当前位置:文档之家› 铁路路基设计原则概要

铁路路基设计原则概要

铁路路基设计原则概要
铁路路基设计原则概要

路基设计原则

1 路基设计原则

1.1基床结构、厚度及填料

路基基床由表层和底层组成,不同设计速度目标值的各层厚度及填料见表1。

基床厚度及填料表表1

速度标准部位厚度填料要求

250km/h 路堤

基床表层0.7m 级配碎石

基床底层 2.3m

A、B组填料或者0.1m中粗砂

夹一层复合土工膜+弱风化泥

岩夹山岩或者改良土

路堑

基床表层0.7m 级配碎石

基床底层0.5~1.0m 换填0.5~1.0m就地改良土

=160km/h 路堤

基床表层0.6m A组填料

基床底层 1.9m

A、B组填料或者0.1m中粗砂

夹一层复合土工膜+弱风化泥

岩夹山岩或者改良土

路堑

基床表层0.6m A组填料

基床底层0.5m

膨胀土地段换填0.5m就地改良

级配碎石、A组填料的材质、粒径等性能指标应分别满足《客运专线基床表层级配碎石暂行碎石技术条件》、《铁路路基设计规范》(TB10001-2005)的要求。压实标准满足下表2要求。

基床表层填料压实标准表表2

填料类型轨道类型

压实标准

地基系数K30

(MPa/m)

动态变形模量

Evd(MPa)

压实系数

级配碎石

有碴轨道

(250km/h)

≥190≥55=0.95

A组填料(砾石、碎石类)

有碴轨道

(=160km/h)

≥150/ =0.95

中粗砂≥130=0.95 基床底层采用A、B组填料或弱风化泥岩夹砂岩或改良土填筑。压实标准满足表3~4要求。

基床底层填料及压实标准(250km/h)表3

填料类型压实标准改良细粒土砂类土及细砾

碎石类及粗砾

A、B组填料或弱风化泥岩夹砂岩或改良土地基系数K30

(MPa/m)

=110 =130 =150 动态变形模量

Evd(MPa)

=40 =40 =40 压实系数K =0.95

注:压实系数K为重型击实标准;改良土压实标准:当采用化学方法改良时,除符合本表规定外,还需要满足设计提出的技术要求。

基床底层填料及压实标准(=160km/h)表4

填料类型压实标准改良土砂类土(粉砂

除外)

砾石类碎石类块石类

A、B组填料或弱风

化压实系数K =0.93

地基系数

K30

(MPa/m)

=100 =100 =120 =130 =150

1.2 低矮路堤

1)250km/h地段

填土高度H=0.7m时,采用路堤式路堑结构,基床表层级配碎石满足相关要求。

基床表层范围内填料应满足Ps>1.5MPa或[s]>0.18MPa,否则应设改良土或者加固措施处理。当基床范围内的地基土满足Ps>1.5MPa 或[s]>0.18MPa但不满足基床底层土质及压实标准时,按下列情况分别进行处理:

①填土高度 0.7m

a、当地基为粘性土时,应挖除地表厚度不小于0.5m换填A、B 组填料或改良土,于换填顶部铺设复合土工膜,两侧坡脚外设置排水沟,排除基床表层积水和地下水。

b、当地基土为砂类土或碎石类土时,应将地表整平碾压。

②填土高度 H<0.7m时:

a、当地基为粘性土时,在基床表层下换填A、B组填料或改良土,厚度不小于 1.0m,并于换填顶部铺设复合土工膜,两侧坡脚外设置排水沟,排除基床表层积水和地下水。

b、当地基土为砂类土或碎石土时,应将地基翻挖回填厚度不小于0.5m,并整平碾压,并于基床底层顶面铺设复合土工膜。

③当地下水位较高时,复合土工膜改为复合防水板,加强防排水。必要时两侧侧沟(排水沟)底部设纵向盲沟。

2)=160km/h地段

路堤高度小于2.5m的低矮路堤,基床表层A组填料满足相关要求。基床底层天然路基的静力触探比贯入阻力Ps值不得小于1.5MPa 或天然地基基本承载力[s]>0.18MPa,否则应设改良或者加固措施处理。当基床范围内的地基土满足Ps>1.5MPa或[s]=0.18MPa但不满足

基床底层土质及压实标准时,需要做换填处理。一般土层地段换填不小于0.3m、膨胀土(岩)地段换填不小于0.5m的合格填料或改良土,并于基床底层顶部铺设复合土工膜。当地下水位较高时,复合土工膜改为复合防水板,加强防排水。必要时两侧侧沟(排水沟)底部设纵向盲沟。

3)换填及翻挖部分应执行相应部位的压实标准

1.3土质、风化软质岩。全风化硬质岩路堑

1)250km/h地段

基床表层采用级配碎石,基床底层岩性应满足基底地基条件(Ps=1.5MPa及[s]=0.18MPa),否则在基床底层范围内换填、改良或加固处理。对全风化硬质岩、风化软质岩及土质路堑,其土质不满足基床底层填料条件时,应换填就地改良土厚度不小于0.5m;膨胀土路堑,其换填就地改良土厚度不小于1.0m。当地下水位较低时,在换填顶部铺设一层复合土工膜;当地下水丰富且水位较高时,在换填底部铺设一层复合防水板,两侧侧沟底部设纵向盲沟。当挖除换填困难或换填深度较深时,采用水泥搅拌桩、CMS桩、CFG桩等复合地基加固。

2)=160km/h地段

基床表层采用A组填料,基床底层岩性满足基底地基条件(Ps=1.5MPa及[s]=0.18MPa),否则在基床底层范围内换填、改良或加固处理。换填时应根据地层情况,一般土层换填不小于0.3m、膨胀土(岩)地段换填不小于0.5m的合格填料或改良土,并于基床地

层顶部设置两布一膜复合土工布。当地下水丰富且水位较高时,在换填底部铺设一层复合防水板,两侧侧沟底部设纵向盲沟。

3)换填部分执行相应部位的压实标准

1.4 路基标准横断面

路基标准横断面

路基标准横断面形式见图2-1~图2-5。

(一般土质、全风化硬质岩、软质岩)(地下水位较深)

1.5 过渡段

1.5.1 路基与桥梁过渡段

1)250km/h地段

①路桥过渡段长度确定:L=n(H-h)+5,

若计算出的过渡段长度不足20m时,按20m设置。

式中 L——过渡段长度(m)(当L=20时,调整n值使L=20) H——台后路堤高度(m) h——基床表层厚度(m)

②过渡段设置见图6~图7,过渡段为倒梯形,采用级配碎石掺入3%水泥填筑,与桥台连接的20m范围内基床表层级配碎石内应掺入5%水泥。过渡段压实度满足地基系数K30=150MPa/m、动态变形模量Evd(MPa)=50MPa及孔隙率n<28%的要求。

③台后基坑应以混凝土回填或以级配碎石分层填筑压实,并用小型平板振动机压实。路堤基底原地面平整碾压后,地基系数K30不小于60MPa/m。

④过渡段应与其连接的路堤按一体同时施工,并将过渡段与连接路堤的碾压面,按大致相同的高度进行填筑。

2)=160km/h地段

路堑过渡段设置方式见图8。过渡段填筑A组填料,过渡段采用基床底层的填筑压实标准。

1.5.2 路堤与横向结构物(立交框构、箱涵等)过渡

1)250km/h地段

路基与横向结构物(立交框构、箱涵等)连接处均需设置过渡段,过渡段采用倒梯形过渡,填方地段过渡段设置方案按以下原则办理;对特殊设置的过渡段单独研究确定。

过渡段及基坑的填料和压实标准,与路堤与桥梁过渡段相同。

横向结构物顶距路肩距离h3>1.5n时,L1=2+2*h2(h2为涵顶距地面高度,过渡段按图2-9~图2-10设计。

横向结构物顶距路肩距离h3=1.5m时,其顶面应填筑级配碎石,过渡段长度:L2=2+2*(H-h1)(H为填高,h1为基床表层厚度)。横向结构物顶部及其两侧各20m范围内基床表层的级配碎石应掺入5%水泥。过渡段按图2-11~图2-12设计。

当构筑物轴线与线路中线斜交时,首先采用级配碎石掺3%水泥填筑斜交部分,然后再设置过渡段,以减小单根轨枕横向刚度的差异。

2)=160km/h地段

路肩至横向构筑物顶高差小于1.5m的较大孔径(大于1.5m)横向构筑物与路肩间设置过渡段,设置方式见图2-13.过渡段填筑A组填料,过渡段采用基床底层的填筑压实标准。

1.5.3路堤与路堑过渡段

全线路堤与路堑连接处均设置过渡段

1)路堤与土质、软质岩及全风化硬质岩路堑过渡段

当路堤与路堑连接处为软质岩石、全风化硬质岩或土质路堑时,顺原地面纵向挖成1:2(=160km/h地段为1:1.5)的坡面,坡面上开挖台阶,台阶高度0.6m左右,过渡段材料与路堤相同。见图2-14.

2)横向半堤半堑及不同岩土组合

半填半挖路基轨道下横跨挖方与填方两部分时,应根据不同岩性、不同设计速度目标值挖大台阶换填基床表层填料。宽度超过股道中心不小于2m,深度不小于1m,并应设置4%的纵横向排水坡。

1.5.4路基与隧道(路基与挖方桥台)过渡段

设计速度目标值250km/h地段,土质、软质岩及强风化硬质岩路堑与隧道连接处,在路堑基床范围内设置过渡段,采取级配碎石掺入5%水泥渐变厚度过渡,过渡段长度不小于20m。见图2-15.

路基与挖方桥台过渡段的参照路基与隧道过渡段设计。

1.5.5不同速度目标值基床过渡段

不同速度目标值的基床结构形式不同,在低速渐变过渡。过渡段长度一般不小于10m。

1.5.6两桥(隧)之间长度小于150m的短路基

设计速度目标值250km/h的短路基地段,为是路基与桥(隧)刚度协调匹配,针对不同情况,分别采取以下措施。

1)短路基长度小于60m时

短路基填筑水泥稳定级配碎石,路基面形状与宽度同标准横断

面,设置形式见图2-16、路堑地段的基床范围根据基底岩性换填级配碎石(硬质岩基底除外),换填宽度不超过侧沟内侧沟壁。短路基路肩下2m范围内用级配碎石掺5%水泥填筑,其余用A、B组或改良土填筑。基底清除表层浮土,必要时进行基底处理,要求地基承载力不小于0.18MPa,并保证路堤基底的整体稳定。

2)短路基长度大于60m但小于150m时

短路基填筑水泥稳定级配碎石,路肩面形状与宽度同标准横断面,设置形式见图2-17。路堑地段的基床范围根据基底岩性(硬质岩基底除外)换填水泥稳定级配碎石,换填宽度不超过侧沟内侧沟壁。短路基路堤上部0.7~2.0m填筑级配碎石掺5%水泥,下部填A、B组或改良土。基底清除表层浮土,必要时进行基底处理,要求地基承载力不小于0.18MPa,并保证路堤的整体稳定。

2 路基填料分类标准

2.1国外路基填料分类标准

土的主要特征是分散性、复杂性和易变性。土是由固体颗粒和孔隙组成的分散体系,土颗粒之间没有或只有很弱的联结,因此,土的强度低,容易变形。在铁路工程中,路基大部分是用土填筑而成的,土作为建筑材料要求用碾压的方法将其压实,以保证路基的强度及稳定性,因此,铁道工程中需要研究土的压实性,包括土的压实机理、压实方法及压实指标的评价等等,这首先要从路基土的分类研究。

铁路路基土的合理分类具有重要的工程实际意义。自然界土的成分、结构及性质千变万化,表现的性质也各不相同。如果能把工程性质接近的一些土归在同一类,那么就可以大致判断这类土的工程特性。

国外关于土的分类标准很多,有的根据土的结构构造分类,有点依据土的工程性质分类,有的考虑了土的级配和可塑性,不同国家根据各自的地域特点和需要,制定了相应的分类系统和分类方法。

2.1.1日本铁路路基填料和分类方法

日本国铁于1978年11月9日指定的《铁路土工结构设计标准》中规定,把土质填料和岩质填料适用条件分成5群。如表1所示。

表1 日本铁路路基填料分类标准

群记号土质和岩质

A群GW、GP、G-M、G-V、GM、SW、S-M、S-C,硬石块(剥离性严重的除外)

B群G-O、GC、S-V、S-O、SP、SM、SC,硬石块(剥离性严重的)、软石块。脆

性石块(D1群的除外)

C群GO、GV、SV、ML、CL

D1群MH、CH、脆性石块(粘土化的,施工后风化发展的,碾压后泥土化的)D2群SO、OL、OH、OV、Pt、MK

V群VH1、VH2

A群——容易确保地基系数K30大于等于1.1MPa/cm,且残余下

沉量很小;在列车的重复荷载作用下,塑性变形量和弹性变形量很小,是一种适宜做路基填料的优质填料。

B群——容易确保地基系数K30大于等于0.7MPa/cm,且在自重

作用下压缩下沉的时间不长;另外,填料经过适当改良处理后,能容

易的确保地基系数K30大于等于1.1MPa/cm,是一种施工性能好,适

宜作为路堤填料。

C群——有机物、含火山灰质细粒土的砾质土和细粒土,是一种

低液限的土,如果施工管理得当,能确保地基系数K30大于等于0.7MPa/cm;另外,如果填料经过适当改良处理,能确保地基系数K30

大于等于1.1MPa/cm;压缩性比B群的差,它是用作路堤填料的最低

限度的普通土。

D群——压缩性高,施工性能不良,是不能用作路堤填料的土质

和脆弱岩石。

V群——是火山灰质粘性土,就工程特性来说,重塑后软化且强

度显著降低,施工性能比其它土壤坏;这种粘性土与基床表层邻接时,容易翻浆冒泥,不适合用作路堤填料。

2.1.2德国铁路路基填料分类标准

《德国铁路土工建筑物规范》(DS836)中,铁路路基填料的分类

标准如下:

(1)非粘性土

表2 德国铁路路基填料分类标准(无粘性土)土类代码名称特征

粗粒土GE 砾石颗粒级配紧密GW 砾石颗粒级配分散GI 砾石颗粒混合级配SE 砂颗粒级配紧密SW 砂颗粒级配分散SI 砂颗粒混合级配

颗粒混合型土壤GU 砾石流砂性GT 砾石粘性SU 砂流砂性GU 砾石流砂性强T 砾石粘土性强SU 砂流砂性强ST 砂粘性强SI 砂粘性GT 砾石粘性

细粒土

U 流砂

UL 略有塑性的流砂UM 中性流砂

T 粘土

TU 略有可塑性粘土TM 中等可塑性粘土TA 可塑性强的粘土

有机土、有动植物残杂的有机物土壤和有机物土OU

有机混合物流砂和有机流

OT

有机混合物粘土和有机粘

OH

有腐殖质土混合物的粗粒

及混合型土

OK

有石灰石和砾石混合物的

粗粒及混合型土

HN

无分解直至有部分分解的

泥炭

HZ 分解的泥炭

F 淤泥

其中粗粒土可以作为优质路基填料,是基床表层的首选材料。除

OH、OK、HN、HZ、F类外,其他类土均可以作为铁路路基填料。

3.1.3 铁盟路基填料分类标准

铁盟将路基填料分成QS0、QS1、QS2、QS3四级。

QS0为不适用土,不能用作基层(基床表层)填料,一定要用时,需要采取措施,如加掺料,进行加固或铺设土工布。

QS1为不良土,排水条件好时可以使用。这种土质可以通过适当方法改良,如加掺料。

QS2为中等好土

QS3为好土

表3 铁盟路基填料分类标准

土质级别土质

QS0

松软的有机土

细粒土(细粒)含量大于15%的膨胀性、过湿不易压实的土

触变性土

可溶物质的土(盐渍土、石膏)

有机质与矿物混合物、工业污染废料

QS1

细粒含量大于40%的土

严重风化岩:干容重小于17kN/m3,及极易破碎的白垩、泥灰

岩、风化页岩

QS1(肯定水文地质条件好时划为

QS2级)

细粒含量15%~40%的土

风化岩:干容重小于17kN/m3,及弱易破碎的白垩、未风化页

沉积岩:干燥Deval硬度小于6,洛杉矶硬度大于33

QS2(肯定水文地质条件好时划为

QS2级)

细粒含量15%~5%的土

细粒含量小于5%,颗粒均匀的砂

中等硬岩:6=Deval硬度=9及30=洛杉矶硬度33

QS3

细粒含量小于5%的土

硬岩:Deval硬度=9,洛杉矶硬度=30

2.2我国铁路路基填料分类标准

我国铁路系统一直存在两种分类标准,即《铁路路基设计规范》

中的“填料分类”和《铁路工程地质技术规范》中的“岩土分类”,《铁路路基设计规范》(TBJ-2005)与《铁路工程地质技术规范》(TBJ12-96)对路基填料的分类差别主要在细粒土上。铁路路基设计规范中路基填料是按照塑性图分类,而铁路工程地质技术规范则是按照塑性指数分类。该报告主要研究铁路路基填料的工程性质,故采用《铁路路基设计规范》中的填料分类标准。

在《铁路路基设计规范》(TBJ447-2005)中,路基填料根据其性质和使用条件分成A、B、C、D、E五个组。

A组——优质填料,级配良好的碎石、含土碎石,级配良好的粗圆砾、粗角砾、细圆砾、细角砾,级配良好的含土粗圆砾、含土粗角砾、含土细圆砾、含土细角砾,级配良好的砾砂、粗砂、中砂,含土砾砂、含土粗砂、含土中砂、含土细砂。

B组——良好填料,级配不好的碎石、含土碎石,细粒含量15%~30%d的土质碎石,级配不好的粗圆砾、粗角砾、细圆砾、细角砾,级配不好的含土粗圆砾、含土粗角砾、含土细圆砾、含土细角砾,细粒含量15%~30%的土质粗圆砾、土质粗角砾、土质细圆砾、土质细角砾,级配良好的细砂,级配不好的砾砂、粗砂、中砂,细粒含量大于15%的含土砾砂、含土粗砂、含土中砂。

C组——可以使用的填料,细粒含量大于30%的土质碎石,级配不好的细砂,含土细砂,粉砂,低液限粉土、粉质粘土、粘土D组——不应使用的填料,高液限粉土、粉质粘土、粘土

E组——严禁使用的填料,如有机土。

铁路路基检测技术条件(DOC)

附件-铁路路基检测技术条件(建议稿) 1 总则 (1) 2 路基动态检定技术 (1) 2.1路基动态检测项目 (1) 2.2路基动态检测方法 (1) 2.3路基动态检测数据处理方法 (1) 2.4路基动态评定技术 (2) 3 车载探地雷达路基检测及评价技术条件 (2) 3.1基本规定 (2) 3.2设备要求 (3) 3.3现场检测 (4) 3.4数据处理与解释 (7) 3.5状态分析与评价 (8) 4 翻浆冒泥道砟陷槽控制指标试验 (11) 4.1基本规定 (11) 4.2仪器设备 (11) 4.3试验要点 (11) 4.4结果处理 (13) 5 冲刷冲蚀控制指标试验 (13) 5.1路基坡面冲刷控制指标试验 (13) 5.2路基本体内部的冲蚀控制指标试验 (14) 6 其他物探检测方法 (16) 6.1电法 (16) 6.2瞬态面波 (19) 6.3跨孔波速 (20) 7 其他原位检测方法 (21)

铁路既有线路基检测分析及评估技术研究 1 总则 1.1.1 为统一和规范既有线路基检测方法及技术要求,为路基养护维修和信息化管理提供可靠依据,特制定本技术条件。 1.1.2 本技术条件适用于既有线路基在运营养护维修过程中的检查和试验。 1.1.3 铁路路基检测应推广采用新技术和新方法。 1.1.4 对于异常状况应采用多种方法相互校核及物探检查和原位测试相结合的办法。 1.1.5 铁路路基检测采用的仪器、设备,应按规定进行检定或校验。 1.1.6 路基检测原位除应符合本技术条件外,尚应符合国家现行的相关标准的规定。 2 路基动态检定技术 2.1 路基动态检测项目 1 路基动荷载和动应力; 2 路基动变形与支承刚度; 3路基振动加速度。 2.2 路基动态检测方法 1路基动荷载和动应力:通过在路基不同深度和位置设置动态压力传感器进行测试,一般采用应变式压力传感器将压力转变为电信号,通过应变仪放大信号。传感器高径比、传感器模量与介质模量比应满足d H E s /60/E m ,传感器尺寸应不小于介质最大粒径的10倍。 2路基动变形:在路基面与深度4~5m 的位置或基岩之间通过钻孔和支杆设置位移传感器测试路基面的变形;在路基面与基床表层底面和基床底层底面之间设置位移传感器测试各部分的相对变形。也可采用光电传感器,测试路基面与远处不动点的相对位移来反映路基面的动变形。列车时速160公里及以上时也可采用伺服加速度传感器通过二次积分测试路基面动变形。 3路基振动加速度:在路基不同位置设置加速度传感器。 2.3 路基动态检测数据处理方法 1 路基动荷载和动应力:动荷载最大值及分布规律,以及路基动应力随深度的衰减系数。

铁路路基工程的现场试验检测

铁路路基工程的现场试验检测 摘要:这些年以来,进行铁路工程的发展工作是我国在经济飞速发展的时候非 常重要的一股推动力量。所以需要积极进行相关的铁路路基试验工作,保障整个 实验在检测方面具有一定的真实性和可靠性,积极进行路基工程的质量控制,在 我国的广大铁路实验过程中是非常重要的一点。本文对在进行铁路工程检测的过 程中路基现场的试验情况进行相关的分析和研究,从而可以科学有效地对铁路路 基的总体质量进行控制。 关键词:铁路;路基工程;现场试验检测;手段;质量控制;措施 1 路基检测前准备工作 首先,需要依照相关的国家及铁道部工程检测法规、标准情况,对试验检测计划以及作 业指导书进行编制工作。其次,积极做好检测前仪器和设备的调试工作,确认设备的标定情 况符合要求,并且是有效的,保证仪器设备可以进行正常的使用。其三,在检测前需要对相 关信息进行收集:(1)对被检路基填料的土工试验报告进行检查、核实填料的名称,对检 测项目进行确认。(2)依照待检路基的部位对检测频率、数量及指标情况进行确认。(3) 明确报检过程中的路基里程情况还有被检施工标段的具体细节。 2 路基现场试验检测方法 2.1 现场检测 (1)依照测试要求对测点位置进行合理选择(2)进行场地的平整度情况测试:需要注 意把承载板在测试地面上进行放置,需要让承载板和地面之间进行良好的接触,必要的时候 可进行2 ~ 3mm薄干砂的铺设。需要注意保证试验的主体在原始过程中的状态,防止出现 比较大的颗粒的碎石或石块松动的情况,安装的过程中不得压实测点表面,当测试面在斜坡 上的时候,需要把承载板的支撑面做成水平的状态。(3)进行加载装置和测量装置的安装:先进行承载板的放置,通过承载板上的水准泡或是通过水平尺来进行承载板水平的调整工作,把反力装置的承载部位在承载板的上方进行设置,并进行一定的制动工作,然后进行现场检 测的工作。 2.2 CBR值 很多工程师在实际操作的过程中发现,铁路的负荷非常大的条件下,其路基里面的碎石 有被压到地基下的土层里面的可能性,造成路基出现抗压性下降的情况。对此,美国某公司 首先在加州进行了承载比的试验(CBR)。这个试验的手段主要是,把试验探头在测试土层 当中进行布设,再根据土层的情况来做好荷载程度和CBR的基准情况的比较工作,根据这些 数据来进行地基最大负荷值的计算工作。从铁路路基的情况来分析,因为其路基达到试验和 普通公路相同的情况,所以把CBR试验当成铁路路基在施工过程中质量检测的手段是非常科 学有效的。 2.3 地基系数K30 地基的沉降情况和该点的受力情况是相关的,和其他的受力点负荷情况是无关的。依照 当前的理论,地基系数是表面弹性层状地基刚度和变形性质中一个比较普通的参数。但是该 系数不单单会被土地地质的因素影响到,而且还和受力面的情况、承载手段具有非常直接的 联系。一旦把受力点的情况、负荷大小情况和受力面积情况明确了以后,就能够把受力点的 地基系数值计算出来。 2.4 动弹性模量E 动态变形模量的测试仪在工作原理上是这样的,首先需要把重锤从相当的高度从上到下 进行自由下落运行,到弹簧阻尼的相关装置上,在承载板上出现与列车在进行正常运行过程 中路基出现相同的动应力,对路基的沉降情况进行分析。利用模拟列车在运行的过程中对路 基的沉降力,来进行路基土层的动弹性模量E的计算。沉陷的值情况越大,被测点的承载力 情况就越小,这样动弹性模量E的值就越小;反之,沉陷的值越是小,被测点出现的承载力 就越大,那动弹性模量的值E就越大。 3 影响路基压实质量及稳定性的主要因素 3.1 填料含水率

(整理)《路基工程》课程设计-某新建二级公路重力式挡土墙设计

2010-2011学年第一学期 《路基工程》课程设计 任务书 题目:某新建二级公路重力式挡土墙设计专业:交通土建 班级:道路071班 指导教师: 土木建筑工程学院 二零一零年十二月

1 课程设计的性质与任务 路基工程课程设计是对路基工程课堂教学的必要补充和深化,通过设计让学生可以更加切合实际地和灵活地掌握路基的基本理论,设计理论体系,加深对路基设计方法和设计内容的理解,进而提高和培养学生分析、解决工程实际问题的能力。通过设计,培养学生分析问题和解决问题的能力。 路基工程课程设计以教师提供的设计资料为主,学生在查阅相关文献资料的基础上,结合当地的气候条件、地质条件、水文条件以及给定的交通条件,拟定挡土墙的设计方案,并对挡土墙的稳定性进行验算。课程设计要求设计计算条理清晰,计算的方法和结果能符合我国现阶段路基设计规范的要求。 2 设计要求 本课程设计适用交通土建专业。学生完成课程设计后,能够掌握路基工程的基础理论和基本知识,以便使学生具有分析问题和解决路基工程实际问题的能力。具体要求如下: (1)初步掌握路基工程设计的内容、设计计算步骤及方法; (2)设计任务书下达后,应立即着手进行资料的收集和教材、规范中相关内容的复习工作,使设计成果必须符合现阶段相关规范。 (3)要求每个学生充分发挥独立工作的能力和钻研精神,合理拟定设计方案,独立完成设计计算和验算,能够分析设计中存在的问题并能加以解决。 (4)每个学生的设计成果均不一样,如有雷同,一律计零分。 (5)设计开始后,应编排工作计划和进度表,合理安排设计时间,确保设计顺利完成。 3 路基工程课程设计内容 路基课程设计是以挡土墙设计为主的设计内容。 (一)设计资料 某新建公路K2+345~K2+379路段采用浆砌片石重力式挡土墙,具体设计资料列于下: 1.路线技术标准,山岭重丘区一般二级公路,路基宽8.5m,路面宽7.0m。 2.车辆荷载,计算荷载为汽车-20级,验算荷载为挂车-100。 3.横断面原地面实测值及路基设计标高如表1所示。

高速铁路路基设计规范标准

6 路基 6.1一般规定 6.1.1路基工程应加强地质调绘和勘探、试验工作,查明基底、路堑边坡、支挡结构基础等的岩土结构及其物理力学性质,查明不良地质情况,查明填料性质和分布等,在取得可靠地质资料的基础上开展设计。 6.1.2路基主体工程应按土工结构物进行设计,设计使用年限应为100 年。 6.1.3基床表层的强度应能承受列车荷载的长期作用,刚度应满足列车运行时产生的弹性变形控制在一定范围内的要求,厚度应使扩散到其底层面上的动应力不超出基床底层土的承载能力。基床表层填料应具有较高的强度及良好的水稳性和压实性能,能够防止道砟压入基床及基床土进入道床,防止地表水侵入导致基床软化及产生翻浆冒泥、冻胀等基床病害。 6.1.4路基填料的材质、级配、水稳性等应满足高速铁路的要求,填筑压实应符合相关标准。 6.1.5路堤填筑前应进行现场填筑试验。 6.1.6路基与桥台、横向结构物、隧道及路堤与路堑、有砟轨道与无砟轨道等连接处均应设置过渡段,保证刚度及变形在线路纵向的均匀变化。 6.1.7路基工后沉降值应控制在允许范围内,地基处理措施应根据地形和地质条件、路堤高度、填料及工期等进行计算分析确定。对路基与桥台及路基与横向结构物过渡段、地层变化较大处和不同地基处理措施连接处,应采取逐渐过渡的地基处理方法,减少不均匀沉降。路基施工应进行系统的沉降观测,铺轨前应根据沉降观测资料进行分析评估,确定路基工后沉降满足要求后方可进行轨道铺设。 6.1.8路基支挡加固防护工程应满足高速铁路路基安全稳定的要求,路基边坡宜采用绿色植物防护,并兼顾景观与环境保护、水土保持、节约土地等要求。 6.1.9路基排水工程应系统规划,满足防、排水要求,并及时实施

铁路路基设计学习资料

铁路路基设计学习资料 一、基本规范 《铁路路基设计规范》(TB10001-2005) 《铁路特殊路基设计规范》(TB10035-2006) 《铁路路基支档结构设计规范》(TB10025-2006) 《新建时速200公里客货共线铁路设计暂行规定》铁建设函[2005]285号 《新建时速200~250公里客运专线铁路设计暂行规定(上、下)》铁建设[2005]140号 《新建时速300~350公里客运专线铁路设计暂行规定(上、下)》铁建设[2007]47号 《工业企业标准轨距铁路设计规范》GBJ12-87 二、规范适用范围 《铁路路基设计规范》(TB10001-2005) 适用范围:客货共线运行、旅客列车设计行车速度等于或小于160km/h、货物列车设计行车速度等于或小于120km/h的Ⅰ、Ⅱ级标准铁路。 《铁路特殊路基设计规范》(TB10035-2006) 适用范围:铁路网中客货共线运行、旅客列车设计行车速度等于或小于200km/h、货物列车设计行车速度等于或小于120km/h的Ⅰ、Ⅱ级标准轨距铁路铁路特殊路基的设计。 《铁路路基支档结构设计规范》

适用范围:铁路网中客货列车共线运行、旅客了此设计行车速度等于或小于200km/h、货物列车行车速度等于或小于120km/h的标准轨距铁路路基支档结构的设计。 《新建时速200公里客货共线铁路设计暂行规定》铁建设函[2005]285号 适用范围:新建客货共线运行、旅客列车设计行车速度等于或小于200km/h、货物列车设计行车速度等于或小于120km/h铁路的设计。《新建时速200~250公里客运专线铁路设计暂行规定(上、下)》 适用范围:新建时速200~250km客运专线铁路设计(有碴轨道)。《新建时速300~350公里客运专线铁路设计暂行规定(上、下)》铁建设[2007]47号 适用范围:新建时速300~350km客运专线铁路设计。 《工业企业标准轨距铁路设计规范》GBJ12-87 适用范围:新建、改建和扩建工业企业铁路设计。 三、荷载 200km以下(含200km客货共线)采用中-活载; 特种荷载 250kN 普通荷载220kN

铁路路基试验检测项目、频率一览表

铁路路基试验检测项目、频率一览表 (请参照执行,如与技术规范或设计文件不一致,以技术规范或设计文件) 序 号 名称检测项目自检频率监理检测频率标准要求备注 1 当路堤填高 <2.5m时地 基处理 地基压实质量检测4点/100m 2点/200m见证 符合TB10414-2003标 准附录B规定 2 高压旋喷 桩、水泥搅 拌桩 水泥 外加剂 袋装200t/批 50t/批 按自检10%见证 按自检10%平检 符合TB10424-2010标 准规定浆体比重2次/桩2次/工班 高压旋喷桩、水泥搅拌 桩配合比 注浆流量、空气压力、注 浆泵压力、钻杆提升速 度、转速等参数 2次/桩按自检20%见证 工艺性试验所确定参 数 1、桩体完整性、均匀性 无侧限抗压强度检验 2、复合地基承载力 1、桩总数2‰ 2、桩总数2‰且每工点不少于3 根 1、按自检20%见证 2、全部见证 委托第三方检测 3 CFG桩 水泥 粉煤灰 碎石、砂 减水剂 袋装200t/批 200t/批 400m3/批或600t/批 50t/批 按自检10%见证 按自检10%平检 按自检10%平检 按自检10%平检 符合TB10424-2010标 准规定 砼坍落度3次/台班按自检20%见证CFG桩配合比砼强度1组(3块)/台班按自检10%平检图纸设计强度 桩体完整性桩总数10%,且不少于3根全部见证低应变检测

单桩或复合地基承载力 检测 桩总数2‰且每工点不少于3根全部见证平板荷载试验 4 路基以下路 堤填料的颗粒级配、相对密 度、液塑限、击实试验 10000m3/批 按自检10%见证,同一土源 不少于1次 按TB10102-2010规程 试验、符合 TB10414-2003标准 k30:每填高90cm, 纵向100m检测2个断 面4点,距路基边缘 2m处2点、中间2点, 不足90cm也检测2个 断面4点 k:每层纵向100m检 测2个断面6点,每 断面左、中、右个1 点,左、右点距路基 边缘1m处 细粒土、粉砂土采用压实 系数k和地基系数k30 按右侧备注栏要求检测 (压实系数k检测方法:①细粒 土、粉砂土采用:环刀法、核子 密度法。②细粒土、粗粒土采用 灌砂法、气囊法。③细粒土、粗 粒土、碎石类、最大粒径<60cm 的块石类土采用灌水法) 按自检10%平检和见证k≥0.90 K30≥80 砂类土采用相对密度Dr 和地基系数k30 按右侧备注栏要求检测按自检10%平检和见证Dr≥0.7 K30≥80 砾石土、碎石土采用孔隙 率n和地基系数k30 按右侧备注栏要求检测按自检10%平检和见证 砾石土n≤32 K30 ≥110 碎石土n≤32 K30 ≥120 块石土采用地基系数k30 按右侧备注栏要求检测按自检10%平检和见证K30≥130

路基工程挡土墙课程设计

《路基工程》 课程设计 单位:土木工程学院 专业(方向):铁道工程 班级:铁道08-2(土0801-2)姓名:王康 学号:20080045 指导教师:舒玉 二0一二年二月

《路基工程》课程设计 一、课程设计的思想、效果及课程目标 路基的课程设计是对路基工程课堂教学的必要补充和深化,通过设计让学生可以更加切合实际地和灵活地掌握路基工程的基本理论,设计理论体系,加深对路基设计方法和设计内容的理解,进而提高和培养学生分析、解决工程实际问题的能力。 二、课程设计内容 此次路基工程课程设计是以混凝土重力式挡土墙(仅线路左侧一侧进行设计)为主的设计内容。 1.1 设计资料 1.1.1 主要技术文件 1) 《铁路路基支挡结构设计规范》TB10025-2006(2009局部修订版) 2) 《铁路桥涵钢筋混凝土和预应力混凝土结构设计规范》TB10002.3-2005 3) 《铁路工程抗震设计规范》GB50111-2006(2009版) 4) 《铁路路基设计规范》TB10001-2005 5) 《混凝土结构设计规范》GB50010-2010 6) 《建筑抗震设计规范》GB50011-2010 7) 其他现行铁路建设相关技术标准、规范、规程、规定等技术文件; 1.1.2 线路资料 1) 铁路等级:I级 2) 轨道类型:重型 3) 直线地段:双线路堤 1.1.3 地基条件 1) 工点位置:邯郸丛台区 2) 地基为级配良好中密中粗砂,基本承载力=210Kpa。 1.1.4 路堤填料 自行设计

1.1.5 墙身材料:混凝土。 1.1.6 挡墙横断面布置及挡墙型式 1) 路肩设计高程:76.8m。 2) 路堤边坡坡率:1:1.5 3) 天然地面高程:67.5m。 4) 重力式挡土墙平面布置无限制,横断面型式自行确定。 三、具体要求 本次课程设计主要进行挡土墙横断面设计计算(不进行挡土墙的平面、立面等设计),大致步骤如下: 1) 挡土墙横断面布置,并拟定断面尺寸; 2) 凡本指导书中没有提供的设计参数,均自行查询上述技术文件,按其中 规定的设计参数或经验数据自行选定。 3) 挡墙土压力计算; 4) 验算挡土墙抗滑、抗倾覆稳定性; 5) 验算基底应力及偏心距; 6) 验算墙身截面强度; 7) 抗震条件下挡墙土压力计算; 8) 抗震条件下验算挡土墙抗滑、抗倾覆稳定性; 9) 抗震条件下验算基底应力及偏心距; 10) 抗震条件下验算墙身截面强度; 11) 挡土墙排水设计; 12) 绘制挡土墙横断面图; 13) 编写设计计算书 五、计算过程 选用参数:挡土墙混凝土等级采用C15,,γ=23KN/m,中心受压[]cσ=4.0Mpa,弯曲受压和偏心受压[]bσ=5.0Mpa,弯曲受拉[]1bσ=0.35Mpa 《铁路路基支挡结构设计规范》

铁路路基设计规范(填料部分)

5填料 5.1 一般规定 5.1.1 路基填料应通过地质调绘和足够的勘探、试验工作,查明其性质和分布,并开展填料设计工作。 5.1.2 填料设计的内容应包括:填料的来源选择、分布、运距、土石特性、名称、分组、改良措施、施工工艺、无侧限抗压强度、压实标准及检测要求等,取料场的生态恢复。 5.2 普通填料 5.2.1路基普通填料按颗粒粒径大小分为三大类别:巨粒土、粗粒土和细粒土。 5.2.2巨粒土、粗粒土填料应根据颗粒组成、颗粒形状、细粒含量、颗粒级配、抗风化能力等,按表5.2.2分为A、B、C、D组。

注: 1 颗粒级配分为:良好(C u ≥5,并且C c =1~3),不良(C u <5,或C c ≠1~3)。 式中:不均匀系数1060d d C u =;曲率系数60 1030 2d d d C c ?=; d 10、d 30、d 60分别为颗粒级配曲线上相应于10%、30%、60%含量的粒径。 2 硬块石的单轴饱和抗压强度Rc >30MPa,软块石的单轴抗压强度Rc ≤30Mpa 。 3 细粒含量指细粒(d ≤0.075mm )的质量占总质量的百分数。 5.2.3 细粒土填料应按表5.2.3分为粉土类、黏土类和有机土。粉土类、黏土类应采用 液限含水量ωL 进行填料分组:当ωL <40%时,为C 组;当ωL ≥40%时,为D 组;有机质土为E 组。 注:1 液限含水率试验采用圆锥仪法,圆锥仪总质量为76g ,入土深度10mm 。 2 A 线方程中的w L 按去掉%后的数值进行计算。 5.2.4 填料根据土质类型和渗水性可分为渗水土、非渗水土。A 、B 组填料中,细粒土 含量小于10%、渗透系数大于10-3cm/s 的巨粒土、粗粒土(细砂除外)为渗水土,其余为非渗水土。

路基课程设计--单线铁路

路基课程设计--单线铁路

路基工程课程设计 姓名:任闯闯 学号:09232054 班级:土木0911 专业:土木工程(铁道工程) 指导老师:冯瑞玲

目录 第一章概述............................ 错误!未定义书签。 一、设计任务 ........................ 错误!未定义书签。 二、基本资料 ........................ 错误!未定义书签。 第二章路基断面设计............ 错误!未定义书签。 一、绘制设计断面处的地形图错误!未定义书签。 二、路基横断面各部尺寸拟定错误!未定义书签。 三、路基面加宽量计算 ........ 错误!未定义书签。 四、绘制路基横断面图 ........ 错误!未定义书签。 第三章路基边坡稳定性验算错误!未定义书签。 一、路基面上的载荷 ............ 错误!未定义书签。 二、进行初步设计断面的边坡稳定性验算错误!未定义书签 三、最终设计断面边坡稳定性验算错误!未定义书签。 四、填土沿天然地面滑动稳定性验算错误!未定义书签。 五、绘制路基横断面设计图错误!未定义书签。

第四章施工方法及程序........ 错误!未定义书签。 一、基床表层和基床底层及下部填土的填料选 择 ............................................ 错误!未定义书签。 二、施工方法及主要机具设备错误!未定义书签。 三、质量检验方法及主要设备错误!未定义书签。 第一章绪论 一、设计任务和目的: 本课程设计的目的是培养同学们在课堂上已获得的知识和参阅其他文献的基础上,根据已有资料。设计曲线地段路基的横断面及验算边坡稳 定性的能力,以及确定施工程序。通过本设计,可以培养同学们在已学知 识的基础上,查阅文献,进行独立设计的能力。 二、基本资料: 1、线路资料 铁路等级:I级单线铁路 路基设计时速:160km/h 曲线半径:R=5000m 设计路肩标高:H=194.6m

铁路路基工程施工组织设计方案

哈家咀段路基施工方案 一编制依据 1)依据本工程队的设计文件、招、投标文件的技术要求。 2)至中川机场线路施工设计图。 3)《铁路路基设计规》TB10001—2005、《铁路路基工程施工安全技术规程》TB10302—2009、《铁路路基填筑工程连续压实控制技术规程》TB10108—2011、《铁路路基工程施工质量验收标准》TB10751—2010。。 4)现场踏勘、调查工地周边环境条件所了解的情况和收集的信息。 5)国家法律、法规及省有关规定和当地民众的民俗风情。二编制原则 1)遵守国家和省有关的法律、法规以及相关文件要求。 2)按照国家有关的法律法规要求,做好环保、水保等保护工作。 3)认真做好施工调查研究,充分考虑当地自然环境和施工条件,进行施工方案比选,因地制宜的制定施工方案。 4)努力改进施工工艺,提高机械化施工水平,以求先进的施工工艺和工程质量的统一。 5)先重点后一般,全面规划重点突破,强调施工组织设计

的科学性、实施性、可操作性、严密性和可靠性。 三编制围 新建至中川机场铁路项目哈家咀段路基DK40+500~DK41+801.23、DK42+471.60~DK42+753.30段围的路基工程。 四工程概况 本段路基工点位于市永登县树坪镇,线路与机场高速及201 省道并行。DK40+500~DK41+801.23段位于碱沟河谷阶地地区,地形起伏较大,河谷切割较深,工程与河床平行,行走于碱沟一级阶地上。DK42+471.60~DK42+753.30段位于麻沙沟阶地区,该段谷地地形起伏较大,沟谷切割较深,河谷宽约100~400m,高程1681~1796m。工程与沟床近平行,行走于麻沙沟一阶级地上。 工点处涉及地层:第四系全新统冲积砂质黄土,黏质黄土、细沙、中砂、砾砂、细圆砾土,第四系上更新统风积砂质黄土,冲击细圆砾土,下伏基岩为上第三系中新统泥岩夹砂岩。 本工点围路基施工分两段完成: 第一段起讫里程为DK40+500~DK41+801.23,长1606.5m。线路主要以路堤通过,局部为挖方,最大填方高度12m,最大挖方深10m。 第二段起讫里程为DK42+471.60~DK42+753.30,长281.70m,本段路基路堤最大边坡高度14.13m,路堑最大边坡高度13.22m。路基小里程端为哈家咀特大桥,路基大里程端为哈家咀碱沟特大桥。

既有运营铁路路基变形及沉降监测方案

既有运营铁路路基变形及沉降监测方案 既有铁路路基监测内容主要包括:路基面的几何形态、道床厚度、路基面的变形、基床厚度、路基基底的沉降变形与不均匀沉降等监测,有条件尚应进行基床土的应力测试。 既有铁路路基监测应布设在路基填料或基床土质不良、基底地质条件差、地形变化大、路基排水不畅、以及各种过渡段等部位。尤以路基出现病害或潜在危险地段应加强加密监测。监测点应设置在观测数据容易反馈,且不影响正常行车运营或对整治施工造成不便的部位。 1.1 监测布置原则 1.1.1 路基面外观监测 路基面外观监测主要包括道床厚度、路基面的几何形态(路肩形状、路基面宽度、路拱形状、横向坡度及其平整度、基床陷槽、翻浆冒泥点等)。可在两侧路肩上安设固定测点,采取开挖道床后经纬仪测量或直接采用钎探丈量。沿线路方向每隔100~200m设置一个监测断面(且每工点不少于2个监测断面),路基基床病害严重地段应适当加密。 1.1.2 变形监测 路基变形监测主要包括路基面沉降监测、路基本体沉降监测、路基基底沉降监测、路基深厚层地基分层沉降监测、路基水平位移监测等。既有铁路受行车运营影响,一般以路基面沉降监测为主,较直观适用,便于实施且不影响既有线行车运营,其它变形监测应用较少,主要原因是监测元件埋设对行车运营干扰较大,但对于既有铁路路基的稳定、沉降变形严重地段视现场实际情况而定。路基变形监测布置图详见图1-1。

2.08 2.0 8 B/2B/2 注:当同时进行路基本体监测与路堤基底沉降监测时,可在同一孔中上下分布埋设监测元件。 图1-1-1 既有铁路路基监测断面示意图 (1)路基面沉降监测 分别于既有路基内侧钢轨顶、两侧路肩各一个监测点,每个监测断面共3个点,两侧路肩处埋设位移监测桩(包桩),钢轨顶处在钢轨内侧刷红色油漆作为标识,用精准水准仪、经纬仪等仪器,采用精密测量方法。一般每隔50m设置一处监测断面,过渡段路基必须设置。 (2)路基本体沉降监测 当既有路基填料不良、压实度不足或较高填方等路基本体沉落变形较大时,可视需要进行路基本体沉降监测。于既有路基路肩(或路堤原有地表横坡大于20%地段于两侧路肩处)采用预钻孔成孔后埋设高精度智能型单点沉降计,分别设置于基床表层底部、基床底层底部设置,当路基填高大于8.0m时,于基床以下路基填土中增加1~2个监测点。一般每工点不少于2处沉降监测断面,过渡段路基必须设置。 (3)基底沉降监测 当既有路基基底软弱沉降变形较大时,可进行路基基底沉降监测。于既有路堤路肩处(或路堤原有地表横坡大于20%地段于两侧路肩处)采用预钻孔成孔后在路基基底地面埋设高精度智能型单点沉降计进行监测。一般每工点不少于2处沉降监测断面,过渡段路基必须设置。

轨道课程设计

路基上无缝线路课程设计 ——中和轨温及预留轨缝设计 姓名:陈龙元 学号:08231062 班级:土木0803 学院:土木建筑工程学院

轨道结构课程设计 目录 1.任务书-------------------------------2 2.说明书-------------------------------7 3.计算书-------------------------------14 4.实验总结------------------------------20 5.源程序附录----------------------------21

轨道结构课程设计 路基上无缝线路课程设计(任务书) ——中和轨温及预留轨缝设计 中和轨温(即无缝线路设计锁定轨温)是无缝线路设计的关键问题,涉及《铁路轨道》这门课的主要理论。该设计目的是通过实际设计,更深入地掌握《铁路轨道》的基本理论。 一、基本内容 1)收集资料,综合分析。 通过专业书籍及相关学术期刊的学习,了解无缝线路铺设的意义及国内外发展的现状。并对路基上无缝线路设计的基本原理、方法及步骤有较清楚的了解。 2)通过计算,确定路基上无缝线路的允许降温幅度。 3)通过计算,确定路基上无缝线路的允许升温幅度。 4)通过计算,确定中和轨温(即无缝线路设计锁定轨温)。 中和轨温确定是无缝线路设计的关键问题,涉及《铁路轨道》这门课的主要理论。该设计的目的是通过实际设计,更深入地掌握《铁路轨道》的基本理论(尤其是强度计算和温度力计算理论)。 二、基本要求 对设计从全局上把握,思路清晰,将个人的独立见解在设计说明书中完整地表达出来; 有关计算建议上机完成,语言不限,但程序要具有通用性,即对各种参数条件都适用;并将源程序及计算结果附在课程设计书中。 独立完成,有自己的特色; 设计时间1周。 设计书内容主要包括:设计任务、设计目的和意义、设计理论依据、设计参数、计算过程、设计总结(设计方案的评述、收获及建议)、参考文献。 课程设计报告的文字部分要求详细完整、章节清晰、计算过程详尽、结论合理可靠。同时要求字迹工整、书面整洁。 答疑时间:另作通知。 三、设计思路 无缝线路中和轨温计算的主要思路如图:

铁路路基设计原则概要

路基设计原则 1 路基设计原则 1.1基床结构、厚度及填料 路基基床由表层和底层组成,不同设计速度目标值的各层厚度及填料见表1。 基床厚度及填料表表1 速度标准部位厚度填料要求 250km/h 路堤 基床表层0.7m 级配碎石 基床底层 2.3m A、B组填料或者0.1m中粗砂 夹一层复合土工膜+弱风化泥 岩夹山岩或者改良土 路堑 基床表层0.7m 级配碎石 基床底层0.5~1.0m 换填0.5~1.0m就地改良土 =160km/h 路堤 基床表层0.6m A组填料 基床底层 1.9m A、B组填料或者0.1m中粗砂 夹一层复合土工膜+弱风化泥 岩夹山岩或者改良土 路堑 基床表层0.6m A组填料 基床底层0.5m 膨胀土地段换填0.5m就地改良 土 级配碎石、A组填料的材质、粒径等性能指标应分别满足《客运专线基床表层级配碎石暂行碎石技术条件》、《铁路路基设计规范》(TB10001-2005)的要求。压实标准满足下表2要求。 基床表层填料压实标准表表2 填料类型轨道类型 压实标准 地基系数K30 (MPa/m) 动态变形模量 Evd(MPa) 压实系数 级配碎石 有碴轨道 (250km/h) ≥190≥55=0.95

A组填料(砾石、碎石类) 有碴轨道 (=160km/h) ≥150/ =0.95 中粗砂≥130=0.95 基床底层采用A、B组填料或弱风化泥岩夹砂岩或改良土填筑。压实标准满足表3~4要求。 基床底层填料及压实标准(250km/h)表3 填料类型压实标准改良细粒土砂类土及细砾 土 碎石类及粗砾 土 A、B组填料或弱风化泥岩夹砂岩或改良土地基系数K30 (MPa/m) =110 =130 =150 动态变形模量 Evd(MPa) =40 =40 =40 压实系数K =0.95 注:压实系数K为重型击实标准;改良土压实标准:当采用化学方法改良时,除符合本表规定外,还需要满足设计提出的技术要求。 基床底层填料及压实标准(=160km/h)表4 填料类型压实标准改良土砂类土(粉砂 除外) 砾石类碎石类块石类 A、B组填料或弱风 化压实系数K =0.93 地基系数 K30 (MPa/m) =100 =100 =120 =130 =150 1.2 低矮路堤 1)250km/h地段 填土高度H=0.7m时,采用路堤式路堑结构,基床表层级配碎石满足相关要求。

铁路路基工程课程设计西南交大

课程名称:铁路路基工程 设计题目:软土地基加固设计 专业:铁道工程 年级: 姓名: 学号: 设计成绩: 指导教师(签章 西南交通大学峨眉校区 年月日 设计任务书 专业铁道工程姓名唐强学号20087125 开题日期:2011 年 5 月11 日完成日期:2011 年 6 月10 日题目软土地基加固设计

一、设计的目的 通过设计,巩固所学的软土地基处理的基本知识,熟悉软土地基处理的原理和方法,从而加深对所学内容的理解,提高综合分析和解决实际工程问题的能力。(参考 二、设计的内容及要求 1.路基边坡坡度及边坡防护设计 2.计算路堤极限高度 H,判断是否需要采用加固措施; c 3.通过比选确定应选择何种加固方案; 4.掌握中轴线线下应力的计算和沉降量的计算; 5.固结度修正的计算; 6.绘制路基加固断面图; 三、指导教师评语 四、成绩 指导教师(签章 年月日 一、设计目的 本课程设计的目的是使学生能综合应用《铁路路基工程》课程所学知识,并熟悉铁路路基设计的基本过程。

二、设计内容 1.路基边坡坡度的设计; 2.路基本体工程的设计; 3.路基边坡防护工程的设计; 4.基底设计(针对软土地区。 三、设计资料 1.线路资料 常速,直线地段,单线路堤,路堤高m 7,路基面宽m 5.7,边坡坡度75.1:1:1=m ,线路等级按I 级次重型标准,活载换算高度m h 4.30=,宽m l 5.30=。 2.地基条件 地面以下m 13范围内为软土,灰黑色、流态;m 13以下为中砂层,地下水位与地面齐平。软土竖向固结系数为s cm C v /10323-?=,径向固结系数为 s cm C r /10 423 -?=; 变形模量为2/30cm kg ,泊松比4.0=μ,容重3 /3.17m kN =γ, kPa C u 18=,?=5.4u ?,?=20cu ?。 3.填料

铁路路基工程的现场试验检测

铁路路基工程的现场试验检测 发表时间:2017-09-21T11:34:32.883Z 来源:《基层建设》2017年第15期作者:陈淑霞 [导读] 本文对在进行铁路工程检测的过程中路基现场的试验情况进行相关的分析和研究,从而可以科学有效地对铁路路基的总体质量进行控制。 中铁十七局集团第一工程有限公司山西太原 030032 摘要:这些年以来,进行铁路工程的发展工作是我国在经济飞速发展的时候非常重要的一股推动力量。所以需要积极进行相关的铁路路基试验工作,保障整个实验在检测方面具有一定的真实性和可靠性,积极进行路基工程的质量控制,在我国的广大铁路实验过程中是非常重要的一点。本文对在进行铁路工程检测的过程中路基现场的试验情况进行相关的分析和研究,从而可以科学有效地对铁路路基的总体质量进行控制。 关键词:铁路;路基工程;现场试验检测;手段;质量控制;措施 1 路基检测前准备工作 首先,需要依照相关的国家及铁道部工程检测法规、标准情况,对试验检测计划以及作业指导书进行编制工作。其次,积极做好检测前仪器和设备的调试工作,确认设备的标定情况符合要求,并且是有效的,保证仪器设备可以进行正常的使用。其三,在检测前需要对相关信息进行收集:(1)对被检路基填料的土工试验报告进行检查、核实填料的名称,对检测项目进行确认。(2)依照待检路基的部位对检测频率、数量及指标情况进行确认。(3)明确报检过程中的路基里程情况还有被检施工标段的具体细节。 2 路基现场试验检测方法 2.1 现场检测 (1)依照测试要求对测点位置进行合理选择(2)进行场地的平整度情况测试:需要注意把承载板在测试地面上进行放置,需要让承载板和地面之间进行良好的接触,必要的时候可进行2 ~ 3mm薄干砂的铺设。需要注意保证试验的主体在原始过程中的状态,防止出现比较大的颗粒的碎石或石块松动的情况,安装的过程中不得压实测点表面,当测试面在斜坡上的时候,需要把承载板的支撑面做成水平的状态。(3)进行加载装置和测量装置的安装:先进行承载板的放置,通过承载板上的水准泡或是通过水平尺来进行承载板水平的调整工作,把反力装置的承载部位在承载板的上方进行设置,并进行一定的制动工作,然后进行现场检测的工作。 2.2 CBR值 很多工程师在实际操作的过程中发现,铁路的负荷非常大的条件下,其路基里面的碎石有被压到地基下的土层里面的可能性,造成路基出现抗压性下降的情况。对此,美国某公司首先在加州进行了承载比的试验(CBR)。这个试验的手段主要是,把试验探头在测试土层当中进行布设,再根据土层的情况来做好荷载程度和CBR的基准情况的比较工作,根据这些数据来进行地基最大负荷值的计算工作。从铁路路基的情况来分析,因为其路基达到试验和普通公路相同的情况,所以把CBR试验当成铁路路基在施工过程中质量检测的手段是非常科学有效的。 2.3 地基系数K30 地基的沉降情况和该点的受力情况是相关的,和其他的受力点负荷情况是无关的。依照当前的理论,地基系数是表面弹性层状地基刚度和变形性质中一个比较普通的参数。但是该系数不单单会被土地地质的因素影响到,而且还和受力面的情况、承载手段具有非常直接的联系。一旦把受力点的情况、负荷大小情况和受力面积情况明确了以后,就能够把受力点的地基系数值计算出来。 2.4 动弹性模量E 动态变形模量的测试仪在工作原理上是这样的,首先需要把重锤从相当的高度从上到下进行自由下落运行,到弹簧阻尼的相关装置上,在承载板上出现与列车在进行正常运行过程中路基出现相同的动应力,对路基的沉降情况进行分析。利用模拟列车在运行的过程中对路基的沉降力,来进行路基土层的动弹性模量E的计算。沉陷的值情况越大,被测点的承载力情况就越小,这样动弹性模量E的值就越小;反之,沉陷的值越是小,被测点出现的承载力就越大,那动弹性模量的值E就越大。 3 影响路基压实质量及稳定性的主要因素 3.1 填料含水率 如果是细粒土或者是细粒含量比较大的粗粒土,需通过室内击实试验的方式来对最佳含水率进行确定,在进行现场填筑的过程中需要对填料的含水率进行控制,尽量保持在一个易于压实的条件下。细粒土一般情况下非常容易利用击实试验的方法来进行最佳含水率的确定,而粗粒土由于其自身出现了不均匀性,可能在相应程度上让击实试验的难度增加了,所以需要在试验配水的过程中充分注意让该因素的负面作用降低。 含水率影响粗粒土的击实效果非常明显,主要是利用粗粒土里面的细粒成分来进行发挥的。水分在对土进行击实的过程中需要在具有一定含水率的条件下完成,这样能够促进击实的工作更有效,土粒间也会更加容易出现移动而让彼此的间距缩小从而更加密实。 3.2 填料击实试验结果对压实度的影响 具体分析和评定路基现场压实度检测结果需要通过填料室内击实试验为基本的基础,击实的试验结果如果没有一定的代表性,将对现场压实度试验产生影响。所以,需要对击实试验结果进行充分重视。 在进行现场压实度检验的过程中,偶尔会发生一些诸如密度与填料最大干密度发生较大偏离的情况。如果出现了这种情况,一方面需要对击实所取样品的代表性进行考虑,防止其可能导致的一些影响,特别是从基床填筑的A、B组填料来分析,会出现均匀性比较差的情况,取样的过程中需要根据国家的TB10102-2004取样规定来执行,严格根据取样的频率来进行,=防止样品不具备代表性造成的影响。 4 路基检测工作质量控制措施 4.1 检测点位布置 对路基的不同部位需要做好对应的测试点位的布置,在试验室里面进行检测试验的相关人员需要严格根据相关的要求来做好测试点的设置工作。选择测试点位要能够把检测路段里面真实地基压实质量反应出来的位置,具有绝对的的代表性,无法随便进行测试点位置的改

西南交通大学路基课程设计

西南交通大学《路基工程》课程设计报告 学生姓名: 学生学号: 班级编号: 指导教师:王迅 2015 年 6月 5 日

目录 1设计资料 (1) 2说明书 (1) 3计算书 (5) 4设计图纸 (13) 5参考文献 (15) 6附录 (16)

1设计资料 1.1线路基本信息 某Ⅰ级重型双线铁路,旅客列车设计行车速度140km/h,K2+500~K3+500 段路堤处于直线地段,路堤挡土墙高度9m,挡土墙上部路堤高度为1m。根据实际情况,需设置重力式挡土墙。 1.2设计荷载 只考虑主力(主要力系)的作用,且不考虑常水位时静水压力和浮力。 1.3设计材料 挡土墙材料为片石砌体,墙背填料为碎石类土。相关参数可以参考附表。 2说明书 2.1认真分析设计任务书所提供的设计依据。 2.2依据 依据《铁路路基设计规范(TB10001-2005)》,确定双线铁路的线间距,并确定路基各部分尺寸。 2.3换算土柱的确定 进行路基及其加固建筑物的力学检算时,系将路基面上的轨道静载和列车竖向活载一起换算成与路基土体容重相同的矩形土体,此为换算土柱。 绘制出换算土柱高度及分布宽度计算图示,并选取参数进行计算。计算结果可参照《铁路路基设计规范(TB10001-2005)》附表A进行检查。 当墙后填料不均匀时,为方便计,可将墙后填料视作均质材料进行计算,容重可取墙后填料的平均容重。 2.4挡土墙尺寸的初步拟定 采用重力式仰斜挡土墙。根据规范,初步拟定墙顶宽度、墙背和墙胸的坡度、墙底宽度和坡度,然后进行检算。

2.5挡土墙设计荷载的计算 作用在挡土墙上的力,一般可只计算主力,在浸水地区、地震动峰值加速度为0.2g (原为八度)及以上地区及有冻胀力等情况下,尚应计算附加力和特殊力。本设计中只考虑如下主力: 1、墙背填料及荷载的主动土压力 作用在挡土墙墙背的主动土压力,一般按库仑主动土压力公式计算。 当破裂面交于路基面时,破裂棱体的面积S 随着挡土墙及破裂面位置而变化, 但都可归纳为一个表达式: 00tan S A B θ=- 式中 ()00,,A f H a h = ()000,,,,,,B f H a b h K l α= 当边界条件确定后,A 0、B 0为常数,并可从破裂棱体的几何关系求得。 附表《各种边界条件下的库仑 主动土压力公式》给出了不同边界条件下的库仑主动土压力计算公式。在具体计算时,由于无法预知破裂面的位置,一般是先假设破裂面位置,然后按此情况计算出破裂角θ,再根据几何关系来校核假设是否正确。若假设不合理,则需选用另外的破裂面位置重新计算,直至校核合理。最后可根据附表中公式计算土压力的大小,方向和作用点位置。 编程思路:限定破裂角θ由α~900-υ循环,给定搜索步长Δθ=0.1~0.50,以不同破裂角θ值确定相应土压力,从中找出最大值即为主动土压力。 2、墙身重力及位于挡土墙顶面上的恒载 (1)墙身重力可由挡墙面积乘以挡墙圬工的容重得到; (2)挡土墙顶面上的恒载:若设计中的换算土柱一部分已侵入挡土墙墙顶范围,则此部分换算土柱应计入挡土墙顶面上的恒载。 3、基底的法向力及摩擦力

高速铁路路基设计规范

6路基 6.1一般规定 6.1.1路基工程应加强地质调绘和勘探、试验工作,查明基底、路堑边坡、支挡结构基础等的岩土结构及其物理力学性质,查明不良地质情况,查明填料性质和分布等,在取得可靠地质资料的基础上开展设计。 6.1.2路基主体工程应按土工结构物进行设计,设计使用年限应为100年。 6.1.3基床表层的强度应能承受列车荷载的长期作用,刚度应满足列车运行时产生的弹性变形控制在一定范围内的要求,厚度应使扩散到其底层面上的动应力不超出基床底层土的承载能力。基床表层填料应具有较高的强度及良好的水稳性和压实性能,能够防止道砟压入基床及基床土进入道床,防止地表水侵入导致基床软化及产生翻浆冒泥、冻胀等基床病害。 6.1.4路基填料的材质、级配、水稳性等应满足高速铁路的要求,填筑压实应符合相关标准。 6.1.5路堤填筑前应进行现场填筑试验。 6.1.6路基与桥台、横向结构物、隧道及路堤与路堑、有砟轨道与无砟轨道等连接处均应设置过渡段,保证刚度及变形在线路纵向的均匀变化。 6.1.7路基工后沉降值应控制在允许范围内,地基处理措施应根据地形和地质条件、路堤高度、填料及工期等进行计算分析确定。对路基与桥台及路基与横向结构物过渡段、地层变化较大处和不同地基处理措施连接处,应采取逐渐过渡的地基处理方法,减少不均匀沉降。路基施工应进行系统的沉降观测,铺轨前宜应根据沉降观测资料进行分析评估,确定路基工后沉降满足要求后方可进行轨道铺设。 6.1.8路基支挡加固防护工程应满足高速铁路路基安全稳定的要求,路基边坡宜采用绿色植物防护,并兼顾景观与环境保护、水土保持、节约土地等要求。

6.1.9路基排水工程应系统规划,满足防、排水要求,并及时实施。 6.1.10路基设计应重视防灾减灾,提高路基抵抗连续强降雨、洪水及地震等自然灾害的能力。 6.1.11路基上的轨道及列车荷载换算土柱高度和分布宽度应符合表6.1.11的规定。 表6.1.11轨道和列车荷载换算土柱高度及分布宽度 6.1.12车站两端正线、利用既有铁路地段、联络线、动车组走行线和养护维修列车走行线等路基设计标准按其设计最高速度确定,路基基床结构变化处应设置长度不小于10m的渐变段。 6.1.13路基工程应加强接口设计,合理设置电缆槽、电缆过轨、接触网支柱基础、声屏障基础及综合接地等相关工程,避免因相关工程破坏路基排水系统、影响路基强度及稳定。 6.2路基面形状及宽度 6.2.1无砟轨道支承层(或底座)底部范围内路基面可水平设置,支承层(或底座)外侧路基面两侧设置不小于4%的横向排水坡。有砟轨道路基面形状应为三角形,由路基面中心向两侧设置不小于4%的横向排水坡。曲线加宽时,路基面仍应保持三角形。 6.2.2有砟轨道路基两侧的路肩宽度,双线不应小于1.4m,单线不应 小于1.5m。 6.2.3直线地段标准路基面宽度应按表6.2.3采用。

相关主题
文本预览
相关文档 最新文档