当前位置:文档之家› 二次函数与根的判别式韦达定理

二次函数与根的判别式韦达定理

二次函数与根的判别式韦达定理
二次函数与根的判别式韦达定理

二次函数与根的判别式、韦达定理讲点1:公共点问题

【例1】如图,抛物线y=-x2+4x-3的顶点为M,直线y=-2x-9与y轴交于点C,与直线MO交于点D,现将抛物线的顶点在直线OD上平移,平移后的抛物线与射线CD(含顶点C)只有一个公共点,求它的顶点横坐标的值或取值范围.

【练】如图,已知抛物线y=-x2+2x+8与x轴交于点A,B两点,与y轴交于点C,点D为抛物线的顶点,直线CD交x轴于点E,过点B作x轴的垂线,交直线CD于点F,将抛物线沿其对称轴平移,使抛物线与线段EF总有公共点.试探究:抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?

讲点2:距离问题

【例2】如图,抛物线y=a(x-1)2+4与x轴交于A,B两点,与y轴交于点C,点D

,在抛物线上共有三个点到直线BC的距离为m,求m

是抛物线的顶点,已知CD

的值.

【练】如图,抛物线y=ax2-6ax+5a与x轴交于A,B两点(A左,B右),若抛物

线与直线y=2x的最近点之间的距离为,求a的值.

讲点3:隐藏判别式

【例3】如图,点P是直线l:y=-2x-2上的点,过点P的另一条直线m交抛物线y=x2与A,B两点,试证明:对于直线l上任意给定的一点P,在抛物线上都能找到点A,使得PA=AB成立.

【练】如图,已知二次函数y=a(x2-6x+8)(a>0)的图象与x轴分别交于点A,B,与y轴交于点C,点D是抛物线的顶点.当点P在抛物线对称轴上时,设点P的纵坐标t是大于3的常数,试问:是否存在一个正数a,使得四条线段PA,PB,PC,PD

与一个平行四边形的四条边对应相等(即这四条线段能构成平行四边形)?请说明理由.

讲点4:交点间的距离

【例4】已知二次函数y=x2-2mx+m2+m的图象与函数y=kx+1的图象交于A(x

1

y

1),B(x

2

,y

2

)(x

1

<x

2

)两点.

(1)如图1,当k=1,m取不同值时,猜想AB的长是否不变?并证明你的猜想;(2)如图2,当m=0,k取不同值时,猜想△AOB的形状,并证明你的猜想.

【例5】如图,抛物线y=x2-4x+5与y轴交于点C,过点N(1,2)作直线l,交抛物线于点P,交y轴于点E,连接PC,若PE=PC,求直线l的解析式.

【练】如图,抛物线C

1

:y=x2+4x+3交x轴于A,B两点,交y轴于点C,将抛物

线C

1沿y轴翻折得新抛物线C

2

,过点C作直线l交抛物线C

1

于点M,交抛物线C

2

点N,若MN=,求直线l的解析式.三、对称问题

【例6】如图,已知抛物线y=x2-2x-3,直线y=kx-1与抛物线交于P,Q两点,

且y轴平分线段PQ,求k的值.

【练】如图,已知抛物线y=x2-4x+3,过点D(0,-5

2

)的直线与抛物线交于点M,N,与x轴交于点E,且点M,N关于点E对称,求直线MN的解析式.

四、与面积结合

【例7】如图,抛物线y=x2-4x+5顶点为M,平移直线y=x交抛物线于点H,K,

若S

△MHK

=3,求平移后直线的解析式.

【课后反馈】

1.如图,已知抛物线y=x2-2x-3与x轴交于A,B两点,与y轴交于点C,将抛物线沿对称轴向上平移k个单位长度后与线段BC交于D,E两个不同的点,求k的取值范围.

2.如图,抛物线y=ax2-6ax+5a与x轴交于A,B两点(A左,B右),若抛物线不通过直线y=2x上方的点,求抛物线顶点纵坐标的取值范围.

3.如图,抛物线y=1

4x2+3

2

x+2与x轴交于A,B两点(点A在点B的左边),与y

轴交于点C,将抛物线沿直线BC平移,与射线AC(含点A)仅有一个公共点,求抛物线顶点横坐标的值或取值范围.

4.如图,已知抛物线C:y=x2-2x+4和直线l:y=-2x+8,直线y=kx(k>0)与抛物线C交于A,B两点,与直线l交于点P,分别过A,B,P作x轴的垂线,垂足

依次为A

1、B

1

、P

1

,若

1

1

OA

1

1

OB

1

u

OP

,求u的值.

5.如图1,抛物线C

1:y=x2+4x+3顶点为M,抛物线C

2

与抛物线C

1

开口方向相反,

形状相同,顶点为N,且M,N关于点P(0,2)对称.

(1)求抛物线C

2

的解析式;

(2)直线y=m交抛物线C

1于点A,B,交抛物线C

2

于点C,D,若AB=2CD,求m的值;

一元二次方程根的判别式与韦达定理

一元二次方程根的判别式和韦达定理 知识点一、一元二次方程根的判别式 一元二次方程)0(02 ≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02 ≠=++a c bx ax 的根的判别式,通常用“?”来表示,即ac b 42-=?. (1)当△>0?一元二次方程有2 个不相等的实数根;1x = 2x = (2)当△=0?一元二次方程有2个相等的实数根;122b x x a ==- (3)当△<0?一元二次方程没有实数根. 例1:下列一元二次方程没有实数根的是( ) A .x 2+2x +1=0 B .x 2+x +2=0 C .x 2﹣1=0 D .x 2﹣2x ﹣1=0 【变式一】不解方程,判断一元二次方程2210x ax a -++=的根的情况是( ). A .没有实数根 B .只有一个实数根 C .有两个相等的实数根 D .有两个不相等的实数根 例2.关于x 的一元二次方程(k ﹣1)x 2﹣2x +1=0有两个不相等的实数根,则实数k 的取值范围是 . 【变式一】关于x 的方程()22210m x x ++-=有两个不等的实根,则m 的取值范围是 知识点二、韦达定理 1.如果一元二次方程2 0(0)ax bx c a ++=≠的两根为12x x 、,那么有:1212b x x a c x x a ? +=-????=?? . 例3:已知α,β是一元二次方程220x x +-=的两个实数根,则α+β-αβ的值是( ) A .3 B .1 C .-1 D .-3 知识点&例题

【变式一】已知一元二次方程22210x x +-=的两个根为1x ,2x ,且1x <2x ,下列结论正确的是( ) A .1x + 2x =1 B .1x ?2x =-1 C .|1x |<|2x | D .21112 x x += 【变式二】已知1x ,2x 是关于x 的方程230x bx +-=的两根,且满足121235x x x x +-=,那么b 的值为( ) A .4 B .-4 C .3 D .-3 2、利用根与系数的关系求值,要熟练掌握以下等式变形 ①()2 221212122x x x x x x +=+-; 例4:设1x 、2x 是一元二次方程22410x x --=的两实数根,则的2212x x +值是( ) A .2 B .4 C .5 D .6 【变式一】设1x ,2x 是一元二次方程x 2﹣2x ﹣3=0的两根,则2212x x + = . 【变式二】若α、β是一元二次方程x 2+2x ﹣6=0的两根,则α2+β2= . ②()()2 21212124x x =x x x x -+-; 例5:设1x 、2x 是一元二次方程x 2﹣5x ﹣1=0的两实数根,则()2 12x x -的值为 . 【变式一】设1x ,2x 是一元二次方程x 2﹣5x ﹣6=0的两根,则()212x x - = . 【变式二】若α、β是一元二次方程x 2+7x ﹣6=0的两根,则()2 α-β= . ③12x x =-± 例6:设1x 、2x 是一元二次方程23450x x -+=的两实数根,则12x x -的值为 . 【变式一】设1x ,2x 是一元二次方程21 5102 x x --=的两根,则12x x - = . 【变式二】若α、β是一元二次方程2250x x +-=的两根,则α-β= .

一元二次方程根的判别式及韦达定理常见题型及注意事项-精选.

一元二次方程根的判别式及韦达定理常见题型及注意事项 一、一元二次方程跟的判别式的常见题型 题型1:不解方程,判断一元二次方程根的情况 .6232)3(;0123)2(; 0345)1(222x x x x x x =+=++=-- 题型2:证明一元二次方程根的情况 求证:无论k 取何实数,关于x 的一元二次方程:2(1)40x k x k -++-=总有两个不等 实根。 题型3:已知一元二次方程根的情况.. ,求方程中未知系数的取值范围 1.( 2011·重庆)已知关于x 的一元二次方程......(a -1)x 2 -2x +1=0有两个不相等的......实数根,则a 的取值范围是( ) A.a <2 B,a >2 C.a <2且a ≠1 D.a <-2· 变式1:(2010·安徽芜湖)关于x 的方程..(a -5)x 2-4x -1=0有实数根.... ,则a 满足() A .a ≥1 B .a >1且a ≠5 C .a ≥1且a ≠5 D .a ≠5 注意:要特别注意二次项系数是否为0,即原方程是否“一定为一元二次方程”。 变式2:(2010 ·成都)若关于x 的一元二次方程2 420x x k ++=有两个实数根,求k 的取 值范围及k 的非负整数....值. 变式3:已知关于x 的一元二次方程(12)10k x k x --=有两个实数根,求k 的取值范围 二、一元二次方程根与系数的关系------韦达定理的常见题型 题型1:已知一元二次方程的一根,求另一根及未知系数k 的值 已知23- 是方程210x kx ++=的一根,则方程的另一根是 ,k = 。 题型2:求与一元二次方程根有关的代数式的值; 1. 已知12,x x 是方程2 2430x x --=的两根,计算: (1)22 12 x x +; ⑵ 12 11 x x +;⑶ 212()x x - 变 式 : 已 知 ,a b 是方程 2201230 x x -+=的两实根,求 22(20103)(20103)a a b b -+-+的值 题型3:已知一元二次方程两根的关系.....,求方程中未知系数的取值 1. 关于x 的一元二次方程2 2(21)10x k x k +-+-=的两个实根的平方和等于 9,求k 的 值

判别式与韦达定理

第三讲判别式与韦达定理 教学容:判别式与韦达定理 教学目标: 1、熟练掌握判别式的概念以及判别式与方程根的情况; 2、能熟练运用△求方程中的参数值或取值围; 3、理解并掌握韦达定理的定义; 4、熟练掌握一些常用代数式的变形; 5、能利用韦达定理构造一元二次方程; 6、经过本章的学习,体会一元二次方程根与系数的关系,以及加深对一元二次方程的理解。 教学重点: 1、△与方程根的关系; 2、韦达定理; 3、常用代数式的变形; 教学难点: 1、运用△求方程中参数的值或取值围; 2、常用代数式的变形; 教学方法:探究法、讲授法; 教学过程: 8:20~8:30:考勤,收发作业 8:30~8:50:进门考 第一课时8:50~9:20 一、讲评作业 二、导入新课 子曰:“温故而知新,可以为师矣!”所以在学习今天的新知识前我们先一起

来温习一下昨天我们学了什么? 1、引导学生复习一元二次方程: 定义 一元二次方程 特点 解 直接开方 解法 配方 公式 因式分解 2、举例复习四种方法: (1) x 2=25 (2) 2x 2+4x-2=0 (3) 2123 0234 x x +-= (4) 2560x x ++= 3、问公式引入判别式 三、探索新知: 1、回顾得出判别式的概念:24b ac ?=-作用:判别一元二次方程根的个数. 要先化为一般式 2、算出下列一元二次方程的判别式 2223720230410 x x x x x x -+=-=++= 3、判别式与方程的根的关系 1,2120020x b x x a ?>?= -?=?==?

韦达定理及其应用

韦达定理及其应用 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

韦达定理及其应用 【内容综述】 设一元二次方程有二实数根,则 ,。 这两个式子反映了一元二次方程的两根之积与两根之和同系数a,b,c的关系,称之为韦达定理。其逆命题也成立。韦达定理及其逆定理作为一元二次方程的重要理论在初中数学竞赛中有着广泛的应用。本讲重点介绍它在五个方面的应用。 【要点讲解】 1.求代数式的值 应用韦达定理及代数式变换,可以求出一元二次方程两根的对称式的值。 ★★例1若a,b为实数,且,,求的值。 思路注意a,b为方程的二实根;(隐含)。 说明此题易漏解a=b的情况。根的对称多项式,, 等都可以用方程的系数表达出来。一般地,设,为方程的二根,,则有递推关系。

其中n为自然数。由此关系可解一批竞赛题。 附加:本题还有一种最基本方法即分别解出a,b值进而求出所求多项式值,但计算量较大。 ★★★例2若,且,试求代数式的值。 思路此例可用上例中说明部分的递推式来求解,也可以借助于代数变形来完成。 2.构造一元二次方程 如果我们知道问题中某两个字母的和与积,则可以利用韦达定理构造以这两个字母为根的一元二次方程。 ★★★★例3设一元二次方程的二实根为和。 (1)试求以和为根的一元二次方程; (2)若以和为根的一元二次方程仍为。求所有这样的一元二次方程。 3.证明等式或不等式 根据韦达定理(或逆定理)及判别式,可以证明某些恒等式或不等式。 ★★★例4已知a,b,c为实数,且满足条件:,,求证a=b。

说明由“不等导出相等”是一种独特的解题技巧。另外在求得c=0后,由恒等式可得,即a=b。此方法较第一种烦琐,且需一定的跳跃性思维。 4.研究方程根的情况 将韦达定理和判别式定理相结合,可以研究二次方程根的符号、区间分布、整数性等。关于方程的实根符号判定有下述定理: ⑴方程有二正根,ab<0,ac>0; ⑵方程有二负根,ab>0,ac>0; ⑶方程有异号二根,ac<0; ⑷方程两根均为“0”,b=c=0,; ★★★例5设一元二次方程的根分别满足下列条件,试求实数a的范围。 ⑴二根均大于1; ⑵一根大于1,另一根小于1。 思路设方程二根分别为,,则二根均大于1等价于和同时为正;一根大于1,另一根小于是等价于和异号。

根的判别式韦达定理

一元二次方程根的判别式和韦达定理 知识点1.根的判别式 2 1.402 2.0204 3.,22ac b b ac b x x a a ? ?≠-????>???? ?=?????

1、下列方程①012=+x ;②02=+x x ;③012=-+x x ;④02 =-x x 中,无实根的 方程是 。 2、已知关于x 的方程022 =+-mx x 有两个相等的实数根,那么m 的值是 。 3、下列方程中,无实数根的是( ) A 、011=-+-x x B 、 762=+y y C 、021=++x D 、0232=+-x x 4、若关于x 的一元二次方程01)12()2(2 2 =+++-x m x m 有两个不相等的实根,则m 的取值范围是( ) A 、43< m B 、m ≤43 C 、4 3>m 且m ≠2 D 、m ≥43 且m ≠2 5、在方程02 =++c bx ax (a ≠0)中,若a 与c 异号,则方程( ) A 、有两个不等实根 B 、有两个相等实根 C 、没有实根 D 、无法确定 6、关于x 的一元二次方程x 2 +kx -1=0的根的情况是 ( ) A 、有两个不相等的同号实数根 B 、有两个不相等的异号实数 C 、有两个相等的实数根 D 、没有实数根 7、 m 取何值时,方程()0112)2(2 2 =++--x m x m (1)有两个不相等的实数根 (2) 有两个相等的实数根;(3)没有实数根 8、试证:关于x 的方程1)2(2 -=+-x m mx 必有实根。 9、已知关于x 的方程022 =-+-n m mx x 的根的判别式为零,方程的一个根为1,求m 、 n 的值。

二次函数根系数关系

一元二次方程的根与系数的关系也称为韦达定理,其逆定理也成立,它是由16世纪的法国数学家韦达发现的.它揭示了实系数一元二次方程的根与系数的关系,它形式简单但内涵丰富,在数学解题中有着广泛的应用. 【知识要点】 1.如果方程(a≠O)的两根为,,那么,, 这就是一元二次方程的根与系数的关系. 2.如果两个数的和为m,积为n,则以这两个数为根的一元二次方程为.3.若已知一元二次方程的一个根,可不直接解原方程,利用根与系数关系,求出另一根.4.求一元二次方程根的对称式的值,关键在于利用两根和及两根积表示所给对称式. 5.当一元二次方程(a≠O)有两根,时:(1)若,则方 程有一正一负根;(2)若,,则方程有两个正根;(3)若 ,,则方程有两个负根. 【趋势预测】 利用根与系数关系,可以解决许多有关方程的问题,有些非方程类的问题我们也可以通过根与系数关系构造一元二次方程,然后用一元二次方程的知识来解.因此预测以后竞赛的重点在以下几个方面: ①求方程中字母系数的值或取值范围; ②求代数式的值; ③结合根的判别式,判断根的符号特征;

④构造一元二次方程解题; ⑤证明代数等式,不等式; ⑥与一元二次方程的整数根有关的问题. 【范例解读】 题1(1997·陕西)已知二次方程(ac≠0)有两异号实根m和n,且m0,从而,. 方程的判别式: ,故方程 必有两实根. 设这两个实根为,,则由根与系数关系得 ,,可知,均为负数,故选(A). 题2(1997·上海)若a和b是方程的两个实根,c和d是方程 的两个实根,e和f是方程的两个实根,则

根的判别式和韦达定理(根与系数的关系)精品!!

第 1 页 共 2 页 根的判别式和韦达定理(根与系数的关系) 应用:不解方程,根据系数看根的情况。 一般式ax 2 +bx+c=0(以正a 为标准,即二次项系数为负时,两边乘-1转为正, 这样减少错误,减少思考过程) 口诀,以正a 为标准的前提下, 常数项c :是看两根符号的异同(两根关系,即是互异,还是同号) 大致情况 [注:互异指符号相反,但不一定是相反数] 一次项系数b :是决定符号的正负。[注:同号时,b 决定同正还是同负] 具体情况 具体指明 互异时,b 决定正负值谁绝对值大] 例如:x 1,x 2同为正时,x 1+ x 2>0 两根式:x 2 -(x 1+x 2)x+x 1x 2=0 系数比式:02=++a c x a b x (系数比式:就是将二次项系数化为1,以a 作比后项) 形式比较:-(x 1+x 2)=b a (两根和与相邻系数比互为相反数) x 1x 2=c a (两根积与相隔系数比同号) 以正a 为标准,(是负转为正,减少思维过程,减少错误) X 1X 2=c a 是看两根符号的异同 c 为两根积象征 X 1+X 2=-b a 是看两根符号的正负。 b 为两根和象征 ①c >0 (符号同) ①b <0 和>0 (同正)[注-b\a 为和] 积>0 [注]中间(b)定符号,口诀a 大则b\两根和变化 [注]两边(a,c)看异同(两根异同) 方向相反,反之亦然 说明:a 大 b 小\两根(同为正) ②b >0(同负) b 大\两根(同为负)a 小… △>0 ①b <0 和>0 (正值的绝对值大) 不等实根 ②c <0 (符号异) ②b >0 和<0 (负值的绝对值大) ③b=0(互为相反数) △≥0 ③互为倒数:X 1X 2=c a =1(即a=c ) 有两根 ④含有一个零根:c=0(积=0){一根为0,另一根为-b a b 小\和大:(0,根) 以正a 为标准

二次函数根的判别式韦达定理

一元二次方的应用及根的判别式、韦达定理 一、根的判别式 1.一元二次方程根的判别式的定义: 运用配方法解一元二次方程过程中得到 222 4()24b b ac x a a -+=,显然只有当240b ac -≥时,才能直接开平方得:22 424b b ac x a a -+=± 也就是说,一元二次方程20(0)ax bx c a ++=≠只有当系数a 、b 、c 满足条件240b ac ?=-≥时才有实数根.这里24b ac -叫做一元二次方程根的判别式. 2.判别式与根的关系: 在实数范围内,一元二次方程20(0)ax bx c a ++=≠的根由其系数a 、b 、c 确定,它的根的情况(是否有实数根)由24b ac ?=-确定. 判别式:设一元二次方程为20(0)ax bx c a ++=≠,其根的判别式为:24b ac ?=-则 ①0?>?方程2 0(0)ax bx c a ++=≠有两个不相等的实数根21,24b b ac x -±-=. ②0?=?方程20(0)ax bx c a ++=≠有两个相等的实数根122b x x a ==-. ③0?;有两个相等的实数根时,0?=;没有实数根时,0?<. (2)在解一元二次方程时,一般情况下,首先要运用根的判别式24b ac ?=-判定方程的根的情况 (有两个不相等的实数根,有两个相等的实数根,无实数根).当240b ac ?=-=时,方程有两个相等的实数根(二重根),不能说方程只有一个根. ① 当0a >时?抛物线开口向上?顶点为其最低点; ② 当0a <时?抛物线开口向下?顶点为其最高点. 3.一元二次方程的根的判别式的应用: 一元二次方程的根的判别式在以下方面有着广泛的应用: (1)运用判别式,判定方程实数根的个数; (2)利用判别式建立等式、不等式,求方程中参数值或取值范围; (3)通过判别式,证明与方程相关的代数问题; (4)借助判别式,运用一元二次方程必定有解的代数模型,解几何存在性问题,最值问题. 二、韦达定理 如果一元二次方程20ax bx c ++=(0a ≠)的两根为12x x , ,那么,就有 ()()212ax bx c a x x x x ++=-- 比较等式两边对应项的系数,得 1212 b x x a c x x a ? +=-??? ??=??? ①,② ①式与②式也可以运用求根公式得到.人们把公式①与②称之为韦达定理,即根与系数的关系. 因此,给定一元二次方程20ax bx c ++=就一定有①与②式成立.反过来,如果有两数1x ,2x 满足①与②,那么这两数12x x , 必是一个一元二次方程20ax bx c ++=的根.利用这一基本知识常可以简捷地处理问题. 利用根与系数的关系,我们可以不求方程20ax bx c ++=的根,而知其根的正、负性. 在24b ac ?=-≥0的条件下,我们有如下结论: 当0c a <时,方程的两根必一正一负.若0b a -≥,则此方程的正根不小于负根的绝对值;若0b a -<,

根的判别式与韦达定理

根的判别式ac b 42- 根的判别式的作用: ①判定根的个数;②求待定系数的值;③应用于其它。 例1、若关于x 的方程0122=-+x k x 有两个不相等的实数根,则k 的取值范围是 。 例2、已知方程022=+-mx mx 有两个不相等的实数根,则m 的值是 . 例3、关于x 的方程()0212=++-m mx x m 有实数根,则m 的取值范围是( ) A.10≠≥且m m B.0≥m C.1≠m D.1>m 例4、已知关于x 的方程()0222=++-k x k x (1)求证:无论k 取何值时,方程总有实数根; (2)若等腰?ABC 的一边长为1,另两边长恰好是方程的两个根,求?ABC 的周长。 例5、已知二次三项式2)6(92-++-m x m x 是一个完全平方式,试求m 的值. 例6、已知关于x 的方程0k x 4k 2x 2=++-有两个不相等的实数根, (1)求k 的取值范围。 (2)化简4k 4k 2k 2+-+-- 针对练习: 1、当k 时,关于x 的二次三项式92++kx x 是完全平方式。 2、当k 取何值时,多项式k x x 2432+-是一个完全平方式?这个完全平方式是什么? 3.关于x 的方程(a -5)x 2-4x -1=0有实数根,则a 满足( )

A .a ≥1 B .a >1且a ≠5 C .a ≥1且a ≠5 D .a ≠5 4.对任意实数m ,求证:关于x 的方程042)1(222=++-+m mx x m 无实数根. 5.k 为何值时,方程0)3()32()1(2=+++--k x k x k 有实数根. 6. 已知a 、b 、c 是ABC ?三条边的长,那么方程()04 2=+ ++c x b a cx 的根的情况是 考点五、方程类问题中的“分类讨论” 典型例题: 例1、关于x 的方程()03212=-++mx x m ⑴有两个实数根,则m 为 , ⑵只有一个根,则m 为 。 例2、如果关于x 的方程022=++kx x 及方程022=--k x x 均有实数根,问这两方程是否有相同的根?若有,请求出这相同的根及k 的值;若没有,请说明理由。 考点六、根与系数的关系 ⑴前提:对于02=++c bx ax 而言,当满足①0≠a 、②0≥?时, 才能用韦达定理。 ⑵主要内容: ⑶应用:整体代入求值。 几种常见的关于21x ,x 的对称式的恒等变形 ①()212212221x x 2x x x x -+=+ ②()21212 21221x x x x x x x x +?=?+? ③()()()2212121a x x a x x a x a x +++?=++

第2讲 一元二次方程实数根与韦达定理

第二讲 一元二次方程实数根与韦达定理 一 知识要点 实系数一元二次方程:20(0)ax bx c a ++=≠的两个根为12,x x 1. 根的判别式 2. 韦达定理 二. 例题解析 例1.已知方程220()x x m m R --=∈没有实根,试判断关于x 的方程 ()()222212110x mx m x +++-+=有无实根. 例2.k 为何值时,关于x 的方程()22241210x k x k -++-= (1)有两个不相等的实根; (2)有两个相等的实根; (3)没有实数根 例3.方程:()()2212110a x a x --++=只有一个实根,求a 的值 例4.设关于x 的方程:2222(1)(3442)0x a x a ab b ++++++=有实根,求实数,a b 的值。

例5.已知12,x x 是方程22310x x --=的根,求223321121212 ,,,x x x x x x x x +++ 12221211,x x x x +-的值; 例6若方程2(32)0x x a +--=的两个实根分别为12,x x ,下就根的取值范围,分别求实数a 的取值范围 (1)两实根均大于0; (2)两实根均小于0; (3)两实根一个大于0,一个小于0; (4)两实根均大于1; (5)两实根均小于1; (6)两实根一个大于1,一个小于1; 例7 已知方程2520,x x +-=作一个新的一元二次方程,使它的根分别是已知方程各根的立方的倒数。

例8.已知a 为实数,解关于x 的方程10x x a ++= 例9.已知方程42280x mx ++=的四个根均为整数,求m 的值及方程的根。 例10.对自然数,n 设关于x 的二次方程22(21)0x n x n +++=的两根为,n n αβ,求下式的值: ()()()33442020 1111(1)1(1)1(1)αβαβαβ+++++++++

二次函数与根的判别式韦达定理

二次函数与根的判别式、韦达定理讲点1:公共点问题 【例1】如图,抛物线y=-x2+4x-3的顶点为M,直线y=-2x-9与y轴交于点C,与直线MO交于点D,现将抛物线的顶点在直线OD上平移,平移后的抛物线与射线CD(含顶点C)只有一个公共点,求它的顶点横坐标的值或取值范围. 【练】如图,已知抛物线y=-x2+2x+8与x轴交于点A,B两点,与y轴交于点C,点D为抛物线的顶点,直线CD交x轴于点E,过点B作x轴的垂线,交直线CD于点F,将抛物线沿其对称轴平移,使抛物线与线段EF总有公共点.试探究:抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度? 讲点2:距离问题 【例2】如图,抛物线y=a(x-1)2+4与x轴交于A,B两点,与y轴交于点C,点D ,在抛物线上共有三个点到直线BC的距离为m,求m 是抛物线的顶点,已知CD 的值. 【练】如图,抛物线y=ax2-6ax+5a与x轴交于A,B两点(A左,B右),若抛物 线与直线y=2x的最近点之间的距离为,求a的值. 讲点3:隐藏判别式

【例3】如图,点P是直线l:y=-2x-2上的点,过点P的另一条直线m交抛物线y=x2与A,B两点,试证明:对于直线l上任意给定的一点P,在抛物线上都能找到点A,使得PA=AB成立. 【练】如图,已知二次函数y=a(x2-6x+8)(a>0)的图象与x轴分别交于点A,B,与y轴交于点C,点D是抛物线的顶点.当点P在抛物线对称轴上时,设点P的纵坐标t是大于3的常数,试问:是否存在一个正数a,使得四条线段PA,PB,PC,PD 与一个平行四边形的四条边对应相等(即这四条线段能构成平行四边形)?请说明理由. 讲点4:交点间的距离 【例4】已知二次函数y=x2-2mx+m2+m的图象与函数y=kx+1的图象交于A(x 1 , y 1),B(x 2 ,y 2 )(x 1 <x 2 )两点. (1)如图1,当k=1,m取不同值时,猜想AB的长是否不变?并证明你的猜想;(2)如图2,当m=0,k取不同值时,猜想△AOB的形状,并证明你的猜想. 【例5】如图,抛物线y=x2-4x+5与y轴交于点C,过点N(1,2)作直线l,交抛物线于点P,交y轴于点E,连接PC,若PE=PC,求直线l的解析式. 【练】如图,抛物线C 1 :y=x2+4x+3交x轴于A,B两点,交y轴于点C,将抛物 线C 1沿y轴翻折得新抛物线C 2 ,过点C作直线l交抛物线C 1 于点M,交抛物线C 2 于 点N,若MN=,求直线l的解析式.三、对称问题

韦达定理及其应用竞赛题

韦达定理及其应用 【内容综述】 设一元二次方程有二实数根,则, 。 这两个式子反映了一元二次方程的两根之积与两根之和同系数a,b,c的关系,称之为韦达定理。其逆命题也成立。韦达定理及其逆定理作为一元二次方程的重要理论在初中数学竞赛中有着广泛的应用。本讲重点介绍它在五个方面的应用。 【要点讲解】 1.求代数式的值 应用韦达定理及代数式变换,可以求出一元二次方程两根的对称式的值。 ★★例1若a,b为实数,且,,求的值。 思路注意a,b为方程的二实根;(隐含)。 解(1)当a=b时, ; (2)当时,由已知及根的定义可知,a,b分别是方程的两根,由韦达定理得 ,ab=1. 说明此题易漏解a=b的情况。根的对称多项式,,等都可以用 方程的系数表达出来。一般地,设,为方程的二根,,则有递推关系。 其中n为自然数。由此关系可解一批竞赛题。 附加:本题还有一种最基本方法即分别解出a,b值进而求出所求多项式值,但计算量较大。 ★★★例2若,且,试求代数式的值。 思路此例可用上例中说明部分的递推式来求解,也可以借助于代数变形来完成。 解:因为,由根的定义知m,n为方程的二不等实根,再由韦达定

理,得 , ∴ 2.构造一元二次方程 如果我们知道问题中某两个字母的和与积,则可以利用韦达定理构造以这两个字母为根的一元二次方程。 ★★★★例3设一元二次方程的二实根为和。 (1)试求以和为根的一元二次方程; (2)若以和为根的一元二次方程仍为。求所有这样的一元二次方程。 解(1)由韦达定理知 ,。 , 。 所以,所求方程为。 (2)由已知条件可得 解之可得由②得,分别讨论 (p,q)=(0,0),(1,0),(1 -)。 -,1)或(0, 1 -,0),(0,1),(2,1),(2 于是,得以下七个方程,,,,, 1 x2= -,其中0 1 x2= +无实数根,舍去。其余六个方程均为所求。x2= +,0 x 1 + 2 3.证明等式或不等式 根据韦达定理(或逆定理)及判别式,可以证明某些恒等式或不等式。 ★★★例4已知a,b,c为实数,且满足条件:,,求证a=b。

判别式与韦达定理的应用

【学习课题】 九上 补充内容 综合应用根的判别式和韦达定理 【学习目标】 1、掌握一元二次方程根与系数的符号关系 2、利用韦达定理并结合判别式,求参数的值 【学习重点】一元二次方程根与系数的符号关系 【学习难点】利用韦达定理并结合判别式,求参数的值 【学习过程】 学习准备:(1)一元二次方程ax 2+bx+c=0 (a ≠0) 的判别式△=__________ △>0?__________△=0 ?_____________△<0 ?__________ (2)一元二次方程ax 2+bx+c=0 (a ≠0)的两根分别为x 1和x 2 x 1+x 2=____________, x 1x 2=_____________ 解读教材:由根的判别式及韦达定理可得如下结论: (1)若a 、c 异号 ? ax 2+bx+c=0 (a ≠0)必有两个不相等的实数根; (2)有一个根为1 ? a+b+c=0 ; (3) 有一个根为—1 ? a —b+c=0; (4)有一个根为0 ? c=0 (5)有两个正根 ??????+≥0210210>>△x x x x (6)有两个负根 ? ?? ???+≥0210210><△x x x x (7) 有一正根一负根 ????0021<△>x x (8)两根同号 ????≥002 1>△x x (9)两根互为相反数????=?=+0 0021b x x △> (10)两根互为倒数????=≥102 1x x △ (11)一根为正,一根为0 ??????=?=+00002 121c x x x x >△> (12)一根为负,一根为0 ??????=?=+00002 121c x x x x <△> (13)两根均为0?b=c=0 (14) 一根比a 大,一根比a 小????--0 ))(021<(△>a x a x 例1 已知方程(k+1)x 2—4kx+3k —1=0 的两个实数根均为正,求k 的值。 思路点拨:因为原方程两个实数根均为正,有上述结论(5)可得不等式组,解这个不 等式组即可求出k 的值。

韦达定理与习题

韦达定理与习题Revised on November 25, 2020

一. 本周教学内容:韦达定理的应用 二. 重点、难点: 灵活应用韦达定理与推论(韦达定理的逆定理) 三.知识回顾 在初中数学的学习中,韦达定理及其逆定理的应用是很广泛的,主要有如下的应用: 1. 已知一元二次方程的一根,求另一根。 2. 已知一元二次方程的两根,求作新的一元二次方程。 3. 不解方程,求关于两根的代数式的值。 4. 一元二次方程的验根。 5. 解一类特殊的二元二次方程组和通过换元等方法求解二次根式方程。 6. 与判别式的综合应用。 【典型例题】 例1:已知关于x的方程2x-(m+1)x+1-m=0的一个根为4,求另一个根。 解:设另一个根为x则相加,得x 例2:已知方程x-5x+8=0的两根为x,x,求作一个新的一元二次方程,使它的两根分别为和 解:∵ 又

∴代入得, ∴新方程为 例3:判断是不是方程9x-10x-2=0的一个实数根解:∵二次实数方程实根共轭。 ∴若是,则另一根为 ∴,。 ∴以为根的一元二次方程即为. 例4:解方程组 解:设 ∴. ∴A=5. ∴x-y=5 又xy=-6. ∴解方程组

∴可解得 例5:已知Rt ABC中,两直角边长为方程x-(2m+7)x+4m(m-2)=0的两根,且斜边长为13,求S的值 解:不妨设斜边为C=13,两条直角边为a,b。 则2。 又a,b为方程两根。 ∴ab=4m(m-2) ∴S 但a,b为实数且 ∴ ∴ ∴m=5或6 当m=6时, ∴m=5 ∴S. 例6:M为何值时,方程8x-(m-1)x+m-7=0的两根 ①均为正数②均为负数③一个正数,一个负数④一根为零⑤互为倒数

复习根判别式与韦达定理

一元二次方程根的判别式和根与系数关系复习课 教学目标 (一)提高学生对于根的判别式的运用能力; (二)提高学生对于根与系数关系的运用能力. 教学重点和难点 重点:会用根的判别式及根与系数关系解题. 难点:根的判别式和根与系数关系的综合题;不遗漏、不重复地列出所解问题应具备的条件.特别是容易忽略隐含条件. 教学设计过程 (一)复习 1.已知一元二次方程 ax 2+bx+c=0 (a≠0). (1) 它的根的判别式是什么?用什么记号表示根的判别式?(b2-4ac,用△表示) (2) 叙述一元二次方程根的判别式的性质. (一元二次方程ax2+bx+c=0 (a≠0) 当△>0时,有两个不相等的实数根;当△=0时,有两个相等的实数根;当△<0时,没有实数根. 反过来也成立,即有两个不相等的实数根时,△>0,有两个相等的实数根时,△=0; 没有实数根时,△<0) 2.(1)已知x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两个根,那么x1+x2=?,x1·x2=? (2)上述性质的逆命题怎样叙述?此逆命题是否成立? 3.对于根的判别式和根与系数关系的性质,我们从正、反两方面(即原命题与逆命题)都知道了,并初步做了有关练习,但涉及这两个性质的综合性较强的问题,还需要训练. (二)综合举例 例1 当m 分别满足什么条件时,方程2x 2-(4m+1)x +2m 2-1=0, (1)有两个相等实根;(2)有两个不相实根;(3)无实根; (4)有两个实根. 解:∵△=(4m+1)2-4×2×(2m 2-1)=8m+9 (1)当△=8m+9=0,即m= - 8 9 时,方程有两个相等的实根; (2)当△=8m+9>0,即m >-8 9 时,方程有两个不等的实根; (3)当△=8m+9<0,即m < -89时,方程没有实根. 例2 求证:关于x 的方程x 2+(m+2)x+2m-1=0有两个不相等的实数根。

二次函数与根的判别式韦达定理

二次函数与根的判别式、韦达定理 讲点1:公共点问题 【例1】如图,抛物线y=-x2+4x-3的顶点为M,直线y=-2x-9与y轴交于点C,与直线MO交于点D,现将抛物线的顶点在直线OD上平移,平移后的抛物线与射线CD(含顶点C)只有一个公共点,求它的顶点横坐标的值或取值范围. 【练】如图,已知抛物线y=-x2+2x+8与x轴交于点A,B两点,与y轴交于点C,点D为抛物线的顶点,直线CD交x轴于点E,过点B作x轴的垂线,交直线CD于点F,将抛物线沿其对称轴平移,使抛物线与线段EF总有公共点.试探究:抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度? 讲点2:距离问题 【例2】如图,抛物线y=a(x-1)2+4与x轴交于A,B两点,与y轴交于点C,点D是抛物线的顶点,已 知CD ,在抛物线上共有三个点到直线BC的距离为m,求m的值. 【练】如图,抛物线y=ax2-6ax+5a与x轴交于A,B两点(A左,B右),若抛物线与直线y=2x的最近

,求a的值. 讲点3:隐藏判别式 【例3】如图,点P是直线l:y=-2x-2上的点,过点P的另一条直线m交抛物线y=x2与A,B两点,试证明:对于直线l上任意给定的一点P,在抛物线上都能找到点A,使得PA=AB成立. 【练】如图,已知二次函数y=a(x2-6x+8)(a>0)的图象与x轴分别交于点A,B,与y轴交于点C,点D是抛物线的顶点.当点P在抛物线对称轴上时,设点P的纵坐标t是大于3的常数,试问:是否存在一个正数a,使得四条线段PA,PB,PC,PD与一个平行四边形的四条边对应相等(即这四条线段能构成平行四边形)?请说明理由. 讲点4:交点间的距离

二次函数与一元二次方程的关系

二次函数与一元二次方程的关系 青白江区人和学校彭足琼 凡是学过初中数学的学生,你问他们初中数学中,最难的知识是什么?他们会不约而同地说:“二次函数”。没错,不仅仅是学生觉得二次函数难,包括所有从事初中数学教学的一线教师也会有同样的感受。所以,怎样才能学好二次函数,成为了初中学生和老师最最苦恼的问题。二次函数之所以难,我认为二次函数难就难在函数本身就是一个比较抽象的知识,再加上二次函数有三个参数,比一次函数和反比例函数都多,还有就是二次函数的题目不仅仅考它本身的知识,它还可以把初中所有的代数和几何知识放入其中,可见,二次函数成为各个地区中考的压轴题变成了理所当然的事。 既然二次函数题可以把初中所有的代数和几何知识放入其中,因此,把二次函数与其它知识紧密联系起来,是我们老师和学生必须掌握的本领。这里,我就浅谈一下二次函数和一元二次方程的关系及怎样运用一元二次方程的知识来解决一些二次函数的题目,希望能给同学们和老师一点点启示和收获。 1、二次函数与一元二次方程形式上的联系与区别。我们清楚的明白,形如:ax2+bx+c=0(a、b、c为常数,且a≠0)的方程是一元二次方程,而形如:y= ax2+bx+c(a、b、c为常数,a≠0)是二次函数。认真观察一元二次方程:ax2+bx+c=0(a、b、c为常数,且a ≠0)和二次函数:y= ax2+bx+c(a、b、c为常数,a≠0),不难发现,它们在形式上几乎相同,差别也只是一元二次方程的表达式等于

0,而二次函数的表达式等于y。为什么会这样?主要是因为当二次函数中的变量y取0时,二次函数就变成了一元二次方程。 2、二次函数与一元二次方程在二次函数图像上的关系。正是因为二次函数与一元二次方程在形式上的类似,使得二者在二次函数的图像上的关系格外密切。二次函数的图像是一条抛物线,在求抛物线:y= ax2+bx+c与x轴的交点坐标时,令y=0,即:ax2+bx+c=0,二次函数一下就变成了一元二次方程,再求出该方程的解,这个方程的解便是抛物线与x轴的交点坐标的横坐标。由于一元二次方程ax2+bx+c=0的根有三种情况①b2-4ac>0时有两个不等的实数根;②b2-4ac=0时有两个相等的实数根③b2-4ac<0时没有实数根,所以相应地:抛物线y= ax2+bx+c与x轴的交点情况有3种:①当b2-4ac>0时,抛物线与x轴有两个交点②当b2-4ac=0时,抛物线与x轴有一个交点③当b2-4ac<0时,抛物线与x轴有没有交点。因此,一元二次方程ax2+bx+c=0的解就是二次函数y= ax2+bx+c的图像与x轴的交点的横坐标;二次函数y= ax2+bx+c的图像与x轴的交点情况与一元二次方程:ax2+bx+c=0的根情况有关。可见二者在二次函数的图像上的关系格外密切。 3、应用一元二次方程解决二次函数问题。正是因为一元二次方程与二次函数无论在形式上,还是在图形上,关系都十分紧密,所以在解决很多二次函数题时,经常都要应用一元二次方程的知识。这里,我就列举几个典型题: 典型例题(1):求证:二次函数y=3x2+(2m+3)x+2m2+1的值

二元一次方程判别式与韦达定理专题

二元一次方程判别式与韦达定理专题 知识小结: 1、对于一个一元二次方程ax2+ bx+ c= 0 (a^ 0) ?我们把把b2-4ac叫做一元二次方程ax2+ bx+ c= 0的根的判别式,通常用符号△ ”表示. 当厶>0时,有两个不相等的实数根; 当厶=0时,有两个相等的实数根; 当△< 0时,没有实数根. 反之亦然. 2、韦达定理:如果方程ax2+bx+c=0(a^0)的两个根是X i , X2 , b c 那么X i X2 —,X i?X2 -(能用韦达定理的前提条件为0 ) a a 巩固练习: 一、填空题 1 ?已知 2 、、5是一元二次方程x2 4x c 0的一个根,则方程的另一个根 是________ . 2. ___________________________________________________ 已知x i,X2是方程2x —7x+ 4= 0 的两根,则x i+ X2 = __________________________________________ ,x i ?X2= _______________________________________________________________________________________________________ , (x i —X2) 2= ____ 。 3. 已知关于x的方程i0x2—(m+3)x+m- 7=0,若有一个根为0,则m ______ ,这 3 时方程的另一个根是______ ;若两根之和为一5,则m ________ ,这时方程的两个根为. 4 .若关于x的方程(m2—2)x2—(m—2)x + i = 0的两个根互为倒数,则m= ________________________________________________________________ 。 5. 方程2x(mx—4)=x2—6没有实数根,则最小的整数m= ; 6. 已知方程2(x —i)(x —3m)=x(m— 4)两根的和与两根的积相等,则m=; 7. 设关于x的方程x2—6x+k=0的两根是m和n,且3m+2n=20则k值为; 三、解答题 8. 已知方程x2 x 1 0的两个实数根为x1, x2,求: (1) (2) (3) x i2+ x 1X2+2 x i 一?k 10.关于x的方程kx2(k 2)x 0有两个不相等的实数根. 4 (1)求k的取值范围。(2)是否存在实数k,使方程的两个实数根的倒数和等于0?若存在,

相关主题
文本预览
相关文档 最新文档