当前位置:文档之家› 化工原理实验——干燥曲线及干燥速率曲线测定实验

化工原理实验——干燥曲线及干燥速率曲线测定实验

化工原理实验——干燥曲线及干燥速率曲线测定实验
化工原理实验——干燥曲线及干燥速率曲线测定实验

实验十干燥曲线及干燥速率曲线测定实验

一、实验装置

干燥器类型:洞道;

洞道截面积:1# A=0.13×0.17 = 0.0221m2、2# A=0.15×0.20 = 0.030m2

加热功率:500w—1500w;空气流量:1-5m3/min;干燥温度:40--120℃

孔板流量计:孔流系数C0=0.65,孔板孔径d0=0.040( m)

重量传感器显示仪:量程(0-200g),精度0.1级;

干球温度计、湿球温度计显示仪:量程(0-150℃),精度0.5级;

孔板流量计处温度计显示仪:量程(-50-150℃),精度0.5级;

孔板流量计压差变送器和显示仪:量程(0-10KPa),精度0.5级;

图10-1 洞道干燥实验流程示意图

1.中压风机;

2.孔板流量计;

3. 空气进口温度计;

4.重量传感器;

5.被干燥物料;

6.加热器;

7.干球温度计;

8.湿球温度计;

9.洞道干燥器;10.废气排出阀;11.废气循环阀;12.新鲜空气进气阀;13.干球温度显示控制仪表;14.湿球温度显示仪表;15.进口温度显示仪表;

16.流量压差显示仪表;17.重量显示仪表;18.压力变送器。

二、物料

物料:毛毡;干燥面积:S=0.141*0.082*2=0.023124(m2)(以实验室现场提供为准)。

绝干物料量(g):1# G C =22.8,2# G C =25.36(以实验室现场提供为准)。

三、操作方法

⒈ 将干燥物料(毛粘)放入水中浸湿,向湿球温度计的附加蓄水池内补充适量的水, 使池内水面上升至适当位置。

⒉ 调节送风机吸入口的蝶阀12到全开的位置后,按下电源的绿色按钮,再按风机按钮,启动风机。

⒊ 用废气排出阀10和废气循环阀11调节到指定的流量后,开启加热电源。在智能仪表中设定干球温度,仪表自动调节到指定的温度。

干球温度设定方法:

第一套:长按

——增大,设定好数值后,按 键确定。

第二套:/ /减小,设定好后,自动确认。

⒋ 干燥器的流量和干球温度恒定达5分钟之后,既可开始实验。此时,读取数字显示仪的读数作为试样支撑架的重量。

⒌ 将被干燥物料(毛粘)从水中取出,控去浮挂在其表面上的水分(最好挤去所含的水分,以免干燥时间过长),将支架从干燥器内取出,将被干燥物料夹好。

⒍ 将支架连同试样放入洞道内,并安插在其支撑杆上并与气流平行放置。注意:不能用力过大,避免使传感器受损。

7.立即按下秒表开始计时,并记录显示仪表的显示值。然后每隔一段时间(3分钟)记录一次数据(记录总重量和时间),直至干燥物料的重量不再明显减轻为止(重量变化小于0.1克)。

⒏ 关闭加热电源,待干球温度降至常温后关闭风机电源和总电源。 ⒐ 实验完毕,一切复原。

四、注意事项

⒈ 重量传感器的量程为(0--200克),精度较高。在放置干燥物料时务必要轻拿轻放,以免损坏仪表。

⒉ 干燥器内必须有空气流过才能开启加热,防止干烧损坏加热器,出现事故。 ⒊ 干燥物料要充分浸湿,但不能有水滴自由滴下,否则将影响实验数据的正确性。

⒋实验中不要改变智能仪表的设置。

五、数据处理实例

计算实例:

空气物理性质的确定:

流量计处空气温度t o=48.8(℃),查表得空气密度ρ=1.11(Kg/m3)

湿球温度t w=40(℃),t w℃下水的气化热(kJ/ kg) γtw=2600。

以第一组数据为例

1、计算干基含水量X=(总重量G T-框架重量G D-绝干物料量G C)/绝干物料量G C

=(128.6-72.2-22.8)/22.8=3.123(kg/kg)

2、计算平均含水量X AV=两次记录之间的平均含水量=(1.4737+1.4167)/2

=1.4452(kg水/kg绝干物料)

3、计算干燥速率U=-(绝干物料量GC/干燥面积S)*(△X/△T)

=-(22.8*0.001/0.023124))*(1.4167-1.4737)/(3*60)

=0.0003123 [kg/(s·m2)]

4、绘制干燥曲线(X—T曲线)和干燥速率曲线(U—X AV曲线)

5、计算恒速干燥阶段物料与空气之间对流传热系数α[W/m 2℃] w

tw t t r Uc -=

1000

**α

Uc —恒速干燥阶段的干燥速率,kg/(m 2?s )=0.0002162

γtw —t w ℃下水的气化热,kJ/ kg 。查表P351,t c -t=374-40=334℃.查表得,γtw =2600 α=2.162*0.0001*2600*1000/(60-40)=28.11

6、计算干燥器内空气实际体积流量V t (m 3/ s) 。8

.4827360

273*

0245.027327300++=++?

=t t V V t t 其中: =0.254

V t0—t 0℃时空气的流量,m 3/ s ;11

.1500

*2*

001256.0*65.02000

=????=ρ

P

A C V t =0.0245

t 0—流量计处空气的温度,t 0=48.8℃;t —干燥器内空气的温度,t =60℃; C 0—流量计流量系数,C 0=0.6; A 0—流量计孔节孔面积,m 2。001256.004.0*4

14

.34

2200==

=

d A π

d 0—孔板孔径,d 0=0.04 m 。ΔP —流量计压差,ΔP =500 Pa 。 ρ— t 0时空气密度kg/m 3,ρ=1.11。

7、计算干燥器内空气流速U (m/s )。 U=V t /A=0.0254/0.0221=1.1477 (m/s )。

其中:A —洞道截面积(m 2) A =0.13*0.17=0.0221 (m 2)

化工原理干燥实验报告.doc

化工原理干燥实验报告 一、摘要 本实验在了解沸腾流化床干燥器的基本流程及操作方法的基础上,通过沸腾流化床干燥器的实验装置测定干燥速率曲线,物料含水量、床层温度与时间的关系曲线,流化床压降与气速曲线。 干燥实验中通过计算含水率、平均含水率、干燥速率来测定干燥速率曲线和含水量、床层温度与时间的关系曲线;流化床实验中通过计算标准状况下空气体积、使用状态下空气体积、空气流速来测定流化床压降与气速曲线。 二、实验目的 1、了解流化床干燥器的基本流程及操作方法。 2、掌握流化床流化曲线的测定方法,测定流化床床层压降与气速的关系曲线。 3、测定物料含水量及床层温度时间变化的关系曲线。 4、掌握物料干燥速率曲线的测定方法,测定干燥速率曲线,并确定临界含水量X0及恒速阶段的传质系数kH及降速阶段的比例系数KX。 三、实验原理 1、流化曲线 在实验中,可以通过测量不同空气流量下的床层压降,得

到流化床床层压降与气速的关系曲线(如图)。 当气速较小时,操作过程处于固定床阶段(AB段),床层基本静止不动,气体只能从床层空隙中流过,压降与流速成正比,斜率约为1(在双对数坐标系中)。当气速逐渐增加(进入BC段),床层开始膨胀,空隙率增大,压降与气速的关系将不再成比例。 当气速继续增大,进入流化阶段(CD段),固体颗粒随气体流动而悬浮运动,随着气速的增加,床层高度逐渐增加,但床层压降基本保持不变,等于单位面积的床层净重。当气速增大至某一值后(D点),床层压降将减小,颗粒逐渐被气体带走,此时,便进入了气流输送阶段。D点处的流速即被称为带出速度(u0)。 在流化状态下降低气速,压降与气速的关系线将沿图中的DC线返回至C点。若气速继续降低,曲线将无法按CBA继续变化,而是沿CA’变化。C点处的流速被称为起始流化速度(umf)。 在生产操作过程中,气速应介于起始流化速度与带出速度之间,此时床层压降保持恒定,这是流化床的重要特点。据此,可以通过测定床层压降来判断床层流化的优劣。 2、干燥特性曲线 将湿物料置于一定的干燥条件下,测定被那干燥物料的质量和温度随时间变化的关系,可得到物料含水量(X)与时间(τ)的关系曲线及物料温度(θ)与时间(τ)的关系曲线(见下图)。物料含水量与时间关系曲线的斜率即为干燥速率(u)。将干燥速

化工原理实验资料

实验一 干燥实验 一、实验目的 1. 了解洞道式循环干燥器的基本流程、工作原理和操作技术。 2. 掌握恒定条件下物料干燥速率曲线的测定方法。 3. 测定湿物料的临界含水量X C ,加深对其概念及影响因素的理解。 4. 熟悉恒速阶段传质系数K H 、物料与空气之间的对流传热系数α的测定方法。 二、实验内容 1. 在空气流量、温度不变的情况下,测定物料的干燥速率曲线和临界含水量,并了解其 影响因素。 2. 测定恒速阶段物料与空气之间的对流传热系数α和传质系数K H 。 三、基本原理 干燥操作是采用某种方式将热量传给湿物料,使湿物料中水分蒸发分离的操作。干燥操作同时伴有传热和传质,而且涉及到湿分以气态或液态的形式自物料内部向表面传质的机理。由于物料含水性质和物料形状上的差异,水分传递速率的大小差别很大。概括起来说,影响传递速率的因素主要有:固体物料的种类、含水量、含水性质;固体物料层的厚度或颗粒的大小;热空气的温度、湿度和流速;热空气与固体物料间的相对运动方式。目前尚无法利用理论方法来计算干燥速率(除了绝对不吸水物质外),因此研究干燥速率大多采用实验的方法。 干燥实验的目的是用来测定干燥曲线和干燥速率曲线。为简化实验的影响因素,干燥实验是在恒定的干燥条件下进行的,即实验为间歇操作,采用大量空气干燥少量的物料,且空气进出干燥器时的状态如温度、湿度、气速以及空气与物料之间的流动方式均恒定不变。 本实验以热空气为加热介质,甘蔗渣滤饼为被干燥物。测定单位时间内湿物料的质量变化,实验进行到物料质量基本恒定为止。物料的含水量常用相对与物料总量的水分含量,即以湿物料为基准的水分含量,用ω来表示。但因干燥时物料总量在变化,所以采用以干基料为基准的含水量X 表示更为方便。ω与X 的关系为: X = -ω ω 1 (8—1) 式中: X —干基含水量 kg 水/kg 绝干料; ω—湿基含水量 kg 水/kg 湿物料。 物料的绝干质量G C 是指在指定温度下物料放在恒温干燥箱中干燥到恒重时的质量。干燥曲线即物料的干基含水量X 与干燥时间τ的关系曲线,它说明物料在干燥过程中,干基含水量随干燥时间变化的关系。物料的干燥曲线的具体形状因物料性质及干燥条件而变,但是曲线的一般形状,如图(8—1)所示,开始的一小段为持续时间很短、斜率较小的直线段AB 段;随后为持续时间长、斜率较大的直线BC ;段以后的一段为曲线

干燥速率曲线的测定实验

干燥速率曲线的测定实验 一、实验内容 (1)在一定干燥条件下测定硅胶颗粒的干燥速率曲线; (2)测定气体通过干燥器的压降。 二、实验目的 (1)了解测定物料干燥速率曲线的工程意义 (2)学习和掌握测定干燥速率曲线的基本原理和实验方法。 (3)了解影响干燥速率的有关工程因素,熟悉流化床干燥器的结构特点及操作方法。 三、实验基本原理 干燥时指采用某种方式将热量传给湿物料,使其中的湿分(水或者有机溶剂)汽化分离的单元操作,在化工,轻工及农、林、渔业产品的加工等领域有广泛的应用。 干燥过程不仅涉及到气、固两相间的传热和传质,而且涉及到湿分以气态或液态的形式自物料向内部表面传质的机理。由于物料的含水性质和物料的形状及内部结构不同,干燥过程速率受到物料性质,含水量,含水性质,热介质性质和设备类型等各种因素的影响。目前,尚无成熟的理论方法来计算干燥速率,工业上仍需依赖于实验解决干燥问题。 物料的含水量,一般多用相对于湿物料总量的水分含量,即以湿物料为基准的含水率,用ω(kg水分/kg湿物料)来表示,但干燥时物料总量不断发生变化,所以,采用以干物料为基准的含水率X(kg水分/kg干物料)来表示较为方便。ω和X之间有如下关系: 在干燥过程的设计和操作时,干燥速率是一个非常重要的参数。例如对于干燥设备的设计或选型,通常规定干燥时间和干燥工艺要求,需要确定干燥器的类型和干燥面积,或者,在干燥操作时,设备的类型及干燥器的面积已定,规定工艺要求,确定所需干燥时间。这都是需要知道物料的干燥特性,即干燥速率曲线。 干燥速率一般用单位时间内单位面积上汽化的水量表示 式中——干燥速率,kg/(m2·s); ——干燥除去的水量,kg; ——平均面积,m2; ——干燥时间,s。 干燥速率也可以以干物料为基准,用单位质量干物料在单位时间内所汽化的水量表示 式中——干物料质量,kg。 因为

干燥速率曲线测定实验讲义

干燥速率曲线测定实验讲义 一、实验目的 1.掌握干燥曲线和干燥速率曲线的测定方法。 2.学习物料含水量的测定方法。 3.加深对物料临界含水量Xc的概念及其影响因素的理解。 4.学习恒速干燥阶段物料与空气之间对流传热系数的测定方法。 二、实验内容 1.每组在某固定的空气流量和某固定的空气温度下测量一种物料干燥曲线、干燥速率曲线和临界含水量。 2.测定恒速干燥阶段物料与空气之间对流传热系数。 三、实验原理 当湿物料与干燥介质相接触时,物料表面的水分开始气化,并向周围介质传递。根据干燥过程中不同期间的特点,干燥过程可分为两个阶段。 第一个阶段为恒速干燥阶段。在过程开始时,由于整个物料的湿含量较大,其内部的水分能迅速地达到物料表面。因此,干燥速率为物料表面上水分的气化速率所控制,故此阶段亦称为表面气化控制阶段。在此阶段,干燥介质传给物料的热量全部用于水分的气化,物料表面的温度维持恒定(等于热空气湿球温度),物料表面处的水蒸汽分压也维持恒定,故干燥速率恒定不变。 第二个阶段为降速干燥阶段,当物料被干燥达到临界湿含量后,便进入降速干燥阶段。此时,物料中所含水分较少,水分自物料内部向表面传递的速率低于物料表面水分的气化速率,干燥速率为水分在物料内部的传递速率所控制。故此阶段亦称为内部迁移控制阶段。随着物料湿含量逐渐减少,物料内部水分的迁移速率也逐渐减少,故干燥速率不断下降。 恒速段的干燥速率和临界含水量的影响因素主要有:固体物料的种类和性质;固体物料层的厚度或颗粒大小;空气的温度、湿度和流速;空气与固体物料间的相对运动方式。 恒速段的干燥速率和临界含水量是干燥过程研究和干燥器设计的重要数据。本实验在恒

化工原理课件干燥实验

干燥实验 一、实验目的 1.掌握物料干燥速率曲线的测定方法 2.了解操作条件对干燥速率曲线的影响 二、实验任务 测定纸板在恒定干燥条件下的干燥曲线和干燥速率曲线 确定其平衡含水量X* 及其临界含水量X c 三、实验原理 干燥曲线X-T 将湿物料试样置于恒定空气流中进行干燥实验,随着干燥时间的延长,水分不断汽化,湿物料质量减少。记录物料不同时间下质量,直到物料质量不变为止,也就是物料在该条件下达到干燥极限为止,此时留在物料中的水分就是平衡水分。再将物料烘干后称重得到绝干物料重,则物料中瞬间含水率为:

干燥速率曲线为U -X 的关系 干燥速率,单位时间单位面积上汽化水份量。 τ ττ?-= ??==+S G G S W Sd dW U i i 1 所测定的U 为物料的含水量有X i 下降至X i+1的干燥速率,为一个平均值。 Gc G G X c i i -=, 是一个瞬时值,在U -X 图中X 应为平均值 S -被干燥物料的汽化面积 τ-干燥时间 △W -一定间隔干燥时间汽化的水份量,本实验中为3g △τ-每汽化△Wg 时水分所需要的干燥时间。 Xi -湿物料在I 时刻的干基含水量,kg 水/kg 绝干料 Gi ,G i +1――分别为△τ时间间隔内开始和终了时湿物料重量 Gc ――绝干物料的质量

四、实验设备流程 空气由风机输送,经孔板流量计,电加热器后进入干燥室,对试样进行干燥,干燥后的废气再经风机循环使用。电加热器由晶体管继电器控制,使空气的温度恒定。 干燥室前方装有干球及湿球温度计,干燥室后也装有干球温度计,用以测量干燥室内空气的热状况。风机出口端的温度计用以测量流经孔板流量计的空气温度,空气流量用蝶阀调节,任何时候该阀都不能全关,否则电加热器会因空气不流动过热而损坏。风机进口端的片式阀用于控制系统所吸入的新鲜空气,而出口端的片式阀门则由空气进口端的片式阀则用于调节系统向外排出的废气量。 五、实验步骤: 1.称量支架的重量,向湿球温度计中加水 2.打开面板右侧面上的总电源开关,这时风机启动,仪表自检后显示初始值。 3.打开加热I、加热II、加热III,预热 4.将电子天平复位调零 5.干燥室前干球温度计接近75℃时,断开加热III

干燥速率与干燥过程计算5_12_3

14.3 干燥速率与干燥过程计算 14.3.1 物料在定态空气条件下的干燥速率 (1)干燥动力学实验 物料的干燥速率即水分汽化速率A N 可用单位时间、单位面积(气固接触界面)被汽化的水量表示, 即τ Ad dX G N c A -= 式中 c G ——试样中绝对干燥物料的质量,kg ; A ——试样暴露于气流中的表面积,m 2; X ——物料的自由含水量,*X X X t -=,kg 水/kg 干料。 干燥曲线或干燥速率曲线是恒定的空气条件(指一定的速率、温度、湿度)下获得的。对指定的物料,空气的温度、湿度不同,速率曲线的位置也不同,如图14-13所示 (2)恒速干燥阶段BC (3)降速干燥阶段CD 在降速阶段干燥速率的变化规律与物料性质及其内部结构有关。降速的原因大致有如下四个。

① 实际汽化表面减少; ② 汽化面的内移; ③ 平衡蒸汽压下降; ④ 固体内部水分的扩散极慢。 (4)临界含水量 固体物料在恒速干燥终了时的含水量为临界含水量,而从中扣除平衡含水量后则称 临界自由含水量C X (5)干燥操作对物料性状的影响 14.3.2 间歇干燥过程的计算 14.3.2.1 恒速阶段的干燥时间1τ 如物料在干燥之前的自由含水量1X 大于临界含水量c X ,则干燥必先有一恒速阶段。忽略物料的预热阶段,恒速阶段的干燥时间1τ由τ Ad dX G N c A -= 积分求出。 ??-=C 11A d d X X c N X A G ττ 因干燥速率A N 为一常数, A c c N X X A G -? = 11τ 速率A N 由实验决定,也可按传质或传热速率式估算,即 )()(w w w H A t t r H H k N -= -=α w H 为湿球温度w t 下的气体的饱和湿度。 传质系数H k 的测量技术不如给热系数测量那样成熟与准确,在干燥计算中常用经验的给热系数进行 计算。气流与物料的接触方式对给热系数影响很大,以下是几种典型接触方式的给热系数经验式。 (1)空气平行于物料表面流动(图14-16a ) 8.00143.0G =αkW/m 2·℃ 式中G 为气体的质量流速,kg/(m 2·s )。 上式的试验条件为14.8~68.0=G kg/(m 2·s ),气温150~45=t ℃。 (2)空气自上而下或自下而上穿过颗粒堆积层(图14-16b ) 41.0p 59 .00189.0d G =α ???? ??>350μG d p 41 .0p 49 .00118.0d G =α ??? ? ??<350μG d p 式中 G ——气体质量流速,kg/(m2·s ); p d ——具有与实际颗粒相同表面的球的直径,m ; μ—— 气体粘度,Pa ·s 。 (3)单一球形颗粒悬浮于气流中(图14-16c ) 3/12 /1p p Pr Re 65.02+=λ αd μ ρ u d p p Re =

干燥特性曲线实验报告

洞道干燥特性曲线测定实验 一、实验目的 1. 了解洞道干燥装置和流化床干燥装置的基本结构、工艺流程和操作方法。 2. 学习测定物料在恒定干燥条件下干燥特性的实验方法。 3. 掌握根据实验干燥曲线求干燥速率曲线、恒速阶段干燥速率、临界含水量、平衡含水量的实验分析方法。 4. 实验研究干燥条件对于干燥过程特性的影响。 二、基本原理 在设计干燥器的尺寸或确定干燥器的生产能力时,被干燥物料在给定干燥条件下的干燥速率、临界湿含量和平衡湿含量等干燥特性数据是最基本的技术依据参数。由于实际生产中被干燥物料的性质千变万化,因此对于大多数具体的被干燥物料而言,其干燥特性数据常常需要通过实验测定而取得。 1. 干燥速率的定义 干燥速率定义为单位干燥面积(提供湿分汽化的面积)、单位时间内所除去的湿分质量,即: C G dX dW U Ad Ad ττ= =- kg/(m2s) (11-1) 式中,U -干燥速率,又称干燥通量,kg/(m2s );A -干燥表面积,m2;W -汽化的湿分量,kg ; τ -干燥时间,s ;Gc -绝干物料的质量,kg ;X -物料湿含量,kg 湿分/kg 干物料 2. 干燥速率的测定方法 (1)将电子天平开启,待用。将快速水分测定仪开启,待用。 (2)将0.5~1kg 的湿物料(如取0.5~1kg 的黄豆放入60~70℃的热水中泡30min ,取出,并用干毛巾吸干表面水分,待用。 (3)开启风机,调节风量至40~60m3/h ,打开加热器加热。待热风温度恒定后(通常可设定在70~80℃),将湿物料加入流化床中,开始计时,每过4min 取出10克左右的物料,同时读取床层温度。将取出的湿物料在快速水分测定仪中测定,得初始质量i G 和终了质量iC G 。则物料中瞬间含水率 iC iC i i G G G X -= 。 计算出每一时刻的瞬间含水率i X ,然后将i X 对干燥时间i τ作图,如图11-1,即为干燥曲线。

化工原理实验一 干燥实验

实验八 干燥实验 一、实验目的 1. 了解洞道式循环干燥器的基本流程、工作原理和操作技术。 2. 掌握恒定条件下物料干燥速率曲线的测定方法。 3. 测定湿物料的临界含水量X C ,加深对其概念及影响因素的理解。 4. 熟悉恒速阶段传质系数K H 、物料与空气之间的对流传热系数α的测定方法。 二、实验内容 1. 在空气流量、温度不变的情况下,测定物料的干燥速率曲线和临界含水量,并了解其影响因素。 2. 测定恒速阶段物料与空气之间的对流传热系数α和传质系数K H 。 三、基本原理 干燥操作是采用某种方式将热量传给湿物料,使湿物料中水分蒸发分离的操作。干燥 操作同时伴有传热和传质,而且涉及到湿分以气态或液态的形式自物料内部向表面传质的机理。由于物料含水性质和物料形状上的差异,水分传递速率的大小差别很大。概括起来说,影响传递速率的因素主要有:固体物料的种类、含水量、含水性质;固体物料层的厚度或颗粒的大小;热空气的温度、湿度和流速;热空气与固体物料间的相对运动方式。目前尚无法利用理论方法来计算干燥速率(除了绝对不吸水物质外),因此研究干燥速率大多采用实验的方法。 干燥实验的目的是用来测定干燥曲线和干燥速率曲线。为简化实验的影响因素,干燥 实验是在恒定的干燥条件下进行的,即实验为间歇操作,采用大量空气干燥少量的物料,且空气进出干燥器时的状态如温度、湿度、气速以及空气与物料之间的流动方式均恒定不变。 本实验以热空气为加热介质,甘蔗渣滤饼为被干燥物。测定单位时间内湿物料的质量 变化,实验进行到物料质量基本恒定为止。物料的含水量常用相对与物料总量的水分含量,即以湿物料为基准的水分含量,用ω来表示。但因干燥时物料总量在变化,所以采用以干基料为基准的含水量X 表示更为方便。ω与X 的关系为: X =-ωω 1 (8—1) 式中: X —干基含水量 kg 水/kg 绝干料; ω—湿基含水量 kg 水/kg 湿物料。 物料的绝干质量G C 是指在指定温度下物料放在恒温干燥箱中干燥到恒重时的质量。 干燥曲线即物料的干基含水量X 与干燥时间τ的关系曲线,它说明物料在干燥过程中,干基含水量随干燥时间变化的关系。物料的干燥曲线的具体形状因物料性质及干燥条件而变,但是曲线的一般形状,如图(8—1)所示,开始的一小段为持续时间很短、斜率较小的直线段AB 段;随后为持续时间长、斜率较大的直线BC ;段以后的一段为曲线

化工原理实验思考题及答案

化工原理实验思考题(填空与简答) 一、填空题: 1.孔板流量计的C~Re关系曲线应在单对数坐标纸上标绘。 2.孔板流量计的V S ~ R关系曲线在双对数坐标上应为_直线—。 3.直管摩擦阻力测定实验是测定入与Re的关系,在双对数坐标纸上标绘。 4.单相流动阻力测定实验是测定直管阻力和局部阻力。 5.启动离心泵时应关闭出口阀和功率开关。 6.流量增大时离心泵入口真空度增大出口压强将减小。 7 .在精馏塔实验中,开始升温操作时的第一项工作应该是开循环冷却水。 8.在精馏实验中,判断精馏塔的操作是否稳定的方法是塔顶温度稳定 9.在传热实验中随着空气流量增加其进出口温度差的变化趋势:_进出口温差随空气流量增加而减小。 10.在传热实验中将热电偶冷端放在冰水中的理由是减小测量误差。 11.萃取实验中_水_为连续相,煤油为分散相。 12.萃取实验中水的出口浓度的计算公式为C E1=V R(C R1-C R2)/V E。 13.干燥过程可分为等速干燥和降速干燥。 14.干燥实验的主要目的之一是 掌握干燥曲线和干燥速率曲线的测定方法 。 15.过滤实验采用悬浮液的浓度为5% ,其过滤介质为帆布。 16.过滤实验的主要内容测定某一压强下的过滤常数。

17.在双对数坐标系上求取斜率的方法为:需用对数值来求算,或者直接用 尺子在坐标纸上量取线段长度求取。 18.在实验结束后,关闭手动电气调节仪表的顺序一般为:先将手动旋钮旋 至零位,再关闭电源 19.实验结束后应清扫现场卫生,合格后方可离开。 20.在做实验报告时,对于实验数据处理有一个特别要求就是:要有一组数据处理的计 算示例。 21.在阻力实验中,两截面上静压强的差采用倒U形压差计测定。 22.实验数据中各变量的关系可表示为表格,图形和公式. 23.影响流体流动型态的因素有流体的流速、粘度、温度、尺寸、形状等. 24.用饱和水蒸汽加热冷空气的传热实验,试提出三个强化传热的方案(1)增加 空气流速(2)在空气一侧加装翅片(3)定期排放不凝气体。 25.在精馏实验数据处理中需要确定进料的热状况参数q值,实验中需要测定 进料量、进料温度、进料浓度等。 26.干燥实验操作过程中要先开鼓风机送风后再开电热器,以防烧坏加热丝。 27.在本实验室中的精馏实验中应密切注意釜压,正常操作维持在0.005mPa 如果达到0.008?0.01mPa可能出现液泛,应减少加热电流(或停止加热),将进料、回流和产品阀关闭,并作放空处理,重新开始实验。 28.流体在流动时具有三种机械能:即①位能,②动能,③压力能。这三种能量可以互

干燥速率曲线的测定

一、实验目的 1、熟悉厢式干燥器的构造和操作; 2、测定在恒定干燥条件(即热空气温度、湿度、流速不变,物料与气流的接触方式不变)下的湿物料干燥曲线和干燥速率曲线; 3、定该物料的临界湿含量X 0; 4、掌握有关测量和控制仪器的使用方法。 二、实验原理 当湿物料与干燥介质相接触时,物料表面的水分开始气化,并向周围介质传递。根据干燥过程中不同期间的特点,干燥过程可分为两个阶段。 第一个阶段为恒速干燥阶段。在过程开始时,由于整个物料的湿含量较大,其内部的水分能迅速地达到物料表面。因此,干燥速率为物料表面上水分的气化速率所控制,故此阶段亦称为表面气化控制阶段。在此阶段,干燥介质传给物料的热量全部用于水分的气化,物料表面的温度维持恒定(等于热空气湿球温度),物料表面处的水蒸汽分压也维持恒定,故干燥速率恒定不变。 第二个阶段为降速干燥阶段,当物料被干燥达到临界湿含量后,便进入降速干燥阶段。此时,物料中所含水分较少,水分自物料内部向表面传递的速率低于物料表面水分的气化速率,干燥速率为水分在物料内部的传递速率所控制。故此阶段亦称为内部迁移控制阶段。随着物料湿含量逐渐减少,物料内部水分的迁移速率也逐渐减少,故干燥速率不断下降。 恒速段的干燥速率和临界含水量的影响因素主要有:固体物料的种类和性质;固体物料层的厚度或颗粒大小;空气的温度、湿度和流速;空气与固体物料间的相对运动方式。 恒速段的干燥速率和临界含水量是干燥过程研究和干燥器设计的重要数据。本实验在恒定干燥条件下对帆布物料进行干燥,测定干燥曲线和干燥速率曲线,目的是掌握恒速段干燥速率和临界含水量的测定方法及其影响因素。 1、干燥速率的测定 τ τ??≈= S W Sd dW U ' ' (7-1) 式中:U —干燥速率,kg/(m 2·h); S —干燥面积,m 2,(实验室现场提供); τ?—时间间隔,h ; 'W ?—τ?时间间隔内干燥气化的水分量,kg 。 2、物料干基含水量

干燥速率曲线测定实验

一、实验目的 ⒈ 掌握干燥曲线和干燥速率曲线的测定方法。 ⒉ 学习物料含水量的测定方法。 ⒊ 加深对物料临界含水量Xc 的概念及其影响因素的理解。 ⒋ 学习恒速干燥阶段物料与空气之间对流传热系数的测定方法。 ⒌ 学习用误差分析方法对实验结果进行误差估算。 二、实验内容 ⒈ 每组在某固定的空气流量和某固定的空气温度下测量一种物料干燥曲线、干燥速率曲线和临界含水量。 ⒉ 测定恒速干燥阶段物料与空气之间对流传热系数。 三、实验原理 当湿物料与干燥介质相接触时,物料表面的水分开始气化,并向周围介质传递。根据干燥过程中不同期间的特点,干燥过程可分为两个阶段。 第一个阶段为恒速干燥阶段。在过程开始时,由于整个物料的湿含量较大,其内部的水分能迅速地达到物料表面。因此,干燥速率为物料表面上水分的气化速率所控制,故此阶段亦称为表面气化控制阶段。在此阶段,干燥介质传给物料的热量全部用于水分的气化,物料表面的温度维持恒定(等于热空气湿球温度),物料表面处的水蒸汽分压也维持恒定,故干燥速率恒定不变。 第二个阶段为降速干燥阶段,当物料被干燥达到临界湿含量后,便进入降速干燥阶段。此时,物料中所含水分较少,水分自物料内部向表面传递的速率低于物料表面水分的气化速率,干燥速率为水分在物料内部的传递速率所控制。故此阶段亦称为内部迁移控制阶段。随着物料湿含量逐渐减少,物料内部水分的迁移速率也逐渐减少,故干燥速率不断下降。 恒速段的干燥速率和临界含水量的影响因素主要有:固体物料的种类和性质;固体物料层的厚度或颗粒大小;空气的温度、湿度和流速;空气与固体物料间的相对运动方式。 恒速段的干燥速率和临界含水量是干燥过程研究和干燥器设计的重要数据。本实验在恒定干燥条件下对帆布物料进行干燥,测定干燥曲线和干燥速率曲线,目的是掌握恒速段干燥速率和临界含水量的测定方法及其影响因素。 ⒈ 干燥速率的测定 τ τ??≈= S W Sd dW U '' (8-1) 式中:U —干燥速率,kg /(m 2·h ); S —干燥面积,m 2,(实验室现场提供); τ?—时间间隔,h ;

华工化工原理实验考试复习

化工原理实验复习 1.填空题 1.在精馏塔实验中,开始升温操作时的第一项工作应该是开循环冷却水。 2.在精馏实验中,判断精馏塔的操作是否稳定的方法是塔顶温度稳定 3.干燥过程可分为等速干燥和降速干燥。 4.干燥实验的主要目的之一是掌握干燥曲线和干燥速率曲线的测定方法。 5.实验结束后应清扫现场卫生,合格后方可离开。 6.在做实验报告时,对于实验数据处理有一个特别要求就是: 要有一组数据处理的计算示例。 7.在精馏实验数据处理中需要确定进料的热状况参数q 值,实验中需要测定进料量、进料温度、进料浓度等。 8.干燥实验操作过程中要先开鼓风机送风后再开电热器,以防烧坏加热丝。

9.在本实验室中的精馏实验中应密切注意釜压,正常操作维持在0.005mPa,如果达到0.008~0.01mPa,可能出现液泛,应该减少加热电流(或停止加热),将进料、回流和产品阀关闭,并作放空处理,重新开始实验。 10.在精馏实验中,确定进料状态参数q 需要测定进料温度,进料浓度参数。 11.某填料塔用水吸收空气中的氨气,当液体流量和进塔气体的浓度不变时,增大混合气体的流量,此时仍能进行正常操作,则尾气中氨气的浓度增大 12.在干燥实验中,提高空气的进口温度则干燥速率提高;若提高进口空气的湿度则干燥速率降低。 13.常见的精馏设备有填料塔和板式塔。 14.理论塔板数的测定可用逐板计算法和图解法。 15.理论塔板是指离开该塔板的气液两相互成平衡的塔板。 16.填料塔和板式塔分别用等板高度和全塔效率来分析、评价它们的分离性能。 2.简答题 一.精馏实验 1.其它条件都不变,只改变回流比,对塔性能会产生什么影响?答:精馏中的回流比R,在塔的设计中是影响设备费用(塔板数、再沸器、及冷凝器传热面积)和操作费用(加热蒸汽及冷却水消耗量)的一个重要因素,所以

干燥速率曲线测定结果报告

背景; 干燥设备又称干燥器和干燥机。用于进行干燥操作的设备,通过加热使物料中的湿分(一般指水分或其他可挥发性液体成分)汽化逸出,以获得规定湿含量的固体物料。干燥的目的是为了物料使用或进一步加工的需要。如木材在制作木模、木器前的干燥可以防止制品变形,陶瓷坯料在煅烧两款干燥设备前的干燥可以防止成品龟裂。另外干燥后的物料也便于运输和贮存,如将收获的粮食干燥到一定湿含量以下,以防霉变。由于自然干燥远不能满足生产发展的需要,各种机械化干燥器越来越广泛地得到应用。 一、实验目的 ⒈ 掌握干燥曲线和干燥速率曲线的测定方法。 ⒉ 学习物料含水量的测定方法。 ⒊ 加深对物料临界含水量Xc 的概念及其影响因素的理解。 ⒋ 学习恒速干燥阶段物料与空气之间对流传热系数的测定方法。 ⒌ 学习用误差分析方法对实验结果进行误差估算。 二、实验内容 ⒈ 每组在某固定的空气流量和某固定的空气温度下测量一种物料干燥曲线、干燥速率曲线和临界含水量。 ⒉ 测定恒速干燥阶段物料与空气之间对流传热系数。 三、实验原理 当湿物料与干燥介质相接触时,物料表面的水分开始气化,并向周围介质传递。根据干燥过程中不同期间的特点,干燥过程可分为两个阶段。 第一个阶段为恒速干燥阶段。在过程开始时,由于整个物料的湿含量较大,其内部的水分能迅速地达到物料表面。因此,干燥速率为物料表面上水分的气化速率所控制,故此阶段亦称为表面气化控制阶段。在此阶段,干燥介质传给物料的热量全部用于水分的气化,物料表面的温度维持恒定(等于热空气湿球温度),物料表面处的水蒸汽分压也维持恒定,故干燥速率恒定不变。 第二个阶段为降速干燥阶段,当物料被干燥达到临界湿含量后,便进入降速干燥阶段。此时,物料中所含水分较少,水分自物料内部向表面传递的速率低于物料表面水分的气化速率,干燥速率为水分在物料内部的传递速率所控制。故此阶段亦称为内部迁移控制阶段。随着物料湿含量逐渐减少,物料内部水分的迁移速率也逐渐减少,故干燥速率不断下降。 恒速段的干燥速率和临界含水量的影响因素主要有:固体物料的种类和性质;固体物料层的厚度或颗粒大小;空气的温度、湿度和流速;空气与固体物料间的相对运动方式。 恒速段的干燥速率和临界含水量是干燥过程研究和干燥器设计的重要数据。本实验在恒定干燥条件下对帆布物料进行干燥,测定干燥曲线和干燥速率曲线,目的是掌握恒速段干燥速率和临界含水量的测定方法及其影响因素。 ⒈ 干燥速率的测定 τ τ??≈=S W Sd dW U ' ' (7-1) 式中:U —干燥速率,kg /(m 2 ·h ); s 燥面积,m 2 ,(实验室现场提供); τ?—时间间隔,h ; 'W ?—τ?时间间隔内干燥气化的水分量,kg 。 S ─干燥面积, [m 2] G C ─绝干物料量, [g] R ─空气流量计的读数, [kPa]

干燥速率曲线测定实验

实验7 干燥速率曲线测定实验 一、实验目的 ⒈ 了解洞道干燥器的结构,练习操作。 ⒉ 在恒定空气温度和流量条件下,测定物料的干燥曲线和干燥速率曲线。 ⒊ 加深对物料临界含水量Xc 的概念及其影响因素的理解。 ⒋ 测定恒速干燥阶段物料与空气之间对流传热系数。 二、实验原理 当湿物料与干燥介质相接触时,物料表面的水分开始气化,并向周围介质传递。根据干燥过程中不同期间的特点,干燥过程可分为两个阶段。 第一个阶段为恒速干燥阶段。在过程开始时,由于整个物料的湿含量较大,其内部的水分能迅速地达到物料表面。因此,干燥速率为物料表面上水分的气化速率所控制,故此阶段亦称为表面气化控制阶段。在此阶段,干燥介质传给物料的热量全部用于水分的气化,物料表面的温度维持恒定(等于热空气湿球温度),物料表面处的水蒸汽分压也维持恒定,故干燥速率恒定不变。 第二个阶段为降速干燥阶段,当物料被干燥达到临界湿含量后,便进入降速干燥阶段。此时,物料中所含水分较少,水分自物料内部向表面传递的速率低于物料表面水分的气化速率,干燥速率为水分在物料内部的传递速率所控制。故此阶段亦称为内部迁移控制阶段。随着物料湿含量逐渐减少,物料内部水分的迁移速率也逐渐减少,故干燥速率不断下降。 恒速段的干燥速率和临界含水量的影响因素主要有:固体物料的种类和性质;固体物料层的厚度或颗粒大小;空气的温度、湿度和流速;空气与固体物料间的相对运动方式。 恒速段的干燥速率和临界含水量是干燥过程研究和干燥器设计的重要数据。本实验在恒定干燥条件下对帆布物料进行干燥,测定干燥曲线和干燥速率曲线,目的是掌握恒速段干燥速率和临界含水量的测定方法及其影响因素。 ⒈ 干燥速率的测定 τ τ??≈ =S W Sd dW U ' ' (7-1) 式中:U —干燥速率,kg /(m 2 ·h ); S —干燥面积,m 2 ,(实验室现场提供); τ?—时间间隔,h; 'W ?—τ?时间间隔内干燥气化的水分量,kg 。 ⒉ 物料干基含水量 ' ' 'Gc Gc G X -= (7-2) 式中:X —物料干基含水量,kg 水/ kg 绝干物料;

14.3 干燥速率与干 燥过程计算.

福州大学化工原理电子教案固体干燥 14.3 干燥速率与干燥过程计算 14.3.1 物料在定态空气条件下的干燥速率 (1)干燥动力学实验 物料的干燥速率即水分汽化速率NA可用单位时间、单位面积(气固接触界面)被汽化的水量表示,即NA= 式中 Gc——试样中绝对干燥物料的质量,kg; GcdX -Adτ A——试样暴露于气流中的表面积,m2; X——物料的自由含水量,X=Xt-X*,kg水/kg干料。 干燥曲线或干燥速率曲线是恒定的空气条件(指一定的速率、温度、湿度)下获得的。对指定的物料,空气的温度、湿度不同,速率曲线的位置也不同,如图14-13所示

(2)恒速干燥阶段BC (3)降速干燥阶段CD 在降速阶段干燥速率的变化规律与物料性质及其内部结构有关。降速的原因大致有如下四个。 - 1 - 1 福州大学化工原理电子教案固体干燥 ①实际汽化表面减少; ②汽化面的内移; ③平衡蒸汽压下降; ④固体内部水分的扩散极慢。 (4)临界含水量 固体物料在恒速干燥终了时的含水量为临界含水量,而从中扣除平衡含水量后则称 临界自由含水量XC (5)干燥操作对物料性状的影响 14.3.2 间歇干燥过程的计算 14.3.2.1 恒速阶段的干燥时间τ1 如物料在干燥之前的自由含水量X1大于临界含水量Xc,则干燥必先有一恒速阶段。忽略物料的预热阶段,恒速阶段的干燥时间τ1由NA=GcdX积分求出。 -Adτ τ1GcXCdX dτ=-?0A?X1NA 因干燥速率NA为一常数, τ1=GcX1-Xc ?ANA

速率NA由实验决定,也可按传质或传热速率式估算,即 NA=kH(Hw-H)=α rw(t-tw) Hw为湿球温度tw下的气体的饱和湿度。 传质系数kH的测量技术不如给热系数测量那样成熟与准确,在干燥计算中常用经验的给热系数进行计算。气流与物料的接触方式对给热系数影响很大,以下是几种典型接触方式的给热系数经验式。 (1)空气平行于物料表面流动(图14-16a) α=0.0143G0.8kW/m2·℃ 式中G为气体的质量流速,kg/(m2·s)。 上式的试验条件为G=0.68~8.14kg/(m2·s),气温t=45~150℃。 (2)空气自上而下或自下而上穿过颗粒堆积层(图14-16b) G0.59 α=0.0.41 dp G0.49 α=0.0.41dp?dpG??>350 μ????dpG?? <350 μ??? 式中 G——气体质量流速,kg/(m2·s); dp——具有与实际颗粒相同表面的球的直径,m; μ——气体粘度,Pa·s。 (3)单一球形颗粒悬浮于气流中(图14-16c) αdp1/2=2+0.65RepPr1/3 λ dpuρ Rep=μ - 2 - 2 福州大学化工原理电子教案固体干燥 式中 u——气体与颗粒的相对运动速度; ρ、μ、Pr——气体的密度、粘度和普朗特数。

化工原理实验思考题与答案

化工原理实验思考题(填空与简答) 一、填空题: 1.孔板流量计的Re ~C 关系曲线应在 单对数 坐标纸上标绘。 2.孔板流量计的R V S ~关系曲线在双对数坐标上应为 直线 。 3.直管摩擦阻力测定实验是测定 λ 与 Re_的关系,在双对数坐标纸上标绘。 4.单相流动阻力测定实验是测定 直管阻力 和 局部阻力 。 5.启动离心泵时应 关闭出口阀和功率开关 。 6.流量增大时离心泵入口真空度 增大_出口压强将 减小 。 7.在精馏塔实验中,开始升温操作时的第一项工作应该是 开循环冷却水 。 8.在精馏实验中,判断精馏塔的操作是否稳定的方法是 塔顶温度稳定 9.在传热实验中随着空气流量增加其进出口温度差的变化趋势:_进出口温差随空气流量增加而减小 。 10.在传热实验中将热电偶冷端放在冰水中的理由是 减小测量误差 。 11.萃取实验中_水_为连续相, 煤油 为分散相。 12.萃取实验中水的出口浓度的计算公式为 E R R R E V C C V C /)(211-= 。 13.干燥过程可分为 等速干燥 和 降速干燥 。 14.干燥实验的主要目的之一是 掌握干燥曲线和干燥速率曲线的测定方法 。 15.过滤实验采用悬浮液的浓度为 5% , 其过滤介质为 帆布 。 16.过滤实验的主要容 测定某一压强下的过滤常数 。 17.在双对数坐标系上求取斜率的方法为: 需用对数值来求算,或者直接用尺子在坐标纸上量取线段长度求取 。 18.在实验结束后,关闭手动电气调节仪表的顺序一般为: 先将手动旋钮旋

至零位,再关闭电源。 19.实验结束后应清扫现场卫生,合格后方可离开。 20.在做实验报告时,对于实验数据处理有一个特别要求就是: 要有一组数据处理的计算示例。 21.在阻力实验中,两截面上静压强的差采用倒U 形压差计测定。 22.实验数据中各变量的关系可表示为表格,图形和公式. 23.影响流体流动型态的因素有流体的流速、粘度、温度、尺寸、形状等. 24.用饱和水蒸汽加热冷空气的传热实验,试提出三个强化传热的方案(1)增加空气流速(2)在空气一侧加装翅片(3)定期排放不凝气体。 25.在精馏实验数据处理中需要确定进料的热状况参数q 值,实验中需要测定进料量、进料温度、进料浓度等。 26.干燥实验操作过程中要先开鼓风机送风后再开电热器,以防烧坏加热丝。 27.在本实验室中的精馏实验中应密切注意釜压,正常操作维持在0.005mPa,如果达到0.008~0.01mPa,可能出现液泛,应减少加热电流(或停止加热),将进料、回流和产品阀关闭,并作放空处理,重新开始实验。 28.流体在流动时具有三种机械能:即①位能,②动能,③压力能。这三种能量可以互相转换。 29.在柏努利方程实验中,当测压管上的小孔(即测压孔的中心线)与水流方向垂直时,测压管液柱高度(从测压孔算起)为静压头,它反映测压点处液体的压强大小;当测压孔由上述方位转为正对水流方向时,测压管液位将因此上升,所增加的液位高度,即为测压孔处液体的动压头,它反映出该点水流动能的大小。

化工原理实验——干燥曲线及干燥速率曲线测定实验

实验十干燥曲线及干燥速率曲线测定实验 一、实验装置 干燥器类型:洞道; 洞道截面积:1# A=× = 0.0221m2、2# A=× = 0.030m2 加热功率:500w—1500w;空气流量:1-5m3/min;干燥温度:40--120℃ 孔板流量计:孔流系数C0=,孔板孔径d0=( m) 重量传感器显示仪:量程(0-200g),精度级; 干球温度计、湿球温度计显示仪:量程(0-150℃),精度级; 孔板流量计处温度计显示仪:量程(-50-150℃),精度级; 孔板流量计压差变送器和显示仪:量程(0-10KPa),精度级; 图10-1 洞道干燥实验流程示意图 1.中压风机; 2.孔板流量计; 3. 空气进口温度计; 4.重量传感器; 5.被干燥物料; 6.加热器; 7.干球温度计; 8.湿球温度计; 9.洞道干燥器;10.废气排出阀;11.废气循环阀; 12.新鲜空气进气阀;13.干球温度显示控制仪表;14.湿球温度显示仪表; 15.进口温度显示仪表;16.流量压差显示仪表;17.重量显示仪表;18.压力变送器。 二、物料 物料:毛毡;干燥面积:S=**2=(m2)(以实验室现场提供为准)。 绝干物料量(g):1# G C=,2# G C=(以实验室现场提供为准)。

三、操作方法 ⒈ 将干燥物料(毛粘)放入水中浸湿,向湿球温度计的附加蓄水池内补充适量的水, 使池内水面上升至适当位置。 ⒉ 调节送风机吸入口的蝶阀12到全开的位置后,按下电源的绿色按钮,再按风机按钮,启动风机。 ⒊ 用废气排出阀10和废气循环阀11调节到指定的流量后,开启加热电源。在智能仪表中设定干球温度,仪表自动调节到指定的温度。 干球温度设定方法: 第一套:长按 ——增大,设定好数值后,按键确定。 第二套:/减小,设定好后,自动确认。 ⒋ 干燥器的流量和干球温度恒定达5分钟之后,既可开始实验。此时,读取数字显示仪的读数作为试样支撑架的重量。 ⒌ 将被干燥物料(毛粘)从水中取出,控去浮挂在其表面上的水分(最好挤去所含的水分,以免干燥时间过长),将支架从干燥器内取出,将被干燥物料夹好。 ⒍ 将支架连同试样放入洞道内,并安插在其支撑杆上并与气流平行放置。注意:不能用力过大,避免使传感器受损。 7.立即按下秒表开始计时,并记录显示仪表的显示值。然后每隔一段时间(3分钟)记录一次数据(记录总重量和时间),直至干燥物料的重量不再明显减轻为止(重量变化小于0.1克)。 ⒏ 关闭加热电源,待干球温度降至常温后关闭风机电源和总电源。 ⒐ 实验完毕,一切复原。 四、注意事项 ⒈ 重量传感器的量程为(0--200克),精度较高。在放置干燥物料时务必要轻拿轻放,以免损坏仪表。 ⒉ 干燥器内必须有空气流过才能开启加热,防止干烧损坏加热器,出现事故。 ⒊ 干燥物料要充分浸湿,但不能有水滴自由滴下,否则将影响实验数据的正确性。 ⒋ 实验中不要改变智能仪表的设置。

北京化工大学-干燥实验报告

北京化工大学-干燥实验报告

e北京化工大学 实验报告 课程名称:化工原理实验实验日期:2012.5.9 班级:化工0903班姓名:徐晗 同组人:高秋,高雯璐,梁海涛装置型号:FFRS-Ⅱ型 流化干燥实验 一、摘要 本实验通过空气加热装置测定了空气的干、湿球温度,通过孔板流量计测定了空气的流量,并采用湿小麦为研究对象,对其进行干燥,分别记录了物料温度、床层压降、孔板压降等参数,测定了小麦的干燥曲线、干燥速率曲线,以及流化床干燥器中小麦的流化曲线。实验中通过Excel 作图并进行了实验结果分析。 关键词:流化床干燥含水量床层压降速率曲线 二、实验目的

1. 了解流化床干燥器的基本流程及操作方法。 2. 掌握流化床流化曲线的测定方法、测定流化床床层压降与气速的关系曲线。 3. 测定物料含水量及床层温度随时间变化的关系曲线。 4. 掌握物料干燥速率曲线的测定方法,测定干燥速率曲线,并确定临界含水量X0及恒速阶段的传质系数k H及降速阶段的比例系数K x。 三、实验原理 1.流化曲线 在实验中,可以通过测量不同空气流量下的床层压降,得到流化床床层压降与气速 的关系曲线。如图1所示。 图1 流化曲线 当气速较小时,操作过程处于固定床阶段

(AB段),床层基本静止不动,气体只能从床层空隙中流过,压降与流速成正比,斜率约为1(在双对数坐标系中)。当气速逐渐增加(进入BC 阶段),床层开始膨胀,空隙率增大,压降与气速的关系将不再成比例。 当气速继续增大,进入流化阶段(CD段),固体颗粒随气体流动而悬浮运动,随着气速的增加,床层高度逐渐增加,但床层压降基本保持不变,等于单位面积的床层净重。当气速增大至某一值后(D点),床层压降将减小,颗粒逐渐被气体带走,此时,便进入了气流输送阶段。D点处得流速被称为带出速度(u0)。 在流化状态下降低气速,压降与气速的关系将沿图中的DC线返回至C点。若气速继续降低,曲线将无法按CBA继续变化,而使沿CA’变化。C点处的流速被称为起始流化速度(u mf)。 在生产操作中,气速应介于起始流化速度与带出速度之间,此时床层压降保持恒定,这是流化床的重要特点。据此,可以通过测定床层压降来判断床层流化的优劣。 2.干燥特性曲线 将湿物料置于一定的干燥条件下,测定被干

化工原理课件干燥实验.

干燥实验 一、实验目的 1.掌握物料干燥速率曲线的测定方法 2.了解操作条件对干燥速率曲线的影响二、实验任务 测定纸板在恒定干燥条件下的干燥曲线和干燥速率曲线确定其平衡含水量X* 及其临界含水量X c 三、实验原理干燥曲线X-T 将湿物料试样置于恒定空气流中进行干燥实验,随着干燥时间的延长,水分不断汽化,湿物料质量减少。记录物料不同时间下质量,直到物料质量不变为止,也就是物料在该条件下达到干燥极限为止,此时留在物料中的水分就是平衡水分。再将物料烘干后称重得到绝干物料重,则物料中瞬间含水率为: c c G G G X -=

干燥速率曲线为U -X 的关系 干燥速率,单位时间单位面积上汽化水份量。 τ ττ?-= ??==+S G G S W Sd dW U i i 1 所测定的U 为物料的含水量有X i 下降至X i+1的干燥速率,为一个平均值。Gc G G X c i i -=, 是一个瞬时值,在U -X 图中X 应为平均值 S -被干燥物料的汽化面积τ-干燥时间

△W -一定间隔干燥时间汽化的水份量,本实验中为3g △τ-每汽化△Wg 时水分所需要的干燥时间。 Xi -湿物料在I 时刻的干基含水量,kg 水/kg 绝干料 Gi ,G i +1――分别为△τ时间间隔内开始和终了时湿物料重量Gc ――绝干物料的质量 四、实验设备流程 空气由风机输送,经孔板流量计,电加热器后进入干燥室,对试样进行干燥,干燥后的废气再经风机循环使用。电加热器由晶体管继电器控制,使空气的温度恒定。 干燥室前方装有干球及湿球温度计,干燥室后也装有干球温度计,用以测量干燥室内空气的热状况。风机出口端的温度计用以测量流经孔板流量计的空气温度,空气流量用蝶阀调节,任何时候该阀都不能全关,否则电加热器会因空气不流动过热而损坏。风机进口端的片式阀用于控制系统所吸入的新鲜空气,而出口端的片式阀门则由空气进口端的片式阀则用于调节系统向外排出的废气量。五、实验步骤: 1.称量支架的重量,向湿球温度计中加水 2.打开面板右侧面上的总电源开关,这时风机启动,仪表自检后显示初始值。 3.打开加热I 、加热II 、加热III ,预热 4.将电子天平复位调零 5.干燥室前干球温度计接近75℃时,断开加热III 电子天平 温度控制显示器 孔板流量计 电加热器电子计时器

相关主题
文本预览
相关文档 最新文档