当前位置:文档之家› [课程设计]铁路桥墩桩基础设计

[课程设计]铁路桥墩桩基础设计

[课程设计]铁路桥墩桩基础设计
[课程设计]铁路桥墩桩基础设计

铁路桥墩桩基础设计

工程概况:

该桥表层为0.5~2.5m的粘性土硬壳层,其下为3~13m的淤泥、淤泥质粘土层,下面为粘土、亚粘土层,再下为花岗石片麻岩。其中软土淤泥层呈流塑状态,含水量大,压缩性大,透水性差,力学强度低等特点。软土地基上墩台型式的正确选用非常重要。本文仅针对该桥软基的轻型墩台进行简述:

1桥梁下部结构型式选用

1.1埋置式桩柱式桥台

台身埋入锥形护坡中,有单桩柱式与群桩框架式两种。采用该型式桥台,为保证路基稳定性,不能过多地压缩桥长,不少工程对此有深刻的教训。

1.2柱式桥墩

该型式桥墩适应性广、施工方便,为软基中最好的选择型式。分为①盖梁单排桩柱式桥墩,一般用于简支梁桥;②无盖梁独柱式桥墩或排柱式桥墩,用于连续现浇箱梁。

1.3选用墩台应注意以下两点

1.3 1为减少软基位移对结构的影响,尽可能减少超静定个数,适当加大桩距,减少桩根数。以上处理方法既可满足设计规范要求还可降低工程造价。

1.3.2当桩底接近基岩表面时,承载力接近设计要求,就没有必要再伸入基岩以求更加保险;若承载力不够时,可把桩径加大再算,尽可能用摩擦桩代替嵌岩柱桩。,当用1.2m桩径时,桩需嵌入基岩1.5m,改用1.5m桩径时,位于基岩表面即可满足承载要求,降低了施工难度。

2下部结构内力计算

为减少软土地基位移对超静定结构的影响,上部工程多采用标准梁的先简支后连续构造,这样整个工程的计算工作主要集中于下部结构,故下部结构内力计算方法的选用是否正确,考虑因素是否全面,直接关系到工程的安危,为此作以下几点分析:

2.1盖梁内力计算

《墩台设计手册》中算例对墩台内力按下列方式计算:当荷载对称布置时,按杠杆法计算,当荷载偏心布置,按偏心压力法计算,两种布载状况的内力取大值控制设计。这种算法没有真正体会规范用意,仅为两种布载状况下的内力计算,不是各截面最不利状态的内

应该先画出各截面内力影响线,再对应影响线用杠杆法及偏心法进行最不利横向布载,求出各截面内力最大、最小值,然后根据内力包络图进行结构配筋。近几年,有的设计单位作了下简化计算,对多支座的板、箱梁桥的墩台帽计算,按活载直接作用于由墩台简化成的连续梁上进行计算,不考虑活载及二期

恒载的横向分布作用。

2.2桥台内力计算

除了桥墩内力计算项目外,桥台竖向荷载还要增加土压力、负摩阻力、搭板自重等项;水平荷载要增加土压力,其影响复杂,需注意以下几点:

(1)埋置式桥台土压力计算

土压力一般是以填土前原地面或冲刷线起算的,对较差土质,需根据实际土质验算,确定是否考虑地面以下台后深层土对桩水平压力的影响。

台后一定要选用透水、强度高、稳定性好的材料,否则,渗水后摩擦角及粘结力下降,自重增加,台实际受土压力远大于设计值,使桥台失稳。

(2)地震土压力计算

地震土压力随着桥梁等级的提高而加大;计算时不考虑活载作用;地震组合力对桥台影响不如对桥墩的影响大。

(3)搭板对土压力影响

设搭板桥台还应考虑搭板作用后活载土压力改变对桥台有利的影响。

(4)桥头路基沉降、滑动验算

第一,路基沉降过大:台背和梁端过早损坏;加大竖向土压力及负摩阻力,桥台盖梁开裂及桩基不均匀下沉;铁路路基渗水,促使铁路路基失稳。第二,铁路路基滑动:导致桥台严重破坏,此时桥台所承受水平土压力已远大于正常计算,对于桥头路基加宽、加高或处于改河、填沟段或铁路路基外不远有沟、河的,更要注意深层滑动验算。上述两项如不满足要求,须采用切实可靠措施进行处理,尤以粉喷桩处理桥头软基效果为佳。

3下部结构配筋

下部结构配筋首先涉及配筋方法的选用问题,故在该项中对配筋方法、盖梁配筋、桩筋及桩长设计、桥台配筋等注意事项分别进行讨论:

3.1极限法及容许应力法应用分析

由于现行桥规将钢筋混凝土桥原容许应力法的弹性状态设计改按承载极限状态设计,大家对容许应力法有淡漠趋势。事实上,极限法是在等截面简支梁试验基础上获得的,其适用范围有限,有些方面还必须用容许应力法,设计者需注意根据实际情况合理选用。

3.3桩筋及桩长设计注意事项

(1)桩筋设计

目前均采用极限法进行桩体抗弯筋设计,这在规范中已有详细公式。对桩体抗裂还没有

明确要求,目前说法不一,有待进一步研讨。

对于基桩各截面的配筋,从理论上讲,应根据桩内弯矩包络图进行计算布置。通常是根据最大弯矩处进行配筋,从桩顶一直伸到最大弯矩一半处下一定锚固长位置,减少一半配筋再一直伸至弯矩为零下一定锚固长位置,再下为素混凝土段,对于软基,桩主筋最好穿过软土层。①节省大量钢筋;②钢筋笼少,受桩长的变更而变更;③减少底部断桩处理的难度,减少扁担桩发生机率。浇桩时,开始几米发生卡管等事故机率高,而采用第一种方式配筋,底部断桩后,钢筋笼拔出后,可原孔再钻,因钢筋笼一通到底,只能采用扁担桩处理。

(2)桩长设计

桩长计算不同于桩基配筋,仍采用容许应力法,最大竖向力应按容许应力法要求计算,不需考虑极限荷载组合系数。

3.4桥台配筋注意事项

主要表现在桩基、台身、台帽、背墙、耳墙等开裂,尤以根部裂缝为多,该桥布设三孔(20m+30m+20m),处于软土地质中,西幅采用框架式桥台,东幅采用带基桩U型台,桥头填土5m高,又处于改河、临河段,当时限于经费,存在压缩桥孔现象,桥台前移使墩、台缝全部顶死,背墙、耳墙、台帽、台身出现较大裂缝,桥头路基出现很大范围的不均匀沉降及滑动裂缝,后对该桥整治加固。以往桥台破坏多归结为超载,事实上也与设计时忽略某些因素有关:

(1)台后顺桥向水平土压力对盖梁的水平弯矩是造成盖梁跨中附近侧面竖向裂缝的主要原因,而侧水平土压力易造成耳墙根部弯裂。

(2)桥台前移使有缝桥变成无缝桥,大梁就会对桥台背墙产生巨大推力去平衡台后的土压力,两个力作用的结果导致①背墙从根部剪裂;②盖梁挑出部分从支撑根部斜下弯裂;

③台身与盖梁、桩基与台身连接处弯裂。

(3)桥台在土压力、恒载、活载、梁反推力作用下将有很大的扭矩,使盖梁发生扭剪破坏。

(4)桥头路基下沉致使背墙受活载冲击力而过早破坏。

4施工中下部结构技术问题的处理

施工和设计是相互关联的,"怎么设计,就怎么施工”,反过来对设计者而言,应该“怎么施工,就怎么设计”,设计者应保证设计方案的合理性、可实施性,对其提供的施工方案安全性应进行验算,有些施工方案的工艺、工序在设计文件中必须明确,否则对质量、安全有不良影响。施工中出现的问题也要通过设计来解决,以下针对施工中常遇到的几个大问题进行分析,并从设计上提出解决问题的方法及其预防措施。

4.1桩长变更

地质钻探资料仅反映局部地质情况,加之钻探描述与实际桩孔地质有所出入。因此,桩底碰到岩面难以钻进,地质较好时,应允许对桩长进行变更,但必须要求设计人员、监理人员根据岩层实际强度,设计者既不能轻易变更桩长,又要避免过于保守,在满足承载力情况下进行桩长调整。

4.2沉淀层厚度指标选用分析

①不要对沉淀层要求的太小,施工中难以控制。②清底系数mo值对桩长影响较大,以0.3d~0.4d为宜,个别桩底沉淀层厚度超标的,浇筑前可用反循环清孔法进行清孔。

4.3断桩处理

桩底设素混凝土段对底层断桩处理有很大帮助,对于上层断桩,可用挖孔接桩法处理,对于中层断桩,应重点控制;如出现断干桩可以接桩,水下浇筑可以采取扁担桩法进行处理,两桩挑一桩,三桩挑两桩。

5前期科学规划、合理方案对建桥的影响

桥梁前期方案设计,对节省工程费用,保证工程质量很重要。但很多时候,大家赶工期,前期工作不细,方案没有深度,等施工图搞好了,再重新完善方案,结果整个设计又从头开始,设计效率较低;若方案做得全面细致,科学合理,可以影响主管部门采纳而且较少变动。

5.1做好总体规划,初步正确框定下部结构的位置及型式

5.2做好桥宽规划,提高下部结构的设计质量及设计单位的设计效率

规划部门希望桥宽一步到位,而主管部门因资金所限常常不能一步实施到位。

5.3勘测是下部结构设计合理的前提和基础

现场地形、地质影响下部结构型式的选择及方案的合理性、可行性,对下部工程设计质量至关重要,如果前期调查不细,就会给工程实施造成设计变更、工期延长、费用增加等问题。

5、总结:

总之,设计者要善于结合工程实际分析问题、解决问题,并坚持在工程设计中推陈出新,以不断提高下部工程的设计质量及其使用效果。

一、设计资料

1、线路:双线、直线、坡度4‰、线距4.0m,双线线路中心至人行道栏杆3.0m。

2、桥跨:无渣无枕混凝土箱形梁,计算跨度L0=40.0m,梁全长L=40.6m,梁端缝0.1m。

轨底至梁底 3.36 m,梁底至垫石顶0.5m,梁底至支座中心0.09m,一孔梁总重

3100KN。

3、地质几地下水位情况:

标高(m)地质情况厚度

(m)

标高

(m)

地质情况厚度

(m)

16.5~16.2 耕地0.3 -24.4~-30.9 粗砂(中密) 6.5

16.2~11.3 软塑粘土 4.9 -30.9~-40.5 中砂(中密)9.6

11.3~3.2 粉砂8.1 -40.5~-45.6 砾砂(中密) 5.1

3.2~2.4 淤泥质砂粘土

(松软)

0.8 -45.6~-58.7 硬塑粘土13.1

2.4~24.4 细砂(中密)26.8

土层平均重度γ=20KN/m3,土层平均内摩擦角Φ=27。,

地下水位标高:+15.00m

4、成孔机具:Φ100cm、Φ125cm,Φ150cm旋转转机。

5、标高:轨底+29.88米,墩底+16.80米。

6、风力:w=800Pa(桥上有车)。

7、桥墩尺寸:如图1所示。

二、设计荷载:

1、承台底外力合计:

双线、纵向、二孔重载:

N=20442.5kN,H=936KN,M=12610.7kN.m;

双线、纵向、一孔重载:

N=18061.8kN,H=936kn,M=14674.37kN.m

2、墩顶外力:

双线、纵向、一孔重载:

H=911.7KN,M=5410KN.m

说明:如因布桩需要加大承台尺寸时,增加部分自重应计入。

三、设计要求:

1、确定桩的材料、桩长、桩数及桩的排列。

2、检算下列项目

1)单桩承载力检算(双线、纵向、双孔重载);

2)群桩承载力检算(双线、纵向、双孔重载);

3)墩顶位移检算(双线、纵向、一孔重载);

4)桩身截面配筋计算(双线、纵向、一孔重载);

5)桩在土面处位移检算(双线、纵向、一孔重载)。

一、拟订尺寸

承台:C20混凝土

桩长:取桩长42米

桩数:按双孔重载估算桩数:

按照公式:]

[p N

μn ∑?

= 其中:μ=1.3~1.8

5

.0,

5.2,5:][/10204006)34(][10142.31][2

1

][0'223

202'

22200===-=∴=+-+=∴>=?==+∑=

m k k k m KN KPa

d

k d k d l d U A m l f P i i 折减系数:钻孔灌注桩桩底支承力查表得的深度修正系数浮重度,且为透水的,应采用在桩持力层在水面以下桩侧土的天然重度:基的基本承载力查(铁路桥规)得:地σγσγγσσππσμ 根

,按双孔重载估算桩数取)(载力:

单桩的轴向受压容许承极限承载摩力桩底面积:84.813

.31485.204423.1][3.113.31485

.23534410722432490142.32

1

600785.05.0)3.4808.26408.0301.840245(142.32

1

][21][80,40,30,40,45:785.04

6001505040016105.2)314(105400][0543212

2≈=?=∑===+++++??=??

+?+?+?+?+???=+∑========

=++=???+-???+=P N n KPa

A m l f P KPa

f KPa f KPa f KPa f KPa f f m d A KPa

i i i μμσμπ

σ

桩 的 布 置

图1所示

二、台底面形心处的位移计算

(1)、桩的计算宽度:

48

.1

2

82

.0

9.0

82

.0

6.3

2

4.0

6.0

6.0

)

1(

6.3

6.0

2

6

)1

(3

)1

(

9.0

1

1

'

'

1

1

1

=

?

?

=

=

?

+

=

-

+

=

=

<

=

=

+

=

+

?

=

=

b

h

l

b

b

k

m

h

m

l

m

d

h

d

k

kb

k

k

b

f

(2)、

4

2

2

2

2

1

2

2

1

1

4

2

4

1

2

1

2

2

1

2

2

1

1

6

7

7

7

4

4

52

.7

1.4

1.2

)1.2

4(

8

2

6000

)

2(

8000

,

6000

1.2

,

2

1.4

)1

05

.1(

2

)1

(2

)

2(

10

06

.1

10

16

.2

0491

.0

10

16

.2

10

7.2

8.0

8.0

0491

.0

64

-

-

-

?

=

?

+

?

+

?

=

+

+

=

?

=

?

=

=

=

=

+

?

=

+

=

+

+

=

?

=

?

?

=

?

=

?

?

=

=

=

=

m

MN

h

h

h

h

m

h

m

m

m

KN

m

m

KN

m

m

h

m

h

m

d

h

h

h

h

h

m

h

m

m

EI

KPa

E

E

m

I

m

m

h

例系数:

查表可知桩基系数的比

其中:

同土层:

由于基础侧面为数种不

(3)、地基系数

2

20000350535

007.74

,330.6427

tan 4214/1016.34252.75

.288.16424018.04018.010

06.148

.152.7m d π

A m d m

d φ

m KN m l c l αEI m b α====+=?=?==∴∴>=?==??==取大于桩间距径:

扩散角至桩底面得的半侧摩阻力以地基系数:为弹性地基

则桩的变形系数: (4)、下面求3321,,,ρρρρ

m

KN EI m KN EIY m KN EIY Y Y l l m

KN A C AE l l E m l l M M H M M H /1020.63484.11006.14018.0/1086.16985.01006.14018.0/1032.7064.11006.14018.0484

.1,985.0,064.11564

424018.0,/1094.607

.71016.31

785.0107.2425.001

1

1107.2,42,5.0,0464462234633205570

0017

0?=???==?=???==?=???=====->?=?=??+

???+=

++=

?====φαραραρφααξρξ得:查表已知:

(5)、承台位移a,b,B 承台的计算宽度:

求刚度系数:

:承台底面处的地基系数34

2

20/191842.3599555951

.48.3)8.33.02(60003.050001.4)1(23

.112

.30

.22.112.18.811m KN m h C m KN m d h b B h m =?==?=?+?+?=∴=+==?+?+

=+=- m KN ρn ρn γi bb /1052.551094.685511?=??===∑ m KN ρn ρn γi aa /1056.581032.784522?=??===∑

m KN ρn ρn γγi a ββa /103488.11086.1686433?-=??-==-==∑

m

KN x n ρρn x n ρρn γi i i i i ββ/1075.1)5.18(1094.61020.6387

2542

142

14?=???+??=

+=+=∑∑∑

m

KN h C B γ

γh aa

aa /1087.1072

2

.317.239573.1110856.52

450

'?=??

+?=+=

m

KN h C B γγγh βa a ββa /1068.886

2

.317.239573.111088.1346

42

42

0'

'

?-=??+?-=

+==

m

KN h C B γγh ββββ/1072.182812

2

.317.239573.11108.17541243

43

0'

?=??+?-=

+=

由公式得:

桩基是竖自桩,桩群为对称布置

0====a βab βb ba γγγγ

由式(6-78)得:

???

?

?∑=+=∑=+M

βγγa N γb H βγγa ββa

βbb βa aa ''''

由上式可得承台位移:

bb

γN b ∑=

2''

''

a ββ

aa βa ββγ

γγM

γH γa --=

∑∑

2''

''

a ββ

aa βa aa γ

γγH

γM γβ--=

∑∑

利用上式公式即可算出两种外荷载作用下的位移:

荷载情况1(双孔重载):

N=20442.5 H=936 M=12610.7

m b 00368.010

2.5555

.204424

=?=

m a 00159.0)1068.88(1072.18281087.101)7.126101068.88(9361072.18282

44444=?--?????--??= rad β000767.0)1068.88(1072.18281087.101)9361068.88(7.126101087.1012

44444=?--?????--??=

荷载情况2(一孔重载)

N=18061.8kN,H=936kn,M=14674.37kN.m

m b 00368.010

2.5558

.180614

=?=

m a 00169.0)1068.88(1072.18281087.101)37.146741068.88(9361072.18282

44444=?--?????--??= rad β00088.0)1068.88(1072.18281087.101)9361068.88(37.146741087.1012

44444=?--?????--??=

三、 墩身弹性变形引起的托盘底面水平位移'

d δ 转角'

β

假定墩帽,托盘和基础部分产生刚性

转动

1、P ∑和纵向风力引起的力矩 利用几何关系分别求出五部分的边长及中线 将桥墩墩身部分分成四部分,分别计算它们所受的风荷载:

?

?

=

2.3=

KN

=

M172

.1

Ap

.4

8.0

63

分别计算出四部分的上下底边长及中线长,然后既可计算出各个截面的弯矩,再求和即可得到托盘底面所受的总弯矩,列表如下:

算例:

墩帽风力H=10?1.2?0.8=9.6KN

托盘风力H=0.5?(9.4+6.7)?1.5?0.8=9.66KN

H1-2=1.63?3.2?0.8=4.1728KN

托盘顶面0处的弯矩:① 911.7?1.2=1094.04KN*m

② 9.6?1.2/2=5.76 KN*m

对各截面弯矩 M 水平力(KN) 托盘顶 0

托盘底 1

2 3 4 墩底5

墩顶水平力

7.911=∑P

1094.04 2461.59 3947.661 5433.732 6919.803 8405.871 墩帽风力H=9.6 5.76 20.16 35.808 51.456 67.104 82.752 托盘风力H=9.66 7.651 23.397 39.142 54.888 70.634 墩 身

H 1-2=4.1728 3.401 10.202 17.004 23.806 H 2-3=4.1728 3.401 10.202 17.004 H 3-4=4.1728 3.401 10.202 H 4-5=4.1728 3.401 墩顶弯矩5410KNm 5410 5410 5410 5410 5410 5410 总计

6509.8

7899.401

9420.267

10947.933

12482.402

14023.673

2. 计算托盘底面水平位移'

d δ 转角'β

M i △h h i I i =2bh 3

/12

EI i β’

=M i △h/EI i

'd δ=β’?h i

单位 KN*m m

m

m

4

KN/m rad m 1-2段 8659.8

1.63 3.925 3.839 8.29?107

1.702?10-4 6.80?10-4 2-3段 10184.1 1.63 5.555 4.156 8.98?107 1.850?10-4 10.277?10-4 3-4段 11715.2 1.63 7.185 4.490 9.70?107 1.969?10-4 14.147?10-4 4-5段

13253.0 1.63 8.815

4.481

10.46?107

2.066?10-4 18.212?10-4 总计

7.587?10-4

49.316?10-4

式中:

2

上i i i M M M +=

m KN M ?=+=-85.86592

3

.94204.789921

m KN M ?=+=-1.101842

933.109473.942032

m KN M ?=+=-2.117152

402.12482933.1094743

m KN M ?=+=-1.132532

673.14023402.1244825

4

m h 925.32

74

.411.31=+=

m h 555.52

63

.163.17.241.02=+++=

m h 185.7263

.163.127.241.03=+

?++= m h 815.82

63

.163.137.241.03=+?++=

431839.364326.26.1m I =?=

43

2156.464978.26.1m I =?=

43

3490.465630.26.1m I =?=

43

4841.46

6282.26.1m I =?=

1. 单桩承载力检算(按双孔重载计算)

N=20442.5 p 1=695000 x=1.5 β=0.767?10-3 则桩顶内力:

]

[2.11.34857.3638.49433547.3631042405.1)1020(4246.494)1025(424)10(424335410767.05.11095.68

5

.20442''max 220'

'23

51

max p G G N KN

d G KN

r d G KN

x n

N N <=-+=++=???=-??==-??=-??==????++=

-∑则单桩承载力:桩周侧土的自重:

水层中,应采用浮重度

桩自重:桩位于地下透ππππβ

ρ 2、群桩承载力检算:

阴影部分为由于摩擦角而延伸的宽度

KN

G G N N KN

G KN

G m bh W m A m

X 14856386.4947.1241635.204427.124163)107.12.1137.4205.12.1137.4107.194.1337.4205.194.1337.4(27.3638)1020(94.1394.196.4948.645694.1394.19627894.1394.1937.46.04

tan 420max 03

2

22

=?++=++=∴=???+???+???+???+?--??===?===?==-=桩侧土的自重:

桩自重:外伸宽度由于内摩擦角的影响:φ

KPa σKPa W M A N σ600][5543.195.5348

.6457.12610278148563=<≈+=+=+=

4、桩在土面处的位移检算:

m

m h βa 006.000452.02

.3000884.000169.0'<=?+=+=

5、墩顶位移检算:

mm

l mm m h βδH βa d 6.3140552.200202.011.310587.710316.4972.12000884.000169.044'==<==??+?+?+=+++=--6、桩身截面配筋设计:

利用最不利荷载组合:双线,纵向,单孔,重载

M M m M M z B A B B M A a H M ρa βρM βρρa H 224.27137.61224.2714018

.066

.24224.271936.28416.5561086.16109.16102.63108.866

.241086.16108.81032.7109.160044443404444320+-=+-=+=

∴=-=???-???=-=-=???-???=-=----桩身弯矩:A 、计算列表如下:

az z A m B m -61.37A m 271.224B m

M z 0 0 0 1 0

271.224

271.224

0.2 0.5 0.197 0.998 -12.0899 270.6816 258.5917 0.4 1 0.377 0.986 -23.1365 267.4269 244.2904 0.6 1.5 0.529 0.959 -32.4647 260.1038 227.6391 0.8 2 0.646 0.913 -39.645

247.6275 207.9825

1 2.5 0.723 0.851 -44.3705 230.8116 186.4411 1.

2

3 0.762 0.77

4 -46.7639 209.9274 163.1634 1.4 3.

5 0.765 0.687 -46.9481 186.3309 139.3828 1.

6 4 0.73

7 0.594 -45.2297 161.1071 115.8774 1.

8 4.5 0.685 0.49

9 -42.0385 135.3408 93.30233 2 5 0.614 0.407 -37.6812 110.3882 72.70699 2.2 5.5 0.532 0.32 -32.6488 86.79168 54.14284 2.4 6 0.443 0.243 -27.1869 65.90743 38.72052 2.6 6.5 0.355 0.175 -21.7864

47.4642

25.67785

2.8 7 0.27 0.12 -16.5699 32.54688 15.97698 3 7.5 0.193 0.076 -11.8444 20.61302 8.768614

3.5 8.7 0.051 0.014 -3.12987 3.797136 0.667266 4

10

B 、判别大小偏心

134

.050.09032.0060485.05.0060485.0011398.0049087.0)44.0(00785.0155.0)5.0(45.049032.000785.0157854.001

.07854.000785.0,00785.07854.0)5.02(4

)2(4004242402

02

222=?=====+=???+=+=

=?+=+======?==

y A I k m

R y m π

r nA R πI m nA A A A A μm A m π

R πA g g g h h g g h

为大偏心受压构件

∴>=?=?==-

==+=+===?===++=++

=

===k m ηe e l I E πα

KN ηm

αl l m d πI KPa E K h

e a m N M e c h h c h h 176.015.1154.015

.111

98.4)4018

.00.40(5.0)0.4(5.0,049.064,107.2,6.1442.016.000.1154

.02.01

.016.02.01.0154.01756

224

.2710220447

0min max 0

C 、配筋

按照最小配筋率224

'7.1500157.04

002.0002.0cm m d πA A A h g g

==?=== 352.0353.0)

(16)(24352

.05

.0176.0893.6;535.36;975.6;866.013769.4025162

''2≈=-?+===-=====Q μn V R r πμn W R e R e Q W V K αcm φg 荷载偏心率度,查表得

经试算,令截面应力检算:

,面积用量表得:采用根据最小配筋率查钢筋

]

[6.565.0866.0244.0)1866.02(5.006.4152)12(]

[2.55.0866.0244

.0)866.021(5.006

.4152)21(0.706.4)

5

.044.0(01.014.31524535.36[)5.0(224

.271866.096)(

24[96'

2

32

3σMPa KR r K R σn σσMPa KR r K R σn σMPa

MPa R

r πμn W R KM σg h g g g

h

g g

h <=??+-??=+-=<=??+?-?=+-=<=???+??=

+=

][885.3)00785

.07.157854.0(95.03354

)(7.1595.0,0.100.1/10/'

0a g h h σMPa m A A φN σm φd l <=?+=+=

====,查表得稳定性计算:

某桥梁桩基础设计计算

第一章桩基础设计 一、设计资料 1、地址及水文 河床土质:从地面(河床)至标高32.5m 为软塑粘土,以下为密实粗砂,深度达30m ;河床标高为40.5m ,一般冲刷线标高为38.5m ,最大冲刷线为35.2m ,常水位42.5m 。 2、土质指标 表一、土质指标 3、桩、承台尺寸与材料 承台尺寸:7.0m ×4.5m ×2.0m 。拟定采用四根桩,设计直径 1.0m 。桩身混凝土用20号,其受压弹性模量h E =2.6×104MPa 4、荷载情况 上部为等跨25m 的预应力梁桥,混凝土桥墩,承台顶面上纵桥向荷载为:恒载及一孔活载时: 5659.4N KN =∑、 298.8H KN =∑、 3847.7M KN m =∑ 恒载及二孔活载时: 6498.2N KN =∑。桩(直径 1.0m )自重每延米为: 2 1.01511.78/4 q KN m π?= ?= 故,作用在承台底面中心的荷载力为:

5659.4(7.0 4.5 2.025)7234.4298.83847.7298.8 2.04445.3N KN H KN M KN =+???===+?=∑∑∑ 恒载及二孔活载时: 6498.2(7.0 4.5 2.025)8073.4N KN =+???=∑ 桩基础采用冲抓锥钻孔灌注桩基础,为摩擦桩 二、单桩容许承载力的确定 根据《公路桥涵地基与基础设计规范》中确定单桩容许承载力的经验公式,初步反算桩的长度,设该桩埋入最大冲刷线以下深度为h ,一般冲刷线以下深度 为3h ,则:002221 []{[](3)}2 h i i N p U l m A k h τλσγ==++-∑ 当两跨活载时: 8073.213.311.7811.7842 h N h =+?+? 计算[P]时取以下数据: 桩的设计桩径1.0m ,冲抓锥成孔直径为1.15m ,桩周长 2 22 02021211.15 3.6,0.485,0.7 4 0.9, 6.0,[]550,12/40,120, a a a u m A m m K Kp KN m Kp Kp ππλσγττ?=?== ======== 1 [] 3.16[2.740( 2.7)120]0.700.90.7852 [550 6.012( 3.33)]2057.17 5.898.78k p h h N h m =??+-?+??? +??+-==+∴= 现取h=9m ,桩底标高为26.2m 。桩的轴向承载力符合要求。具体见如图1所示。

某铁路桥梁桥墩基础设计

《基础工程》课程设计 目录 一、概述 (2) 1、工程概况和设计任务 ......................................................................................................... 2 二.方案设计 .. (3) 1.基础类型和尺寸 .................................................................................................................... 3 2.地基持力层 ............................................................................................................................ 3 三、技术设计 .. (6) 1.荷载设计 (6) 2.计算变形系数α ................................................................................................................... 6 3.计算刚度系数1234ρρρρ ..................................................................................................... 6 4.电算求解承台变位..a b β和桩顶内力i i i N H M ................................................................. 7 5.绘制桩身弯矩图,剪力图和桩侧土的横向抗力图 ......................................................... 8 6.桩身配筋计算 ...................................................................................................................... 13 7.桩水平位移检算 .................................................................................................................. 13 8.桩单位转角检算 .................................................................................................................. 14 9.承台结构设计计算 .............................................................................................................. 17 四.施工方案 (19) 1.基础施工方式 ...................................................................................................................... 19 参考资料.. (21)

桩基础的设计计算

1 第四章桩基础的设计计算 1.本章的核心及分析方法 本节将介绍考虑桩与桩侧土共同抵抗外荷载作用时桩身的内力计算,从而解决桩的强度问题。重点是桩受横轴向力时的内力计算问题。 桩在横轴向荷载作用下桩身的内力和位移计算,国内外学者提出了许多方法。目前较为普遍的是桩侧土采用文克尔假定,通过求解挠曲微分方程,再结合力的平衡条件,求出桩各部位的内力和位移,该方法称为弹性地基梁法。 以文克尔假定为基础的弹性地基梁法从土力学观点看是不够严密的,但其基本概念明确,方法简单,所得结果一般较安全,在国内外工程界得到广泛应用。我国公路、铁路在桩基础的设计中常用的“m”法、就属此种方法,本节将主要介绍“m”法。 2.学习要求 本章应掌握桩单桩按桩身材料强度确定桩的承载力的方法,“m”法计算单桩内力的各种计算参数的使用方法,多排桩的主要计算参数及其各自的含义。掌握承台计算方法,群桩设计的要点及注意事项,了解桩基设计的一般程序及步骤。本专科生均应能独立完成单排桩和多排桩的课程设计。 第一节单排桩基桩内力和位移计算 一、基本概念 (一)土的弹性抗力及其分布规律 1.土抗力的概念及定义式 (1)概念 桩基础在荷载(包括轴向荷载、横轴向荷载和力矩)作用下产生位移及转角,

2 使桩挤压桩侧土体,桩侧土必然对桩产生一横向土抗力zx σ,它起抵抗外力和稳定桩基础的作用。土的这种作用力称为土的弹性抗力。 (2)定义式 z zx Cx =σ (4-1) 式中: zx σ——横向土抗力,kN/m 2; C ——地基系数,kN/m 3; z x ——深度Z 处桩的横向位移,m 。 2.影响土抗力的因素 (1)土体性质 (2)桩身刚度 (3)桩的入土深度 (4)桩的截面形状 (5)桩距及荷载等因素 3.地基系数的概念及确定方法 (1)概念 地基系数C 表示单位面积土在弹性限度内产生单位变形时所需施加的力,单位为kN/m 3或MN/m 3。 (2)确定方法 地基系数大小与地基土的类别、物理力学性质有关。 地基系数C 值是通过对试桩在不同类别土质及不同深度进行实测z x 及zx σ后反算得到。大量的试验表明,地基系数C 值不仅与土的类别及其性质有关,而且也随着深度而变化。由于实测的客观条件和分析方法不尽相同等原因,所采用的C 值随深度的分布规律也各有不同。常采用的地基系数分布规律有图下所示的几种形式,因此也就产生了与之相应的基桩内力和位移的计算方法。

桥墩桩基础设计计算书

基础工程课程设计 一.设计题目: 某桥桥墩桩基础设计计算 二.设计资料: 某桥梁上部构造采用预应力箱梁。标准跨径30m,梁长29.9m,计算跨径29.5m,桥面宽13m(10+2×1.5),墩上纵向设两排支座,一排固定,一排滑动,下部结构为桩柱式桥墩和钻孔灌注桩基础。 1、水文地质条件: 河面常水位标高25.000m,河床标高为22.000m,一般冲刷线标高20.000m,最大冲刷线标高18.000m处,一般冲刷线以下的地质情况如下: (1)地质情况c(城轨): 2、标准荷载: (1)恒载 桥面自重:N1=1500kN+8×10kN=1580KN; 箱梁自重:N2=5000kN+8×50Kn=5400KN; 墩帽自重:N3=800kN; 桥墩自重:N4=975kN;扣除浮重:10*2*3*2.5=150KN (2)活载 一跨活载反力:N5=2835.75kN,在顺桥向引起的弯矩:M1=3334.3 kN·m; 两跨活载反力:N6=5030.04kN+8×100kN; (3)水平力 制动力:H1=300kN,对承台顶力矩6.5m; 风力:H2=2.7 kN,对承台顶力矩4.75m 3、主要材料 承台采用C30混凝土,重度γ=25kN/m3、γ‘=15kN/m3(浮容重),桩基采用C30混凝土,HRB335级钢筋;

4、墩身、承台及桩的尺寸 墩身采用C30混凝土,尺寸:长×宽×高=3×2×6.5m 3 。承台平面尺寸:长×宽 =7×4.5m 2 ,厚度初定2.5m ,承台底标高20.000m 。拟采用4根钻孔灌注桩,设计直径1.0m ,成孔直径1.1m ,设计要求桩底沉渣厚度小于300mm 。 5、其它参数 结构重要性系数γso =1.1,荷载组合系数φ=1.0,恒载分项系数γG =1.2,活载分项系数γQ =1.4 6、 设计荷载 (1) 桩、承台尺寸与材料 承台尺寸:7.0m ×4.5m ×2.5m 初步拟定采用四根桩,设计直径1m ,成孔直径1.1m 。桩身及承台 混凝土用30号,其受压弹性模量h E =3×4 10MPa 。 (2) 荷载情况 上部为等跨30m 的预应力箱梁桥,混凝土桥墩,作用在承台底面中心的荷载为: 恒载及一孔活载时: 1.2(158054008009751507 4.5 2.515 1.42835.751571 3.55N KN =?+++-+???+?=∑) 1.4(300 2.7)42 3.78H KN =?+=∑ [3334.3300(2.5 6.5) 2.7 4.75 2.5 1.48475.425M KN =+?++? +?=∑()] 恒载及二孔活载时: 1.2(158054008009751507 4.5 2.515N =?+++-+????∑)+1.45830.04=19905.556KN 桩(直径1m )自重每延米为: q= 2 11511.781/4 KN m ??=π(已扣除浮力) 三、计算 1、根据《公路桥涵地基与基础设计规范》反算桩长 根据《公路桥涵地基与基础设计规范》中确定单桩容许承载力的经验公式,初步反算桩的长度, 设该桩埋入最大冲刷线以下深度为h ,一般冲刷线以下深度为h 2,则: [][]{} )3(2 1 22200-++==∑h k A m l U P N i i h γσλτ

桥墩桩基础设计计算书

桥墩桩基础设计计算书 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

基础工程课程设计一.设计题目:00 某桥桥墩桩基础设计计算 二.设计资料: 某桥梁上部构造采用预应力箱梁。标准跨径30m,梁长,计算跨径,桥面宽13m (10+2×),墩上纵向设两排支座,一排固定,一排滑动,下部结构为桩柱式桥墩和钻孔灌注桩基础。 1、水文地质条件: 河面常水位标高,河床标高为,一般冲刷线标高,最大冲刷线标高处,一般冲刷线以下的地质情况如下: (1)地质情况c(城轨): 2、标准荷载: (1)恒载 桥面自重:N1=1500kN+8×10kN=1580KN; 箱梁自重:N2=5000kN+8×50Kn=5400KN;

墩帽自重:N3=800kN; 桥墩自重:N4=975kN;扣除浮重:10*2*3*=150KN (2)活载 一跨活载反力:N5=,在顺桥向引起的弯矩:M1= kN·m; 两跨活载反力:N6=+8×100kN; (3)水平力 制动力:H1=300kN,对承台顶力矩; 风力:H2= kN,对承台顶力矩 3、主要材料 承台采用C30混凝土,重度γ=25kN/m3、γ‘=15kN/m3(浮容重),桩基采用C30混凝土,HRB335级钢筋; 4、墩身、承台及桩的尺寸 墩身采用C30混凝土,尺寸:长×宽×高=3×2×。承台平面尺寸:长×宽=7×,厚度初定,承台底标高。拟采用4根钻孔灌注桩,设计直径,成孔直径,设计要求桩底沉渣厚度小于300mm。 5、其它参数 结构重要性系数γso=,荷载组合系数φ=,恒载分项系数γG=,活载分项系数γQ= 6、设计荷载 (1)桩、承台尺寸与材料 承台尺寸:××初步拟定采用四根桩,设计直径1m,成孔直径。桩身及承台

桥桥墩桩基础基础设计

桥桥墩桩基础基础设计 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

华东交通大学 课程设计(论文) 题目名称某桥桥墩桩基础设计计算 院(系)土木建筑学院 专业道路与铁道工程 班级道铁2班 姓名欧阳俊雄 2011年 6 月 13 日至 2011 年 6 月 29 日共 1 周 指导教师: 耿大新 教研室主任: 李明华 资料收集 某桥梁上部构造采用预应力箱梁。标准跨径32m,梁长31.9m,计算跨径31.5m,桥面宽13m,墩上纵向设两排支座,一排固定,一排滑动,桥墩采用圆端形实心墩,平面尺寸形式如图1所示,墩高12m,计算墩顶变形时,不考虑墩身的挠曲。下部结构采用钻孔灌注桩基础。 1、地质及地下水位情况: 河面常水位标高25.000m,河床标高为22.000m,一般冲刷线标高20.000m,最大冲刷线标高18.000m处,一般冲刷线以下的地质情况如下:

2、设计荷载: (1)恒载: 桥面自重:1N=1500kN+学号×20kN=1500+16×20=1820kN 箱梁自重:2N=6000kN+学号×40kN=6000+16×40=6640kN 桥墩自重:3N=3875kN (2)活载 一跨活载反力:2835.75kN M1? =; kN 3334.3 N4=,在顺桥向引起弯矩:m 两跨活载反力: N5=5030.04kN+学号×50kN=5030.04+16×50=5930.04kN\ (3)水平力 制动力:H1=300kN,对承台顶力矩6.5m; 风力:H2=2.7 kN,对承台顶力矩4.75m 主要材料 承台采用C30混凝土,重度γ=25kN/m3、γ′=15kN/m3(浮容重)。

基础 工程设计

基础工程课程设计二 一、设计题目 本课程设计的题目是“铁路桥墩桩基础设计” 二、设计目的 通过本次课程设计应全面掌握铁路墩台桩基础设计内容与步骤及主要验算内容与方法,了解现行《铁路桥涵地基和基础设计规范》(TB 10002.5-2005)的有关规定,并初步具备独立进行桩基础设计的能力。三、设计资料 (一)线路及桥梁 1、线路:双线、直线、坡度4‰、线距5m,双块式2无石渣轨道 及双侧1.7m人行道,其重量为44.4kN/m。 2、桥跨:等跨L=31.1m无渣桥面单箱单室预应力混凝土梁,梁全长 32.6m,梁端缝0.1m。梁高3m,梁宽13.4m,每孔梁重8530kN, 简支箱梁支座中心距梁端距离0.75m,同一桥墩相邻梁支座间距 1.6m。轨底至梁底高度为 3.7m,采用盆式橡胶支座,支座高 0.173m,梁底至支座铰中心0.09。 3、建筑材料:支撑垫石、顶帽、托盘采用C40钢筋混凝土,墩身采 用C30混凝土,桩身采用C25混凝土。 (二)地质资料 墩柱下地层情况及主要物理力学指标如下: 地层号岩层名称标高() m 厚度 ()m 基本 承载力 (kPa) 容重 (kN/m3) 内摩擦 角 (°)

1-1 耕地 36.79~36.29 0.5 60 18 10 1-2 粉砂(中密) 36.29~23.31 12.98 200 19.5 18 1-3 粗砂(中密) 23.31~ 未揭穿 400 20.5 22 地下水位高程为-50m 。 地层分布情况见图1 23.31 粉 砂 粗 砂 比例 1:1000 图1 地质横断面示意图 (三)荷载资料 该墩柱与承台布置详见图2。

铁路桥墩桩基础设12计

课程名称:基础工程 设计题目:铁路桥墩桩基础设计院系:土木工程系 专业:詹天佑班 年级:2009级 姓名:白越 学号:20097025 指导教师: 西南交通大学峨眉校区 2012 年12 月

课程设计任务书 专业詹天佑班姓名白越学号20097025 开题日期:2012年12月1日完成日期:2012 年12月23日 题目铁路桥墩桩基础设计 一、设计的目的 通过本次课程设计应全面掌握铁路墩台桩基础设计内容与步骤及主要验算内容与方法,了解现行《铁路桥涵地基和基础设计规范》(TB 10002.5-2005)的有关规定,并初步具备独立进行桩基础设计的能力 二、设计的内容及要求 1、选定桩的类型、施工方法、桩与承台的连接方式,设计满足工程要求的桩基础 2、检算项目 (1)单桩承载力(双线、纵向、二孔重载); (2)群桩承载力(双线、纵向、二孔重载); (3)单桩桩身内力(双线、纵向、一孔重载); (4)承台抗弯(双线、纵向、二孔重载); (5)桩对承台冲切(双线、纵向、二孔重载); (6)承台抗剪(双线、纵向、二孔重载)。 3、设计成果 (1)设计说明书; (2)设计计算书; (3)桩的平面及横断面布置图三、 指导教师评语 四、成绩 指导教师(签章) 年月日

一、设计资料 1、 线路:双线、直线、坡度4‰、线距5m ,双块式2无石渣轨道及双侧1.7m 人行道,其重量为44.4kN/m 。 2、 桥跨: 等跨L=31.1m 无渣桥面单箱单室预应力混凝土梁,梁全长32.6m ,梁端缝0.1m 。梁高3m ,梁宽13.4m ,每孔梁重8530kN ,简支箱梁支座中心距梁端距离0.75m ,同一桥墩相邻梁支座间距1.6m 。轨底至梁底高度为3.7m ,采用盆式橡胶支座,支座高0.173m ,梁底至支座铰中心0.09。 3、建筑材料:支撑垫石、顶帽、托盘采用C40钢筋混凝土,墩身采用C30混凝土,桩身采用C25混凝土。 4、地质与水文资料 墩柱下地层情况及主要物理力学指标如下: 地层号 岩层名称 标 高()m 厚度 ()m 承载力 (kPa ) 容重 (kN/m 3 ) 内摩擦角 (°) 1-1 耕地 36.79~36.29 0.5 60 18 10 1-2 粉砂(中密) 36.29~23.31 12.98 200 19.5 18 1-3 粗砂(中密) 23.31~ 未揭穿 400 20.5 22 地下水位高程为-50m 。 5、标高:承台底+33.31m 。 6、桥墩尺寸:如下图(单位:cm) 7 、

土木5桥梁桩基础课程设计word文档

桥梁桩基础课程设计任务书

1、桥墩组成:该桥墩基础由两根钻孔灌注桩组成。桩径采用φ=1.2m ,墩柱直径采用φ=1.0m 。桩底沉淀土厚度t = (0.2~0.4)d 。局部冲刷线处设置横系梁。 2、地质资料:标高25m 以上桩侧土为软塑亚粘土,其各物理性质指标为:容量γ=18.5kN /m 3,土粒比重G=2.70g/3cm ,天然含水量%21=ω,液限 %7.22=l ω,塑限%3.16=p ω。标高25m 以下桩侧及桩底土均为硬塑性亚粘土,其物理性质指标为:容量γ=19.5kN /m 3,土粒比重G=2.70g/3cm ,天然含水量 %8.17=ω,液限%7.22=l ω,塑限%3.16=p ω。 3、桩身材料:桩身采用25号混凝土浇注,混凝土弹性模量 αMP E h 41085.2?=,所供钢筋有Ⅰ级钢和Ⅱ级纲。 4、计算荷载 ⑴ 一跨上部结构自重G=2350kN ; ⑵ 盖梁自重G 2=350kN ⑶ 局部冲刷线以上一根柱重G 3应分别考虑最低水位及常水位情况; ⑷公路Ⅱ级 : 双孔布载,以产生最大竖向力; 单孔布载,以产生最大偏心弯矩。 支座对桥墩的纵向偏心距为3.0=b m (见图2)。计算汽车荷载时考虑冲击力。 ⑸ 人群荷载: 双孔布载,以产生最大竖向力; 单孔布载,以产生最大偏心弯矩。 ⑹ 水平荷载(见图3) 制动力:H 1=22.5kN (4.5); 盖梁风力:W 1=8kN (5); 柱风力:W 2=10kN (8)。采用常水位并考虑波浪影响0.5m ,常水位按45m 计,以产生较大的桩身弯矩。W 2的力臂为11.25m 。

图4 5、设计要求 ⑴确定桩的长度,进行单桩承载力验算。 ⑵桩身强度验算:求出桩身弯矩图(用座标纸画),定出桩身最大弯矩值及其相应截面位置和相应轴力,配置钢筋,验算截面强度(采用最不利荷载组合及常水位)。 ⑶计算主筋长度、螺旋钢筋长度及钢筋总用量。 ⑷用A3纸绘出桩的钢筋布置图。 二、应交资料 1、桩基础计算书 2、桩基础配筋图 3、桩基础钢筋数量表

下穿铁路工程桩板结构设计

下穿铁路工程中桩板结构的设计和应用 【摘要】铁路工程下穿客运专线,采用桩板结构通过下穿区域,防止新建铁路荷载对既有铁路桥墩造成影响。桩板结构形式灵活,结果计算复杂,介绍和探讨桩板结构的设计和计算方法,为桩板结构提供了设计参考和实践经验。 1、工程概况 某新建国铁I级单线以浅挖路堑下穿既有秦沈客运铁路专线的桥梁工程,既有桥梁为明挖基础,埋深较浅。新建铁路距既有铁路桥梁基础较近,中心线距既有铁路基础2.17m。为防止新建铁路荷载对既有铁路桥墩造成影响,本处设置桩板结构通过下穿区域,并沿线路纵向在桩板结构两侧设置素混凝土过渡段,减少不均匀沉降。 2、桩板结构的设计 2.1结构选型 桩板结构是一种较为灵活的结构,分为桩基与承台板直接刚性连接的独立墩柱式;桩基与托梁刚性连接,托梁连接横向桩基,其上再与承台板相连,承台板与托梁固接或铰接的托梁式桩板结构;还有独立墩柱式和托梁式组合的复合式桩板结构。 本工程顶部为既有桥梁工程,净空受限,宜将道碴和轨道结构直接作用于承台板上,沿线路纵向单排布置桩基,四跨一联,中间跨桩与承台板间不设托梁,直接刚性连接,两端边跨端部设置托梁,桩与托梁刚性连接,板与托梁搭接,采用复合式桩板结构。标准承载板长18m,厚1.0m,宽3.9m,桩纵向跨距4.5m,

承载板底采用钢筋混凝土灌注桩。每联布置5根C40钢筋混凝土钻孔桩,桩径1.25m。根据地质情况,桩基嵌入基底强风化岩层中。 2.2结构计算 2.2.1设计荷载 作用在桩板结构上的荷载分为恒载、活载、附加力和特殊力。恒载主要为结构构件及轨道结构自重、混凝土收缩及徐变影响。本工程承载板埋深浅,需要考虑列车活载作用较多,如列车竖向静活载、列车竖向动力作用、横向摇摆力、离心力。作用在结构上的附加力主要为制动力和牵引力。结构在实际使用过程中,各种荷载并非同时作用于结构上,应按荷载可能出现的最不利组合情况进行计算。荷载计算参考《铁路桥涵设计基本规范》进行计算。 2.2.2计算方法 桩板结构为超静定结构,结构形式较为复杂,计算时以下假设为基础:(1)结构各构件本身轴力方向为刚体,忽略构件轴向变形以及剪切变形对内力的影响。(2)列车活载重复作用下时,承台板与板底土体完全脱离,不考虑土体对承台板的支撑作用。(3)土体为地基系数随深度增长的弹性变形介质。 计算过程中,将桩板结构简化为平面桁架结构,将桩板结构的纵横向分开考虑,承台板当做梁考虑,不考虑扭矩影响。采用地基系数法来考虑桩土相互作用。本工程利用Midas Civil建立桩板结构模型进行有限元分析计算,结构模型如图3:由Midas Civil模拟结果见表1:

基础工程桩基础课程设计

基础工程课程设计 课程名称:桩基础课程设计 院系:土木工程系专业: 年级: 姓名: 学号: 指导教师: 西南交通大学

目录 一、概述 (3) 1.1 设计任务 (3) 1.2设计资料 ............................................................................................................ 错误!未定义书签。 二、设计计算 .................................................................................................................. 错误!未定义书签。 2.1桩的计算宽度 ................................................................................................... 错误!未定义书签。 2.2桩的变形系数α ............................................................................................... 错误!未定义书签。 2.3桩顶的刚度系数ρ1,ρ2,ρ3,ρ4。 .......................................................... 错误!未定义书签。 2.4计算承台底面形心O 点的位移a,b,β........................................................ 错误!未定义书签。 2.5计算作用在每根桩顶上的作用力 .............................................................. 错误!未定义书签。 2.6计算局部冲刷线处弯矩M0,水平力Q0及轴向力N0 ..................... 错误!未定义书签。 三、验算单桩轴向受压容许承载力 ......................................................................... 错误!未定义书签。 3.1局部冲刷线以下深度y 处截面的弯矩 y M 及 y σ .................................. 错误!未定义书签。 3.2桩顶纵向水平位移计算 ................................................................................ 错误!未定义书签。

(整理)基础工程计算书 -

基础工程 课程设计 题目:铁路桥墩桩基础设计指导教师:郑国勇 姓名: 专业: 学号:

2014年9月28日 基础工程课程设计任务书 ——铁路桥墩桩基础设计一.设计资料 1. 线路:双线、直线、坡度4‰、线间距5m,双块式无碴轨道及双侧1.7m 宽人行道,其重量为44.4kN/m。 2. 桥跨:等跨L=31.1m无碴桥面单箱单室预应力混凝土梁,梁全长32.6m,梁端缝0.1m;梁高3m,梁宽1 3.4m,每孔梁重8530kN,简支箱梁支座中心距梁端距离0.75m,同一桥墩相邻梁支座间距1.6m。轨底至梁底高度为3.7m,采用盆式橡胶支座,支座高0.173m,梁底至支座铰中心0.09m。 3. 建筑材料:支承垫石、顶帽、托盘采用C40钢筋混凝土,墩身采用C30混凝土,桩身采用C30混凝土。 4. 地质及地下水位情况: 土层平均重度γ=20kN/m3,土层平均内摩擦角? =28°。地下水位标高:+30.5。 5. 标高:梁顶标高+53.483m,墩底+35.81。 6. 风力:w=800Pa (桥上有车)。 7. 桥墩尺寸:如图1。 二.设计荷载

1. 承台底外力合计: 双线、纵向、二孔重载: N=18629.07kN,H=341.5kN,M= 4671.75kN·m 双线、纵向、一孔重载: N=17534.94kN,H=341.5kN,M=4762.57kN·m 2. 墩顶外力: 双线、纵向、一孔重载: H=253.44 kN,M =893.16 kN·m。 三.设计要求 1. 选定桩的类型和施工方法,确定桩的材料、桩长、桩数及桩的排列。 2. 检算下列项目 (1) 单桩承载力检算(双线、纵向、二孔重载); (2) 群桩承载力检算(双线、纵向、二孔重载); (3) 墩顶水平位移检算(双线、纵向、一孔重载); (4) 桩身截面配筋计算(双线、纵向、一孔重载); (5) 桩在土面处位移检算(双线、纵向、一孔重载)。 3. 设计成果: (1) 设计说明书和计算书一份 (2) 设计图(计算机绘图) 一张 四.附加说明 1. 如布桩需要,可变更图1中承台尺寸; 2. 任务书中荷载系按图1尺寸进行计算的结果,如承台尺寸变更,应对其竖向荷载进行相应调整。

铁路信号运营基础 第四章列车运行控制 知识点总结

第四章列车运行控制 第一节机车信号 一.机车信号的由来及作用 1.恶劣的地形条件及自然环境(曲线、山区、林区、隧道、多雾、雨雪) 2.列车高速度、高密度运行 机车信号的作用: 机车信号是一种能够自动复式列车运行前方地面信号机显示的机车车载系统。 二.机车信号的显示 1.三显示自动闭塞区段的连续式机车信号机 (1) 一个绿色灯光:准许列车按规定速度运行, 表示列车接近的地面信号机显示绿色灯光 (2) 一个黄色灯光:要求列车注意运行, 表示列车接近的地面信号机显示一个黄色灯光 (3) 一个双半黄色灯光:准许列车经道岔侧向位置,限速越过接近的地面信号机,表示列车接近的地面信号机显示两个黄色灯光 (4) 一个半黄半红色灯光:要求及时采取停车措施, 表示列车接近的地面信号机显示红色灯光 (5)一个红色灯光:表示列车已越过地面上显示红色灯光的信号机 (6)一个白色灯光:不复示地面上的信号显示,机车乘务人员应按地面信号机的显示运行。无显示时,表示机车信号机在停止工作状态 2.四显示自动闭塞区段连续式机车信号机 (1) 一个绿色灯光:准许列车按规定速度运行,表示列车接近的地面信号机显示绿色灯光 (2) 一个半绿半黄色灯光——准许列车按规定速度运行,要求注意,表示列车接近的地面信号机显示一个绿色灯光和一个黄色灯光 (3) 一个黄色灯光:要求列车减速运行,表示列车应按规定的限速值越过接近的显示一个黄色灯光的地面信号机 (4) 一个带“2”字的黄色灯光:要求列车减速运行,表示列车应按规定的限速值越过接近的显示一个黄色灯光的地面信号机,并预告次一架信号机开放经道岔侧向位置的信号显示 (5) 一个双半黄色灯光:准许列车经道岔侧向位置,限速越过接近的地面信号机,表示列车接近的地面信号机显示两个黄色灯光 (6) 一个半黄半红色灯光:要求及时采取停车措施,表示列车接近的地面信号机显示红色灯光 (7) 一个红色灯光:表示列车已越过地面上显示红色灯光的信号机 (8) 一个白色灯光:不复示地面上的信号显示,机车乘务人员应按地面信号机的显示运行。无显示时,表示机车信号机在停止工作状态。 三、机车信号的分类 机车信号根据其信号显示的作用不同分为两种:

桩基础的设计计算 m值法

桩基础的设计计算 1.本章的核心及分析方法 本节将介绍考虑桩与桩侧土共同抵抗外荷载作用时桩身的内力计算,从而解决桩的强度问题。重点是桩受横轴向力时的内力计算问题。 桩在横轴向荷载作用下桩身的内力和位移计算,国内外学者提出了许多方法。目前较为普遍的是桩侧土采用文克尔假定,通过求解挠曲微分方程,再结合力的平衡条件,求出桩各部位的内力和位移,该方法称为弹性地基梁法。 以文克尔假定为基础的弹性地基梁法从土力学观点看是不够严密的,但其基本概念明确,方法简单,所得结果一般较安全,在国内外工程界得到广泛应用。我国公路、铁路在桩基础的设计中常用的"m"法、就属此种方法,本节将主要介绍"m"法。 2.学习要求 本章应掌握桩单桩按桩身材料强度确定桩的承载力的方法," "法计算单桩内力的各种计算参数的使用方法,多排桩的主要计算参数及其各自的含义。掌握承台计算方法,群桩设计的要点及注意事项,了解桩基设计的一般程序及步骤。本专科生均应能独立完成单排桩和多排桩的课程设计。 第一节单排桩基桩内力和位移计算 一、基本概念 (一)土的弹性抗力及其分布规律

1.土抗力的概念及定义式 (1)概念 桩基础在荷载(包括轴向荷载、横轴向荷载和力矩)作用下产生位移及转角,使桩挤压桩侧土体,桩侧土必然对桩产生一横向土抗力,它起抵抗外力和稳定桩基础的作用。土的这种作用力称为土的弹性抗力。 (2)定义式 (4-1) 式中:--横向土抗力,kN/m2; --地基系数,kN/m3; --深度Z处桩的横向位移,m。 2.影响土抗力的因素 (1)土体性质 (2)桩身刚度 (3)桩的入土深度 (4)桩的截面形状 (5)桩距及荷载等因素 3.地基系数的概念及确定方法 (1)概念

铁路桥墩桩基础设计(中南大学)

铁路桥墩桩基础设计 学院:土木工程学院 班级: 姓名: 学号: 指导老师:

基础工程课程设计任务书 ——铁路桥墩桩基础设计 一、设计资料: 1. 线路:双线、直线、坡度4‰、线间距5m,双块式无碴轨道及双侧1.7m宽人行道,其重量为44.4kN/m。 2. 桥跨:等跨L=31.1m无碴桥面单箱单室预应力混凝土梁,梁全长32.6m,梁端缝0.1m,梁高3m,梁宽1 3.4m,每孔梁重8530kN,简支箱梁支座中心距梁端距离0.75m,同一桥墩相邻梁支座间距1.6m。轨底至梁底高度为3.7m,采用盆式橡胶支座,支座高0.173m,梁底至支座铰中心0.09m。 3. 建筑材料:支承垫石、顶帽、托盘采用C40钢筋混凝土,墩身采用C30混凝土,桩身采用C25混凝土。 4. 地质及地下水位情况: 土层平均容重γ=20kN/m3,土层平均内摩擦角?=28°。地下水位标高:+30.5。 5. 标高:梁顶标高+54.483m,墩底+33.31m。

6. 风力:ω=800Pa (桥上有车)。 7. 桥墩尺寸:如图1。 二、设计荷载: 1. 承台底外力合计: 双线、纵向、二孔重载: N=18629.07kN H=341.5kN M= 4671.75kN 双线、纵向、一孔重载: N 17534.94kN,H=341.5kN,M=4762.57kN.m 2. 墩顶外力: 双线、纵向、一孔重载: H=253.44 kN,M=893.16 kN.m。 三、设计要求: 1、选定桩的类型和施工方法,确定桩的材料、桩长、桩数及桩的排列。 2、检算下列项目 (1)单桩承载力检算(双线、纵向、二孔重载); (2)群桩承载力检算(双线、纵向、二孔重载); (3)墩顶水平位移检算(双线、纵向、一孔重载); (4)桩身截面配筋计算(双线、纵向、一孔重载); (5)桩在土面处位移检算(双线、纵向、一孔重载)。 3、设计成果: (1)设计说明书和计算书一份 (2)设计图纸(2号图,铅笔图)一张 (3)电算结果 四、附加说明: 1、如布桩需要,可变更图1中承台尺寸; 2、任务书中荷载系按图1尺寸进行计算的结果,如承台尺寸变更,应对其竖 向荷载进行相应调整。

桥墩桩基础

桥墩桩基础设计计算书 一、荷载计算: 永久荷载计算:永久荷载包括桥墩的自重,上部构造恒荷载反力。 1.承台重: 313 233 0.33 1.40.520.460.9(17.7 2.14) 1.42511 0.6(17.7 2.14) 1.4[(2.0750.6) 1.4(2.0650.6) 1.4] 22 16.67 1.7414.93V m V m V mm =???==?+?==???-???+???=-= 3123=V 16.67 1.7414.931009.75V V V mm G V KN γ++=-===总 2.墩身重: 23 423 523635641.2 3.14() 6.8437.7421.2 3.14() 6.7387.6221.2 3.14() 6.6337.502 22.8657105V m V m V m V V V V m G V KN γ=??==??==??==++=== 3、上部铺装自重: 各梁恒载反力表 表1—1 边梁恒载: 12.54?19.94?2=500.1KN 中梁荷载: 10.28?19.94?15=3074.75KN

上部铺装荷载: 3.5?19.94?18=1256KN (说明:边梁为2根,中梁数:17-2=15根) 取入土深度为1延米 122(5.80.252)0.82252121.5 [3.14()1]3 2 5.325132.47G V KN G V KN γγ==-????===???=?= =1009.75571.5500.13074.151256022212132.47=6756.19G KN ++++++恒载 可变荷载计算: 采用公路一级车道荷载,3车道横向折减系数k q =10.5KN/m ,满跨布置。 1、车道荷载:跨径≤5m 时 ,K p =180kN ;跨径≥50m 时 ,K p =kN 360 当跨径为19.46时,内差得 360180 (19.465)()180215505 1.2258K K K P KN P P KN -=-?+=-=?=剪力 (见《公路桥涵设计规范》 P24 图、表4.3.1-1) 支座反力: P=(215+1/2 ?1 ?19.46 ?10.28)?3 ?0.78=549.92KN 活载作用: P=(205+1/2 ?1 ?19.46 ?10.28 ?2)?3 ?0.78=971.21KN 而力臂=(20-19.46)/2=0.27m M=971.21 ?0.27=262.23KN ·m 汽车作用: P=(215+1/2 ?1 ?19.46 ?10.28)?3 ?0.78=737.16kN M=P ?0.27=199.03KN ·m 2.人群荷载的支座反力:

《铁路信号运营基础学习知识》试题

《铁路信号运营基础》 第一章铁路和铁路信号的作用 主要内容:本章主要讲述了铁路的组成和作用以及铁路信号的地位和作用。 学习要求:了解铁路及铁路信号的作用。 思考题和作业: 1、简述影响铁路运输安全的因素有哪些? 2、简述铁路信号在铁路运输中的地位和作用。 第二章铁路线路 主要内容:本章首先介绍了轨道的组成,铁路线路平、纵断面及其与铁路信号的关系,坡道附加阻力的计算,铁路限界。 重点:线路平、纵断面与铁路信号的关系。 难点:线路曲线对列车运行的影响。 学习要求:理解轨道的组成、线路平纵断面的表示方法、铁路限界;掌握线路曲线对列车运行的影响、线路平纵断面与信号的关系。 学习要点: 一、线路平面与信号的关系 为了便于司机瞭望,信号机最好设在线路的直线线段上,因为曲线会影响信号及的显示距离,信号机的设置位置避不开小半径的曲线时,有必要在信号机机构内增设一块偏光玻璃,以扩大信号光束的散角。 二、线路纵断面与信号的关系 在设置信号机时,信号机应避开设在比起动坡度还大的坡道上,如果必须设在坡道上时,必须在信号机上加装容许信号,对指定的货物列车,准许其在该信号机显示停车信号时不停车,用低速继续前进,但要求它随时都要做好停车准备,即遇到前方有障碍时及时停车。禁止把信号机设在凹形有害坡度的坡道上,因为在此种地点停车后再起动时容易引起断钩事故。 思考题和作业: 1、简述铁路线路的组成。 2、说明轨道的组成部分和它们的作用。

3、什么是线路的中心线、线路的平面和纵断面。 4、简述线路曲线对列车运行的影响。 5、什么是坡道的坡度?它对列车运行有什么影响? 6、什么是限制坡度?它的大小对运营条件和工程条件有什么影响? 7、简述线路曲线、坡度与铁路信号的关系。 8、什么是建筑接近限界和机车车辆限界? 第三章列车运行及分界点 主要内容:本章主要讲述了列车的分类、分界点的概念和分类。 学习要求:了解列车的分类、分界点的概念和分类 学习要点: 思考题和作业: 1、列车编组计划中规定开行的列车种类有哪几种? 2、什么叫分界点?有哪几种分界点? 3、什么叫区间、区段? 第四章列车牵引运动学基础 主要内容:本章主要讲述了作用于列车上的各种力、列车制动力、合力曲线图的绘制及应用。 重点:机车的理想牵引特性曲线、列车运行状态分析及合力曲线 难点:机车的理想牵引特性曲线、合力曲线 学习要求:了解作用于列车上的各种力、列车制动力、合力曲线图的绘制、掌握机车的理想牵引特性曲线、列车运行状态、合力曲线。 学习要点: 一、作用于列车上的各种力 列车在运行中受到方向和大小不同的各种力的作用,其中,与列车运行速度直接有关的力有三种。 1.机车牵引力F 机车牵引力是由机车动力装置引起的,并通过动轮与钢轨间的粘着作用而转化成推动列车运行的外力。 2.列车运行阻力W

铁路桩基设计

第一章设计说明书 1.1铁路桥墩桩基础设计中所依据规范有 《铁路桥涵地基和基础设计规范》TB1002.5 《混凝土结构设计规范》GB50010-2002 《铁路桥涵钢筋混凝土和预应力混凝土结构设计规范》TB1002.3-99 1.2铁路桥墩桩基础设计内容及步骤 (1)综合地层、荷载情况、使用要求、上部结构条件等确定桩基持力层; (3)选择桩材,确定桩的类型、外形尺寸和构造; (4)确定单桩承载力设计值; (5)根据上部结构荷载情况,初步拟定桩的数量和平面布置; (6)根据桩的平面布置,初步拟订承台的轮廓尺寸及承台底标高; (7)单桩竖向承载力验算 (8)验算承台结构强度; (9)群桩承载力验算; (10)单桩桩身内力计算; (11)绘制桩的平面、横断面布置图。 1.3设计方案 线路为双线、直线、坡度4‰、线间距5m,双块式无碴轨道。桥跨31.1m,采用桩基础,墩下设八根桩,设计直径为1m,成孔直径为1.05m,钻孔灌注桩,用旋转式钻头,桩身采用C25混凝土,桩长31m,粗砂层为持力层,桩底标高为2.31m。地基容许承载力[σ]=803.6kPa,单桩轴向受压容许承载力[P]=3683.29KN,对于主力加附加力[P]乘以1.2的提高系数。 建筑材料:支撑垫石、顶帽、托盘采用C40钢筋混凝土,墩身采用C30混凝土,桩身采用C25混凝土。 1.4地质资料

墩柱下地层情况及主要物理力学指标如下: 地层号 岩层名称 标 高 厚度 基本 承载力 (kPa ) 容重 (kN/m 3 ) 内摩擦角 (°) 1-1 耕地 36.79~36.29 0.5 60 18 10 1-2 粉砂(中密) 36.29~23.31 13.0 200 19.5 18 1-3 粗砂(中密) 23.31~ 未揭穿 400 20.5 22 地下水位高程为-50m 。 地层分布情况见图1。 36.7936.29 23.31 粉 砂 33.31 粗 砂 比例 1:1000 图1 地质横断面示意图 1.5荷载资料

相关主题
文本预览
相关文档 最新文档