常常把spring stiffness设为1.

Abaqus 中显示动力学分析步骤

准静态分析——ABAQUS/Explicit 准静态过程(guasi-static process) 在过程进行的每一瞬间,系统都接近于平衡状态,以致在任意选取的短时间dt内,状态参量在整个系统的各部分都有确定的值,整个过程可以看成是由一系列极接近平衡的状态所构成,这种过程称为准静态过程。无限缓慢地压缩和无限缓慢地膨胀过程可近似看作为准静态过程。准静态过程是一种理想过程,实际上是办不到的。 准静态原为一个热力学概念,在这里引用主要是指模型在加载的过程中任意时刻所经历的中间状态都可近似地视为静力状态,因此当加载过程进行得无限缓慢时,在各个时刻模型所处的状态就可近似地看作是静态,该过程便是准静态过程。准静态啮合过程仿真主要考虑的是弧齿锥齿轮副在加载时的接触状态,以及齿面和齿根的应力变化规律,其前提是不考虑齿轮副惯性的影响。 ABAQUS/Explicit准静态分析 显式求解方法是一种真正的动态求解过程,它的最初发展是为了模拟高速冲击问题,在这类问题的求解中惯性发挥了主导性作用。当求解动力平衡的状态时,非平衡力以应力波的形式在相邻的单元之间传播。由于最小稳定时间增量一般地是非常小的值,所以大多少问题需要大量的时间增量步。 在求解准静态问题上,显式求解方法已经证明是有价值的,另外ABAQUS/Explicit在求解某些类型的静态问题方面比ABAQUS/Standard更容易。在求解复杂的接触问题时,显式过程相对于隐式过程的一个优势是更加容易。此外,当模型很大时,显式过程比隐式过程需要较少的系统资源。 将显式动态过程应用于准静态问题需要一些特殊的考虑。根据定义,由于一个静态求解是一个长时间的求解过程,所以在其固有的时间尺度上分析模拟常常在计算上是不切合实际的,它将需要大量的小的时间增量。因此,为了获得较经济的解答,必须采取一些方式来加速问题的模拟。但是带来的问题是随着问题的加速,静态平衡的状态卷入了动态平衡的状态,在这里惯性力成为更加起主导作用的力。目标是在保持惯性力的影响不显著的前提下用最短的时间进行模拟。 准静态(Quasi-static)分析也可以在ABAQUS/Standard中进行。当惯性力可以忽略时,在ABAQUS/Standard中的准静态应力分析用来模拟含时间相关材料响应(蠕变、膨胀、粘弹性和双层粘塑性)的线性或非线性问题。关于在ABAQUS/Standard中准静态分析的更多信息,请参阅ABAQUS分析用户手册(ABAQUS Analysis User’s Manual)的第6.2.5节“Quasi-static analysis”。 1. 显式动态问题类比 假设两个载满了乘客的电梯。在缓慢的情况下,门打开后你步入电梯。为了腾出空间,邻近门口的人慢慢地推他身边的人,这些被推的人再去推他身边的人,如此继续下去。这种扰动在电梯中传播,直到靠近墙边的人表示他们无法移动为止。一系列的波在电梯中传播,直到每个人都到达了一个新的平衡位置。如果你稍稍加快速度,你会比前面更用力地推动你身边的人,但是最终每个人都会停留在与缓慢的情况下相同的位置。 在快速情况下,门打开后你以很高的速度冲入电梯,电梯里的人没有时间挪动位置来重新安排他们自己以便容纳你。你将会直接地撞伤在门口的两个人,而其他人则没有受到影响。

Abaqus Explicit 接触问题

1. Abaqus/Explicit 中的接触形式 双击Interactions,出现接触形式定义。分为通用接触(General contact)、面面接触(Surface-to-Surface contact)和自接触(Self-contact)。 1. 通用接触General contact 通用接触用于为多组件,并具有复杂拓扑关系的模型建模。 General contact algorithm ?The contact domain spans multiple bodies (both rigid and deformable) ?Default domain is defined automatically via an all-inclusive element-based surface ?The method is geared toward models with multiple components and complex topology。 ?Greater ease in defining contact model 2. Surface-to-Surface contact Contact pair algorithm ?Requires user-specified pairing of individual surfaces ?Often results in more efficient analyses since contact surfaces are limited in scope 3. 自接触(Self-contact) 自接触应用于当部件发生变形时,可能导致自己的某两个或多个面发生接触的情况。如弹簧的压缩变形,橡胶条的压缩。

abaqus接触动力学分析

部件模态综合法 随着科学和生产的发展,特别是航空、航天事业的发展,越来越多的大型复杂结构被采用,这使得建模和求解都比较困难。一方面,一个复杂结构势必引入较多的自由度,形成高维的动力学方程,使一般的计算机在内存和求解速度方面都难以胜任,更何况一般的工程问题主要关心的是较低阶的模态。仅为了获取少数的几个模态,必须为求解高维方程付出巨大的代价也是不合适的。另一方面,正是由于结构的庞大和复杂,一个完整的结构往往不是在同一地区生产完成的,可能一个结构的各个主要零部件不得不由不同的地区、不同的厂家生产。而且由于试验条件的限制只能进行部件的模态实验,而无法对整体结构进行模态实验。针对这些主要的问题,为了获得大型、复杂结构的整体模态参数,于是发展了部件模态综合法。 部件模态综合法又叫子结构耦合法。它的基本思想是按工程观点或结构的几何轮廓,并遵循某些原则要求,把完整的结构进行人为抽象肢解成若干个子结构(或部件);首先对子结构(或部件)进行模态分析,然后经由各种方案,把它们的主要模态信息(常为低阶主模态信息)予以保留,并借以综合完整结构的主要模态特征。它的主要有点是,可以通过求解若干小尺寸结构的特征问题来代替直接求解大型特征值问题。同时对各个子结构可分别使用各种适宜的数学模型和计算程序,也可以借助试验的方法来获得他们的主要模态信息。 对于自由振动方程在数学上讲就是固有(特征)值方程。特征值方程的解不仅给出了特征值,即结构的自振频率和特征矢量——振兴或模态,而且还能使结构在动力载荷作用下的运动方程解耦,即所谓的振型分解法或叫振型叠加法。因此,特征值问题的求解技术,对于解决结构振动问题来说吧,是非常重要的。 考虑阻尼的振型叠加法 振型叠加法的定义:将结构各阶振型作为广义坐标系,求出对应于各阶振动的结构内力和位移,经叠加后确定结构总响应的方法。 振型叠加法的使用条件: ?(1)系统应该是线性的:线性材料特性,无接触条件,无非线性几何效应。 ?(2)响应应该只受较少的频率支配。当响应中各频率成分增加时,例如撞击和冲击问题,振型叠加技术的有效性将大大降低。 ?(3)载荷的主要频率应在所提取的频率范围内,以确保对载荷的描述足够精确。 ?(4)由于任何突然加载所产生的初始加速度应该能用特征模态精确描述。 ?(5)系统的阻尼不能过大。

abaqus接触分析的常见问题

CAE(计算机辅助工程)是一门复杂的工程科学,涉及仿真技术、软件、产品设计和力学等众多领域。世界上几大CAE公司各自以其独到的技术占领着相应的市场。ABAQUS有限元分析软件拥有世界上最大的非线性力学用户群,是国际上公认的最先进的大型通用非线性有限元分析软件之一。它广泛应用于机械制造、石油化工、航空航天、汽车交通、土木工程、国防军工、水利水电、生物医学、电子工程、能源、地矿、造船以及日用家电等工业和科学研究领域。ABAQUS在技术、品质和可靠性等方面具有卓越的声誉,可以对工程中各种复杂的线性和非线性问题进行分析计算。 《ABAQUS有限元分析常见问题解答》以问答的形式,详细介绍了使用ABAQUS建模分析过程中的各种常见问题,并以实例的形式教给读者如何分析问题、查找错误原因和尝试解决办法,帮助读者提高解决问题的能力。 《ABAQUS有限元分析常见问题解答》一书由机械工业出版社出版。 16.1.1点对面离散与面对面离散 【常见问题16-1】 在ABAQUS/Standard分析中定义接触时,可以选择点对面离散方法(node-to-surfac e-dis-cre-tization)和面对面离散方法(surface-to-surfacediscretization),二者有何差别? 『解答』 在点对面离散方法中,从面(slavesurface)上的每个节点与该节点在主面(mastersur face)上的投影点建立接触关系,每个接触条件都包含一个从面节点和它的投影点附近的一组主面节点。 使用点对面离散方法时,从面节点不会穿透(penetrate)主面,但是主面节点可以穿透从面。 面对面离散方法会为整个从面(而不是单个节点)建立接触条件,在接触分析过程中同时考虑主面和从面的形状变化。可能在某些节点上出现穿透现象,但是穿透的程度不会很严重。 在如图16-l和图16-2所示的实例中,比较了两种情况。

abaqus螺栓连接的接触分析(网络软件)

*HEADING 定义装配载荷,例子使用的是实体单元 *NODE 可选定义预紧节点 *SURFACE,NAME=名字 数据行:指定单元和相应的面来定义预紧截面 *PRE-TENSION SECTION,SURFACE=名字,NODE=预紧节点** *STEP ** 预紧截面的使用 *STATIC 控制时间增量步的数据行 *CLOAD 预紧节点,1,预紧力的值 或者 *BOUNDARY,AMPLITUDE=amplitude 预紧节点, 1, 1,紧固调整 *END STEP *STEP ** 保持紧固调整并施加新的载荷 *STATIC 或*DYNAMIC 控制时间增量步的数据行 *BOUNDARY,FIXED pre-tension_node, 1, 1 *BOUNDARY 定义其他边界条件的数据行 *CLOAD 或*DLOAD 定义其他载荷条件的数据行 … *END STEP

abaqus螺栓连接的接触分析 2012-02-13 19:09:34| 分类:ABAQUS | 标签:|举报|字号大中小订阅 NO.1 螺栓连接的简化 由于螺纹处的应力应变不是关心的重点,因此,为简化建模,避免收敛困难,在螺钉和螺孔内表面之间建立绑定约束(tie)。这样得到的模型会比实际结构刚硬。 建立绑定约束的两个面在整个分析过程中都会紧密连接在一起,不会分开,如同一个整体。 Tie绑定约束,Position Tolerance(位置误差限度)设为Specify distance:XXX. 含义:与主面距离小于此限度的从面节点都会受到绑定约束。对于在位置误差限度内的从面节点,ABAQUS将调整其初始坐标,使其与主面的距离为0。注意不要将值设太大,以免由于调整从面节点位置,而造成较差的单元形状。 NO.2 预紧力的模拟 在abaqus中模拟螺钉预紧力的两种方式:1、施加螺栓载荷(bolt load); 2、定义过盈接触(contact interference)。 1、施加螺栓载荷(bolt load) 可以模拟螺钉的预紧力和各种均匀预应力。定义螺栓载荷时,需要指定螺钉上的一个受力截面。施加螺栓载荷的方式三种:A、Apply force:指定预紧力。B、Adjust length:调整螺钉长度。C、Fix at current length:保持螺钉当前长度。 注意:螺栓载荷为正值时表示使受力部件缩短;螺栓载荷为负值时表示受力部件伸长。 在做螺栓接触分析时,可以设好几个分析步,已达到平稳接触。在前几步使用Apply force,在后几步用Fix at current length。含义:在该分析步的开始,去除螺钉的预紧力,让螺钉保持上一步结束时的长度。在该步分析结束后,如果有其他外载荷,螺钉长度会发生变化。 2、定义过盈接触(contact interference)。

ABAQUS分析教程

ABAQUS瞬态动力学分析 瞬态动力学分析 一、问题描述 一质量块沿着长度为1500mm的等截面梁运动,梁的材料为钢(密度ρ=7.8E-9 ton/mm3,弹性模量E=2.1E5MPa,泊松比ν=0.3),宽为60mm,高为40mm。质量块的长为50mm,宽为60mm,高为30mm。质量块的密度ρ=1.11E-007 ton/mm3,弹性模量E=2.1E5MPa,泊松比ν=0.3,如图5.1所示。质量块以10000mm/s 的速度匀速通过悬臂梁(从固定端运动到自由端),计算梁自由端沿y方向的位移、速度和加速度。 图1 质量块沿梁运动的示意图 二、目的和要求 掌握结构的动力学分析方法,会定义历史输出步。 1)用六面体单元划分网格,厚度方向有4排网格。 2)采用隐式算法进行计算。 三、操作步骤 1、启动ABAOUS/CAE [开始][程序][ABAQUS 6.7-1][ABAQUS CAE]。 启动ABAQUS/CAE后,在出现的Start Session(开始任务)对话框中选择Create Model Database(创建新模型数据库)。 2、创建部件 在ABAQUS/CAE窗口顶部的环境栏中,可以看到模块列表Module:Part,这表示当前处在Part(部件)功能模块,可按照以下步骤来创建梁的几何模型。 创建两个零件分别命名为mass(质量块)和beam(梁),均为三维实体弹性体。 3、创建材料和截面属性 在窗口左上角的Module(模块)列表中选择Property(特性)功能模块。 (1)创建梁材料 Name:Steel,Density:7.8E-9,Young’s Modulus(弹性模量):210000,Poisson’s Ratio(泊松比):0.3。 (2)创建截面属性点击左侧工具箱中的(Create Section),弹出Create Sectio n对话框,Category:Solid,Type:Homogeneous,保持默认参数不变(Material:Steel;Plane stress/strain thickness:1 ),点击OK。

接触分析注意问题

1、塑性材料和接触面上都不能用C3D20R和C3D20单元,这可能是 你收敛问题的主要原因。如果需要得到应力,可以使用C3D8I (在所关心的部位要让单元角度尽量接近90度),如果只关心应变和位移,可以使用C3D8R, 几何形状复杂时,可以使用C3D10M。 2、接触对中的slave surface应该是材料较软,网格较细的面。 3、接触面之间有微小的距离,定义接触时要设定“Adjust=位置误 差限度“,此误差限度要大于接触面之间的距离,否则ABAQUS会认为两个面没有接触:*Contact Pair, interaction="SOIL PILE SIDE CONTACT", small sliding, adjust=0.2. 4、定义tie时也应该设定类似的position tolerance: *Tie, name=ShaftBottom, adjust=yes, position tolerance=0.1 5、 msg文件中出现zero pivot说明ABAQUS无法自动解决过约束问题,例如在桩底部的最外一圈节点上即定义了tie,又定义了contact, 出现过约束。解决方法是在选择tie或contact的slave surface时,将类型设为node region, 然后选择区域时不要包含这一圈节点(我附上的文件中没有做这样的修改)。 6、接触定义在哪个分析步取决于你模型的实际物理背景,如果从一开始两个面就是相接触的,就定义在initial或你的第一个分析步中;如果是后来才开始接触的,就定义在后面的分析步中。边界条件也是这样。 7、我在前面上传的文件里用*CONTROL设了允许的迭代次数18,意 思是18次迭代不收敛时,才减小时间增量步(ABAQUS默认的值是

ABAQUS有限元接触分析的基本概念

ABAQUS有限元接触分析的基本概念 来源:机械工业出版社《ABAQUS有限元分析常见问题解答》 CAE(计算机辅助工程)是一门复杂的工程科学,涉及仿真技术、软件、产品设计和力学等众多领域。世界上几大CAE公司各自以其独到的技术占领着相应的市场。ABAQUS有限元分析软件拥有世界上最大的非线性力学用户群,是国际上公认的最先进的大型通用非线性有限元分析软件之一。它广泛应用于机械制造、石油化工、航空航天、汽车交通、土木工程、国防军工、水利水电、生物医学、电子工程、能源、地矿、造船以及日用家电等工业和科学研究领域。ABAQUS在技术、品质和可靠性等方面具有卓越的声誉,可以对工程中各种复杂的线性和非线性问题进行分析计算。 《ABAQUS有限元分析常见问题解答》以问答的形式,详细介绍了使用ABAQUS建模分析过程中的各种常见问题,并以实例的形式教给读者如何分析问题、查找错误原因和尝试解决办法,帮助读者提高解决问题的能力。 《ABAQUS有限元分析常见问题解答》一书由机械工业出版社出版。 16.1.1 点对面离散与面对面离散 【常见问题16-1】 在ABAQUS/Standard分析中定义接触时,可以选择点对面离散方法(node-to-surface-dis- cre-tization)和面对面离散方法(surface-to-surface discretization),二者有何差别? 『解答』 在点对面离散方法中,从面(slave surface)上的每个节点与该节点在主面(master surface)上的投影点建立接触关系,每个接触条件都包含一个从面节点和它的投影点附近的一组主面节点。 使用点对面离散方法时,从面节点不会穿透(penetrate)主面,但是主面节点可以穿透从面。 面对面离散方法会为整个从面(而不是单个节点)建立接触条件,在接触分析过程中同时考虑主面和从面的形状变化。可能在某些节点上出现穿透现象,但是穿透的程度不会很严重。 在如图16-l和图16-2所示的实例中,比较了两种情况。

基于有限元软件ABAQUS的过盈接触分析

基于有限元软件ABAQUS的过盈接触分析 如下图所示,将轴缓缓压入轴毂中,轴和毂之间在径向有8mm的过盈量,轴毂固定,两者的材料均为钢,弹性模量为2.06E11Pa,泊松比为0.3,摩擦系数为0.2。分析装配过程中轴和轴毂的应力应变情况。 问题分析 (1)本题主要分析装配过程中结构的静态响应,所以分析步选择通用静态分析步。 (2)本题由于为过盈配合,属于大变形,故应考虑几何非线性的影响。 (3)模型具有轴对称性,所以可以采取轴对称模型来进行分析,这样可以节省计算时间。 (4)为了方便收敛,分析步可以分成两步,第一步建立两者间的接触关系,第二步完成过盈装配。 (5)接触面之间有很大的相对滑动,所以模型要使用有限滑移(Finite sliding)。 ABAQUS/CAE分析过程如下: (1)进入Part模块,创建Name为Axis的部件

在草图环境中输入(0,0),(0.1,0),(0.1,0.12),(0.13,0.12),(0.13,0.28),(0,0.28),(0,0)同时为轴部件端部切割出一78度角的倒角 同样再创造一Name为Hub的部件,设置与Axis一样,在草图环境中输入利用Rectangle工具创建一矩形,两角点为(0.09992,0)和(0.19992,-0.12)

(2) 进入property 模块,定义材料属性

(3)进入Assembly模块,创建两者间的装配关系

(4)进入step模块 定义名为Make-Contact和Press-Axis-Down的两个分析步,,将Nlgeom设置 为on,详细信息如下:

abaqus动力学分析

目 录 第一章ABAQUS动力学问题概述 (1) §1-1 动力学问题 (1) §1-2 结构动力学研究的内容 (3) §1-3 振动的分类 (4) §1-4 结构动力学的研究方法 (5) §1-5 动力学问题的基本方程 (5) 小结 (6) §1-6 第2章结构特征值的提取 (7) §2-1 问题的产生 (7) §2-2 特征值的求解方法 (7) §2-3 特征值求解器的比较 (8) §2-4 重复的特征频率 (9) §2-5 征值频率的提取 (9) §2-6 频率输出 (12) §2-7 有预载结构的频率 (16) §2-8 复特征频率和刹车的啸声分析 (17) 第3章模态叠加法 (22) §3-1 模态叠加法的基本概念 (22) §3-2 模态叠加法的应用 (24) 第4章阻尼 (26) §4-1 引言 (26) §4-2 阻尼 (26) §4-3 在ABAQUS中定义阻尼 (27) 1

§4-4 阻尼选择 (31) 第5章稳态动力学分析 (33) §5-1 稳态动力学简介 (33) §5-2 分析方法 (35) §5-3 激励和输出 (36) §5-4 算例—轮胎的谐波激励稳态响应 (42) 第6章瞬态动力学分析 (49) §6-1 引言 (49) §6-2 模态瞬态动力学简介 (49) §6-3 分析方法 (54) §6-4 载荷和输出 (55) §6-5 算例—货物吊车 (58) 第7章基础运动 (64) §7-1 基础运动形式 (64) §7-2 初级基础运动 (65) §7-3 次级基础运动 (66) §7-4 在ABAQUS中定义基础运动 (66) §7-5 算例 (70) 第8章加速度运动的基线校准 (73) §8-1 加速度基线调整和校准简介 (73) §8-2 基线校准方法 (74) §8-3 加速度基线校准步骤 (76) §8-4 考虑基线校准的悬臂梁算例分析 (77) 2

Abaqus CAE中的分析步 接触和载荷

Abaqus/CAE中的分析步、接触和载荷 第五讲 ? Dassault Systèmes, 2008 L5.2概述 ?分析步 ?输出 ?接触 ?载荷、边界条件和初始条件 ?练习 Introduction to Abaqus/CAE ? Dassault Systèmes, 2008

分析步 ? Dassault Systèmes, 2008 L5.4分析步 ?分析步模块有下面四个用途: 1.定义分析步。 2.指定输出需求。 3.指定分析诊断。 4.指定分析控制。 Introduction to Abaqus/CAE ? Dassault Systèmes, 2008

? Dassault Systèmes, 2008 uction to Abaq us/CA E Step 3 = Natural frequency extraction 分析步 ?分析步 ?分析步为描述模拟历程提供了一种方便的途径。分析的结果取决于事件的顺序。?比如,右图中的弓和箭。整个分析过程包括四个分析步: Step 1: 预拉伸弓弦 (静态响应)。Step 2: 拉弓(静态响应)。 Step 3: 为加载的系统提取自然频率。Step 4: 放开弓弦 (动态响应)。 ? Dassault Systèmes, 2008 Introduction to Abaqus/CAE L5.6 分析步 ?在Abaqus/CAE 中定义分析步 General procedures Abaqus/Explicit procedures Linear procedures

分析步 ?分析步替换 ?任何分析步都可以用其它分析步替换 ?必需满足分析步的先后顺序。 ?Abaqus/CAE将保留载荷、边界条件、接触等属性Introduction to Abaqus/CAE ? Dassault Systèmes, 2008 输出 ? Dassault Systèmes, 2008

abaqus接触问题分析

abaqus接触分析 1、塑性材料和接触面上都不能用C3D20R和C3D20单元,这可能是你收敛问题的主要原因。如果需要得到应力,可以使用C3D8I (在所关心的部位要让单元角度尽量接近90度),如果只关心应变和位移,可以使用C3D8R, 几何形状复杂时,可以使用C3D10M。 2、接触对中的slave surface应该是材料较软,网格较细的面。 3、接触面之间有微小的距离,定义接触时要设定“Adjust=位置误差限度”,此误差限度要大于接触面之间的距离,否则ABAQUS会认为两个面没有接触: *Contact Pair, interaction="SOIL PILE SIDE CONTACT", small sliding, adjust=0.2. 4、定义tie时也应该设定类似的position tolerance: *Tie, name=ShaftBottom, adjust=yes, position tolerance=0.1 5、msg文件中出现zero pivot说明ABAQUS无法自动解决过约束问题,例如在桩底部的最外一圈节点上即定义了tie,又定义了contact, 出现过约束。解决方法是在选择tie或contact的slave surface时,将类型设为node region, 然后选择区域时不要包含这一圈节点(我附上的文件中没有做这样的修改)。 6、接触定义在哪个分析步取决于你模型的实际物理背景,如果从一开始两个面就是相接触的,就定义在initial或你的第一个分析步中;如果是后来才开始接触的,就定义在后面的分析步中。边界条件也是这样。 7、我在前面上传的文件里用*CONTROL设了允许的迭代次数18,意思是18次迭代不收敛时,才减小时间增量步(ABAQUS默认的值是12)。一般情况下不必设置此参数,如果在msg文件中看到opening和closure的数目不断减小(即迭代的趋势是收敛的),但12次迭代仍不足以完全达到收敛,就可以用*CONTROL来增大允许的迭代次数。 8、桩头掉在了地表下,说明接触定义得不正确。可能接触面的距离还是大于*contact pair 中的adjust=0.02, 可改为adjust=0.2 9、原则上,90度的圆弧应该划分10个单元,适当少一些可能也行。 *contact pair中的adjust=0.005,还是太小,在后处理时可以看到,接触面之间的距离大于0.005。把adjust设置大一些没关系,比如adjust=0.1。 10、网格不好也可能产生过约束问题,不要只考虑边界条件啊!NUMERICAL SINGULARITY WHEN PROCESSING NODE 15294 D.O.F. 2 RATIO =2.48305E+11", 说明NODE 15294 所在的实体在方向2上出现无限大的刚体位移。可以在此实体上的任意一点和地面之间定义一个很软的弹簧,以消除刚体位移。方法是:interaction模块,菜单special / springs-dashpots / create, 选connect points to ground, 选节点,Degree of freedom 设为出现了刚体位移的自由度,spring stiffness为一个较小的值(太小则不足以消除刚体位移,太大则会影响变形如果多个方向上出现了刚体位移,就要分别在相应的方向上各定义一个弹簧。spring 所在的节点在弹簧方向的位移乘以spring stiffness,就是弹簧

ABAQUS有限元接触分析的基本概念

ABAQUS有限元接触分析的基本概念 相关专题:模具技术文献 时间:2009-05-06 05:55 来源:中国塑料模具网 CAE(计算机辅助工程)是一门复杂的工程科学,涉及仿真技术、软件、产品设计和力学等众多领域。世界上几大CAE公司各自以其独到的技术占领着相应的市场。ABAQUS有限元分析软件拥有世界上最大的非线性力学用户群,是国际上公认的最先进的大型通用非线性有限元分析软件之一。它广泛应用于机械制造、石油化工、航空航天、汽车交通、土木工程、国防军工、水利水电、生物医学、电子工程、能源、地矿、造船以及日用家电等工业和科学研究领域。ABAQUS在技术、品质和可靠性等方面具有卓越的声誉,可以对工程中各种复杂的线性和非线性问题进行分析计算。 《ABAQUS有限元分析常见问题解答......》以问答的形式,详细介绍了使用ABAQUS建模分析过程中的各种常见问题,并以实例的形式教给读者如何分析问题、查找错误原因和尝试解决办法,帮助读者提高解决问题的能力。 《ABAQUS有限元分析常见问题解答......》一书由机械工业出版社出版。 16.1.1点对面离散与面对面离散 【常见问题16-1】 在ABAQUS/Standard分析中定义接触时,可以选择点对面离散方法 (node-to-surface-dis-cre-tization)和面对面离散方法(surface-to-surfacediscretization),二者有何差别? 『解答』 在点对面离散方法中,从面(slavesurface)上的每个节点与该节点在主面(mastersurface)上的投影点建立接触关系,每个接触条件都包含一个从面节点和它的投影点附近的一组主面节点。 使用点对面离散方法时,从面节点不会穿透(penetrate)主面,但是主面节点可以穿透从面。 面对面离散方法会为整个从面(而不是单个节点)建立接触条件,在接触分析过程中同时考虑主面和从面的形状变化。可能在某些节点上出现穿透现象,但是穿透的程度不会很严重。 在如图16-l和图16-2所示的实例中,比较了两种情况。

abaqus接触分析

abaqus—接触分析(转) 已有 264 次阅读2010-8-24 19:39| 1、塑性材料和接触面上都不能用C3D20R和C3D20单元,这可能是你收敛问题的主要原因。如果需要得到应力,可以使用C3D8I (在所关心的部位要让单元角度尽量接近90度),如果只关心应变和位移,可以使用C3D8R, 几何形状复杂时,可以使用C3D10M。 2、接触对中的slave surface应该是材料较软,网格较细的面。 3、接触面之间有微小的距离,定义接触时要设定“Adjust=位置误差限度”,此误差限度要大于接触面之间的距离,否则ABAQUS会认为两个面没有接触: *Contact Pair, interaction="SOIL PILE SIDE CONTACT", small sliding, adjust=0.2. 4、定义tie时也应该设定类似的position tolerance: *Tie, name=ShaftBottom, adjust=yes, position tolerance=0.1 5、 msg文件中出现zero pivot说明ABAQUS无法自动解决过约束问题,例如在桩底部的最外一圈节点上即定义了tie,又定义了contact, 出现过约束。解决方法是在选择tie或contact的slave surface时,将类型设为node region, 然后选择区域时不要包含这一圈节点(我附上的文件中没有做这样的修改)。 6、接触定义在哪个分析步取决于你模型的实际物理背景,如果从一开始两个面就是相接触的,就定义在initial或你的第一个分析步中;如果是后来才开始接触的,就定义在后面的分析步中。边界条件也是这样。 7、我在前面上传的文件里用*CONTROL设了允许的迭代次数18,意思是18次迭代不收敛时,才减小时间增量步(ABAQUS默认的值是12)。一般情况下不必设置此参数,如果在msg文件中看到opening和closure的数目不断减小(即迭代的趋势是收敛的),但12次迭代仍不足以完全达到收敛,就可以用*CONTROL来增大允许的迭代次数。 8、桩头掉在了地表下,说明接触定义得不正确。可能接触面的距离还是大于*contact pair 中的adjust=0.02, 可改为adjust=0.2 9、原则上,90度的圆弧应该划分10个单元,适当少一些可能也行。 *contact pair中的adjust=0.005,还是太小,在后处理时可以看到,接触面之间的距离大于0.005。把adjust设置大一些没关系,比如adjust=0.1。 10、网格不好也可能产生过约束问题,不要只考虑边界条件啊! NUMERICAL SINGULARITY WHEN PROCESSING NODE 15294 D.O.F. 2 RATIO =2.48305E+11", 说

abaqus中的动态分析方法

ABAQUS 线性动态分析 如果你只对结构承受载荷后的长期响应感兴趣,静力分析(static analysis)是足够的。然而,如果加载时间很短(例如在地震中)或者如果载荷在性质上是动态的(例如来自旋转机械的荷载),你就必须采用动态分析(dynamic analysis)。本章将讨论应用ABAQUS/Standard进行线性动态分析;关于应用ABAQUS/Explicit进行非线性动态分析的讨论,请参阅第9章“非线性显式动态分析”。 7.1 引言 动态模拟是将惯性力包含在动力学平衡方程中: +P u M I - = 其中 M结构的质量。 u 结构的加速度。 I在结构中的内力。 P 所施加的外力。 在上面公式中的表述是牛顿第二运动定律(F = ma)。 在静态和动态分析之间最主要的区别是在平衡方程中包含了惯性力(M u )。在两类模拟之间的另一个区别在于内力I的定义。在静态分析中,内力仅由结构的变形引起;而在动态分析中,内力包括源于运动(例如阻尼)和结构的变形的贡献。 7.1.1 固有频率和模态 最简单的动态问题是在弹簧上的质量自由振动,如图7-1所示。

图7–1 质量-弹簧系统 在弹簧中的内力给出为ku ,所以它的动态运动方程为 mu ku P +-=0 这个质量-弹簧系统的固有频率(natral frequency )(单位是弧度/秒(rad/s ))给出为 ω= 如果质量块被移动后再释放,它将以这个频率振动。若以此频率施加一个动态外力,位移的幅度将剧烈增加,这种现象即所谓的共振。 实际结构具有大量的固有频率。因此在设计结构时,非常重要的是避免使可能的载荷频率过分接近于固有频率。通过考虑非加载结构(在动平衡方程中令0P =)的动态响应可以确定固有频率。则运动方程变为 M u I +=0 对于无阻尼系统,I Ku =,因此有 M u Ku +=0 这个方程的解具有形式为 t i e u ωφ= 将此式代入运动方程,得到了特征值(eigenvalue )问题 K M φλφ= 其中2λω=。 该系统具有n 个特征值,其中n 是在有限元模型中的自由度数目。记j λ是第j 个

相关主题
文本预览
相关文档 最新文档