当前位置:文档之家› 循环流化床锅炉垃圾焚烧技术

循环流化床锅炉垃圾焚烧技术

循环流化床锅炉垃圾焚烧技术
循环流化床锅炉垃圾焚烧技术

(下转第93页)

作者简介:翟永军(1976-),男,山西长治人,助理工程师,本科,从事锅炉设计工作。

收稿日期:2009-05-08;修回日期:2009-08-16

第24卷第6期(总第112期)机械管理开发

2009年12月

Vol.24No.6(SUM No.112)MECHANICAL MANAGEMENT AND DEVELOPMENT

Dec .2009

引言

循环流化床燃烧技术作为一种新型清洁燃烧技术,解决了垃圾成分复杂难处理、二噁英排放及二次污染等问题,达到节能减排,符合国家绿色能源政策的要求,逐渐成为垃圾焚烧处理的主流。因此,对循环流化床锅炉的选型及设计是当今研究的重要课题。1城市生活垃圾的构成及处理办法

长期以来,我国城填居民以煤为主要燃料,蔬菜、粮食多以自然状态供应,包装简单,垃圾管理也不严格,因此垃圾中灰、土、砖、瓦含量多,可燃成分低、含水量高。这种垃圾的发热量仅够用于自身干燥,没有作为燃料利用价值。随着现代进程的加快,蔬菜及其他商品供应趋于合理,垃圾成分随之改变,垃圾中纸、布、塑料、木质、纤维、厨芥类等含量大大增加,灰土含量减少,热值达到1000kcal/kg 以上,已具备焚烧利用的条件。目前,国内外广泛采用的垃圾处理方式主要有以下几种:

1)卫生填埋技术。卫生堆肥技术的优点是:成本相对较低;其缺点是:占地面积大;可能出现渗漏、沼气无序排放等二次污染。

2)生物堆肥技术。生物堆肥技术的优点是成本相对较低、制肥可出售;缺点是:占地面积大,易出现消毒不彻底、重金属超标、肥效差等问题。

3)焚烧技术。焚烧技术的优点:(1)可用来发电,用焚烧后回收的热量供热,可以实现垃圾处理的资源化和能源化;(2)可减少垃圾体积90%以上,其焚烧后的灰渣还可以综合利用;(3)垃圾经高温焚烧,可杀菌消毒,避免直接堆放引起的水源、大气污染;(4)垃圾产生的渗沥液可送入炉内燃烧,焚烧后烟气经除尘处理,不会造成二次污染;(5)垃圾焚烧工厂占地面积小,可在城市近效建厂,能节约土地,并减少垃圾运输成本。

综上所述,由于垃圾可回收利用,减容大,污染物热排放量低等优点,焚烧成为目前城市综合利用最有前途的方式。

2目前国内垃圾焚烧利用的方式

1)炉排炉。优点:不需要对垃圾进行预处理,宽容性和适应性好。缺点:(1)炉排难以适应水份变化范围较大的垃圾,高水分垃圾焚烧困难,需加油助燃,油耗

量大。同时垃圾成分复杂,完全燃烧比较困难。(2)炉温不易控制,在1000℃以上灰渣处于软化和粘性状态,成为特殊的腐蚀物质。(3)制造复杂、成本高、投资大,经济性差,燃烧设备多为进口,价格昂贵。

2)流化床炉:优点:(1)燃料适应性广,可燃烧高水分、低热值、高灰分的垃圾,床内混合均匀,燃尽度高,特别适合于垃圾热值随季节变化大的特点。(2)掺烧部分煤,不需燃油,运行费用低,对抑制腐蚀和降低二噁英的排放效果显著。(3)投资成本低[1]。缺点:垃圾要预处理。

3循环流化床垃圾焚烧锅炉针对性设计

循环流化床燃烧技术是上世纪60年代迅速发展起来的新型燃烧技术,由于其具有节能环保的特点,从而得到推广和应用。针对垃圾燃料的特点,循环流化床垃圾焚烧锅炉进行了针对性设计。

1)垃圾燃烧:由于在流化床内蓄有大量的高温物料,燃料着火条件好,对劣质及热值变化范围大的燃料适应性好,尤其是适合我国垃圾成分复杂、热值偏低的国情。在掺烧20%左右的煤后,即可以稳定燃烧。在处理垃圾的同时,变废为宝,节约了大量燃煤,降低了燃料成本。

2)二噁英的排放控制:二噁英被称为历史上最毒的合成毒之一的物质,不但会致癌,而且会造成人体生殖异常,免役异常及荷尔蒙异常,在原生垃圾中存有大量氯基物质,俗称其二噁英是超标存在的。循环流化床垃圾焚烧锅炉采取了以下措施控制二噁英的生成与排放:(1)炉膛温度控制在850℃左右,烟气在炉内停留时间大于抑制二噁英生成所需的3s 时间[2]。(2)在运行时掺部分燃煤,利用煤中含有的少量硫或添加的脱硫剂,抑制二噁英的生成。(3)尾部烟道含氧量控制在9%左右。(4)高效旋风分离器保障了主循环回路内的灰的再循环。

采用以上技术后,循环流化床垃圾焚烧锅炉,二噁英、呋喃等有毒有害气体的排放不仅达到国家标准,甚至优于欧洲标准要求,不会造成二次污染。

3)垃圾渗沥液的处理:垃圾渗沥液可以直接喷入炉内焚烧,没有额外污水处理的负担,节省一大笔费用。

4)受热面腐蚀:垃圾焚烧后的烟气内含有HCl ,

循环流化床锅炉垃圾焚烧技术

翟永军

(太原锅炉集团技术中心,山西

太原

030021)

【摘要】介绍了城市生活垃圾的构成及处理方法;焚烧垃圾的方式及特点;循环流化床垃圾焚烧炉的设计要点。【关键词】

循环流化床锅炉;垃圾焚烧;节能减排

【中图分类号】TH134【文献标识码】A 【文章编号】1003-773X (2009)06-0091-02

第24卷第6期(总第112期)机械管理开发2009年12月

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(上接第91页)

王一印:大修超高精度镗模的工艺论证与实施在受热面管子壁温为500℃附近时,易发生高温腐蚀,在烟温达到露点时,易对空气预热器管子造成低温腐蚀。锅炉控制过热器进口烟温在850℃以下来降低管壁温度,并且管子采用耐腐蚀的0Cr17Ni2Mo2材料,布置吹灰器等措施来防止高温腐蚀。设计时为了避免低温腐蚀,选取了较燃煤时高的排烟温度,离开烟气露点,避免低温腐蚀,同时下级空气预热器采用耐酸钢[3]。

5)垃圾燃料入炉:垃圾中纸、布、塑料、木质、纤维、厨芥类等含量高,比重小,为了顺利将其送入炉膛,采用了从炉膛负压点伴随二次风进入炉膛,有效防止给料口堵塞。

6)关于排渣:垃圾中含有诸如砖块等比重大、体积大的废弃物,锅炉的排渣口采用专有技术设计,整砖

大小的垃圾可以顺利排出。4结论

循环流化床垃圾焚烧技术,能够解决垃圾成分复杂难处理、二噁英排放及二次污染等问题,达到节能减排,符合国家绿色能源政策的要求,再加上循环流化床锅炉技术本身的优势,能够适合中国国情,将逐渐成为垃圾焚烧处理的主流。

参考文献

[1]岑可法.循环流化床锅炉理论设计与运行[M].北京:中国电力出版社,2008.

[2]冯俊凯,岳光溪,吕俊复.循环流化床燃烧锅炉[M].北京:中国电力出版社,2004.

[3]

孙献斌,黄中编著.大型循环流化床锅炉技术与工程应用[M].北京:中国电力出版社,2009.

CFB Waste Burn Boiler Technology

ZHAI Yong-jun

(Technical center,Taiyuan Boiler Group Co.,Ltd.,Taiyuan030021.China )

〔Abstract 〕The paper introduces the produce and management of household garbage,feature and method of waste burning ,and design

issues of burn boiler.

〔Key words 〕CFB;Waste burn;Saving energy and reducing emissions

能留有内应力,以确保最终跳动符合与使用要求。②

滑动套部分必须保证同轴度、硬度及跳动,通过精磨、超精磨可非经济性达到(多投几件以满足需要)。

(4)两镗杆组件与后导套部分和大底套之间配磨非常关键。在长达1100mm 的范围内,两处间隙分别为0.005mm 与0.01mm 难以掌握。通过模拟试验,取得的重要经验是实际操作的间隙控制在人很用才可以将镗杆组件推入的状态时,效果最佳。3镗模大修实施

实施方案为:1)设计制造研磨杆,研磨套用可调式。2)加工后导套,精磨和研磨内孔,达到精度,热装C 级(P4)轴承。加工前部大底套,外磨通过配磨满足要求,内孔先精磨,装入前镗模架后,由专门设计的两大研磨杆研磨达要求。3)加工两套镗杆组件,其中镗杆心轴热处理必须外委加工,其它件由我公司加工,热装轴承,外圆待研磨后配磨。4)轴承直接从厂家订货。5)所有零件在精磨前都要经过人工时效。6)必须检验硬度。

各项准备工作完成后,卸下机床一些附件,将研磨用工作台放在利于研磨与装配的地方并垫上包装用木板与硬纸,大修工作正式开始。(1)先用专用装卸工具将镗模相关旧件卸下;(2)测量前部大底套处的底孔的锥度、圆度,将前部大底套以过渡配合配磨装入并夹紧;(3)将后导套部分装入;(4)测量好前部大底套的内孔,并配磨自行设计与制造的研磨杆的外圆,保持间

隙为0.015mm ;(5)将研磨杆推入镗模内,后部进入后导套内孔,前部进入前部大底套,抹上研磨膏,人力(场所限制不能采用机动)研磨前部大底套。研磨工序基本要求:①研磨轨迹为无规则往复环绕运动;②研磨磨料采用立方氮化硼或氧化铬,研磨液使用煤油,粒度为W5~W8;③此项为人工操作工艺技术标准要求,应由由经验的高级钳工实施。④边研磨边观察与测量,一方面要防止出现局部拉伤与两端喇叭口,另一方面也要防止出现研磨用力不均形成如表面划痕、表面烧伤与粗糙度不合格等缺陷;(6)研磨至粗糙度、圆度与锥度达到图纸要求后,由2~3名资深高水平检查员用同一把千分尺测量实际值,记录实际值并由配合间隙确定镗杆心轴左部外圆尺寸与滑动套外圆尺寸;(7)使用同一把千分尺配磨镗杆心轴外圆与滑动套外圆,先半精磨、精磨外圆最后超精磨。配磨外圆时,一定要试装,实际的间隙应该达到很用力才可以将镗杆组件推入,否则会造成间隙大或装不上。这里必须强调,切不可用机床动力推动。4结束语

经过近30多小时的连续奋战,大修圆满成功。加工零件后,经检查完全达到了零件各项技术要求。此次大修的成功,具有代表性,值得推广。

参考文献

[1]

杨叔子.机械加工工艺师手册[M].北京:机械工业出版社,

2001.

Process Argument and Implement of Overhauling the Utraprecise Boring Fixure

WANG Yi-yin

(China National Heavy Duty Truck Group Datong Gear Co.,LTD.Datong 37006China )

〔Abstract 〕This paper introduces a method to overhaul the ultraprecise boring fixure.〔Key words 〕The ultraprecise boring fixure;Overhaul;Process argument and implement

循环流化床锅炉的技术特点

编号:SM-ZD-33151 循环流化床锅炉的技术特 点 Organize enterprise safety management planning, guidance, inspection and decision-making, ensure the safety status, and unify the overall plan objectives 编制:____________________ 审核:____________________ 时间:____________________ 本文档下载后可任意修改

循环流化床锅炉的技术特点 简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 1、燃料适应性广 由于大量灰粒子的稳定循环,新加入循环流化床锅炉的燃料(煤)将只占床料的很小份额。由于循环流化床的特殊流体动力特性,使其中的质量和热量交换非常充分。这就为新加入燃料的预热、着火创造了十分有利的条件。而未燃尽的煤粒子通过多次循环既可增加其炉内停留时间又可多次参与床层中剧烈的质量和热量交换,十分有利于其燃尽。这就使循环流化床锅炉不仅可高效燃用烟煤、褐煤等易燃煤种,同样可高效燃用无烟煤等难燃煤种,还可高效燃用各种低热值、高灰分或高水分的矸石、固体垃圾等废弃物。 2、截面热强度高 同样由于流化床中剧烈的质量和热量交换,不仅使燃烧

过程能在较小截面内完成,还使炉膛内床层和烟气流与水冷壁之间的传热效率也大大增加。这就使循环流化床锅炉的炉膛截面和容积可小于同容量的链条炉,沸腾床锅炉甚至煤粉炉。这一点对现有锅炉的改造尤其具有现实意义。 3、污染物排放少 可利用脱硫剂进行炉内高效脱硫是循环流化床锅的突出优点。常用的脱硫剂是石灰石。通常循环流化床锅炉的床温保持在800-1000oC之间,过高可能因床内产生焦、渣块而破坏正常流化工况,过低则难以保证必要的燃烧温度。而这一区间正是脱硫反应效率最高的温度区间。因而在适当的钙硫比和石灰石粒度下,可获得高达80%--90%的脱硫率。同样由于较低的燃烧温度,加以分级送风,使循环流化床锅炉燃烧时产生的氮氧化物也远低于煤粉炉。这样,燃煤循环流化床锅炉的二氧化硫和氮氧化物排放量都远低于不加烟气脱硫的煤粉炉,可轻易地控制到低于标准允许排放量的水平。

循环流化床锅炉设计《毕业设计》

目录 1 绪论 (3) 1.1循环流化床锅炉的概念 (3) 1.2 循环流化床锅炉的优点 (3) 2 燃料与脱硫剂 (6) 2.1 燃料 (6) 2.2 脱硫剂 (6) 3 无脱硫工况计算 (7) 3. 1无脱硫工况下燃烧计算 (7) 3. 2无脱硫工况下烟气体积计算 (7) 4 灰平衡与灰循环倍率 (8) 4.1 循环灰量 (8) 4.2 灰平衡计算 (8) 4.2.1 灰循环倍率 (8) 4.2.2 a n与a f和ηf的关系 (9) 5 脱硫工况计算 (10) 5.1 脱硫原理 (10) 5.2 NO X的排放 (10) 5.3 脱硫计算 (11) 6 燃烧产物热平衡计算 (14) 6.1 炉膛燃烧产物热平衡方程式 (14) 6.2 燃烧产物热平衡计算 (14) 7 传热系数计算 (17) 7.1 炉膛传热系数 (17) 7.2 汽冷屏传热系数 (17) 7.3 传热系数的计算 (17) 8 炉膛结构设计与热力计算 (20) 8.1 炉膛结构 (20) 8.1.1 炉膛结构设计 (20) 8.1.2 炉膛受热面积计算 (20) 8.2 炉膛热力计算 (21)

9 汽冷旋风分离器结构设计与热力计算 (24) 9.1 汽冷旋风分离器结构设计 (24) 9.2 汽冷旋风分离器热力计算 (24) 10 计算汇总 (27) 10.1 基本数据 (27) 10.1.1设计煤种 (27) 10.1.2 石灰石 (28) 10.2 燃烧脱硫计算 (28) 10.2.1 无脱硫工况时的燃烧工况 (28) 10.2.2 无脱硫工况时的烟气体积计算 (28) 10.2.3 脱硫计算 (29) 10.2.4 脱硫工况时受热面中燃烧产物的平均特性 (32) 10.2.5 脱硫工况时燃烧产物焓温表 (32) 10.3 锅炉热力计算 (34) 10.3.1 锅炉设计参数 (34) 10.3.2 锅炉热平衡及燃料和石灰石消耗量 (34) 10.3.3 炉膛膜式水冷壁传热系数计算 (36) 10.3.4 炉膛汽冷屏传热系数计算 (38) 10.4 结构计算 (41) 10.4.1 炉膛膜式水冷壁计算受热面积 (41) 10.4.2 炉膛汽冷屏计算受热面积 (43) 10.4.3 汽冷旋风分离器计算受热面积 (44) 10.5 热力计算 (46) 10.5.1 炉膛热力计算 (46) 10.5.2 汽冷旋风分离器热力计算 (49) 设计总结 (53) 谢辞 (54) 参考文献 (55)

《炉排式垃圾焚烧锅炉安装工艺研究应用》技术总结课件

<<炉排式垃圾焚烧锅炉安装工艺研究应用>>技术总结 在我国,随着国民经济发展和人民生活水平提高以及城镇人口的迅速增加,城市生活垃圾逐年增多。垃圾焚烧解决了传统的垃圾“收集-运输-填埋”处理方式无法解决的问题,成为我国大中城市生活垃圾处理的主流方式。把垃圾作为“新能源”,通过垃圾焚烧发电或回收热解,不仅回收能源,而且实现了资源化、无害化、减量化最彻底的处理方式,垃圾焚烧产业是体现这个时代的生态文明的新兴产业。 合肥生活垃圾焚烧发电项目一期入炉垃圾处理规模为1000t/d,采用2×500t/d·台(焚烧炉)+2×10MW(汽轮发电机)的2条生产线,焚烧炉均采用往复式机械炉排炉,终期规模共4台500 t/d·台(焚烧炉)+4台10MW(汽轮发电机)。垃圾焚烧工艺流程是垃圾由抓斗起重机送入进料斗,通过溜槽至推料器平台,再由液压推料器将垃圾推入炉排进行焚烧;炉排采用液压传动,通过活动炉排与固定炉排之间的往复移动以及炉排组合阶使垃圾有效地搅抖和翻转,并且与空气充分接触;此外根据垃圾性质及燃烧情况通过液压传动机构调整各个炉排的移动速度,同时调整各个炉排区域的一次风量,使垃圾充分燃烧,垃圾经焚烧后由渣井进入渣机排入渣坑。焚烧炉、余热锅炉施工工艺流程图如下:

现对炉排式垃圾焚烧锅炉安装工艺总结如下: 1、垃圾焚烧锅炉本体部件设备开箱检验 根据装箱清单,认真核实设备及附件到货数量及规格型号,并认真做好开箱检验记录;依据有关规范,检查设备在制造运输过程中的缺陷,并进行校正修理。发现重大缺陷及时向甲方及厂方提出,接收的设备及材料要按保管等级进行分库、分区保管,保证设备及材料的完好无损。 2 、垃圾焚烧锅炉基础复测放线 钢架安装前,应对土建基础进行检查。检查基础的位置和外形尺寸,锅炉纵、横向中心线和基础标高基准点。符合要求后,方可进行锅炉基础放线。 基础划线是为了确定钢架安装的正确位置,根据土建移交给的锅炉基础纵横中心线,用钢丝拉出每排立柱的纵横中心线,两端用花蓝螺丝拧紧,测量柱距及柱对角线,若不在标准要求之内,则继续调整,符合要求后,用线坠将纵横中心线引到基础侧面。 用几何学中的等腰三角形原理来验证两条基准线是否垂直,取BD=CD,若BA和CA 的交点A 在纵向中心线的基准线上,则表示两条基准线垂直,以这两条基准线为基础,再根据锅炉房零米层基础平面布置图,通过拉钢丝并吊线锤的办法,进一步测量出每排立柱的中心线。最后用测量对角线的方法进一步验证所测得的基础中心线是否准确。 3、垃圾焚烧锅炉钢架垫铁的配制及基础标高的调整 在钢架安装就位前,将基础清理干净,根据土建提供的标高基准点,用水准仪逐个测量出各基础顶面的实际标高。同时将每根立柱上1m 标高线以下的实际高度也测量出来,以

循环流化床锅炉技术(岳光溪)

循环流化床技术发展与应用 岳光溪清华大学热能工程系 摘要:循环流化床燃烧技术对我国燃煤污染控制具有举足轻重的意义。我国自上世纪八十年代后采取引进和自我开发两条路线,完全掌握了中小型循环流化床锅炉设计制造技术,在大型循环流化床燃烧技术上已经完成了首台135MWe超高压再热循环流化床锅炉的示范工程。引进的300MWe循环流化床锅炉进入示范实施阶段。燃煤循环流化床锅炉已在中国中小热电和发电厂得到大面积推广使用。中国积累的设计运行经验对世界上循环流化床燃烧技术的发展做出了重要贡献。超临界循环流化床锅炉是今后循环流化床燃烧技术发展极为重要的方向,是大型燃煤电站污染控制最具竞争力的技术。我国已经具备开发超临界循环流化床锅炉的能力,在政府支持下可以实现完全自主知识产权的超临界循环流化床锅炉,扭转过去反复引进的被动局面。 前言 能源与环境是当今社会发展的两大问题。我国是缺油,但煤炭资源相对丰富大国。石油天然气对我国是战略资源,要尽量减少直接燃用。目前一次能源消耗中煤炭占65%,在可预见的若干年内还会维持这个趋势。可见发展高效、低污染的清洁燃煤技术是当今亟待解决的问题。 循环流化床是近年来在国际上发展起来的新一代高效、低污染清洁燃烧技术,具有许多其它燃烧方式所没有的优点: 1)由于循环流化床属于低温燃烧,因此氮氧化物排放远低于煤粉炉,仅为120ppm左右。并可实现燃烧中直接脱硫,脱硫效率高且技术设备简单和经济,其脱硫的初投资及运行费用远低于煤粉炉加FGD,是目前我国在经济上可承受的燃煤污染控制技术; 2)燃料适应性广且燃烧效率高,特别适合于低热值劣质煤; 3)排出的灰渣活性好,易于实现综合利用。 4)负荷调节范围大,负荷可降到满负荷的30%左右。 因此,在我国目前环保要求日益严格,煤种变化较大和电厂负荷调节范围较大的情况下,循环流化床成为发电厂和热电厂优选的技术之一。我国的循环流化床燃烧技术的来自于自主开发、国外引进、引进技术的消化吸收三个主要来源。上世纪八十年代以来,我国循环流化床锅炉数量和单台容量逐年增加。据不完全统计,现有近千台35~460t/h 循环流化床蒸汽锅炉和热水锅炉在运行、安 106.78t/h,见图1;参数从中压、次高压、高压发 展到超高压,单台容量已经发展到670t/h,见图2。 截至2003年,投运台数已有700多台。单炉最大 容量为465t/h,发电量150MWE。近三年,我国 循环流化床锅炉发展迅速,100MWe以上循环流 化床锅炉订货量达到近80台,100MWe以下循环 流化床锅炉订货超过200台。今后,随着环保标 准的提高,供热及电力市场对循环流化床锅炉的 需求将会进一步扩大。

循环流化床锅炉的设计与实现毕业设计

循环流化床锅炉的设计与实现毕业设计 目录 目录 (1) 摘要 (1) Abstract (2) 第一章概述 (3) (3) 1.2循环流化床特点 (4) 1.2.1循环流化床优点 (4) 1.2.2循环流化床缺点 (5) 第二章燃料与脱硫剂 (6) 2.1 燃料 (6) 2.2 脱硫剂 (6) 第三章脱硫与排烟有害物质的形成 (7) 3.1循环流化床锅炉在环保上的必要性 (7) 3.2影响循环流化床锅炉SO2的排放控制 (7) 3.2 影响脱硫效率的一些主要因素 (8) 3.3 无脱硫工况燃烧计算 (9) 3.3.1无脱硫工况下燃烧计算 (9) 3.3.2无脱硫工况下烟气体积计算 (9)

第四章物料循环倍率 (10) 4.1循环灰量 (10) 4.2物料循环倍率的选择 (10) 第五章脱硫工况计算 (12) 5.1燃烧和脱硫化学反应式 (12) 5.2脱硫计算 (12) 第六章锅炉燃烧产物热平衡 (17) 6.1脱硫对循环流化床锅炉热效率的影响 (17) 6.1.1脱硫对入炉可支配热量的影响 (17) 6.1.2脱硫对q4的影响 (17) 6.1.3脱硫对q2的影响 (18) 6.1.4脱硫对q6的影响 (18) 6.2锅炉热平衡计算 (18) 第七章传热系数计算 (21) 7.1炉膛膜式水冷壁传热系数计算 (21) 7.2炉膛汽冷屛传热系数计算 (22) 第八章锅炉结构设计 (24) 8.1炉膛设计 (24) 8.1.1炉膛介绍 (24) 8.1.2炉膛床温选择 (24) 8.1.3炉膛高度的选择 (25) 8.2炉膛汽冷屛设计 (25)

8.3汽冷旋风分离器设计 (26) 8.4回料器的设计 (27) 第九章热力计算 (29) 9.1炉膛热力计算 (29) 9.2汽冷旋风分离器热力计算 (31) 第十章尾部受热面 (34) 10.1 过热器 (34) 10.2 省煤器 (34) 10.3 空气预热器 (36) 第十一章计算结果 (38) 11.1 基本数据 (38) 11.1.1 设计煤种 (39) 11.1.2 石灰石 (39) 11.2 燃烧脱硫计算 (39) 11.2.1 无脱硫计算时的燃烧计算 (39) 11.2.2 无脱硫工况时的烟气体积计算 (40) 11.2.3 脱硫计算 (40) 11.2.4 脱硫工况时受热面中燃烧产物的平均特性 (43) 11.2.5 脱硫工况时燃烧产物焓温表 (43) 11.3 240t/h CFB 锅炉热力计算 (45) 11.3.1 锅炉设计参数 (45) 循环硫化床燃烧 (45)

哈锅循环流化床锅炉技术情况介绍

哈锅循环流化床锅炉技术情况介绍 哈锅的循环流化床锅炉技术主要源于与国外公司的技术合作,技术引进以及国内科研院所的合作。结合国内的市场情况以及用户的特殊要求,哈锅将合作、引进的技术进行有机的结合,并进行多方面的优化设计,推出具有哈锅特色、符合中国国情的循环流化床锅炉技术,为哈锅打开并占领国内循环流化床锅炉市场创造了技术上的优势。多年来,哈锅在原有的基础上,总结多台投运锅炉的运行经验,不断改革创新,推出新技术新产品,大大丰富了自己的设计思路和设计方案,从而满足了不同用户的各种要求。到目前为止,哈锅设计的燃料包括烟煤,贫煤、褐煤,无烟煤,煤矸石,煤泥以及煤+气混烧等,涉及燃料覆盖面很广;采用的回料阀包括单路回料阀和双路回料阀;采用的风帽包括大直径的钟罩式风帽和猪尾巴管式风帽;使用的冷渣器包括风水联合冷渣器、滚筒冷渣器和螺旋冷渣器;采用的点火启动方式包括床上点火、床下点火以及床上+床下联合点火启动;给煤方式包括前墙给煤、后墙给煤和前墙+后墙联合给煤。 下面详细介绍一下哈锅循环硫化床锅炉技术改进情况: 1、分离器 哈锅利用引进技术对分离器设计进行了优化,以提高分离器的分离效率,这些优化措施主要有: a、分离器入口烟道向下倾斜,使进入分离器的烟气带有向下倾角,给烟气中的固体颗粒一个向下的动能,有助于气固分离。 b、偏置分离器中心筒,即可减轻中心筒的磨损,又可改善中心筒周围的流场提高分离效率。 c、独有的导涡器(中心筒)设计,有效控制上升气流的流速,减少漩涡气流对颗粒的裹带,提高分离效率。 d、分离器入口烟道设置成加速段,提高分离器的入口烟速,有利于气固分离。 经过优化后分离器分离效率可达到99.5%以上,切割粒径d50=10-30um、d99=70-80um。高效分离器是降低飞灰可燃物的有效措施,同时也是实现高循环倍率的重要保证。

循环流化床锅炉操作工安全技术操作规程(标准版)

( 操作规程 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 循环流化床锅炉操作工安全技术操作规程(标准版) Safety operating procedures refer to documents describing all aspects of work steps and operating procedures that comply with production safety laws and regulations.

循环流化床锅炉操作工安全技术操作规程 (标准版) 一、锅炉点火启动 第1条打开风室人孔门,检查内部无杂物积灰,无堵塞、无破缝、无变形。 第2条检查布风板上所有风帽有无损坏现象,风孔无堵塞,放渣管无变形、开裂现象。 第3条燃烧室喷嘴无堵塞现象。 第4条所有炉墙的膨胀缝用酸铝耐火纤维充填严密。 第5条旋风分离、转变烟道及返料器中无杂物、积灰,返料器布风板上的风帽小孔无堵塞现象。 第6条所有的测点无堵塞、损坏现象。热电偶一般插入炉膛10~15mm。

二、漏风试验和烘炉 第7条漏风试验: 1、将所有的人孔门、看火门、检查门关闭。 2、启动引风机,保持炉膛负压为8-10㎜H2O。 3、用点燃的火把靠近炉墙、烟道、炉顶等处逐一检查,如火舌被吸,则表明漏风,漏风部位经试验确定无误后作标记,试验结束后予以检修消除。 第8条烘炉 1、在流化室烘炉 (1)待炉墙炉顶施工完毕自然养护三天后,方可进行烘炉。 (2)在布风板上装入0-8㎜底料(以沸腾炉渣最宜),厚度为300㎜。 (3)打开引风调节门。 (4)放入木柴,点火烘炉。烘炉时控制预热器的温度。 (5)在烘炉初期24小时内,排烟温度应<50℃ (6)24小时后,逐步增大火势,将排烟温度提高至60-80℃,稳

3MW循环流化床锅炉设计特点及运行情况分析.doc

3MW循环流化床锅炉设计特点及运行情况分析

135MW循环流化床锅炉设计特点及运行情况分析 1.概述 徐州彭城电力有限责任公司位于江苏省徐州市,根据国家环保及节约能源要求,扩建两台440t/h超高压中间再热循环流化床锅炉及135MW汽轮发电机组。 工程设计单位是中南电力设计院,锅炉由武汉锅炉股份公司供货,汽轮机和发电机由哈尔滨汽轮机有限公司供货。山东电力建设第三工程公司负责电厂主机的安装施工,机组调试由山东电力研究院负责。江苏兴源电力建设监理有限公司负责整个工程的监理工作。 机组于2004年2月28日开工建设,两台机组分别于2005年7月11日和9月16日顺利完成168小时满负荷试运行,移交电厂转入商业运行。 2.锅炉整体布置特点 2.1 锅炉本体设计参数及布置特点 锅炉是武汉锅炉股份有限公司采用引进的ALSTOM公司技术设计制造的首台440t/h超高压中间再热、高温绝热旋风分离器、返料器给煤、平衡通风、半露天布置的锅炉。 锅炉的主要设计参数如下表所示: 名称单位B-MCR B-ECR 过热蒸汽流量t/h 440 411.88 过热蒸汽出口压力MPa(g> 13.7 13.7 过热蒸汽出口温度℃540 540 再热蒸汽流量t/h 353.29 330.43 再热蒸汽进口压力MPa(g> 2.755 2.56 再热蒸汽进/出口温度℃318/540 313/540

锅炉启动点火和低负荷稳燃。炉膛前墙布置流化床风水冷冷渣器,把渣冷却至150℃以下。 第二部分为炉膛与尾部烟道之间布置有两台高温绝热旋风分离器,每个旋风分离器下部布置一台非机械型分路回料装置。回料装置将气固分离装置捕集下来的固体颗粒返送回炉膛,从而实现循环燃烧。 第三部分为尾部烟道及受热面。尾部烟道中从上到下依次布置有过热器、再热器、省煤器和空气预热器。过热器系统及再热器系统中设有喷水减温器。管式空气预热器采用光管卧式布置。 锅炉整体呈左右对称布置,支吊在锅炉钢架上。 2.2 锅炉岛系统布置特点 输煤系统:原煤经两级破碎机破碎后,由皮带输送机送入炉前煤斗,合格的原煤从煤斗经二级给煤机,由锅炉返料斜腿进入炉膛燃烧。床料加入系统:启动床料经斗式提升机送入启动料斗,再通过输煤系统的给煤机,由锅炉返料斜腿进入炉膛。 一次风系统:一次风经空预器加热成热风后分成两路,第一路直接进入炉膛底部水冷风室,第二路进入床下启动燃烧器。 二次风系统:二次风共分四路,第一路未经预热的冷风作为给煤机密封用风,第二路经空预器加热成热风后分上、下行风箱进入炉膛,第三路热风作为落煤管输送风,第四路作为床上启动燃烧器用风。 返料器用风系统:返料器输送风由单独的高压流化风机<罗茨风机)供应,配置为2x100%容量<一运一备)。

垃圾发电厂焚烧系统和主要设备的选用

垃圾发电厂焚烧系统和主要设备的选用 摘要:对垃圾焚烧发电厂设计中主要设备与系统的选用进行了讨论,主要设备为焚烧锅炉与汽轮机,主要系统为垃圾进料与前处理系统、烟气净化系统等。最后,给出了本类电厂目前的发电效率与供电效率的水平。 关键词:垃圾焚烧;发电厂设计;主要设备;选用 1概述 随着经济迅速发展,人民生活水平的提高,城市生活垃圾量增长迅速,我国每年以6%~8%的速度增长2000年全国城市垃圾产出量达14亿t。因此,如何有效地对城市生活垃圾进行净化处理,己成为人们广泛关注的问题。 用焚烧方式并回收其中能量的垃圾处理技术在近20年得到了迅速发展,美国、欧洲、日本等发达国家己开始大量应用,并产生了良好的环保效益与经济效益。焚烧垃圾,回收能源,以实现城市生活垃圾的减容化、无害化和资源化,被认为是我国处理城市生活垃圾的一个重要方向。 城市生活垃圾焚烧发电厂由于有自己的特点,发电效率比现代化火电厂低得多,本文对其主要设备(焚烧锅炉、汽轮机)及主要系统(垃圾进料及前处理系统、烟气净化系统)的选用进行讨论,做到在避免和控制二次污染的前提下,在技术和经济可行的情况下,提高发电效率。 2焚烧锅炉的选用 焚烧锅炉包括焚烧炉及余热锅炉两大部分。按我国生活垃圾焚烧污染控制标准(GWKB3-2000)要求:垃圾应在焚烧炉内充分燃烧,烟气在后燃室应在不低于850℃的条件下停留不少于2s。 2.1选型 目前,适合我国高水分、低热值城市生活垃圾并经过运行考验的焚烧锅炉有引进三菱重工技术的炉排式焚烧锅炉和浙江大学开发的异重循环流化床焚烧锅炉。前者1997年己在深圳投入运行,日处理垃圾150t,但设备为部分国产化,价格昂贵,垃圾能源化利用程度不高。后者1998年8月在杭州余杭锦江热电有限公司建成投产,蒸发量35t/h,日处理垃圾150t,最大日处理超过216t,应用与煤助燃方式,运行一直稳定。浙江省电力设计院设计的山东菏泽、杭州乔司等垃圾焚烧发电厂均采用后者。 2.2容量 作为垃圾发电产业的首批电厂,焚烧锅炉蒸发量采用与示范电厂一样为35t/h。在流化床焚烧锅炉中垃圾焚烧处理采用与煤助燃方式,这样有利于燃烧稳定,提高了炉内燃烧温度从而可降低有害排放,并有利于蒸汽参数的提高。目前由浙江大学和杭州锅炉厂共同研制生产的异重循环流化床垃圾焚烧锅炉单炉垃圾处理量为200t/d,辅助燃煤与垃圾量重量比为3:7;在相同的蒸发量(35t/h)下,今后单炉垃圾处理量可提高为300t/d,此时辅助燃煤与垃圾量重量比为2:8。 2.3蒸汽参数 垃圾焚烧锅炉生产的蒸汽其参数偏低,原因如下:(1)焚烧锅炉的热功率较小,在同容量的小型火电厂中也同样不会应用高压蒸汽参数;(2)焚烧锅炉燃烧气体中含有的氯化物盐类会引起过热器的高温腐蚀。在日本通常将焚烧锅炉的蒸汽参数设计为2.94MPa,300℃以下;在欧洲与美国,过热器管材应用低合金钢与高镍合金,蒸汽参数一般不超过4.5MPa,450℃。深圳市政环卫综合处理厂[1]是我国第一家采用焚烧工艺处理城市生活垃圾并用其热能进行发电与供热的工厂,安装进口的2台日本三菱重工炉排式焚烧锅炉,每台可供1.6MPa饱和蒸汽12t/h,后经技改后,每台可供1.4MPa,350℃过热蒸汽10.7t/h。同一工厂的3号焚烧

循环流化床锅炉部分部件原理

基本原理篇 第一章循环流化床锅炉的基本原理 第一节流态化过程循环流化床锅炉燃烧是一个特殊的气固两相流动体系中发生的物理化学过程,是一种新型燃用固体燃料的的锅炉。粒子团不断聚集、沉降、吹散、上升又在聚集物理衍变过程,是循环床中气体与固体粒子间发生剧烈的热量与质量交换,形成炉内的循环;同时气流对固体颗粒有很大的夹带作用,使大量未燃尽的燃料颗粒随烟气一起离开炉膛,被烟气带出的大部分物料颗粒经过旋风分离器的分离又从新回到炉膛,来保持炉内床料不变的连续工作状态,这就是炉外的物料循环系统,也是循环流化床锅炉所特有的物料循环—循环从此而来。 咱们看一下这幅燃烧、循环分离图

1. 流态化:当气体以一定的速度流过固体颗粒层时,只要气体对固体颗粒产生作用力与固体颗粒所受的外力(主要是固体的重力)相平衡时,颗粒便具有了类似流体的性质,这种状态成为流态化, 简称流化。固体颗粒从固体床、起始流态化、鼓泡流态化、‘柱塞’流态化、湍流流态化、气力输送状态的六种流化状态。 2. 临界流化速度:颗粒床层从静止状态转变为流态化时的最低速度, 称为临界流化速度。此时所需的风量称为临界流化速度。 3. 流化床表现在流体方面的特性。 流化床看上去非常象沸腾的液体, 在许多方面表

现出类似液体的特性, 主要表现在以下几个方面: 1) 床内颗粒混合良好。因此,当加热床层时, 整个床层的温度基本均匀。 2) 床内颗粒可以象流体一样从容器侧面的孔喷出, 并能像液体一样从一个容器流向另一个容器。 3) 高于床层表观密度的颗粒会下沉, 小于床层表观密度的颗粒会浮在床面上。 4) 当床体倾斜时, 床层的上表面保持水平。 第二节循环流化床的基本原理 1. 循环流化床的特点: 1) 不再有鼓泡床那样清晰的界面,固体颗粒充面整个上升段空间。 2) 有强烈的热量、质量、和动量的传递过程。 3) 床层压降随流化速度和颗粒质量流量变化。 4) 低温的动力控制燃烧,也就是我们所说的床温在850-950℃之间范围,因为这个范围对灰的不会软化、碱金属不会升华受热面会减轻结渣和空气中不能生成大量的NOx。 5) 通过上升段内的存料量,固体物料在床内的停留时间可在几分钟至数小时范围内调节。 2.循环流化床锅炉的传热 1)颗粒与气流之间,以对流换热为主;

循环流化床锅炉的技术特点参考文本

循环流化床锅炉的技术特 点参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

循环流化床锅炉的技术特点参考文本使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 1、燃料适应性广 由于大量灰粒子的稳定循环,新加入循环流化床锅炉 的燃料(煤)将只占床料的很小份额。由于循环流化床的特殊 流体动力特性,使其中的质量和热量交换非常充分。这就 为新加入燃料的预热、着火创造了十分有利的条件。而未 燃尽的煤粒子通过多次循环既可增加其炉内停留时间又可 多次参与床层中剧烈的质量和热量交换,十分有利于其燃 尽。这就使循环流化床锅炉不仅可高效燃用烟煤、褐煤等 易燃煤种,同样可高效燃用无烟煤等难燃煤种,还可高效 燃用各种低热值、高灰分或高水分的矸石、固体垃圾等废 弃物。

2、截面热强度高 同样由于流化床中剧烈的质量和热量交换,不仅使燃烧过程能在较小截面内完成,还使炉膛内床层和烟气流与水冷壁之间的传热效率也大大增加。这就使循环流化床锅炉的炉膛截面和容积可小于同容量的链条炉,沸腾床锅炉甚至煤粉炉。这一点对现有锅炉的改造尤其具有现实意义。 3、污染物排放少 可利用脱硫剂进行炉内高效脱硫是循环流化床锅的突出优点。常用的脱硫剂是石灰石。通常循环流化床锅炉的床温保持在800-1000oC之间,过高可能因床内产生焦、

生物质循环流化床锅炉技术介绍

生物质循环流化床锅炉技术介绍 发表时间:2019-09-21T22:55:42.280Z 来源:《基层建设》2019年第19期作者:刘曼 [导读] 摘要:生物质能是重要的可再生能源,具有资源来源广泛、利用方式多样化、能源产品多元化、综合效益显著的特点。 中国能源建设集团山西电力建设有限公司山西太原 030012 摘要:生物质能是重要的可再生能源,具有资源来源广泛、利用方式多样化、能源产品多元化、综合效益显著的特点。生物质锅炉供热具有清洁环保经济适用的特点,一是技术比较成熟,工艺简单;二是大气污染物排放较少,生物质燃料锅炉燃烧排放SO2浓度较低,安装除尘设施后锅炉烟尘、氮氧化物排放可达到轻油排放标准,以林业剩余物为主的生物质燃料锅炉大气污染物排放可达到天然气标准;三是经济可行,生物质燃料价格较低,生物质锅炉供热有着较为明显的成本优势;四是分布式供热,直接在终端消费侧替代燃煤供热,分散布局,运行灵活,适应性强,满足多元化用热需求。目前国内生物质燃烧的锅炉有往复式炉排炉、水冷振动式炉排炉、循环流化床锅炉、联合炉排锅、链条炉等等。其中链条炉和循环流化床运行较为广泛。本文对循环流化床锅炉和链条炉进行分析比较,为生物质锅炉选型提供依据。 关键词:生物质;循环流化床锅炉;链条炉;技术性能比较;经济性比较 引言 生物质是清洁、稳定、分布广泛的可再生资源,生物质的利用符合能源转型、碳减排、清洁环保及治理雾霾的能源发展战略。随着国家对环境保护的要求不断提高,生物质等可再生能源的重要性逐渐增加,国家先后发布多个文件,大力支持生物质发电技术应用推广。生物质发电技术包括生物质直接燃烧发电、生物质混合燃烧发电、生物质气化发电等。生物质直接燃烧技术生产过程比较简单,设备和运行的成本相对较低,是现行的可以大规模推广利用的技术。而循环流化床燃烧方式因其强烈的传热、传质、低温燃烧、燃料适应性广,负荷调整范围宽、燃烧效率高等特点,被广泛的应用于生物质发电。本文从生物质燃料的特点出发,介绍生物质直燃流化床锅炉的技术特点及相关技术问题。 1生物质燃料特性 1.1几种典型的生物质燃料 固体生物质燃料取材广泛,主要包括木本原料,即树木和各种采伐、加工的残余物质;草本原料,如农作物秸杆、草类及加工残余物;果壳类原料,如花生壳、板栗壳等;其他混杂燃料,如生活垃圾、造纸污泥等。 1.2生物质燃料灰分特性 生物质灰中含有丰富的无机矿物质成分,如:硅酸盐、碳酸盐、硫酸盐与磷酸盐等,灰的组成对生物质的热解特性有着重要的影响,且硅酸盐、碱金属及碱土金属的存在易引起管路系统的结渣、堵塞。为了安全、高效地运行,需对生物质灰的主要矿物质及微量元素的组成进行全面的分析。 2生物质CFB锅炉技术开发 2.1国内外生物质发电技术应用 我国生物质能目前主要以农林废弃物为主,农业废弃物主要是农作物秸秆。生物质发电产业通常包括生物质直燃发电、生物质混燃发电和生物质气化发电。国外烧秸秆及其它生物质的新建机组一般都采用了炉排燃烧的小型锅炉。秸秆通常被打成标准尺寸的大捆,应用专用设备打捆、装卸和运输。秸秆通过螺旋送料机,送进炉膛,在炉排上燃烧。 2.2生物质CFB锅炉技术介绍 CFB锅炉的燃烧方式、高温床料、特殊的物料循环系统,低温燃烧、燃料的适应性广等特性,使其更适合生物质燃料的复杂多变及低氮排放要求。锅炉采用单汽包、自然循环、单段蒸发系统,炉膛蒸发受热面采用膜式壁,炉膛内内置屏式三级过热器和水冷屏,以提高整个过热器系统的辐射传热特性,使锅炉过热汽温具有良好的调节特性。旋风分离器采用汽冷结构,回料阀为非机械型,回料为自平衡式。炉膛、分离器、回料阀组成了物料的热循环回路,分离后的烟气进入尾部烟道。尾部烟道采用三烟道型式,下行的一烟道内布置低温过热器、上行的二烟道内布置中温过热器和高温省煤器,下行的三烟道内布置低温省煤器和空气预热器。一、二烟道为膜式壁的包墙过热器,三烟道采用护板结构。低NOx燃烧技术和炉内脱硫,可有效控制NOx和SOx的排放,满足环保要求。同时为进一步超低排放,在分离器入口烟道预留SNCR.接口。 2.3相关配套设备 由于生物质燃料堆积密度小、比重轻,自密封性差,给料设备的选型尤为重要。可以采用两级螺旋给料系统或两级挡板给料系统。生物质锅炉沾污问题较重,一整套性能良好、质量可靠、数量足够的吹灰设备能在锅炉运行时保持尾部烟道内的过热器、再热器、省煤器和空气预热器受热面的清洁。由于生物质燃料灰分低、成灰特性差,可以考虑增加在线加料系统,以补充循环灰量的不足并能稀释碱金属浓度,降低结焦的风险,提高运行的安全性。 3流化床锅炉尾部排放NOx生成原理 3.1热力型和快速型 通过资料得知,1500℃是热力型NOx生成临界点。当温度<1500℃时,NOx不易生成;当温度>1500℃时,NOx生成量猛增。由于实际生产中本厂炉膛温度处于600-850℃,因此热力型不是本厂NOx的生成原因。另外快速型NOx由于其产生特点,实际生产中通常也不作为控制方向。 3.2燃料型 燃料型NOx是由燃料中的氮元素在燃烧时形成的。炉膛温度约为600℃-800℃时,燃料型NOx就能生成。研究发现空气系数是最重要的原因,转化率随空气系数增加而增大。结合本厂的实际情况得知,燃料型NOx是主要元凶,也是最主要的控制方向。在曲线中可以清晰的看到,当两侧空气系数升高时,NOx的生成量快速升高;当两侧空气系数降低时,NOx的生成量快速下降。因此控制合适的空气系数是重中之重。 4生物质锅炉生产中 NOx的控制方法(1)加强上配料精细化管理,燃运分部制定好当天的上配料方案,并按上配料方案提前做好干湿燃料的混合工作。上

垃圾焚烧锅炉运行规程完整

垃圾焚烧锅炉炉排炉运行规程 目录 1、总则 (2) 2、焚烧-余热锅炉设备规范 (4) 3. 焚烧-余热锅炉系统启动、停止及调整 (7) 4. 停炉后的保养: (17) 5. 焚烧-余热锅炉系统运行检查及维护 (18) 6. 焚烧-余热锅炉系统检修后的验收: (19) 7. 焚烧-余热锅炉系统的水压试验 (22) 8. 焚烧-余热锅炉系统事故处理 (23) 风烟系统运行规程 (33) 1 风烟系统设备概况: (33) 2 风烟系统设备规范 (33) 3 风烟系统启动、停止及调整 (34) 辅助热力系统运行规程 (39) 1 辅助热力系统设备概况: (39) 2 辅助热力系统设备规范: (39) 3 辅助热力系统启动、停止及调整: (39) 4 辅助热力系统事故处理: (41) 5 辅助热力系统检修后的验收: (42) 压缩空气系统运行规程 (42) 1 设备规范、特性参数 (42) 2 开机前的检查和准备 (44) 3 空压机的启动 (45) 4 空压机的停运 (46) 5 空压机的紧急停车 (46) 6 空压机的定期维护 (47) 7 空压机的常见故障及排除 (48) 8 干燥机的启动和停止: (51) 9 储气罐的投用和停用: (51) 10 压缩空气系统检修后的验收: (51) 炉渣系统运行规程 (52) 1 炉渣系统设备概况: (52) 2 炉渣系统设备规范: (53) 3 炉渣系统启动、停止及调整: (53) 4 炉渣系统运行检查及维护: (54)

5 炉渣系统事故处理: (54) 6 炉渣系统检修后的验收: (55) 7 炉渣处理系统设备检修后的验收项目: (55) 8 炉渣处理系统设备检修后的试转 (55) 飞灰处理系统运行规程 (56) 1 飞灰处理系统设备概况: (56) 2 工艺流程简述: (56) 3 飞灰处理系统设备规范: (56) 4 飞灰处理系统启动、停止及调整: (57) 5 飞灰处理系统运行检查及维护: (59) 6 飞灰处理系统事故处理: (60) 7 飞灰处理系统检修后的验收: (60) 燃油系统运行规程 (61) 1 燃油系统设备概况 (61) 2 燃烧系统设备规范 (61) 3 燃油系统启动、停止及调整: (62) 4 燃油系统运行检查及维护: (66) 5 燃油系统事故处理: (66) 6 燃油系统检修后的验收: (66) 锅炉液压炉排燃烧系统运行规程 (68) 1. 液压设备概况 (68) 2. 液压设备规范 (68) 烟气处理系统运行规程: (72) 1、烟气处理系统设备概况 (72) 2、烟气处理系统设计参数 (72) 3、石灰浆制备系统运行规程 (73) 4、半干反应塔装置运行规程 (75) 5 活性炭喷射系统运行规程 (79) 6、布袋除尘器运行规程 (80) 7、烟气处理系统事故处理: (84) 8、烟气处理系统检修后的验收 (84) 1、总则 1.1本规程仅适用于中山市天乙能源有限公司垃圾焚烧锅炉。 1.2下列人员应熟练掌握本规程

循环流化床锅炉的特点

循环流化床锅炉的特点 循环流化床锅炉的特点 循环流化床锅炉是近十几年发展起来的一项高效、低污染清洁燃烧技术。因其具有燃烧效率高、煤种适应性广、烟气中有害气体排放浓度低、负荷调节范围大、灰渣可综合利用等优点,在当今日益严峻的能源紧缺和环境保护要求下,在国内外得到了迅速的发展,并已商品化,正在向大型化发展。 1.1 独特的燃烧机理 固体粒子经与气体或液体接触而转变为类似流体状态的过程,称为流化过程。流化过程用于燃料燃烧,即为流化燃烧,其炉子称为流化床

锅炉。流化理论用于燃烧始于上世纪20年代,40年代以后主要用于石油化工和冶金工业。 流化燃烧是一种介于层状燃烧与悬浮燃烧之间的燃烧方式。煤预先经破碎加工成一定大小的颗粒(一般为<8mm)而置于布风板上,其厚度约在350~500mm左右,空气则通过布风板由下向上吹送。当空气以较低的气流速度通过料层时,煤粒在布风板上静止不动,料层厚度不变,这一阶段称为固定床。这正是煤在层燃炉中的状态,气流的推力小于煤粒重力,气流穿过煤粒间隙,煤粒之间无相对运动。当气流速度增大并达到某一较高值时,气流对煤粒的推力恰好等于煤粒的重力,煤粒开始飘浮移动,料层高度略有增长。如气流速度继续增大,煤粒间的空隙加大,料层膨胀增高,所有的煤粒、灰渣纷乱混杂,上下翻腾不已,颗粒和气流之间的相对运动十分强烈。这种处于沸腾状态的料床,称为流化床。这种燃烧方式即为流化燃烧。当风速继续增大并超过一定限度时,稳定的沸腾工况就被破坏,颗粒将全部随气流飞走。物料的这种运动形式叫做气力输送,这正是煤粉在煤粉炉中随气流悬浮燃烧的情景。

1.2 锅炉热效率较高 由于循环床内气—固间有强烈的炉内循环扰动,强化了炉内传热和传质过程,使刚进入床内的新鲜燃料颗粒在瞬间即被加热到炉膛温度(≈850℃),并且燃烧和传热过程沿炉膛高度基本可在恒温下进行,因而延长了燃烧反应时间。燃料通过分离器多次循环回到炉内,更延长了颗粒的停留和反应时间,减少了固体不完全燃烧损失,从而使循环床锅炉可以达到88~95%的燃烧效率,可与煤粉锅炉相媲美。 1.3 运行稳定,操作简单 循环流化床锅炉的给煤粒度一般小于10mm,因此与煤粉锅炉相比,燃料的制备破碎系统大为简化。循环流化床锅炉燃料系统的转动设备少,主要有给煤机、冷渣器和风机,较煤粉炉省去了复杂的制粉、送粉等系统设备,较链条炉省去了故障频繁的炉排部分,给燃烧系统稳定运行创造了条件。

循环流化床锅炉设计工艺分析

循环流化床锅炉设计工艺分析 发表时间:2019-07-05T11:57:11.573Z 来源:《电力设备》2019年第4期作者:黄凯[导读] 摘要:循环流化床锅炉应用的是工业化程度较高的洁净煤燃烧技术,在我国对工业生产环保要求越来越严的背景下,循环流化床锅炉做出了巨大的贡献。(武汉锅炉股份有限公司湖北武汉 430205)摘要:循环流化床锅炉应用的是工业化程度较高的洁净煤燃烧技术,在我国对工业生产环保要求越来越严的背景下,循环流化床锅炉做出了巨大的贡献。对于煤矸石、油页岩、城市垃圾以及废弃物等难燃的固体燃料,都可以作为循环流化床锅炉的燃料,不仅具有较高的燃烧效率,而且污染较小。因为循环流化床锅炉采用流态化燃烧,在设计运行中会存在磨损、结焦、物料循环不畅等问题,经过技术的不 断改进,这些问题都得到了很好的解决,下面对此进行阐述。关键词:循环流化床;锅炉;工艺循环流化床锅炉控制系统是一类新型的锅炉控制系统,在实际的应用中发挥重要作用。在生产环节中,为了可以提升循环流化床锅炉系统的性能,应该完善控制系统的分析,提升循环流化床锅炉设计方案。 1循环流化床锅炉设计运行中的常见问题 1.1磨损问题 循环流化床锅炉是把固态的燃料进行流体化处理,让燃料具有液体的流动性质,在其中可以加入煤矸石以及石灰等物质,可以达到除硫的效果。因为燃料是以液态化的方式流动的固体,所以这些颗粒在流动的过程中,会与接触到的设备发生碰撞,从而造成一定的磨损。循环流化床锅炉在运行的过程中,床料流动的速度越快、浓度越大,对锅炉受热面和耐火材料的表面所造成的冲击就越加强烈,从而导致这些部件的磨损。在床料流动的过程中,也会伴随温度的循环流动,在耐火构件热膨胀系数不同的情况下,受到机械应力的影响会对炉内耐火构件造成磨损。 1.2结焦问题 循环流化床锅炉结焦是设计运行中的常见问题,结焦不仅降低锅炉的运行效率,同时还威胁到锅炉运行的安全性。形成结焦的原因主要是旋风分离器超温、床料结块、返料器堵塞等,如果燃烧室温度超过灰的变形温度,会导致炉内未燃碳重新燃烧,在床温上涨的情况下形成结焦。如果物料循环系统漏风,热床料中的可燃物与氧气接触重新燃烧,但由于热量不足就会形成局部超温结焦。如果在启动期间煤油混烧时间较长,在风量与燃煤颗粒匹配不佳等情况下,燃烧速度过慢就会导致未完全燃烧的油渣与床料板结成块,在流化不良的情况下,形成松散的渣块。在返料器运行过程中如果因为堵塞而突然停止工作,由于炉内循环物料不足就会导致温度升高,从而导致高温结焦。 1.3旋风分离器的问题旋风分离器的主要功能就是进行气固分离,保证循环流化床锅炉的正常运行。旋风分离器结构比较简单,其运行效率主要与形状、结构、进口气体温度、入口烟温、入口颗粒等因素有关。如果分离器的运行效率达不到设计值,就会出现未完全燃烧现象,直接影响到锅炉的燃烧效率。在飞灰量较大的情况下,就会对尾部受热面造成严重的磨损,增加除灰设备的能耗。如果进入循环回路中的灰量较少,就无法达到设计的循环量,无法有效控制床温,对锅炉满负荷运行以及炉膛传热产生一定的影响。 2循环流化床锅炉设计工艺分析 2.1循环床气固两相流动在循环床内,颗粒会聚集在一起,这些粒子团聚在一起,导致颗粒的体积和重量增大,产生非常大的自由沉降终端速度,在一定的气流速度下,粒子会顺着锅炉墙向下运动。在粒子流动的环节中,气体和固体之间会产生非常大的相对速度,粒子会在锅炉壁上沉积。在粒子团不断的聚集、下沉和上升的环节中,会形成内循环,导致锅炉内发生热量的交换。粒子团会沿着锅炉壁下沉,锅炉内的内循环非常剧烈,导致锅炉的传热效果非常好,锅炉内的热量分布也非常均匀。在850摄氏度的锅炉温度下,燃料和脱硫剂在短时间内会被加热到850摄氏度,燃烧效率非常高,而且在石灰石的作用下会产生脱硫反应,在合适的反应温度下实现燃料的二次循环。在循环床内的任何位置,都可以实现良好的传热效果。在循环过程中固体颗粒是向下运动的,但是颗粒的粒径比较大,可以降低颗粒的流动速度,防止炉壁发生严重的磨损情况。 在循环流化床锅炉悬浮段运行环节中,固体颗粒的流动不会呈现出快速流态化,此时的颗粒具有一定的浓度,并且会出现成团的现象。循环流化床悬浮段中的燃料的分布不均匀,应该在采用热态测试的基础上,确保燃料的均匀分布。 2.2物料平衡理论及其应用固体骨料在循环系统中呈现出对传热的流动特征,这对燃料的燃烧和脱硫过程都会产生一定的干扰,对整个锅炉的使用也会产生影响。采用物料平衡理论可以对固体燃料在燃烧系统内的分布规律进行合理的分析,在循环流化床的锅炉的设计中起到很好的效果。物料平衡理论主要是指燃料、焦炭等在回料装置等可以保持平衡,物料平衡建立的效果直接会影响到循环流化床锅炉的运行效果。(1)循环量的确定在循环流化床设计环节中,要确保一台锅炉可以正常的运行,在设计中应该确保热量分配的平衡。循环流化床中物料的浓度与受热面传导系数具有直接的关系,所以,要确保锅炉内具有充足的物料循环。在循环流化床物料循环中,结合不同燃料的特性,确定循环量。在具体的设计环节中,如果循环量低于设计的循环量,就会导致锅炉内的燃料过分燃烧,热量被受热面过度吸收。如果燃料的浓度过低,就会导致锅炉出力不足。(2)分离器效率的要求循环流化床锅炉在运行环节中,要确保充足的循环量,所以要合理的设计分离器。在分离器设计中,要提升分离效率。一定速度下,在确定的粒度分布中,应该确保某个粒径的分离效率非常高,粒径的范围是循环灰中的主体,其在锅炉的物料中成分非常多。如果分离器的分离效率对任意粒径的颗粒都不能达到100%,那么在循环流化床锅炉使用的环节中,分离器就不能实现物料的循环,锅炉的运行效果就不能得到保障。 (3)床压降的要求

相关主题
文本预览
相关文档 最新文档