当前位置:文档之家› 极坐标下求加速度

极坐标下求加速度

极坐标系下速度与加速度的推导过程:

一、极坐标系( plane polar coordinates )

1 .极坐标系

在参考系上取点 O ,引有刻度的射线 OX 称为极轴(有方向的),建成极坐标系。

矢径:由参考点 O 引向质点位置 A 的线段长度

由 r 表示矢径。如图示: r=

幅角:质点的位置矢量与极轴所夹的角θ (也称:极角)

规定:自极轴逆时针转至位置矢量的幅角为正,反之为负。

( r ,θ)确定平面上质点的位置,称为极坐标。

质点的运动学方程:、

质点的轨迹:

2 .极坐标系中矢量的正交分解

如图示:质点在 A 点,沿位置矢量方向称为径向

径向单位矢量:沿质点所在处位置矢量的方向。

横向单位矢量:与径向方向垂直且指向增加的方向。

任何矢量均可在和方向上作正交分解。

注意:径向和横向随地点而异。

二、径向速度与横向速度

讨论质点平面运动速度在极坐标系中的正交分解式,如图示:

( 1 )用微元法推导速度

设: t t+ 时间内,图中质点自 A ( r, t)经历一微小的位移,到达

由速度的定义:

( 1 )

位移对应于质点矢量的改变——径向位移;

位移对应于质点相对于极点幅角的改变——横向位移。

时,指向趋于方向。

,时,指向趋于方向。

(2)

故 : 速度的径向分量:,速度的径横向分量:

即:径向速度等于矢径对时间的变化率

横向速度等于矢径与角速度的乘积。

( 2 )矢量运算法推导速度

( 5 )对于径向速度是矢径的变化而引起的速度的大小。

下面讨论:

如图所示是单位径向方向,模的大小为 1 。

()

另外的推导也可如下进行:

右端展开是 :

即:

所以 : 。

三、加速度矢量

用“矢量法”推导“加速度”

已知:

加速度另外一种表示;

在极坐标系下二重积分的计算

在极坐标系下二重积分的计算 第九节在极坐标系下二重积分的计算 根据微元法可得到极坐标系下的面积微元 注意到直角坐标与极坐标之间的转换关系为 从而就得到在直角坐标系与极坐标系下二重积分转换公式为 内容分布图示 ★ 利用极坐标系计算二重积分 ★ 二重积分化为二次积分的公式 ★ 例1 ★ 例2 ★ 例3 ★ 例4 ★ 例5 ★ 例6 ★ 例7 ★ 例8 ★ 内容小结★ 课堂练习 ★ 习题6-9 ★ 返回 内容提要: 一、二重积分的计算 1.如果积分区域D介于两条射线之间,而对D内任一点,其极径总是介于曲线之间(图6-9-2),则区域D的积分限 于是

Df(x,y)dxdy 具体计算时,内层积分的上、下限可按如下方式确定:从极点出发在区间上任意作一条极角为的射线穿透区域D(图6-9-2),则进入点与穿出点的极径 就分别为内层积分的下限与上限. 2.如果积分区域D是如图6-9-3所示的曲边扇形,则可以把它看作是第一种情形中当的特例,此时,区域D的积分限 于是 3.如果积分区域D如图6-9-4所示,极点位于D的内部,则可以把它看作是第二种情形中当的特例,此时,区域D的积分限 于是 注:根据二重积分的性质3,闭区域D的面积在极坐标系下可表示为 如果区域D如图6-9-3所示,则有 例题选讲: 例1(讲义例1)计算

2222,其中D是由所确定的圆域. 例2(讲义例2)计算 其中积分区域D是由 所确定的圆环域. 例3(讲义例3)计算 Dyx22dxdy, 其中D是由曲线所围成的平面区域. 22 例4(讲义例4)写出在极坐标系下二重积分的二次积分,其中区域 D 22例5 计算其中D为由圆及直线 D 所围成的平面闭区域. 例6 将二重积分 化为极坐标形式的二次积分,其中D是曲线 及直线所围成上半平面的区域. 例7(讲义例5)求曲线和所围成区域D的面积. 例8(讲义例6)求球体被圆柱面所截得的(含在圆柱面内的部分)立体的体积(图6-9-9). 课堂练习 1.计算 其中D是由中心在原点, 半径为a的圆周所围成的闭区域. 22.计算其中

极坐标公式和三角函数万能公式

极坐标与参数方程综合复习 一 基础知识: 1 极坐标),(θρ。逆时针旋转而成的角为正角,顺时针旋转而成的角为负角。 点),(θρP 与点),(1θρ-P 关于极点中心对称。 点),(θρP 与点),(2πθ ρ+-P 是同一个点。 2 直角坐标化为极坐标的公式:.sin ;cos θρθρ==y x 极坐标化为直角坐标的公式:x y y x = +=θρtan ;222 注意:1 πθρ 20,0<≤> 2 注意θ的象限。 3圆锥曲线的极坐标方程的统一形式: 间的距离。 是对应的焦点与准线之是离心率,p e 时表示双曲线。时表示抛物线;时表示椭圆;1110>=<?='>?='为参数) t t y y t x x (sin cos { 00α α +=+=2202000)()()(sin cos {r y y x x r y y r x x =-+-+=+=对应的普通方程为为参数θθθ。轴上的椭圆的参数方程,焦点在这是中心在原点为参数的一个参数方程为椭圆x O b y a x b a b y a x )(sin cos {)0(12222???==>>=+程。轴上的双曲线的参数方,焦点在这是中心在原点为参数,的一个参数方程为,双曲线x O b y a x b a b y a x )2,20(tan sec {)00(122 22π?π????≠<≤==>>=-参数方程。 轴正半轴上的抛物线的,焦点在这是中心在原点为参数)的一个参数方程为抛物线x O t pt y pt x p px y (22{)0(222 ==>=

简单曲线的极坐标方程

极坐标方程 简单曲线的极坐标方程 【教学目标】 1.熟练掌握简单曲线的极坐标方程的求法,提高应用极坐标系的概念和极坐标和直角坐标的互化解决问题的能力. 2.自主学习,合作交流,探究并归纳总结简单曲线的极坐标方程的求法. 3.激情投入,高效学习,体验探究、归纳、总结的过程,增强应用数学的能力. 【教学重难点】 简单曲线的极坐标方程的求法 【教学过程】 一、复习、预习自学: 基础知识梳理问题导引 1.极坐标系的概念(P9) 如图,在平面内取一个定点O,叫做极点;自极点O引一条射线Ox,叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及正方向(通常取逆时针方向),这样就建立了一个极坐标系 设M是平面内一点,极点O与点M的距离|OM|叫做点M的极径记为;以极轴Ox为始边,射线OM为终边的角xOM叫做点M的极角,记为.有序实数对叫做点M 的极坐标记为. 2.极坐标和直角坐标的互化(P11) (1)极坐标化为直角坐标 , (2)直角坐标化为极坐标 , 3.曲线和方程(平面直角坐标系中(P12)) 曲线C上的点的坐标都是方程的解; 以方程的解为坐标的点都在曲线C上. (1)极坐标系和以前所学的平面直角坐标系有什么区别和联系? (2)那些只是是我们应该掌握的? (3)极坐标系中如何用方程表示曲线? 【复习、预习自测】 1.极坐标化为直角坐标:________,________ 2. 直角坐标化为极坐标: ________,________ 二、合作探究 探究点一:圆的极坐标方程(P12-13)

如图,半径为a的圆的圆心坐标为C(a0)(a>0).你能用一个等式表示圆上任意一点的极坐标满 足的条件吗? 探究点1图拓展1图 小结(P13):一般的,在极坐标系中,如果满足下列两个条件,那么方程叫做曲线C的极 坐标方程: (1) (2) 拓展1(P13):已知圆O的半径为r,建立怎样的极坐标系,可以使圆的极坐标方程更简单?并将所得结果与直角坐标方程进行比较. 探究点二:直线的极坐标方程(P13) 如图,直线l经过极点,从极轴到直线l的角是,求直线l的极坐标方程. 探究点2图拓展2图拓展3图 拓展2(P14):求过点A(a0)(a>0)且垂直于极轴的直线l的极坐标方程. 拓展3(P14):设P点的极坐标为直线l过点P且与极轴所成的角为,求直线l的极坐标方程. 【课堂小结】 1.知识方面_____________________________________________________________________ 2.数学思想方面_________________________________________________________________ 探究点三:圆锥曲线的极坐标方程 已知椭圆C的焦距为2c,长轴长为2a,离心率为e(0

常见曲线的极坐标方程3

常见曲线的极坐标方程(3) 学习目标: 1、进一步体会求简单曲线的极坐标方程的基本方法; 2、了解圆锥曲线的方程; 3、通过比较这些图形在极坐标系和平面直角坐标系中的方程,体会在用方程刻画平面 图形时选择适当坐标系的意义。 活动过程: 活动一:知识回顾 1、若圆心的坐标为),(00θρM ,圆的半径为r ,则圆的极坐标方程为 ; 2、(1)当圆心位于)0,(r M 时,圆的极坐标方程是: ; (2)当圆心位于),(2π r M 时,圆的极坐标方程是: 。 3、圆锥曲线统一定义: 活动二:圆锥曲线的极坐标方程 探究:设定点F 到定直线l 的距离为p ,求到定点F 和定直线l 的距离之比为常数e 的点的 轨迹的极坐标方程。

活动三:圆锥曲线的极坐标方程的简单应用 例1:2003年10月15—17日,我国自主研制的神舟五号载人航天飞船成功发射并按预定方 案安全、准确的返回地球,它的运行轨道先是以地球中心为一个焦点的椭圆,椭圆的近地点(离地面最近的点)和远地点(离地面最远的点)距离地面分别为200km 和350km ,然后进入距地面约343km 的圆形轨道。若地球半径取6378km ,试写出神舟五号航天飞船运行的椭圆轨道的极坐标方程。 例2:求证:过抛物线的焦点的弦被焦点分成的两部分的倒数和为常数。 例3:已知抛物线的极坐标方程为θρcos 14-= ,求此抛物线的准线的极坐标方程。

活动四:课堂小结与自主检测 1、按些列条件写出椭圆的极坐标方程: (1)离心率为0.5,焦点到准线的距离为6; (2)长轴为10,短轴为8。 2、圆心在极轴上,半径为a 的圆经过极点,求此圆过极点的弦的三等分点的轨迹方程。 3、自极点O 作射线与直线4cos =θρ相交于点M ,在OM 上取一点P ,使得12=?OP OM ,求点P 的轨迹方程。

简单曲线的极坐标方程

第 周 第 课时教案 时间: 教学主题 简单曲线的极坐标方程 一、教学目标 1、掌握极坐标方程的意义,掌握直线的极坐标方程 2、能在极坐标中给出简单图形的极坐标方程,会求直线的极坐标方程及与直角坐标之间的互化 3、过观察、探索、发现的创造性过程,培养创新意识。 二、教学重点、极坐标方程的意义,理解直线的极坐标方程,直角坐标方程与极坐标方程 的互化 教学难点:极坐标方程的意义 ,直线的极坐标方程的掌握 三、教学方法 讲练结合 四、教学工具 无 五、教学流程设计 教学 环节 教师活动 学生活动 圆的极坐标方程 一、复习引入: 问题情境 1、直角坐标系建立可以描述点的位置极坐标也有同样作用? 2、直角坐标系的建立可以求曲线的方程 极坐标系的建立是否可以求曲线方程? 学生回顾 1、直角坐标系和极坐标系中怎样描述点的位置? 2、曲线的方程和方程的曲线(直角坐标系中)定义 3、求曲线方程的步骤 4、极坐标与直角坐标的互化关系式: 二、讲解新课: 1、引例.如图,在极坐标系下半径为a 的圆的圆心坐标为 (a ,0)(a >0),你能用一个等式表示圆上任意一点, 的极坐标(ρ,θ)满足的条件? 解:设M (ρ,θ)是圆上O 、A 以外的任意一点,连接AM , 则有:OM=OAcos θ,即:ρ=2acos θ ①, 2、提问:曲线上的点的坐标都满足这个方程吗? 可以验证点O(0,π/2)、A(2a ,0)满足①式. 等式①就是圆上任意一点的极坐标满足的条件. 反之,适合等式①的点都在这个圆上. 3、定义:一般地,如果一条曲线上任意一点都有一个极坐 标适合方程0),(=θρf 的点在曲线上,那么这个

常见曲线的极坐标方程1

常见曲线的极坐标方程(1) 学习目标: 1、能在极坐标系中给出简单图形(过极点的直线)的方程; 2、通过比较这些图形在极坐标系和平面直角坐标系中的方程,体会在用方程刻画平面图形 时选择适当坐标系的意义; 3、理解极坐标系中直线的方程。 活动过程: 活动一:知识回顾 1、曲线的极坐标方程的意义。 2、(1)直线x y 1的极坐标方程是__________________________________ ; (2)曲线COS 1的直角坐标方程是____________________________ 。 活动二:直线的极坐标方程 探究:若直线l经过M (0,0),且直线I的倾斜角为,求直线I的极坐标方程。 (这里,直线I的倾斜角是指极轴与直线I向上的方向所成的角。) 小结:一些特殊位置的直线的极坐标方程: (1)当直线I过极点时,直线I的极坐标方程是:______________________________ ; (2) 当直线I过点M(a,0)且垂直于极轴时,直线I的极坐标方程是: _________________ (3)当直线I过点M(b,7)且平行于极轴时,直线I的极坐标方程是: _______________

活动三:直线的极坐标方程的求解 例1按下列条件写出直线的极坐标方程: (1)经过极点和点A(6,g)的直线;(2)经过点B(5,),且垂直于极轴的直线; (3)经过点C(8,6),且平行于极轴的直线; (4)经过点D(2.. 3,0),且倾斜角为务的直线。 例2:分析极坐标方程cos 6,sin 6的特点,说明他们分别表示什么曲线? 例3:求曲线cos 1 0关于直线7对称的曲线方程。

极坐标系与极坐标方程

一、坐标系 1、数轴 它使直线上任一点P 都可以由惟一的实数x 确定 2、平面直角坐标系 在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。它使平面上任一点P 都可以由惟一的实数对(x,y )确定。 3、空间直角坐标系 在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。它使空间上任一点P 都可以由惟一的实数对(x,y,z )确定。 二、平面直角坐标系的伸缩变换 定义:设P (x ,y )是平面直角坐标系中的任意一点,在变换???>=>=). 0(')0(,':μμλλφy y x x ④的作用下,点P (x ,y )对应到点P ’(x ’,y ’),称?为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。 三.例题讲解 例1 在平面直角坐标系中,求下列方程所对应的图形经过伸缩变换后的图形。 (1)2x+3y=0; (2)x 2+y 2=1 三、极坐标系 1、极坐标系的建立: 在平面上取一个定点O ,自点O 引一条射线OX ,同时确定一个单位长度和计算角度的正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系。 (其中O 称为极点,射线OX 称为极轴。) 2、极坐标系内一点的极坐标的规定 对于平面上任意一点M ,用 ρ 表示线段OM 的长度,用 θ 表示从OX 到 OM 的角度,ρ 叫做点M 的极径, θ叫做点M 的极角,有序数对(ρ,θ)就叫 做M 的极坐标。 特别强调:由极径的意义可知ρ≥0;当极角θ的取值范围是[0,2π)时,平面上的点(除去极点)就与极坐标(ρ,θ)建立一一对应的关系 .们约定,极点的极坐标是极径ρ=0,极角是任意角. 3、负极径的规定 在极坐标系中,极径ρ允许取负值,极角θ也可以去任意的正角或负角 当ρ<0时,点M (ρ,θ)位于极角终边的反向延长线上,且OM=ρ。 M (ρ,θ)也可以表示为))12(,()2,(πθρπθρ++-+k k 或 )(z k ∈ 4、数学应用 例1 写出下图中各点的极坐标 A (4,0) B (2 ) C ( ) D ( ) E ( ) F ( ) G ( ) 规定:极点的极坐标是ρ=0,θ可以取任意角。 变式训练

极坐标方程必背公式

极坐标方程必背公式 坐标系 1.极坐标系的概念 在平面上取一个定点O 叫做极点;自点O 引一条射线Ox 叫做极轴;再选定一个长度单位、角度单位(通常取弧度)及其正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系(如图). 设M 是平面上的任一点,极点O 与点M 的距离|OM |叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的∠xOM 叫做点M 的极角,记为θ.有序数对(ρ,θ)称为点M 的极坐标,记作M (ρ,θ). 2.直角坐标与极坐标的互化 把直角坐标系的原点作为极点,x 轴正半轴作为极轴,且在两坐标系中取相同的长度单位.如图,设M 是平面内的任意一点,它的直角坐标、极坐标分别为(x ,y )和(ρ,θ),则????? x =ρcos θ,y =ρsin θ或????? ρ2=x 2+y 2,tan θ=y x (x ≠0). 3.圆的极坐标方程 若圆心为M (ρ0,θ0),半径为r 的圆方程为ρ2-2ρ0ρcos(θ-θ0)+ρ20-r 2=0. 几个特殊位置的圆的极坐标方程 (1)当圆心位于极点,半径为r :ρ=r ; (2)当圆心位于M (a,0),半径为a :ρ=2a cos θ; (3)当圆心位于π(,)2 M a ,半径为a :ρ=2a sin θ. 4.直线的极坐标方程 若直线过点M (ρ0,θ0),且极轴到此直线的角为α,则它的方程为:ρsin(θ-α)=ρ0sin

(θ0-α). 几个特殊位置的直线的极坐标方程 (1)直线过极点:θ=θ0和θ=π-θ0; (2)直线过点M (a,0)且垂直于极轴:ρcos θ=a ; (3)直线过π(,)2 M b 且平行于极轴:ρsin θ=b . 方法总结:进行极坐标方程与直角坐标方程互化的关键是抓住互化公式:x =ρcos θ,y =ρsin θ,ρ2=x 2+y 2,tan θ=y x (x ≠0). 练习、在直角坐标系xOy 中,直线l 的参数方程为???-=+-=t y t x 32(t 为参数),以O 为极点, x 轴的非负半轴为极轴建立极坐标系,并在两种坐标系中取相同的长度单位,曲线C 的极坐标方程为0cos 2=+θρ. 把曲线C 的极坐标方程化为普通方程;

新人教选修4-4教案极坐标系--简单曲线的极坐标方程

三、简单曲线的极坐标方程 【基础知识导学】 1、极坐标方程的定义:在极坐标系中,如果平面曲线C 上任一点的极坐标中至少有一个满足方程0),(=θρf ,并且坐标适合方程0),(=θρf 的点都在曲线C 上,那么方程 0),(=θρf 叫做曲线C 的极坐标方程。 1. 直线与圆的极坐标方程 ① 过极点,与极轴成α角的直线 极坐标议程为 αθραθtan tan )(=∈=或R ②以极点为圆心半径等于r 的圆的 极坐标方程为 r =ρ 【知识迷航指南】 例1求(1)过点)4 ,2(π A 平行于极轴的直线。 (2)过点)3 , 3(πA 且和极轴成 4 3π 角的直线。 解(1)如图,在直线l 上任取一点),(θρM ,因为)4 ,2(π A ,所以|MH|=224 sin =?π 在直角三角形MOH 中|MH|=|OM|sin θ即2sin =θρ,所以过点)4 ,2(π A 平行于极轴的直线 为2sin = θρ。 (2)如图 ,设M ),(θρ为直线l 上一点。 )3 , 3(π A , OA =3,3 π = ∠AOB x

由已知4 3π=∠MBx ,所以125343π ππ=-=∠OAB ,所以127125πππ= -=∠OAM 又θπ θ-= -∠=∠4 3MBx OMA 在?MOA 中,根据正弦定理得 12 7sin )43sin(3πρ θπ= - 又426)34sin(127sin +=+=πππ 将)4 3sin(θπ -展开化简可得23233)cos (sin += +θθρ 所以过)3 ,3(π A 且和极轴成 4 3π 角的直线为:23233)cos (sin +=+θθρ 〔点评〕求曲线方程,关键是找出曲线上点满足的几何条件。将它用坐标表示。再通过代数变换进行化简。 例2(1)求以C(4,0)为圆心,半径等于4的圆的极坐标方程。(2)从极点O 作圆C 的弦ON ,求ON 的中点M 的轨迹方程。 解:(1)设),(θρp 为圆C 上任意一点。圆C 交极轴于另一点A 。由已知 OA =8 在直角?AOD 中θcos OA OD =,即 θρcos 8=, 这就是圆C 的方程。 (2)由4==OC r 。连接CM 。因为M 为弦ON 的中点。所以ON CM ⊥,故M 在以OC 为直径的圆上。所以,动点M 的轨迹方程是:θρcos 4=。 〔点评〕 在直角坐标系中,求曲线的轨迹方程的方法有直译法,定义法,动点转移法。在极坐标中。求曲线的极坐标方程这几种方法仍然是适用的。例2中(1)为直译法,(2)为定义法。此外(2)还可以用动点转移法。请同学们尝试用转移法重解之。 例3 将下列各题进行直角坐标方程与极坐标方程的互化。 (1)x y 42= (2)3 π θ= (3)12 cos 2 =θ ρ (4)42cos 2=θρ 解:(1)将θρθρsin ,cos ==y x 代入x y 42=得θρθρcos 4)sin (2=化简得 θθρsin 4sin 2= (2)∵x y = θtan ∴ 33tan ==x y π 化简得:)0(3≥=x x y (3)∵12cos 2=θρ ∴ 12 cos 1=+θ ρ。即2cos =+θρρ 所以 222=++x y x 。 化简得 )1(42--=x y 。 (4)由42cos 2=θρ 即4)sin (cos 222=-θθρ 所以 422=-y x 〔点评〕 (1)注意直角坐标方程与极坐标方程互化的前提。 (2)由直角坐标求极坐标时,理论上不是唯一的,但这里约定πθρ20,0<≤> (3)由极坐标方程化为极坐标方程时,要注意等价性。如本例(2)中。由于

高中数学-公式-极坐标

极坐标、参数方程 1、经过点),(000y x P 的直线参数方程的一般形式是:? ??+=+=)(00是参数t bt y y at x x 。 2、若直线l 经过点α,倾斜角为),(000y x P ,则直线参数方程的标准形式是:???+=+=)(sin cos 00是参数t t y y t x x α α。 其中点P 对应的参数t 的几何意义是:有向线段P P 0的数量。 若点P 1、P 2、P 是直线l 上的点,它们在上述参数方程中对应的参数分别是,和、t t t 21则:2121t t P P -=;当点P 分有向线段λ成定比21P P 时,λ λ++= 121t t t ;当点P 是线段P 1P 2的中点时,221t t t +=。 3、圆心在点)(b a C ,,半径为r 的圆的参数方程是:? ??+=+=)(sin cos 是参数αααr b y r a x 。 4、若以直角坐标系的原点为极点,x 轴正半轴为极轴建立极坐标系,点P 的极坐标为,),(θρ直角坐标为),(y x , 则=x θρcos ,=y θρsin ,x y tg y x =+=θρ,22。 5、 经过极点,倾斜角为α的直线的极坐标方程是:απθαθ+==或, 经过点)0(,a ,且垂直于极轴的直线的极坐标方程是:a =θρcos , 经过点)2 (π ,a 且平行于极轴的直线的极坐标方程是:a =θρsin , 经过点)(00θρ,且倾斜角为α的直线的极坐标方程是:)sin()sin(00αθραθρ-=-。 6、 圆心在极点,半径为r 的圆的极坐标方程是r =ρ; 圆心在点a a ,半径为, )0(的圆的极坐标方程是θρcos 2a =; 圆心在点a a ,半径为,)2 (π 的圆的极坐标方程是θρsin 2a =; 圆心在点)(00θρ,,半径为r 的圆的极坐标方程是200202)cos( 2r =--+θθρρρρ。 7、若点M )(11θρ,、N )(22θρ,,则=MN )cos(221212221θθρρρρ--+。

6.9 在极坐标系下二重积分的计算-习题

1.把 (,)D f x y dxdy ??表示为极坐标形式的二次积分,其中积分区域D 是 ⑴2 222 a x y b ≤+≤,其中0a b <<; 【解】如图,积分区域2 2 2 2 a x y b ≤+≤是圆环, 作变换cos sin x r y r θθ=??=? ,得积分函数(,)(cos ,sin )f x y f r r θθ=, 积分区域D 的边界2 2 2 2 a x y b ≤+≤变换为02θπ≤≤,a r b ≤≤, 即得 (,)D f x y dxdy ?? 20 (cos ,sin )b a d f r r rdr πθθθ=??。 ⑵22 2x y x +≤ 【解】如图,积分区域为圆心在(1,0),半径为1的圆, 作变换cos sin x r y r θ θ=?? =? ,得积分函数(,)(cos ,sin )f x y f r r θθ=, 积分区域D 的边界2 2 2x y x +≤转换为2 2 ππθ- ≤≤ ,02cos r θ≤≤, 即得 (,)D f x y dxdy ?? c 22 2os (cos ,sin )a d f r r rdr θ π πθθθ-=?? 。 2.化下列二次积分为极坐标形式的二次积分: ⑴ 2 3220 (x x dx f x y dy +? ; 【解】由二次积分 2 3220 (x x dx f x y dy +? 得积分区域D 的边界为X 型区域:

上曲线3y x =,下曲线y x =,左直边0x =,右直边2x =。 据此作出图形如下: 作变换cos sin x r y r θθ =?? =?,得积分函数22 ()()r y f x f =+, 上曲线3y x =转换为sin 3cos r r θθ=,即为3 πθ=, 下曲线y x =转换为sin cos r r θθ=,即为4 πθ=, 右直边2x =转换为sin 2r θ=,即为2 sin r θ =, 于是,积分区域D 的边界转换为 4 3 ππθ≤≤ ,2 0cos r θ ≤≤ , 即得 2 322 ()x x dx f x y dy +? ? 23cos 0 4 ()d f r rdr π θπθ=?? 。 ⑵ 2 1 10 1(,)x x dx f x y dy --?? 【解】由二次积分 2 1 10 1(,)x x dx f x y dy --?? ,知积分区域D 的边界为X 型区域: 上曲线2 1y x =-,下曲线1y x =-,左直边0x =,右直边1x =, 据此作出图形如下: 作变换cos sin x r y r θ θ=?? =? ,得积分函数(,)(cos ,sin )f x y f r r θθ=, 上曲线2 1y x =-2 sin 1(cos )r r θθ=-,即为1r =, 下曲线1y x =-转换为sin 1cos r r θθ=-,即为1 sin cos r θθ = +,

简单曲线的极坐标方程练习题有答案

简单曲线的极坐标方程 1.在极坐标系中,求出满足下列条件的圆的极坐标方程 圆心位置 极坐标方程 图 形 圆心在极点(0,0) 半径为r ρ=r (0≤θ<2π) 圆心在点(r ,0) 半径为r ρ=2r cos_θ (-π2≤θ<π2 ) 圆心在点(r ,π2) 半径为r ρ=2r sin_θ (0≤θ<π) 圆心在点ρ=-2r cos_θ (r ,π) 半径为r (π2≤θ<3π2 ) 圆心在点 (r ,3π 2) 半径为r ρ=-2r sin_θ (-π<θ≤0) 圆心C (ρ0, θ0),半径为r ρ2-2ρ0ρcos(θ- θ0)+ρ20-r 2 =0. 2.在极坐标系中,求出满足下列条件的直线的极坐标方程

3.将下列曲线的直角坐标方程化为极坐标方程 ①x+y=0;②x2+y2+2ax=0(a≠0). (2)将下列曲线的极坐标方程化为直角坐标方程;并判定曲线形状: ①ρcos θ=2;②ρ=2cos θ;③ρ2cos 2θ=2;④ρ = 1 1-cos θ . [思路点拨] (1)先把公式x=ρcos θ,y=ρsin θ代入 曲线(含直线)的直角坐标方程,再化简. (2)先利用公式ρcos θ=x,ρsin θ=y,ρ2=x2+y2代入曲线的极坐标方程,再化简.直线位置极坐标方程图形 过极点, 倾斜角为α (1)θ=α(ρ∈R) 或θ= α+π(ρ∈R) (2)θ=α(ρ≥0) 和θ= π+α(ρ≥0) 过点(a,0),且 与极轴垂直 ρcos_θ=a ? ? ? ? ? - π 2 <θ< π 2 过点 ? ? ? ? ? a, π 2 ,且与 极轴平行 ρsin_θ=a(0<θ<π) 过点(a,0)倾斜角为 α ρsin(α-θ)=a sin α(0<θ<π) 过点P(ρ0,θ0), 倾斜角为α ρsin(α-θ)= ρ0sin(α-θ0).

简单曲线的极坐标方程精品教案

简单曲线的极坐标方程 【教学目标】 知识目标:进一步学习在极坐标系求曲线方程 能力目标:求出并掌握圆锥曲线的极坐标方程 德育目标:通过观察、探索、发现的创造性过程,培养创新意识。 【教学重点】 圆锥曲线极坐标方程的统一形式 【教学难点】 方程中字母的几何意义 【教学方法】 启发、诱导发现教学。 【教学过程】 一、复习引入: 1.问题情境 情境1:直线与圆在极坐标系下都有确定的方程,我们熟悉的圆锥曲线呢? 情境2:按通常情况化直角坐标方程为极坐标方程会得到让人满意的结果吗? 2.学生回顾 (1)求曲线方程的步骤 (2)两种坐标互化前提和公式 (3)圆锥曲线统一定义 二、讲解新课: 1.由必修课的学习我们已经知道:与一个定点的距离和一条定直线(定点不在定直线上)的距离的比等于常数e的点的轨迹,当e=1时,是抛物线。那么当01时,点的轨迹是什么曲线呢?可以借助极坐标系进行讨论。 2.圆锥曲线的统一方程 P e 设定点的距离为,求到定点到定点和定直线的距离之比为常数的点的轨迹的极坐标方程。分析:①建系 ②设点 ③列出等式

④用极坐标、表示上述等式,并化简得极坐标方程 ρθ说明:(1)为便于表示距离,取为极点,垂直于定直线的方向为极轴的正方向。 F l (2)表示离心率,表示焦点到准线距离。 e P O F B 学生根据分析求出圆锥曲线的统一方程, 1cos ep e -θρ=3.圆锥曲线的统一方程, 化为直角坐标方程为1cos ep e -θρ=,由此可由e 与0和1的大小关系确定曲线形状。 22 2222(1)2px y p e x e e -+-=4.思考交流:学生讨论交流课本P18页的问题:当01时,方程(1)表示了什么曲θ线?角在什么范围内变化即可得到曲线上所有的点? θ2.例题讲解 例题:2003年10月15—17日,我国自主研制的神舟五号载人航天飞船成功发射并按预定方案安全、准确的返回地球,它的运行轨道先是以地球中心为一个焦点的椭圆,椭圆的近地点(离地面最近的点)和远地点(离地面最远的点)距离地面分别为200km 和350km ,然后进入距地面约343km 的圆形轨道。若地球半径取6378km ,试写出神舟五号航天飞船运行

(完整word版)参数方程和极坐标方程知识点归纳

专题九:坐标系与参数方程 1、平面直角坐标系中的伸缩变换 设点),(y x P 是平面直角坐标系中的任意一点,在变换?? ?>?='>?='). 0(,y y 0), (x,x :μμλλ?的作用 下,点),(y x P 对应到点),(y x P ''',称?为平面直角坐标系中的坐标伸缩变换,简称伸缩 变换。 2、极坐标系的概念 在平面内取一个定点O ,叫做极点;自极点O 引一条射线Ox 叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系。 点M 的极坐标:设M 是平面内一点,极点O 与点M 的距离||OM 叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的xOM ∠叫做点M 的极角,记为θ。有序数对),(θρ叫做点M 的极坐标,记为),(θρM . 注: 极坐标),(θρ与)Z )(2,(∈+k k πθρ表示同一个点。极点O 的坐标为)R )(,0(∈θθ. 若0<ρ,则0>-ρ,规定点),(θρ-与点),(θρ关于极点对称,即),(θρ-与 ),(θπρ+表示同一点。 如果规定0,02ρθπ>≤<,那么除极点外,平面内的点可用唯一的极坐标),(θρ表示(即一一对应的关系);同时,极坐标),(θρ表示的点也是唯一确定的。 极坐标与直角坐标都是一对有序实数确定平面上一个点,在极坐标系下,一对有序实数ρ、θ对应惟一点P (ρ,θ),但平面内任一个点P 的极坐标不惟一.一个点可以有无数个坐标,这些坐标又有规律可循的,P (ρ,θ)(极点除外)的全部坐标为(ρ,θ+πk 2)或(ρ-,θ+π)12(+k ),(∈k Z ).极点的极径为0,而极角任意取.若对ρ、θ的取值范围加以限制.则除极点外,平面上点的极坐标就惟一了,如限定ρ>0,0≤θ<π2或ρ<0,π-<θ≤π等. 极坐标与直角坐标的不同是,直角坐标系中,点与坐标是一一对应的,而极坐标系中,点与坐标是一多对应的.即一个点的极坐标是不惟一的. 3、极坐标与直角坐标的互化 设是平面内任意一点,它的直角坐标是(,)x y ,极坐标是(,)ρθ,从图中可以得出: )0(tan ≠= x x y θ? ?? y 图1

相关主题
文本预览
相关文档 最新文档