当前位置:文档之家› COREX熔融还原炼铁工艺简介

COREX熔融还原炼铁工艺简介

COREX熔融还原炼铁工艺简介

熔融还原

熔融还原炼铁技术分析评估 人们用“有无预还原”将熔融还原分为“一步法”熔融还原和“二步法”熔融还原。“一步法”熔融还原只有熔态还原,矿石预还原率接近0,是真正意义上的熔融还原炼铁法,如HIsmelt、Romelt、Ausmelt等低预还原率工艺均属于此;而“二步法”熔融还原,即预还原加终还原,如COREX、FINEX工艺等,严格讲“二步法”应该称为还原熔融炼铁法。 COREX工艺 COREX工艺演化了高炉炼铁技术,将高炉从概念的软熔带部分分为两部分。一部分利用成熟的高炉长寿炉缸技术(包括焦炭床和碳砖结合冷却壁技术)构造成了造气煤炭流化床即熔融气化炉;而另一部分借鉴了成熟的大型MIDREX气基还原技术,构造成了预还原竖炉,使用块煤和块厂炼铁,成功地实现了工业化生产。 COREX的基本工艺流程为:块矿、烧结矿、球团矿或这些原料的块状混合物,通过封闭漏斗系统装入到预还原竖炉中,在原料下行的过程中,被逆向流动的还原气体还原成金属化率约80%~90%的直接还原铁(DRI)。螺旋卸料器将DRI从预还原竖炉中传送到熔融气化炉中,进行终还原和熔化。熔融气化炉产生的煤气由于含有煤粉、灰尘和铁尘、CO 和H2等,且温度高于1100℃,不能直接进入预还原竖炉,必须在旋风除尘器中净化,混入冷煤气降温,调整到最佳工作范围800~850℃后作为还原气从下部送入竖式预还原炉。 COREX演化了高炉炼铁技术,取得了商业成功,但同时也继承了高炉炼铁的一些缺点: 1. COREX是典型的炉床法炼铁工艺,与高炉相比,COREX更多地依靠间接还原,间接还原度越高,工艺进行得越容易,难以摆脱料柱透气性问题的困扰。 2. 为保证竖式预还原炉料柱的透性必须使用块矿、烧结矿、球团矿或这些原料的块状混合物,因此必须配有造块设备。对入炉块状原料的理化性能有很高的要求,从而提高了原料成本。 3. COREX的实践证明,要依靠焦炭床来保护炉缸,稳定生产,就无法摆脱对焦炭的依赖(焦比>10%~20%),尤其是大型化后,焦比会超过200kg/THM。 4. 从熔融气化炉抽出的高温煤气经净化后,从>1100℃降至800~850℃,温度损失了250℃左右,热效率比不上高炉。 5. 虽然使用了全氧冶炼,但按炉缸面积计算的生产率仅为高炉的0.7~0.9。 6. 竖炉预还原炉料的金属化率波动大。 7. 操作影响因素多,在炉体中部的高温区使用了排料布料活动部件,使设备维修成本及热损失增加,个别设备还不够成熟,利用率不高。 8. 在高炉冶炼条件下,采用富氧喷吹有一定的限度,传统高炉更不能采用全氧冶炼。COREX工艺虽然采用全氧冶炼,但其生产率并不高,根本原因在于,虽然全氧熔炼速率很快,但受到上部竖炉铁矿还原速率的

直接还原炼铁

直接还原炼铁 在低于矿石熔化温度下,通过固态还原,把铁矿石炼制成铁的工艺过程。这种铁保留了失氧时形成的大量微气孔,在显微镜下观察形似海绵,所以也称为海绵铁;用球团矿制成的海绵铁也称为金属化球团。直接还原铁的特点是碳、硅含量低,成分类似钢,实际上也代替废钢使用于炼钢。习惯上把铁矿石在高炉中先还原冶炼成含碳高的生铁。而后在炼钢炉内氧化,降低含碳量并精炼成钢,这项传统工艺,称作间接炼钢方法;而把炼制海绵铁的工艺称作直接还原法,或称直接炼铁(钢)法。 直接还原原理与早期的炼铁法(见块炼铁)基本相同。高炉法取代原始炼铁法后,生产效率大幅度提高,是钢铁冶金技术的重大进步。但随着钢铁工业大规模发展,适合高炉使用的冶金焦的供应日趋紧张。为了摆脱冶金焦的羁绊,18世纪末提出了直接还原法的设想。20世纪60年代,直接还原法得到发展,其原因是:①50~70年代,石油及天然气大量开发,为发展直接还原法提供了方便的能源。②电炉炼钢迅速发展,海绵铁能代替供应紧缺的优质废钢,用作电炉原料,开辟了海绵铁的广阔市场。③选矿技术提高,能提供高品位精矿,使脉石含量可以降得很低,简化了直接还原工艺。1980年全世界直接还原炼铁生产量为713万吨,占全世界生铁产量的1.4%。最大的直接还原工厂规模达到年产百万吨,在钢铁工业中已占有一定的位置。 海绵铁中能氧化发热的元素如硅、碳、锰的含量很少,不能用于转炉炼钢,但适用于电弧炉炼钢。这样就形成一个直接还原炉-电炉的钢铁生产新流程。经过电炉内的简单熔化过程,从海绵铁中分离出少量脉石,就炼成了钢,免除了氧化、精炼及脱氧操作,使新流程具有作业程序少和能耗低的优点。其缺点是:①成熟的直接还原法需用天然气作能源,而用煤炭作能源的直接还原法尚不完善,70年代后期,石油供应不足,天然气短缺,都限制了直接还原法的发展。②直接还原炉-电炉炼钢流程,生产一吨钢的电耗不少于600千瓦·时,不适于电力短缺地区使用。③海绵铁的活性大、易氧化,长途运输和长期保存困难。目前,只有一些中小型钢铁厂采用此法。 现在达到工业生产水平或仍在继续试验的直接还原方法约有二十余种,主要分为两类:使用气体还原剂的直接还原法按工艺设备来分,有三种类型,包括竖炉法、反应罐法和流态化法。作为还原剂的煤气先加热到一定温度(约900),并同时作为热载体,供还原反应所需的热量。要求煤气中H、CO含量高,CO、H O含量低;CH在还原过程中分解离析的碳要影响操作,含量不得超过3%。用天然气转化制造这样的煤气最方便;也可用石油(原油或重油)制造,但价格较高。用煤炭气化制造还原气,是正在研究的课题。 竖炉法在竖炉中炉料与煤气逆向运动,下降的炉料逐步被煤气加热和还原,传热、传质效率较高。竖炉法以Midrex法为代表,是当前发展最快、应用最广的直接还原炼铁法,其改进的生产流程示意见图1[ Midrex法生产流程示意]

转底炉直接还原炼铁工艺的发展

转底炉直接还原炼铁工艺的发展 2010-02-24 17:02:19 作者:phpcms来源:浏览次数:571 网友评论 0 条 一、前言 为了满足冶炼高纯净钢的要求, 炼钢生产对纯净铁资源的需求越来越大。与此同 时, 优质废钢与铁资源却日益短缺其价格不断升高, 对炼钢生产影响很大, 为此,各国冶金工作者开发了许多直接还原或熔融还原工艺来为炼钢生产提供质优价廉的纯净铁资源。但由于技术、投资等方面的原因,真正具有市场竞争力、适合于工业应用的并不多见。同时,钢铁厂每年生产的大量含铁废弃物也给环保带来很大的压力。如何对其进行回收利用是困扰冶金行业的一个难题。 直接还原工艺中气基法虽然具有生产效率高,生产规模大,能耗低和容易操作等优点,但必须以一次能源---天然气为还原剂,因此该工艺只能在天然气资源丰富的国家得以发展。而煤基法以煤作为还原剂,较好的解决了气基法的不足。目前世界上很多国家都在开发煤基直接还原新技术,有些技术已经应用于工业生产。其中,转底炉法以其原料适应性强和操作工艺的零活性等优点,引起冶金界的高度重视。但由于原料条件和对产品质量要求的不同,转底炉直接还原炼铁又发展为FASTMET,ITKM3和DRYIRON等不同工艺路线。 二、FASTMET工艺 早在50年代Midex的前身Ross公司就发明了转底炉含碳球团直接还原法。1964~1966年进行了2t/h规模试验。1974年Inco公司开始研究把转底炉用于处理电炉生产不锈钢产生的氧化物粉尘的方法,并建立了一座年处理2.5万吨废料的工厂。经转底炉预还原的球团,通过运输罐热装入电炉。1978年美国Inmetco在宾州埃尔伍德市建成一座年处理5.6万吨电炉钢厂粉尘能力的转底炉,回收锌及可用作电炉原料的含Cr,Ni的还原铁。1982年Mid ex公司将转底炉法命名为FASTMET,用于煤基直接还原。神户制钢收购Midex公司后,199 5年开始建设2.5t/h示范装置,经过两年半试验后,认为Fastmet技术成熟可靠,已达到商业水平化水平。神户制钢与三井公司合资对在美国建设年产DRI50~100万吨项目进行报价,1998年9月神户钢铁公司报价年产DRI50万吨的转底炉装置,每套售价1亿美元。 世界上首次利用FASTMET工艺以含铁废料为原料的商业化直接还原铁厂,于2000年二季度在日本新日本制铁株式会社广火田厂投产,年产能力19万吨,其中14万吨将直接装入广火田厂的氧气转炉。神户制钢株式会社新加古川厂是第二个用该工业建设的直接还原铁厂。2002年5月,日本神户制钢株式会社和尼日利亚签订基本协议,日方将帮助AJAOKUTA 钢公司建设一座年产50万吨的FASTMET直接还原铁工厂。 2.1 工艺流程 FASTMET法的工艺流程见图1。铁精矿(或含铁废料)、煤粉和粘结剂经混合搅拌器后进入造球机造球,生球可装入干燥器,也可直接装入转底炉。在转底炉中,球团矿均匀地铺在炉底上,料层为1~3层球的高度。随着炉底的旋转,球团矿被加热到1250℃~1350℃。同时,约90%~95%的氧化铁被球团内部的固体碳还原成DRI。球团矿在炉底停留时间一般为8~30分钟,它取决于原料的特性、球团矿层数及其他因素。从转底炉出来的煤气经过焚化炉和热交换器将转底炉烧嘴助燃空气预热,并将高温废气用来干燥球团,生产用水循环使用,生产中产生的粉末回收利用。 2.2 工艺特点

熔融还原炼铁技术综述

目录 1.概述 (1) 2.国际熔融还原技术发展 (3) 2.1.工业化的COREX工艺 (5) 2.2.进入示范性工厂试验的Hismelt技术 (7) 2.3.FINEX技术 (8) 2.4.第三代炼铁法--ITmk3 (9) 3.国内熔融还原(非高炉炼铁)技术发展现状 (11) 3.1.概述 (11) 3.2.2T/h的半工业联动热态试验装置-COSRI (11) 3.3.宝钢Corex 3000 (14) 3.4.20万吨纯氧非高炉炼铁工业试验装置 (14) 3.5.8m3一步法熔融还原试验装置 (18) 3.6.基于氢冶金的熔融还原炼铁新工艺 (20) 3.6.1.万吨级两级循环流化床示范装置-营口中板厂 (21) 3.6.2.宝钢万吨级两级冷态循环流化床装置建设 (24) 3.7.直接还原在国内的发展 (24) 3.8.几种非高炉炼铁的综合分析 (26) 4.炼铁技术的发展方向 (28) 4.1.欧盟——ULCOS超低CO2排放钢铁技术研究 (28) 4.2.日本——COURSE50技术研究 (30) 4.3.中国——新一代可循环钢铁流程工艺技术技 (30) 5.具有自主知识产权的熔融还原炼铁技术发展建议 (31) 5.1.建立长期开发组织机构与募集资金 (31) 5.2.加强合作、充分利用现有成果深入研究 (31) 5.3.新一代具有自主知识产权的熔融还原流程建议 (32)

熔融还原炼铁技术综述 全强 1.概述 改革开放30年来,中国钢铁冶炼技术取得了巨大的进步。在炼铁领域,技术进步的主要表现是装备的大型化、操作的自动化信息化、生产的高效与清洁化,高风温技术、富氧技术、喷煤技术、煤气干式除尘技术、煤气余压发电、煤气燃气技术、高炉长寿技术、与高炉废弃物的综合利用等方面的应用取得明显的进步。 据2010年的统计,国内炼铁产量已超过5.9亿吨,约占世界产量的40%。其中大于1000m3以上高炉的产量约为60%,也就是说,按照国家产业政策的要求,有40%的产能需要进行技术改造。 近几年,以沙钢5800m3高炉、曹妃甸5500m3为代表的特大高炉的建设提高了我国炼铁的技术装备水平,但是我国的炼铁业发展还很不平衡,整体产业技术仍然很落后,中国的炼铁只是产量大国,但决不是技术大国,与发达国家还存在较大差距。 中国的钢铁工业发展的道路是一条引进、模仿、消化、吸收的发展道路,我国目前高炉技术装备的平均水平与国外先进高炉相比还有一定差距,节能减排压力巨大;对炼铁前沿技术的投入和核心装备的自主创新能力不足,技术发展尚处于追随阶段,直到我们成为世界第一产钢大国,仍然没有自己的技术优势。 目前我国虽然掌握了各种级别高炉设计、制造及操作技术,但对大型高炉关键设备还需要引进。在炼铁领域,我国的创新多是局部的二次创新或是应用创新,原始创新很少。 特别是在非高炉炼铁方面,我们还没有属于自己的成熟技术。宝钢集团引进了两套Corex C3000 技术,并成功投产。可是这次引进到目前还没有起到促进国内熔融还原发展的作用,且引来了很多人的疑问,认为熔融还原不适合中国,原因是对该技术的掌握和物流体系等造成成本高于高炉成本。 我国优质焦煤资源短缺、环境污染等问题将会成为我国高炉炼铁工艺发展的主要瓶颈。环境效益、经济效益和社会效益是韩国钢铁工业持续发展必须满足的三大效益。可持续发展意味着企业在经济上的收益、环境上的健全以及社会上的责任,这三项都是重要的。国内钢铁企业污染严重,若钢铁企业如不改变这种现状.就不可能可持续发展。 作为一个钢铁大国,我国应该在熔融还原工艺方面有长远的发展规划和相应的投入,但实际情况并不是这样,目前国内只有宝钢有实际性的动作。 我国的钢铁总量、资源特点和环境压力使熔融还原工艺有着非常广阔的应用前景。由于国家产业政策明确鼓励熔融还原项目,十一五期间国内很多企业规划中的炼铁项目都搭上了熔融还原,但是由于熔融技术在国内发展还不成熟,所以,国内很多企业还处在观望阶段,甚至很多企业冒着违法、违规的风险,将批准的熔融项目改成了高炉项目。 国内由于产业政策缺乏与之配套措施与法律法规,因此,企业追求的是利润第一,而对环保、对资源短缺以及节能减排的目标仍然没有提到日程上来。 目前我国大中钢铁企业中,只有少数几家有技术研发能力。据统计,我国用于研发的投入不足销售收入的0.5%,而韩国为1.75%,日本为1.25-2%。在这样少的投入情况

FINEX熔融还原工艺

FINEX熔融还原工 FINEX针对COREX必须使用块矿或球团作原料以保证还原竖炉透气性的特点加以改进。其特点是采用多级(4级)流态化床反应器代替还原竖炉。在反应器中加入铁矿粉,利用熔融气化炉产生的热还原气体,呈一定速度与矿粉反向流动。因反应器内炉料呈流态化状态,不存在炉料透气性问题,所以炉料可全部使用粉矿。 多级反应器出来的细颗粒的直接还原铁(DRI)在热状态下压制成块,然后装入熔融气化炉。<80mm的块煤直接加入熔融气化炉,小于8mm的粉煤加入有机粘结剂压制成块入炉。 熔融气化炉从下部风口鼓入氧气,进行熔炼。 熔融气化炉产生的热还原气体依次通入4级反应器最后排出。排出的煤气约41%通过加压变压吸附除去CO2,使煤气中的CO2从33%降到3%,再通入反应器作为还原气体再利用。其余煤气输出供发电或其他用途。 FINEX的技术优势是: (1)FINEX可以100%使用非炼焦煤,而且对煤种和成分没有严格限制。 浦项在试验过程中采用过的煤种固定碳54.49%~72.26%,挥发分18.37%~38.72%,灰分7.32%~16.67%,都可以冶炼出合格生铁。目前,采用30%半软质煤和70%动力煤混合。又因为粉煤可压块入炉,对入厂的煤炭利用比较充分。浦项公司目前使用压制型煤60%~70%,喷煤粉15%~20%,其余为块煤。因冷压块煤强度高,可以达到焦炭的75%,而块煤只有30%,因此FINEX可以不用焦炭。FINEX对使用的粉状矿石成分和粒度也无严格要求。粉矿直接入炉拓宽了资源范围,也节

省了加工费用。这两点都优于COREX工艺。 (2)也像COREX一样,开停炉十分便利,污染少,环保水平高。 FINEX由于省去了污染严重的烧结、球团和炼焦工厂,使工厂水环境和和大气环境得到极大改善。又因冶炼用纯氧进行,煤气中NOx很少。而煤中硫在熔融气化炉中生成H2S,随还原气体进入反应器,在流态化状态下与熔剂生或CaS和MgS入渣排出。所以SOx排出量与高炉相比,减少许多。而铁水中的含硫量则与高炉近似(0.015%~0.025%)。因为熔融气化炉中的煤是在高温下燃烧气化的,所以不会产生二恶英。并且,FINEX是一个紧凑、密闭系统,烟尘的排放量很小。 实践显示,FINEX流程的SOx、NOx、粉尘的排放量与高炉流程相比,只有6%、4%和21%。并且没有焦化含酚、氰等污水排放,是一种清洁生产工艺。 (3)关于FINEX的能耗 FINEX的优势是用贮量丰富的普通煤种代替焦煤,但流态化反应器的还原效率不如竖炉,其金属化率只有80%~85%,增加熔融气炉的还原负担使得每吨生铁耗用的煤量要比高炉燃料比高得多。目前,先进的大型高炉燃料比约500kg/t,而FINEX约850kg/t(也有报导是1050kg/t),还有500Nm3/t的氧气消耗。但高炉工艺要考虑焦化、烧结、球团等铁前工序的能耗,则二者的差距明显减少。加上FINEX从煤气回收的能量远高于高炉,有计算表明FINEX的工序能耗还略低于高炉工艺(含铁前工序)。 (4)关于FINEX建设投资 由于取消了焦化、烧结和球团工厂,FINEX投资将大为降低。但FINEX庞大的制氧系统和昂贵的技术引进费用,又使其投资增加。需要

流态化还原炼铁技术

流态化还原炼铁技术 流态化(fluidization)是一种由于流体向上流过固体颗粒堆积的床层而使得 固体颗粒具有一般流体性质的物理现象,是现代多相相际接触的工程技术。使用流态化技术的流化床反应器因具有相际接触面积大,温度、浓度均匀,传热传质条件好,运行效率高等优点而应用于现代工业生产。 高炉炼铁技术在矿产资源受限和环保压力增大等形势下,将面临着前所未有的挑战。铁矿石对外依存度过高、铁矿石粒度越来越小和焦炭资源枯竭等状况,迫使人们加快步伐探索改进或替代高炉工艺的非高炉型炼铁工艺。以气固流态化还原技术为代表的非高炉炼铁工艺逐步受到重视。 新工艺的建立和发展需要理论研究作为支撑。目前国内对于流态化还原炼铁 过程中的气固两相流规律的认识还不够深入,特别是对不同属性铁矿粉的流态化特性、不同操作条件下的流态化还原特性,以及反应器结构对流态化还原过程的影响等相关研究还不够充分,基于流态化还原技术的新工艺要成熟应用于大规模工业生产还有明显距离。 发展流态化技术须重视基础研究 流态化技术可以把固体散料悬浮于运动的流体之中,使颗粒与颗粒之间脱离接触,从而消除颗粒间的内摩擦现象,使固体颗粒具有一般流体的特性,以期得到良好的物理化学条件。流态化技术很早就被引入冶金行业,成为非高炉炼铁技术气基还原流程中的一类重要工艺。流态化技术在直接还原炼铁过程中主要有铁矿粉磁化焙烧、粉铁矿预热和低度预还原、生产直接还原铁的冶金功能。 我国从上世纪50年代后期开始流态化炼铁技术的研究。1973年~1982年,为 了开发攀枝花资源,我国进行了3次流态化还原综合回收钒钛铁的试验研究。中国科学院结合资源特点对贫铁矿、多金属共生矿的综合利用,开展了流态化还原过程和设备的研究;钢铁研究总院于2004年提出低温快速预还原炼铁方法(FROL TS),并

熔融还原炼铁技术

熔融还原炼铁技术 摘要随着社会经济的发展,高炉炼铁资源短缺与环境负荷日益加重的局面已经充分显现,开发新技术逐步取代传统技术将迫在眉睫,这其中以熔融还原炼铁技术为主要开发对象。国际钢铁界始终没有停止对熔融还原炼铁技术开发的脚步,本文对现有HIsmelt、COREX和FINEX熔融还原工艺及设备进行了分析研究和综合评价,指出了开发新熔融还原技术的原则,介绍了克服高炉炼铁及COREX、HIsmelt熔融还原法存在的缺点的LSM炼铁工艺。我们应针对目前存在的问题,开发新的熔融还原炼铁技术。 关键词熔融还原;COREX;FINEX;HIsmelt;LSM SMELTING REDUCTION IRONMAKING TECHNOLOGY ABSTRACT With the economic society developing, it fully shows that the resources shortage and environment of blast furnace ironmaking load have aggravated day by day. It is very urgent to exploit new technology to replace the traditional. The smelting reduction ironmaking technology is one of the main research fields. International Iron and Steel sector has not stopped for smelting reduction ironmaking technology development pace. The development for the smelting reduction ironmaking technology was never stopped in the world. This thesis just generates under this background.This paper analyzes and makes comprehensive evaluation of the existing HIsmelt, COREX and FINEX reduction process and equipment, points out that the principle of developing new smelting reduction technology, introduces LSM ironmaking process ,which overcomes existing shortcomings of blast furnace ironmaking and COREX, HIsmelt smelting reduction method.We should be aiming at the existing problems, develop new smelting reduction ironmaking technology. KEY WORDS smelting reduction,COREX,FINEX,HIsmelt,LSM 1. 前言 高炉炼铁方法从使用焦炭算起已有三百多年的历史,第二次世界大战后的50年来,钢铁冶金技术获得了重大发展。如今大型高炉的容积已超过4000m3,而且机械化、自动化日臻完善。自20世纪60 年代后期,炼焦煤特别是低硫焦煤日益短缺,加上环境要求不断提高、基建投资费用巨大,致使在发达国家年产百万吨以下而采用传统高炉流程的钢铁企业在经济上常处于困境。特别是二十世纪90 年代以来,可持续发展对环境提出越来越高的要求,钢铁市场竞争愈演愈烈,各国不断强化新工艺的研究,非高炉炼铁技术研发空前活跃,新的煤基熔融

直接还原与熔融还原

我国应适度发展直接还原与熔融还原技术 近代高炉已有数百年历史,其工艺已达到相当完善的地步。但是在它日益完善和大型化的同时,也带来了流程长、投资大以及污染环境等问题。随着世界上废钢铁积累日益减少,电炉流程迅速发展,这就要求采用直接还原新工艺,生产出的海绵铁供电炉炼钢。此外,由于炼焦煤资源日渐短缺,焦炉逐渐老化以及人们对焦炉污染日益关注,八十年代以来,各发达国家纷纷谋求开发另外的无焦炼铁工艺——熔融还原,其中Corex流程已实现工业化生产。综合起来看,当前炼铁工艺正朝着少焦或无焦炼铁方向发展,而直接还原与熔融还原技术正适合这种发展方向。所以说我国应适度发展直接还原与熔融还原技术。 直接还原与熔融还原工艺的技术特点 1 直接还原 产品是固态海绵铁,供电炉炼钢用。分为气基和煤基直接还原两大类。 气基直接还原是用天然气经裂化产出的H2和CO作为还原剂在竖炉那将铁矿石中的氧化铁在固态温度下还原而成海绵铁。目前主要方法有Midrex和HYL法两种。煤基直接还原是用煤作还原剂在回转窑或循环流化床将铁矿石中氧化铁在固态温度下还原成海绵铁,其中回转窑是已经成熟的方法。气基直接还原效率高,产量大,单体设备能力可达50-100万t/a,在直接还原中占主导地位:煤基直接还原中的主体工艺——回转窑效率低,目前单体设备最大年产量不超过20万t。直接还原的优点是流程短;没有焦炉,污染较少,缺点是对原料要求严,高品味、脉石少、熔点高,有害元素低,高温下不爆裂,还原性好不易粉化。 2 熔融还原 它是一种发展中的新炼铁技术,其目的是以煤代焦和直接用粉矿炼铁,因而既无炼焦又无烧结或球团厂,使炼铁流程简化。受到许多国家的重视。当今引起人们注意的是Corex工艺,已经或正在进行工业试验的有日本DIOS法等。熔融还原的目的是取代高炉。目前熔融还原流程多采用二步法,即先在竖炉(块矿)或流化床(粉矿)内将矿石进行预还原,然后再进入终还原炉。向终还原炉内加入煤和氧气,煤燃烧产生热和H2、CO等还原性气体,将经过预还原流程的矿熔化和进一步还原生成铁水和炉渣,H2和CO则供还原炉作还原剂。和高炉流程比,熔融还原的第一个特点是用煤不用焦,因而可以不建焦炉;第二,多数用氧而不用风。目前惟一已工业化生产的熔融还原工艺是Corex流程。Corex工艺的优点是用煤不用焦,没有焦炉污染,不足之处是不能直接用粉矿,消耗高。其改进的方向是降低煤耗和氧耗,并经济地利用其输出煤气。 我国发展炼铁技术的策略 目前,我国生产生铁主要的是以高炉炼铁为主,因为高炉产铁能力大,它在

转底炉工艺与熔融还原技术开发

1 转底炉工艺概述 1.1 前言 转底炉用于生产直接还原铁不过约30年的历史,其设备和结构原本脱胎于轧钢用的环形加热炉,其最初目的就是用于处理钢铁厂生产过程中产生的含铁和其他金属的粉尘和废弃物,实践证明其环保功能和价值甚至超过了金属回收本身。随着规模的扩大,也逐渐形成为一种炼铁新工艺,进入煤基直接还原法的先进行列,但仍处在初始阶段,目前最大的转底炉(美国动力钢公司)的规模年产铁不过50万吨,以铁精矿为原料,生产出的DRI经埋弧电炉熔分后为大电炉供应铁水。其他分布在美国、日本等地的一些转底炉几乎都是处理粉尘,其规模一般年产能力20万吨左右,生产出的DRI金属化率70~85%不等,一般不用作电炉原料,其用途或作为高炉原料,或给转炉作冷却剂,或经埋弧电炉熔分后生产出铁水,给炼钢电炉热装。 转底炉的环保效益是与其工艺特点分不开的,主要特点是高温快速还原。首先是把含金属氧化物的粉尘和废弃物还原成金属;其次是高温下许多有害元素和物质能够挥发或分解,能燃烧的用作燃料;第三是本身是封闭系统,微负压操作,过程中基本无排放,最终的固体产物和经过净化的烟气均符合环保要求,而且烟气余热得到充分利用。因此转底炉在一些发达国家(如美国、日本)已列为处理所在地域冶金厂粉尘和废弃物的有效措施,并要求冶金企业无偿提供,并倒贴一定处理费用。这些厂家因为国家环保要求深埋而要花费更高费用,所以也乐于如此。 1.2 发展状况 最早生产规模的转底炉处理冶金厂粉尘和废弃物的是美国INMETCO,由国际镍集团INCO.Ltd开发,该集团国际金属回收公司1978年在美国宾州Eillwood 城建成第一座转底炉,外径16.7米,炉底宽4.3米,主要是用来处理多种冶金厂含铁粉尘和废弃物,生产出的金属化率85~92%的金属化球团(DRI)进入埋弧电炉熔化,获得铁水和炉渣(作为副产品出售),与此同时还回收Zn、Ni、Cr

转炉熔融还原炼铁工艺探讨

转炉熔融还原炼铁工艺探讨 刘文运徐萌 (首钢集团技术研究院) 摘要:本文简要介绍了COREX、HIsmelt、AusIron以及DIOS熔融还原炼铁工艺,并用煤块做了降低熔融还原炉渣中FeO试验,证明炉渣中FeO可以降低到2.0%以下,并可同时回收熔融炉渣中夹带的珠铁。在此基础上,本文提出了利用煤粉和氧气的燃烧喷枪对熔池进行搅拌和在熔池表面二次燃烧,进行转炉熔融还原炼铁的工艺。 关键词:熔融还原转炉COREX HIsmelt AusIron DIOS Discuss on the BOF Smelting Reduction Ironmaking Process LIU Wen-yun, XU Meng Research Institute of Technology, Shougang Group, Beijing, 100041, China Abstract:In this paper, smelting reduction ironmaking processes including COREX, HIsmelt, AusIron and DIOS are simply introduced. The experiment on decreasing FeO of slag from smelting reduction furnace by coal is carried out. Results has proved that the FeO content of slag is able to be decreased by less than 2.0%, and iron beads entrained into slag can be recovered at the same time. On this basis, the BOF smelting reduction ironmaking process is proposed. The process includes agitating the molten bath and improving post combustion on the surface of molten bath by injecting coal and oxygen into the slag layer. Key word:Smelting reduction BOF COREX HIsmelt AusIron DIOS 21世纪钢铁工业面临资源、环保、经济等各方面挑战,非高炉炼铁工艺具有高效利用资源、环境友好、生产流程短以及提高生产效率等特点,世界各国纷纷花大力气进行研究和开发。当前,在我国钢铁工业快速发展的条件下,焦煤短缺、环境保护已成为我们参与国际竞争的一大阻力,传统高炉炼铁工艺愈来愈暴露出它的局限性,需要我们及早研究适合我国条件的非高炉炼铁技术,改变我国以焦炭为主的传统高炉炼铁能源结构,促进我国钢铁工业的健康和可持续发展。 1 几种熔融还原炼铁工艺介绍 上世纪80年代以后,德国、日本、美国、前苏联、澳大利亚等国家非常重视熔融还原工艺的研发,各自投入大量人力、物力进行研究开发工作,从基础理论、实验室试验到半工业、工业试验都取得了许多成果,积累了丰富的经验。如奥钢联的COREX工艺,韩国浦项和奥钢联合作开发的FINEX工艺,澳大利亚的HIsmelt和AusIron工艺,日本的DIOS工艺等。目前,COREX和FINEX工艺已经得到了工业应用,HIsmelt工艺年产80万吨的试验厂正在进行试生产,AusIron工艺年产50万吨规模试验厂正在筹备之中。 1.1 COREX和FINEX 工艺

也谈熔融还原炼铁技术

第31卷第4期2009年8月 山东冶金 Shandong Metallurgy Vol.31No.4August 2009 摘要:对现有HIsmelt、COREX 和FINEX 熔融还原工艺及设备进行了分析研究和综合评价,指出了开发新熔融还原技术的 原则,介绍了克服高炉炼铁及COREX、HIsmelt 熔融还原法存在的缺点的LSM 炼铁工艺,应针对目前存在的问题,开发新的熔融还原炼铁技术。 关键词:炼铁技术;熔融还原;HIsmelt;COREX;FINEX;LSM 图分类:TF557 文献标识码:A 文章编号:1004-4620(2009)04-0005-04 1前言 至目前,世界上研发的熔融还原方法多达上百种,然而投入工业生产的并不多。虽然COREX 工艺最先应用于工业生产,HIsmelt 工艺已建示范厂,FINEX-3000设备也已达到设计生产指标,这些工艺均已取得巨大成功,但冷静看待这些已开发出并应用于工业生产的熔融还原技术,却发现这些工艺及流程均存在着致命弱点,因而并不一定是最佳工艺。通过对现有工艺、流程和设备的评价分析,取其优点,找出存在的问题,对开发适合我国国情的熔融还原炼铁新技术则十分必要。 2熔融还原典型工艺 2.1HIsmelt 工艺 HIsmelt 熔融还原炼铁技术1982年开始研发,从底吹氧气转炉到卧式熔融还原炉的小型试验厂,到最后定型建厂的6m 竖式熔融还原炉,历经20a 的改进和完善。2005年5月,在澳州奎那那建成年生产能力80万t 铁水的示范厂。厂区内最高设备是高度约60m 的矿粉循环预热器,最核心的设备是熔融还原炉主体,其他设备都是目前冶金行业成熟应用的装置[1]。 HIsmelt 熔融还原具有如下特点[2]: 1)原料来源广泛,可以全部使用粒度-6mm 以下的粉矿、粉煤,包括无法通过烧结厂回收的废弃物,物料中的C、CaO 和MgO 也能得到利用;对燃料煤的要求比较宽松,可大幅度减少钢铁生产的资源消耗。 2)由于HIsmelt 熔融还原炉有强氧化性炉渣,有较好的脱磷效果,非常适合于冶炼高磷矿,这是区别于高炉和其他非高炉炼铁工艺的主要特点。 3)由于氧化性气氛很强,所以它产出的铁水含磷低、碳低、硫高,硅锰含量为0,不适合直接供传统炼钢流程使用。经过炉外脱硫和添加锰铁、硅铁合金或与高炉铁水兑配,可达到炼钢铁水的要求。 4)操作灵活,反应过程的启动、关闭简便易行,从而使得炼铁和炼钢作业能有效衔接,而不必限产铁水。 5)由于粉矿预还原度低,炉渣含FeO 高,炉衬腐蚀快,一代炉龄仅12~18个月。 6)由于HIsmelt 熔融还原为低压操作,大量高温含尘煤气热能难以回收利用,吨铁能耗高,因此高温低热值尾气便成为该工艺的“鸡肋”。 HIsmelt 是典型的“一步法”熔融还原工艺,占地面积很小,直接利用粉矿、粉煤冶炼,对钢铁界的经营者有着较大的吸引力。但该工艺要想实现商业化生产,在热煤气利用、CO 二次燃烧并将热量有效传递给熔池,提高设备利用率及降低炉衬成本方面还有很长的路要走。2.2COREX 工艺 COREX 工艺演化了高炉炼铁技术,将高炉从概念的软熔带部分截分为2部分,如图1所示。一部分利用成熟的高炉长寿炉缸技术(包括焦炭床和碳砖结合冷却壁技术)构造成了造气煤炭流化床即熔融气化炉;而另一部分借鉴了成熟的大型MIDREX 气基还原技术,构造成了预还原竖炉,使用块煤和块矿炼铁,成功地实现了工业化生产。 焦炭、矿石 高炉 ℃ 图1由高炉到COREX 炉的演变 也谈熔融还原炼铁技术 李振洪,张海涛 (济南钢铁集团石横特殊钢厂,山东肥城271612) 收稿日期:2009-06-15作者简介:李振洪,男,1944年生,高级工程师,原济钢集团石横特殊钢厂副厂长兼总工程师。 5

超高温热解气化熔融还原炉介绍

同煤朔州煤电宏力再生工业股份有限公司1×120t/d煤矸石综合利用 项目建议书 北京东方投财务顾问有限公司 2016年07月

1 项目概述与项目技术经济指标 1.1 工程概述 1.1.1 建设地点 宏力再生工业股份有限公司现有建设地块。 位于山西省怀仁县王坪电厂南侧。 1.1.1 建设规模 额定日处理能力:120t/d; 生产线数量:1条,单线生产能力≥120t/d。 主要设备及技术选择:本项目煤矸石处理技术设备采用日本已经运行近20年、占领市场近三分之一的迷你小高炉——超高温热解气化熔融炉及其二次燃烧室技术。 1.2 煤矸石原料 煤矸石是采煤过程和洗煤过程中排放的固体废物,是一种在成煤过程中与煤层伴生的一种含碳量较低、比煤坚硬的黑灰色岩石。 通常煤矸石的无机成分主要是硅、铝、钙、镁、铁的氧化物和某些稀有金属(镓、钒、钛、钴)。 煤矸石弃置不用,占用大片土地。煤矸石中的硫化物逸出或浸出会污染大气、农田和水体。矸石山还会自燃发生火灾,或在雨季崩塌,淤塞河流造成灾害。同煤集团宏力再生公司拟利用的当地丰富的煤矸石在怀仁县立项建设煤矸石加工综合利用项目,主要原料是煤矸石并配一部分焦炭,混合物料达到热值3000大卡/kg以上进行熔融炉处理。宏力公司提供的煤矸石分析报告如下: 1.3 项目技术指标

1.4 主项表 项目包括的主体装置和应配套工程见下表。 2 工艺技术 2.1 技术简介 热解气化熔融技术属第三代固体废弃物处理技术。 日本20世纪70年代开发,德国90年代开发,中国是本世纪初开发。 固体废弃物在超高温热解气化熔融反应器中处于还原性气氛,有机成分转变成可燃的气体、无机成分转变成可回收的固体物质。 2009年日本经济产业省将其定位:创新的低碳技术。日本国经济产业省对该设备海外出口给予鼓励推荐,原文详见附件。 高温熔融的液态渣经水淬冷却而形成玻璃体,其活性很高,可以直接回收并利用。 2.2 熔融炉工艺说明 超高温热解气化熔融反应器是一种常压下的固定床直立反应炉。按照移动床的原理工作,在气化熔融炉的内部自上而下依次呈层状分成干燥、氧化分解、还原熔融阶段。 固体废弃物从炉上部加入并与从炉下部上升的气体一边进行热交换一边下降。从气化熔融炉上部排出的合成气体出装置。热分解段固废与焦炭、石灰石一起下降进入还原熔融段,借助从进风口供给的富氧进行可控的熔融还原反应。在超高温条件下所有无机物成分完全熔融,并以液态聚集在反应器底部排出。 常规固废焚烧炉型主要有机械炉排焚烧炉、回转窑式焚烧炉和流化床或循环流化床

超高温热解气化熔融还原炉介绍

同煤朔州煤电宏力再生工业股份有限公司1X 120t/d煤矸石综合利用 项目建议书 北京东方投财务顾问有限公司 2016年07月

1项目概述与项目技术经济指标 1.1工程概述 1.1.1建设地点 宏力再生工业股份有限公司现有建设地块。 位于山西省怀仁县王坪电厂南侧。 1.1.1建设规模 额定日处理能力:120t/d ; 生产线数量:1条,单线生产能力羽20t/d。 主要设备及技术选择:本项目煤矸石处理技术设备采用日本已经运行近20 年、占领市场近三分之一的迷你小高炉一一超高温热解气化熔融炉及其二次燃烧室技术。 1.2煤矸石原料 煤矸石是采煤过程和洗煤过程中排放的固体废物,是一种在成煤过程中与煤层伴生的一种含碳量较低、比煤坚硬的黑灰色岩石。 通常煤矸石的无机成分主要是硅、铝、钙、镁、铁的氧化物和某些稀有金属(镓、钒、钛、钻)。 煤矸石弃置不用,占用大片土地。煤矸石中的硫化物逸出或浸出会污染大气、农田和水体。矸石山还会自燃发生火灾,或在雨季崩塌,淤塞河流造成灾害。同煤集团宏力再生公司拟利用的当地丰富的煤矸石在怀仁县立项建设煤矸石加工综合利用项目,主要原料是煤矸石并配一部分焦炭,混合物料达到热值3000大卡/kg以上进行熔融炉处理。宏力公司提供的煤矸石分析报告如下: 1.3项目技术指标 项目包括的主体装置和应配套工程见下表。

2工艺技术 2.1技术简介 热解气化熔融技术属第三代固体废弃物处理技术。 日本20世纪70年代开发,德国90年代开发,中国是本世纪初开发。 固体废弃物在超高温热解气化熔融反应器中处于还原性气氛,有机成分转变成可 燃的气体、无机成分转变成可回收的固体物质。 2009年日本经济产业省将其定位:创新的低碳技术。日本国经济产业省对该设备 海外出口给予鼓励推荐,原文详见附件。 高温熔融的液态渣经水淬冷却而形成玻璃体,其活性很高,可以直接回收并 利用。 2.2 熔融炉工艺说明 超高温热解气化熔融反应器是一种常压下的固定床直立反应炉。按照移动床的 原理工作,在气化熔融炉的内部自上而下依次呈层状分成干燥、氧化分解、还原熔融 阶段。 固体废弃物从炉上部加入并与从炉下部上升的气体一边进行热交换一边下降。从气化熔 融炉上部排出的合成气体出装置。热分解段固废与焦炭、石灰石一起下降进入还原熔融段,借助从进风口供给的富氧进行可控的熔融还原反应。在超高温条件下所有无机物成 分完全熔融,并以液态聚集在反应器底部排出。 常规固废焚烧炉型主要有机械炉排焚烧炉、回转窑式焚烧炉和流化床或循环流化床焚烧炉。这些炉的飞灰中含有大量的重金属(Pb、Cd、Hg 等)和二恶英,目前国内报道的炉排炉飞灰中二恶英含量有的高达7530ng-TEQ/kg。《国家危险废物名录》已将 垃圾焚烧飞灰定性为危险废物。气化熔融炉将固废的碳氢化合物在气化炉中气化,产生的合成气体在二燃室内燃烧达到1000-1300C以上,使得飞灰中99.9%的二恶英被高温分解,而且熔融炉的注入富氧量严格控制,外界注入气体量及流速很小,所以飞灰的产生量非常少。实测数据二恶英只有

几种典型熔融还原工艺的进展

几种典型熔融还原工艺的进展 李志涛,李子亮,高强健,魏国* (东北大学材料与冶金学院,110819) 摘要:目前,在各种炼铁工艺中,高炉炼铁占据绝对优势地位,并且在近期,这种优势地位仍难以撼动。但高炉的发展也出现一些制约因素,如焦煤的短缺和CO2的排放限制。非高炉炼铁技术的发展为解决这些问题提供了可能。其中熔融还原炼铁技术目前获得很大发展,在某些指标上已经达到甚至超过了高炉。钢铁行业始终没有停止对熔融还原炼铁技术的开发研究,本文对现有COREX、FINEX 和HIsarna 熔融还原工艺进行了介绍,分别从能耗、环保、经济性等方面进行了简要分析。 关键词:熔融还原;COREX;FINEX;HIsarna 近二十年来,在自然资源日趋紧张与环境负荷日益加重的形势下,钢铁行业始终没有停止对熔融还原炼铁技术开发的脚步,经过反复探索和不断努力,先后出现了许多有代表性的技术路线,如在我国宝钢建成并投产的COREX 工艺,浦项与奥钢联联合开发的FINEX 流程和塔塔钢铁集团欧洲公司正在试验的HIsarna工艺[1]。这些技术很有可能成为未来钢铁工业实现可持续发展的引领技术。 我国钢铁生产主要是以高炉—转炉流程为主,使用的主要能源是焦炭,其生产流程长、必须依赖焦煤资源、污染物排放大是致命的弱点,这已经成为我国钢铁工业可持续发展的瓶颈,而且日益凸显。解决我国钢铁生产能耗高和环境负荷大的重要措施之一就是从根本上改变传统的高炉炼铁方式,摆脱或减少对焦煤的依赖,取消焦化和烧结工序。近十年来,钢铁工业的迅猛发展对铁矿石产生了巨大需求,而与此同时铁矿石的价格也增长较大,一些能够处理劣质矿石的新工艺也日渐受到重视,熔融还原炼铁技术正是这样一种能够从根本上改变传统炼铁工艺的炼铁新技术[2]。为了更好地发展熔融还原流程,有必要更加全面地掌握熔融还原发展现状。 典型熔融还原工艺 1. COREX 工艺 COREX 技术研究始于20世纪70 年代末,由奥钢联和西德杜塞道尔科富(Korf)工程公司联合开发,我国宝钢于2005 年引进了COREX-3000 技术,建成我国第一座熔融还原炼铁厂,并于2007年11 月投产。 由于是COREX-3000 型的首座生产装置,其设计、装置配备的合理性未得到充分验证,对原燃料条件缺乏成熟经验,生产每吨铁水仍需使用部分焦炭,产能、能耗、作业率、铁水成本等未达到预期目标。2011 年投产的2#COREX 炉,在吸取第一套COREX 装置生产经验和教训基础上,在工艺上采取了增加竖炉AGD(Air Gas Distribution)管、扩大DRI下降管孔径以及改进粉尘反吹系统等措施,生产指标得到了明显的改善[2,3]。 表 1 宝钢COREX 炉生产技术指标[4] 由于国内钢铁形势严峻且COREX 炉在上海生产原料的运输成本较高,COREX 1 号炉于2011年7月停产,2 号炉2012 年9 月停产,1 号COREX 炉于2012 年7 月整体搬迁至新

相关主题
文本预览
相关文档 最新文档