当前位置:文档之家› 相对论与量子力学的矛盾问题

相对论与量子力学的矛盾问题

相对论与量子力学的矛盾问题
相对论与量子力学的矛盾问题

论多维空间中量子力学与相对论的矛盾问题

阿尔伯特·爱因斯坦一生发现了很多东西,最重要的是提出了量子力学和广义的相对论。广义相对论代表了现代物理学中引力理论研究的最高水平,在天体物理学中有着非常重要的应用,还提出了引力和引力波的存在,是现代宇宙学膨胀宇宙论的理论基础。并且它是能够与实验数据相符合的最简洁的理论。量子力学是研究原子和次原子等“量子领域”的运动规律的物理学分支学科,基本原理包括量子态的概念,运动方程、理论概念和观测物理量之间的对应规则和物理原理。与相对论一起被认为是现代物理学的两大基本支柱。不过,仍然有一些问题至今未能解决,典型的即是如何将广义相对论和量子物理的定律统一起来,或者说怎样理解这两大理论的统一?

这个矛盾问题在科学家们提出的多维空间里有了解释。首先我们先来了解一下我们的多维空间。"维"是一种度量,在三维空间坐标上,加上时间,时空互相联系,就构成四维时空。现在科学家的理论认为整个宇宙是十一维的,只是人类的理解只能理解到三维。零维是点,一维是线,二维是面,三维是静态空间,四维是动态空间(因为有了时间)。在这个四维时间线上任何一点都有无限种发展趋势,从四维上的某一点分出无限多的时间线,构成了五维空间。五维空间上两条时间线如同二维空间(如报纸上的两个对角点)不能直接到达,而把报纸对折就可以直接到达报纸上的对角点。五维空间也可以弯曲,产生了六维空间,在六维空间中可以直接到达五维时间线上的任意一点。七维空间包括了从宇宙大爆炸开始到宇宙结束,所有空间维,所有时间维上的所有可能性,以及在任意两点直接到达的可行性。五维空间是某一点产生无限个发展趋势,七维是所有点即无限点上产生无限个时间线。,八维空间中包括了从大爆炸处产生的无限多个宇宙,这些宇宙中有不同的物理定律,不同的引力常数,或许有没有万有引力也说不定,不同的光速。九维空间则是八维空间的弯曲,在八维空间中,不到直接在各个宇宙中到达不同的两点,而九维空间中则可以在八维空间中的两点间直接到达。根据超弦理论,最小粒子不是实体的物质,而是由不同振动频率的超弦形成的物质,不同的频率产生了不同外在表现。在十维空间中,物质已经没有差别,或是已经没有物质。只存在不同振动频率的弦。在十维空间中一切皆有可能。在超弦理论的研究中,发现十维空间还有理论漏洞,新的膜理论就在超弦的线上展拓成超膜,以十一维空间来解释宇宙。

理解了宇宙的空间有更多维存在,再回过来看相对论与量子理论是如何产生矛盾的,我们就很容易理解了:这两个理论在日常的三维空间里是不可能统一的,它们的矛盾是必然的,只有在高维空间里才能得到统一。

为了更好地理解这一点,我们可以举一个三维世界和二维世界的例子。我们首先假设有一些生活在二维平面世界的生命,它们的世界里只有长和宽,根本无法理解第三维——“高”这一维。因此,它们对三维世界的感知只限于三维物体在平面世界的投影,或者三维物体与平面世界的接触面,试想一想,一个平面生命怎么能够通过投影来想象三维物体的丰富性和完整性呢?当三维物体与平面世界接触时,三维物体在平面世界上的零碎片段,比如一张桌子的四根脚柱、人印在地面上的两双鞋印,更让平面生命摸不着头脑——这些拼不到一起的碎片究竟意味着什么呢?它们不能想象,四片互不相连的印迹怎么会构成一张完整的桌子呢?那断断续续的鞋印上怎么会有一双完整的鞋呢?而且,鞋的上面竟然还有一个更加完整的人。用二维的眼光来打量这些碎片,你永远不可能将它们拼成一个整体。

于是有一天,一个足智多谋的平面生命偶然想出一个绝妙的主意。它宣布,平面世界之外还有一个“向上”的第三维,如果顺着这些碎片“向上”看,其实碎片是一个完整的整体!这真是个惊人的见解,大多数平面生命都困惑不解。

相对论和量子理论的遭遇与这种情况非常相似,在我们的三维空间里,它们就像两块互不相干的碎片,永远也拼合不到一起。但把空间“向上”抬一抬,把宇宙变为十维空间,相对论和量子理论这两块看似互不相干的碎片就会令人震惊地结合得天衣无缝,成为一个更完整的理论大厦的两根互相依存的支柱!虽然也许你还只是可以理解爱因斯坦说的四维或好莱坞电影The Butterfly Effect的五维空间。也许在我们在三维空间中无法想象和描述一个多维的空间,但我们却能通过复杂的数学方程推导出它的存在。

量子力学与狭义相对论之间的不协调

量子力学与狭义相对论之间的不协调 物理规律中,物质的变换总是根据当前状态的各种参数决定的,没有对历史的记忆,而且由于光速最大原理,能影响一个质点运动的信息只能是这个点邻近无穷小范围内的信息,这两个特点决定了微分方程适用于大多数的物理规律描述.用微分来描述瞬时的变化率,实际上是一个极限的过程,能对瞬时变化给出很好的描述.就目前来看,用微分来描述变化率是最好的方法.物理上的“定域性”原则现在已经受到了越来越多的挑战,基本可以认为真实的物理至少在一定程度和能级条件下是不满足定域性原则的,这是一系列物理实验的论证结果.从物理上来说,能用微分方程描述的另一个潜在依据就是不存在稳定的时间与空间最小单元.如果存在最小单元,在这个单元中的一切不可取分,状态不可分辨,那么最后我们要用的就可能是差分函数与差分方程,而不是微分方程. 大量实验证实,非定域性是量子力学的一个基本属性,但是非定域性将意味着超光速传播,这与狭义相对论的基本假设矛盾.当前,量子引力理论中的超弦理论的时空背景相关性,与圈量子引力理论中的时空背景无关性同时存在,是物理学中潜在的对于时空本质不同态度的一次大碰撞,这种困难预示着物理学需要一次概念的变革,首当其冲的就是时空.时空观念是物理学中最基本的也是最重要的概念,不同的时空观念将导致不同的理论研究方向,任何对于时空概念的更新和深化,势必对整个物理学产生巨大的革命性的影响. 作为量子论和狭义相对论的结合的量子电动力学和量子场论更是如此.一方面,量子电动力学取得了巨大成功,可以给出与实验精确符合的微扰论计算结果,例如关于电子反常磁矩的微扰论计算结果与实验结果可以符合到十几位有效数字;格拉肖-温伯格-萨拉姆(Glashow-Weinberg-Salam)的弱电模型在很大程度上统一了微观尺度上的电磁作用和弱作用,在相当于1000倍质子质量的能量尺度下与几乎所有实验符合;包括量子色动力学在内的标准模型对于强作用的一些性质也能给出令人满意的结果等.另一方面,与实验精确符合的微扰论计算在理论上却并不成立,微扰级数本身一定会发散.标准模型中有20几个自由参数需要实验输入,其中包括一些极重要的无量纲参数,如精细结构常数、μ介子与电子质量之比等.为了减少参数的大统一理论或超对称大统一理论,往往会导致质子衰变.可是,实验上一直没有观测到质子衰变现象,也没有观测到超对称粒子,这是为什么?超对称如何破缺?为什么有夸克禁闭和色禁闭?为什么夸克质量谱中存在极大的质量间隙?为什么会有三代夸克-轻子及其质谱?理论上作用极大的“真空”到底是什么?理论上计算的“真空”能量,与宇宙学常数观测值相应的“真空能”相比,高出几十到一百多个数量级,这又是为什

狭义相对论的基本原理

基础知识 1.下列说法中正确的是( ) A电和磁在以太这种介质中传播 B相对不同的参考系,光的传播速度不同 C.牛顿定律仅在惯性系中才能成立 D.时间会因相对速度的不同而改变 2.爱因斯坦相对论的提出,是物理学思想的一场重大革命,他( ) A.否定了xx的力学原理 B.提示了时间、空间并非绝对不变的属性 C.认为时间和空间是绝对不变的 D.承认了“以太”是参与电磁波传播的重要介质 3.爱因斯坦狭义相对论的两个基本假设: (1)爱因斯坦的相对性原理: _______________. (2)光速不变原理: ___________________. 4.下列哪些说法符合狭义相对论的假设( ) A在不同的惯性系中,一切力学规律都是相同的 B.在不同的惯性系中,一切物理规律都是相同的 C.在不同的惯性系中,真空中的光速都是相同的

D.在不同的惯性系中,真空中的光速都是不同的 5.在一惯性系中观测,两个事件同时不同地,则在其他惯性系中观测,它们( ) A.一定同时 B.可能同时 C.不可能同时,但可能同地 D.不可能同时,也不可能同地 6.假设有一列很长的火车沿平直轨道飞快匀速前进,车厢中央有一个光源发出了一个闪光,闪光照到了车厢的前后壁,根据狭义相对论原理,下列说法中正确的是( ) A地面上的人认为闪光是同时到达两壁的 B车厢里的人认为闪光是同时到达两壁的 C.地面上的人认为闪光先到达前壁 D.车厢里的人认为闪光先到达前壁 能力测试 7.关于牛顿力学的适用范围,下列说法正确的是( )

A.适用于宏观物体 B.适用于微观物体 C.适用于高速运动的物体 D.适用于低速运动的物体 8.下列说法中正确的是( ) A.相对性原理能简单而自然的解释电磁学的问题 B.在真空中,若物体以速度v背离光源运动,则光相对物体的速度为c-v C在真空中,若光源向着观察者以速度v运动,则光相对于观察者的速度为c+v D.迈xx一xx实验得出的结果是: 不论光源与观察者做怎样的相对运动,光速都是一样的 9.地面上的 A、B两个事件同时发生,对于坐在火箭中沿两个事件发生地点连线,从A 到B方向飞行的人来说哪个事件先发生( ) A.两个事件同时发生 B.A事件先发生 C.B事件先发生 D.无法判断 10.关于电磁波,下列说法正确的是( )

第12章 狭义相对论

一:填空 1、以速度v 相对于地球作匀速直线运动的恒星所发射的光子,其相对于地球的速度的大小为______. C 2. 狭义相对论中,一质点的质量m 与速度v 的关系式为______________;其动能的表达式为______________. () 201c v m m -= 202c m mc E k -= 3. 当粒子的动能等于它的静止能量时,它的运动速度为____________________ /2v = 4. 匀质细棒静止时的质量为m 0,长度为l 0,当它沿棒长方向作高速的匀速直线运动时,测得它的长为l ,那么,该棒的运动速度v =_________,该棒所具有的动能E k =_______________ 。 v =222000(/1)k E mc m c m c l l =-=- 5. 已知惯性系S '相对于惯性系S 系以 0.5 c 的匀速度沿x 轴的负方向运动,若从S '系的坐标原点O '沿x 轴正方向发出一光波,则S 系中测得此光波在真空中的波速为________ c 二:选择 1. 一火箭的固有长度为L ,相对于地面作匀速直线运动的速度为1v ,火箭上有一个人从火箭的后端向火箭前端上的一个靶子发射一颗相对于火箭的速度为2v 的子弹.在火箭上测得子弹从射出到击中靶的时间间隔是:(c 表示真空中光速) (A) 21v v +L . (B) 2v L . (C) 12v v -L . (D) 211) /(1c L v v - . B 2. 关于同时性的以下结论中,正确的是 (A) 在一惯性系同时发生的两个事件,在另一惯性系一定不同时发生. (B) 在一惯性系不同地点同时发生的两个事件,在另一惯性系一定同时发生.

物理学中的对称性

目录 摘要 (1) Abstract (1) 1 引言 (1) 2 对称性 (1) 2.1镜像对称 (2) 2.2 转动对称 (2) 2.3平移对称 (2) 2.4置换对称性 (2) 3 物理定律的对称性 (3) 3.1物理定律的空间平移对称性 (3) 3.2物理定律的转动对称性 (3) 3.3物理定律对时间的平移对称性 (3) 3.4物理定律对于匀速直线运动的对称性 (3) 4 对称性与物理定律的关系 (3) 5 对称性在物理学中的应用 (4) 6结论 (5) 参考文献 (5)

物理学中的对称性 摘要:从自然界中的对称性开始,讲解了物理学中转动对对称性开始称,平移对称,置换对称;还讲解了物理定律中的空间平移对称性,转动对称性,时间平移对称性,匀速直线运动的对称性;进而说明了物理定律与对称性的关系和对称性在物理学中的应用,以及对称性导致物理问题发生和解决。 关键词:对称性;物理定律;守恒 Discuss the Symmetry Secondary Physics Abstract:From the nature of the symmetry of the begining, explain the physics rotation on symmetry started to call, translational symmetry, permutation symmetry; also explained the laws of physics in the spatial translational symmetry, rotational symmetry, time translation symmetry, the symmetry uniform motion in a straight line; then describes the physical laws and symmetry and symmetry in the application of Physics, as well as symmetry leads to physical problems and solutions. Key words:symmetrical; the laws of physicsl; conservation 1引言 对称性是自然界最普遍、最重要的特性[1]。近代科学表明,自然界的所有重要的规律均与某种对称性有关,甚至所有自然界中的相互作用,都具有某种特殊的对称性——所谓“规范对称性”。实际上,对称性的研究日趋深入,已越来越广泛的应用到物理学的各个分支:量子论、高能物理、相对论、原子分子物理、晶体物理、原子核物理,以及化学(分子轨道理论、配位场理论等)、生物和工程技术。 2对称性 什么是对称性?对称性首先来源于生活,对称式自然界中十分普片的现象,从总星系到星系团,从银河系到太阳系,地球,从原生物到各种动植物,都具有不同程度

大学物理狭义相对论习题及答案

第5章 狭义相对论 习题及答案 1. 牛顿力学的时空观与相对论的时空观的根本区别是什么?二者有何联系? 答:牛顿力学的时空观认为自然界存在着与物质运动无关的绝对空间和时间,这种空间和时间是彼此孤立的;狭义相对论的时空观认为自然界时间和空间的量度具有相对性,时间和空间的概念具有不可分割性,而且它们都与物质运动密切相关。在远小于光速的低速情况下,狭义相对论的时空观与牛顿力学的时空观趋于一致。 2.狭义相对论的两个基本原理是什么? 答:狭义相对论的两个基本原理是: (1)相对性原理 在所有惯性系中,物理定律都具有相同形式;(2)光速不变原理 在所有惯性系中,光在真空中的传播速度均为c ,与光源运动与否无关。 3.你是否认为在相对论中,一切都是相对的?有没有绝对性的方面?有那些方面?举例说明。 解 在相对论中,不是一切都是相对的,也有绝对性存在的方面。如,光相对于所有惯性系其速率是不变的,即是绝对的;又如,力学规律,如动量守恒定律、能量守恒定律等在所有惯性系中都是成立的,即相对于不同的惯性系力学规律不会有所不同,此也是绝对的;还有,对同时同地的两事件同时具有绝对性等。 4.设'S 系相对S 系以速度u 沿着x 正方向运动,今有两事件对S 系来说是同时发生的,问在以下两种情况中,它们对'S 系是否同时发生? (1)两事件发生于S 系的同一地点; (2)两事件发生于S 系的不同地点。 解 由洛伦兹变化2()v t t x c γ'?=?- ?知,第一种情况,0x ?=,0t ?=,故'S 系中0t '?=,即两事件同时发生;第二种情况,0x ?≠,0t ?=,故'S 系中0t '?≠,两事件不同时发生。 5-5 飞船A 中的观察者测得飞船B 正以0.4c 的速率尾随而来,一地面站测得飞船A 的速率为0.5c ,求: (1)地面站测得飞船B 的速率; (2)飞船B 测得飞船A 的速率。 解 选地面为S 系,飞船A 为S '系。 (1)'0.4,0.5x v c u c ==,2'341'x x x v u v c v v c +==+ (2)'0.4BA AB x v v v c =-=-=- 5.6 惯性系S ′相对另一惯性系S 沿x 轴作匀速直线运动,取两坐标原点重合时刻作为计时起点.在S 系中测得两事件的时空坐标分别为1x =6×104m,1t =2×10-4s ,以及2x =12×104 m,2t =1×10-4 s .已知在S ′系中测得该两事件同时发生.试问: (1)S ′系相对S 系的速度是多少? (2)S '系中测得的两事件的空间间隔是多少? 解: 设)(S '相对S 的速度为v , (1) )(12 11x c v t t -='γ

四川大学大物狭义相对论习题解答

狭义相对论(一) 一.选择题 1.K 系与K '系是坐标轴相互平行的两个惯性系,K '系相对于K 系沿OX 轴正方 向匀速运动。一根刚性尺静止在K '系中,与O 'X '轴成30?角。今在K 系中观察得 该尺与OX 轴成45?角,则 K '系相对于K 系的速度是 [ ] (A )c 32 (B ) c 32 (C )3 c (D )c 31 2.宇宙飞船相对于地面以速度v 作匀速直线飞行,某一时刻飞船头部的宇航员向飞船尾部发出一个光讯号,经过t (飞船上的钟)时间后,被尾部的接收器收 到,则由此可知飞船的固有长度为 (c 表示真空中光速) (A)t c ? (B) t ?υ (C) 2)/(1c t c v -??(D) 2)/(1c t c v -??? [ ] 3.在狭义相对论中,下列说法中哪些是正确的? (1) 一切运动物体相对于观察者的速度都不能大于真空中的光速. (2) 质量、长度、时间的测量结果都是随物体与观察者的相对运动状态而改 变的. (3) 在一惯性系中发生于同一时刻,不同地点的两个事件在其他一切惯性系 中也是同时发生的. (4)惯性系中的观察者观察一个与他作匀速相对运动的时钟时,会看到这时 钟比与他相对静止的相同的时钟走得慢些. (A) (1),(3),(4). (B) (1),(2),(4). (C) (1),(2),(3). (D) (2),(3),(4). [ ] 4.在某地发生两件事,静止位于该地的甲测得时间间隔为4 s ,若相对于甲作匀

速直线运动的乙测得时间间隔为5 s,则乙相对于甲的运动速度是(c表示真空中光速) (A) (4/5) c. (B) (3/5) c. (C)(2/5) c. (D) (1/5) c.[] 5.一宇航员要到离地球为5光年的星球去旅行.如果宇航员希望把这路程缩短为3光年,则他所乘的火箭相对于地球的速度应是:(c表示真空中光速) (A) v = (1/2) c. (B) v = (3/5) c. (C) v = (4/5) c. (D) v = (9/10) c.[]二.填空题 1.狭义相对论的两条基本原理中,相对性原理说的是_________________ ____ ___________________________________________________________;光速不变原理说的是_______________________________________________ ___________ ________________________________. 2.已知惯性系S'相对于惯性系S系以0.5 c的匀速度沿x轴的负方向运动,若从S'系的坐标原点O'沿x轴正方向发出一光波,则S系中测得此光波在真空中的波速为____________________________________. 3.有一速度为u的宇宙飞船沿x轴正方向飞行,飞船头尾各有一个脉冲光源在工作,处于船尾的观察者测得船头光源发出的光脉冲的传播速度大小为____________;处于船头的观察者测得船尾光源发出的光脉冲的传播速度大小为____________. 4.π+介子是不稳定的粒子,在它自己的参照系中测得平均寿命是2.6×10-8s,如果它相对于实验室以0.8 c (c为真空中光速)的速率运动,那么实验室坐标系中测得的π+介子的寿命是______________________s.

相对论和量子论

相对论和量子论 量子论和相对论是二十世纪最伟大的两个改变世界的理论,于今他们仍然深深的影响和改变着我们的世界。量子论是现代物理学的两大基石之一。相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。所以我们就不难确定它们各自的适用范围:量子力学适用于微观亚原子,量子论给我们提供了新的关于自然界的表述方法和思考方法。量子论揭示了微观物质世界的基本规律,为原子物理学、固体物理学、核物理学和粒子物理学奠定了理论基础。它能很好地解释原子结构、原子光谱的规律性、化学元素的性质、光的吸收与辐射等。相对论是关于时空和引力的基本理论,主要由阿尔伯特·爱因斯坦(Albert Einstein)创立,依据研究的对象不同分为狭义相对论和广义相对论。相对论和量子力学的提出给物理学带来了革命性的变化,共同奠定了近代物理学的基础。相对论极大的改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”、“四维时空”、“弯曲时空”等全新的概念。 相对论分为:狭义相对论和广义相对论,狭义相对论适用于惯性系,广义相对论适用于惯性系和非惯性系。狭义相对论是建立在四维时空观上的一个理论 狭义相对论有两个原理,一是相对性原理:物理规律在所有的惯性系中有相同的表达形式,二是光速不变原理:真空中的光速是常量,于光源或者观测者的运动无关。狭义相对论的结论有:①长度收缩;②时间延续;③相对质量;④相对论多普勒效应。狭义相对论的重要性;①建立了是用于高速运动的更加精确的时空观;②促进了原子能的利用;③导致了广义相对论的建立,在天体观测中有重要应用。广义相对论是爱因斯坦继狭义相对论之后,深入研究引力理论,于1913年提出的引力场的相对论理论。这一理论完全不同于牛顿的引力论,它把引力场归结为物体周围的时空弯曲,把物体受引力作用而运动,归结为物体在弯曲时空中沿短程线的自由运动。因此,广义相对论亦称时空几何动力学,即把引力归结为时空的几何特性。广义相对论的两个基本原理是:一,等效原理:引力与惯性力等效;二,广义相对性原理:等效原理,所有的物理定律在任何参考系中都取相同的形式。 量子论给我们提供了新的关于自然界的表述方法和思考方法。量子论揭示了微观物质世界的基本规律,为原子物理学、固体物理学、核物理学和粒子物理学奠定了理论基础。它能很好地解释原子结构、原子光谱的规律性、化学元素的性质、光的吸收与辐射等。 量子论:光电效应、康普顿效应、德布罗意波长、波粒二象性。1923年,德布罗意提出了物质波假说,将波粒二象性运用于电子之类的粒子束,把量子论发展到一个新的高度。 1925年-1926年薛定谔率先沿着物质波概念成功地确立了电子的波动方程,为量子理论找到了一个基本公式,并由此创建了波动力学。 几乎与薛定谔同时,海森伯写出了以“关于运动学和力学关系的量子论的重新解释”为题的论文,创立了解决量子波动理论的矩阵方法。

量子力学科普:量子通信与波粒二象性

量子力学科普:量子通信与波粒二象性 从什么是量子开始。量子,本意是指微观世界中【一份一份】的不连续能量。这是本书中写明的定义,它的前提条件是微观世界。 接下来,他说明了一下关于光是波还是粒子的百年之争。粒派支持者包括牛顿、爱因斯坦、普朗克,认为光是一颗颗光滑的小球球构成的;波派支持者包括惠更斯、杨、麦克斯韦、赫兹,认为光是一圈一圈的水波纹构成的。 粒子和波二者区别: 1. 粒子可以分成一个最小单位,单个粒子不可再分;波是连续的能量分布,无所谓【一个波】或者【两个波】; 2. 粒子是直线前进的,波却能同时向四面八方发射; 3. 粒子可以静止在同一个固定的位置上,波却必须动态的在整个空间传播。 科学家们在思考为什么光不能两者都是呢?于是就有了著名的双缝干涉实验。双缝,就是在一块隔板上开两条缝。用一个发射光子的机枪对着双缝扫射,从中露出的光子,打在缝后面的屏上,就会留下一个光斑。 第一次实验,把光子发射机对准双缝发射,结果是标准的斑马线,证明光是纯波。第二次实验,把光子机枪切换到点射模式,保证每次只发射一个光子,结果依然还是斑马线。第三次实验,在屏幕前加装两个摄像头,一边一个左右排开。哪边的摄像头看到光子,就说明了光子穿过了哪条缝。同样还是点射模式,发射光子。结果,每次不是左边的摄像头看到一个光子,就是右边看到一个,从来没有发现哪个光子分裂成半个的情况。

这里先把书里的例子提上来。你在屏幕面前看球员起脚射门时,立马按了暂停键,那么你预测下一秒球是否会踢进?在球迷看来,球能否踢进跟射手是谁,对方门将状态有关;在科学家看来是否射进同射门的角度、速度、力度、方向、摩擦力等有关系。大家公认的,不管球最终是否射进,它和一件事情绝对无关,那就是你家的电视。常理来说,射球的动作和结果在你看视频之前就已经完成,它不受你家电视的影响。但双缝干涉实验的第三次实验则证明了,在其他条件完全相同的形况下,球进还是不仅,直接取决于射门的一瞬间,你看还是不看电视。 双缝干涉实验带来了观察者魔咒,引发了一些人的三观崩塌,许多科学家针对双缝干涉实验的结论产生了争议。尼尔斯玻尔认为,将宏观世界的经验常识套用到微观世界的科学研究上,纯属扯淡。他认为量子力学存在三大原则:态叠加原理、测不准原理和观察者原理。 态叠加原理:在量子世界,一切事物可以同时处于不同的状态(叠加态),各种可能性并存。 测不准原理:叠加态是不可能精确测量的。 观察者原理:虽然一切事物都是多种可能性的叠加,但我们永远看不到一个既左且右,又黑又白的量子物体,只要进行观察必然看到一个确定无疑的结果。 波尔认为,在实验观测的一瞬间,光子会蜕变成为多种可能中的一种,他将这个过程称为“坍缩”。 针对波尔的理论,薛定谔提出了假设进行反驳——著名的“薛定谔的猫”。 把一只猫关在封闭的箱子里。和猫同处一室还有个自动化装置,内含一个放射性原子,如果原子核衰变,就会激发α射线,射线触发开关,开关启动锤子,锤子落下打破毒药瓶,于是猫当场毙命。

狭义相对论(答案)

第六章狭义相对论基础 六、基础训练 一.选择题 2、在某地发生两件事,静止位于该地的甲测得时间间隔为4 s,若相对于甲作匀速直线运动的乙测得时间间隔为5 s,则乙相对于甲的运动速度是(c表示真空中光速) (A) (4/5) c.(B) (3/5) c.(C) (2/5) c.(D) (1/5) c. 解答: [B]. 2 2 3 1 5 t v t v c c t ? ?? ?? ?=?=-?== ? ? ? ???? 3、K系与K'系是坐标轴相互平行的两个惯性系,K'系相对于K系沿Ox轴正方向匀速运动.一根刚性尺静止在K'系中,与O'x'轴成30°角.今在K系中观测得该尺与Ox轴成45°角,则K'系相对于K系的速度是: (A) (2/3)c.(B) (1/3)c.(C) (2/3)1/2c.(D) (1/3)1/2c. 解答:[C]. K'系中: 00 'cos30;'sin30 x y l l l l ?? == K 系中: 21 ''1 3 x x y y v l l l l v c ?? ===?-=?= ? ?? 二.填空题 8、(1) 在速度= v____________情况下粒子的动量等于非相对论动量的两倍.(2) 在速度= v____________情况下粒子的动能等于它的静止能量. 解答: [ 2 c ; 2 ]. (1) 00 22 2 p mv m v m m v ==?==?= (2) 222 000 22 k E mc m c m c m m v =-=?==?=

三.计算题 10、两只飞船相向运动,它们相对地面的速率是v.在飞船A中有一边长为a的正方形,飞船A 沿正方形的一条边飞行,问飞船B中的观察者测得该图形的周长是多少? 解答: 2 2222 2 222 ()22 ' ()1/ 1 '/224/() v v v vc u v v c c v v c u c C a ac c v β -- === -++ - ==+=+ ; 11、我国首个火星探测器“荧光一号”原计划于2009年10月6日至16日期间在位于哈萨克斯坦的拜科努尔航天发射中心升空。此次“荧光一号”将飞行3.5×108km后进入火星轨道,预计用时将达到11个月。试估计“荧光一号”的平均速度是多少?假设飞行距离不变,若以后制造的“荧光九号”相对于地球的速度为v = 0.9c,按地球上的时钟计算要用多少时间?如以“荧光九号”上的时钟计算,所需时间又为多少? 解答: 8 3.510 12.3(/) 1130243600 x v km s t ?? === ???? 8 83 3.510 1296() 0.9 3.01010 x t s v- ?? ?=== ??? 565() t s ?=?== 13、要使电子的速度从v1 =1.2×108 m/s增加到v2 =2.4×108 m/s必须对它做多少功?(电子静止质量m e=9.11×10-31 kg) 解答: 22 12 ; E E == 214 21 4.7210() e A E E E m c J - =?=-==? 14、跨栏选手刘翔在地球上以12.88s时间跑完110m栏,在飞行速度为0.98c的同向飞行飞船中观察者观察,刘翔跑了多少时间?刘翔跑了多长距离? 解答: 2121 110()12.88() x x x m t t t s ?=-=?=-=

研究性学习——爱因斯坦与相对论(原创)

爱因斯坦与相对论 引言:“政治是暂时的,方程是永恒的”——爱因斯坦仰观星空,觉宇宙之浩瀚;俯视大地,察生命之神奇;透过显微镜,是量子的奇迹。我们在理论与实践中穿梭,游走在神秘的物理世界。 一.漫长的探索 纵观人类的历史,从亚里士多德开始,就已经开始探索那浩如烟海的物理世界了——力学。 早期的物理学家们都是从实验的角度来阐述物理(准确说是物理理论)的,亚里士多德从显而易见的现象中便得出重物比轻物下降的快的结论(虽说是错误的),阿基米德也从简单的实验中得出了杠杆原理和浮力定律,伽利略通过理想实验建立了动力学的基础,传出了相对性原理的先声,笛卡尔发明了坐标系,使之能更好的表述,物理开普勒透过第谷的测量用数学知识成功导出了开普勒三大定律。 这一切的积累,终于在一个人身上有了叠加与爆发,1687年,艾萨克·牛顿出版了他的新书《自然哲学的数学原理》,从此“经典力学”建立了,也翻开了数学研究物理的辉煌一页。书中详细的讲解的力学与运动学,阐述了牛顿三大定律,流体阻力原理和万有引力定律,以及牛顿的绝对时空观,是经典力学前所未有的进步。 二.相对论的横空出世

19世纪后期,随着经典力学和电磁学的进一步发展(电磁学的主要贡献者法拉第和麦克斯韦一直想把电磁学建立在经典力学上,然而失败了),科学家们相信他们对宇宙的描述达到了尾声,然而,与“以太”思想相悖的理论出现了, 1887年实验证实光的传播速度是不变的(间接否定了“以太”论和经典力学),整个物理学界陷入了巨大恐慌。 这时,1905年,爱因斯坦(生平简介:阿尔伯特·爱因斯坦,Albert.Einstein,1879年3月14日-1955年4月18日,出生于德国符腾堡王国乌尔姆市,毕业于苏黎世大学,犹太裔物理学家,享年76岁。爱因斯坦1879年出生于德国乌尔姆市的一个犹太人家庭<父母均为犹太人>,1900年毕业于苏黎世联邦理工学院,入瑞士国籍。1905年,获苏黎世大学哲学博士学位,爱因斯坦提出光子假设,成功解释了光电效应,因此获得1921年诺贝尔物理奖,创立狭义相对论。1915年创立广义相对论。爱因斯坦为核能开发奠定了理论基础,开创了现代科学技术新纪元,被公认为是继伽利略、牛顿以来最伟大的物理学家。1999年12月26日,爱因斯坦被美国《时代周刊》评选为“世纪伟人”。)的一篇论文《论动体的电动力学》永久地解决了这一棘人的问题,狭义相对论便由此创生了。 1.经典力学的时间和空间 牛顿所谓的时间与空间都是绝对的,与外界无关永远相同和

解释相对论

数学仅仅涉及概念间的相互关系,而不考虑它们与经验之间的关系。物理学也涉及到数学概念,但是,只有当清楚地确定了它们与经验对象的关系之后,这些概念才获得物理内涵。这一点在运动、空间、时间概念上表现得尤为明显。 相对论正是建立在对以上这三个概念前后一贯的解释基础之上。“相对论”这个名称是与如下事实相关的,即:从可能的经验观点来看,运动总是表现为一个物体对于另一个物体的相对运动(比如汽车相对于地面的运动,地球相对于太阳和恒星的运动)。运动绝不会作为“相对于空间的运动”——或者,像有人所表述的——“绝对运动”而被加以观察。“相对性原理”在其最广泛的意义上为如下一句论断所蕴含:所有的物理现象都有这样一个特点,它们未给“绝对运动”概念的引进提供任何依据;或较为简洁却不怎么精确的表述:不存在绝对运动。 从这样一个否定的论断中,我们似乎看不到什么洞见。但事实上,它却是对(可以想象的)自然规律的一个严格限制。在这种意义上,相对论与热力学有着某种类似之处。后者也是基于“不存在永动机”这一否定性论断之上。 相对论的发展历经了“狭义相对论”和“广义相对论”两个阶段。后者假定了前者作为一种极限情形的有效性,它是前者的连贯一致的延续。 A.狭义相对论 经典力学中对空间和时间的物理解释 从物理的观点来看,几何学是一些定律的总和,由这些定律能把相互静止的刚体置于彼此相对的位置上(比如,一个三角形由三条端点永远连接的杆组成)。人们设定用这种解释,欧几里得定律是有效的。在这种解释中,“空间”原则上是一个无限的刚体(或框架),其他的物体是与之相关联的(参照系)。解析几何(笛卡尔)用三个相互正交的刚性杆作为参照体表现空间,在这些刚性杆上通过垂直投影这一熟悉的办法(利用刚体的单位尺度),便测得空间点的“坐标”(x,y,z)。 物理学研究空间和时间中的“事件”。每一个事件不仅有自己的空间坐标x,y,z,还有一个时间值t。后者被认为可利用一个其空间大小可以忽略(作理想周期循环)的钟来测得,这个钟C被看作在坐标系中一点,例如在坐标原点(x=y=z=0)处是静止的,在空间点P(x,y,z)上发生的事件的时刻便被规定为与事件同时的钟C所显示的时刻。在这里,假定“同时”的概念无需专门的定义就有物理上的意义。这种精确性的缺乏似乎是无害的,只因光(其速度在我们日常经验看来几乎是无限的)使得空间上分开的事件的同时性看起来能被立即加以确定。 通过利用光信号来从物理上定义同时性,狭义相对论消除了这个精确性的缺乏。在P点发生事件的时间t就是从该事件发出的光信号到达时钟C时从C上读的时间。考虑到光信号通过这一距离所需事件,对这一时刻进行了修正。在做这种修正时,(假定)光速为常数。 这个定义把空间上分开的两个事件的同时性概念归化为在同一地点发生的两个事件(即光信

量子力学专题二(波函数和薛定谔方程)

量子力学专题二: 波函数和薛定谔方程 一、波粒二象性假设的物理意义及其主要实验事实(了解) 1、波动性:物质波(matter wave )——de Broglie (1923年) p h =λ 实验:黑体辐射 2、粒子性:光量子(light quantum )——Einstein (1905年) h E =ν 实验:光电效应 二、波函数的标准化条件(熟练掌握)

1、有限性: A 、在有限空间中,找到粒子的概率是有限值,即有 =?ψψτ* d 有限值 有限空间 B 、在全空间中,找到粒子的概率是有限值,即有 =? ψψτ* d 有限值 全空间 2、连续性:波函数ψ及其各阶微商连续; 3、单值性:2 ψ是单值函数(注意:不是说ψ是单值!) 三、波函数的统计诠释(深入理解) 1、∝dV 2ψ在dV 中找到粒子的概率;

2、ψ和ψC 表示的是同一个波函数(注意:我们关心的只是相对概率); 四、态叠加原理以及任何波函数按不同动量的平面波展开的方法及其物理意义(理解) 1、态叠加原理:设1ψ,2ψ是描述体系的态,则 2211ψψψC C += 也是体系的一个态。其中,1C 、2C 是任意复常数。 2、两种表象下的平面波的形式: A 、坐标表象中 r d e p r r p i 3/2/3)() 2(1)( ??=?πψ B 、动量表象中

p d e r p r p i 3/2/3)() 2(1)( ?-?=ψπ? 注意:2/3)2( π是热力学中,Maxwell 速率分布的一个常数,也可以使原子物理中,一个相空间的大小! 五、Schrodinger Equation (1926年) 1、Schrodinger Equation 的建立过程(熟练掌握) ψψH t i ?=?? 其中,V T H ???+=。 2、定态薛定谔方程,定态与非定态波函数的意义及相关联系(深入了解) A 、定态:若某一初始时刻(0=t )

2量子力学与热力学中的随机性

2、量子力学与热力学中的随机性 戴维斯指出,在宇宙学情况下,初始奇点的随机性(即“分子混沌”)导致宇宙的时间不可逆性,混沌粒子运动是大爆炸过程中光滑宇宙流体的一个特点。如果宇宙重新收缩,终极奇点态是混沌的或随机的而不是高度有序的(块状的),这与安置在一个假想的霍金盒子中的黑洞的情形相反,在那里奇点的随机形成和随即消失带来的是时间的对称性,这种黑洞奇点的随机性是内在随机的。在宇宙学的情况下,终极奇点被赋予由宇宙动力学支配的奇点,所以塌缩到视界内的宇宙不是黑洞。但是,宇宙终极奇点如何不同于黑洞奇点,以及宇宙是否真的象戴维斯所期望的那样振荡不息,这是一个没有澄清的问题。我们认为,只有搞清各种势在决定量子波函数演化过程中如何影响从过去向未来演化的提供波ψ(t)和从未来像过去倒转演化的确认波ψ*(-t)的几率幅;特别是在各种奇点附近,由魏尔曲率决定的引力势如何影响量子波在时间两个方向上的演化几率,才能解决宇宙演化的最后结局。 引力论与量子论相统一的理论还遥遥无期,宇宙论和量子论的时间之矢已然浮现,但远未被澄清。但是,对热力学第二定律的理解却在进一步深化,这特别归功于以普里高津为首的布鲁塞尔学派的工作。普里高津提出的耗散结构论对热力学第二定律提出了新的理解:(1)热力学第二定律并不是在经典动力学基础之上的宏观近似,而是动力学的基本原理,可以从它开始建立动力学的更一般的形式体系;(2)热力学第二定律并不意味着热力学系统的单向退化,它也是进化的原动力,熵最大状态只是演化的终态,而在演化过程中,不可逆性导致自组织的出现。在远离平衡态的非线性体系中,通过耗散机制可以导致类似生命现象的复杂结构出现。走向复杂化的进化过程在一定范围内与热力学不可逆过程一致。 普里高津指出,不可逆理论的构建方式有:(1)存在着不可逆理论,它们出于描述观察到的宏观不可逆性的明显目的而被构建出来,如热力学,扩散理论等等。(2)通过引入隐含不可逆性的几率假定,从可逆的动力学方程中推导出不可逆性的理论。例如,在处理具有大数目的系统时,人们抛弃了动力学观点,而把碰撞事件或一系统状态的改变看作是马尔代夫类型的随机过程,即在某种瞬间发生的事件只依赖于那个瞬间的状态而根本不依赖于过去的历史。于是,粒子碰撞造成的不稳定性动力学关联在微观状态被打破,抹去了粒子过去运动的信息。分子运动论和统计力学就是这样构建出来的。(3)还有一些理论,它们基于时间反演不变的理论,但通过引入初始条件或通过t的拉普拉斯变换,从而成为不可逆理论,宇宙学的时间箭头就是这样引入的。 普里高津认为,几率分布允许我们在动力学描述的框架内把相空间复杂的微观结构包括进去。因此,它包含附加的信息,此种信息在个体轨道的层次上不存在。因为对于具有对初始条件敏感性的不稳定系统,个体轨道变得不可计算,只能给出多种运动形式的几率分布。于是,在分布函数ρ的层次上,我们得到一个新的动力学描述,它允许我们预言包含特征时间尺度的系统的未来演化,这在个体轨道层次上是不可能的。个体层次与统计层次间的等价性被打存了。而对于稳定体系,“个体”层次(对应于单个轨道)和“统计”层次(对应于系统)是等价的。在不可积动力学体系中,个体的某一轨道可以对应于不同的系统分布ρ,而同一系统分布ρ可以对应不同的个体轨道,过去和未来的不对称性在系统层面上涌现出来,它意味着时间反演的初始系统分布是低几率的。普里高津认为宏观的时间方向是一种突现现象,同时又主张寻求微观不可逆过程的理论描述。 概率随机性被引入物理学,第一次是热力学,第二次是量子力学。然而,这两次引入却被认为具有非常不同的含义。在热力学中,随机性被认为是主观引入的,而在量子力学中,随机性被认为是客观的,具有不可还原的终极意义。将热力学第二定律作为一个基本的事实,意味着微观层次的随机性也应该是客观而非主观的,终极的非表面的。普里高津坚决反对熵和

对波粒二象性的理解

量子力学 题目: 专题理解:波粒二象性 学生姓名 专业 学号 班级 指导教师 成绩 工程技术学院 2016 年 1 月

专题理解:波粒二象性 前言: 波粒二象性(wave-particle duality)是指某物质同时具备波的特质及粒子的特质。波粒二象性是量子力学中的一个重要概念。在量子力学里,微观粒子有时会显示出波动性(这时粒子性较不显著),有时又会显示出粒子性(这时波动性较不显著),在不同条件下分别表现出波动或粒子的性质。这种量子行为称为波粒二象性,是微观粒子的基本属性之一。但从经典物理学的观点来看,“微粒”和“波”是相互排斥的概念,或者说“波”与“微粒”是两种截然对立的存在。一个东西要么是波,要么是微粒,即“非此即彼”。那么究竟自由理解波粒二象性呢?通过对量子力学课程的学习以及查阅相关资料,我对其有了更深的理解并做了以下整理与总结。 一、波粒二象性理论的发展简述 较为完全的光理论最早是由克里斯蒂安·惠更斯发展成型,他提出了一种光波动说。稍后,艾萨克·牛顿提出了光微粒说。光的波动性与粒子性的争论从未平息。十九世纪早期,托马斯·杨完成的双缝实验确切地证实了光的波动性质。到了十九世纪中期,光波动说开始主导科学思潮,因为它能够说明偏振现象的机制,这是光微粒说所不能够的。同世纪后期,詹姆斯·麦克斯韦将电磁学的理论加以整合,提出麦克斯韦方程组。应用电磁波方程计算获得的电磁波波速等于做实验测量到的光波速度。麦克斯韦于是猜测光波就是电磁波。1888年,海因里希·赫兹做实验发射并接收到麦克斯韦预言的电磁波,证实麦克斯韦的猜测正确无误。从这时,光波动说开始被广泛认可。 为了产生光电效应,光频率必须超过金属物质的特征频率,称为其“极限频率”。根据光波动说,光波的辐照度或波幅对应于所携带的能量,因而辐照度很强烈的光束一定能提供更多能量将电子逐出。然而事实与经典理论预期恰巧相反。1905年,爱因斯坦对于光电效应给出解释。他将光束描述为一群离散的量子,现称为光子,而不是连续性波动。从普朗克黑体辐射定律,爱因斯坦推论,组成光束的每一个光子所拥有的能量等于频率乘以一个常数,即普朗克常数,他提出了“爱因斯坦光电效应方程”。1916年,美国物理学者罗伯特·密立根做实验证实了爱因斯坦关于光电效应的理论。物理学者被迫承认,除了波动性质以外,光也具有粒子性质。 在光具有波粒二象性的启发下,法国物理学家德布罗意在1924年提出一个“物质波”假说,指出波粒二象性不只是光子才有,一切微观粒子,包括电子和质子、中子,都有波粒二象性。他把光子的动量与波长的关系式p=h/λ推广到一切微观粒子上,指出:具有质量m 和速度v 的运动粒子也具有波动性,这种波的波长等于普朗克恒量h 跟粒子动量mv 的比,即λ= h/(mv)。这个关系式后来就叫做德布罗意公式。根据德布罗意假说,电子是应该会具有干涉和衍射等波动现象。1927年,克林顿·戴维森与雷斯特·革末设计与完成的戴维森-革末实验成功证实了德布罗意假说。 2015年瑞士洛桑联邦理工学院科学家成功拍摄出光同时表现波粒二象性的照片。

相对论与量子力学的矛盾问题

论多维空间中量子力学与相对论的矛盾问题 阿尔伯特·爱因斯坦一生发现了很多东西,最重要的是提出了量子力学和广义的相对论。广义相对论代表了现代物理学中引力理论研究的最高水平,在天体物理学中有着非常重要的应用,还提出了引力和引力波的存在,是现代宇宙学膨胀宇宙论的理论基础。并且它是能够与实验数据相符合的最简洁的理论。量子力学是研究原子和次原子等“量子领域”的运动规律的物理学分支学科,基本原理包括量子态的概念,运动方程、理论概念和观测物理量之间的对应规则和物理原理。与相对论一起被认为是现代物理学的两大基本支柱。不过,仍然有一些问题至今未能解决,典型的即是如何将广义相对论和量子物理的定律统一起来,或者说怎样理解这两大理论的统一? 这个矛盾问题在科学家们提出的多维空间里有了解释。首先我们先来了解一下我们的多维空间。"维"是一种度量,在三维空间坐标上,加上时间,时空互相联系,就构成四维时空。现在科学家的理论认为整个宇宙是十一维的,只是人类的理解只能理解到三维。零维是点,一维是线,二维是面,三维是静态空间,四维是动态空间(因为有了时间)。在这个四维时间线上任何一点都有无限种发展趋势,从四维上的某一点分出无限多的时间线,构成了五维空间。五维空间上两条时间线如同二维空间(如报纸上的两个对角点)不能直接到达,而把报纸对折就可以直接到达报纸上的对角点。五维空间也可以弯曲,产生了六维空间,在六维空间中可以直接到达五维时间线上的任意一点。七维空间包括了从宇宙大爆炸开始到宇宙结束,所有空间维,所有时间维上的所有可能性,以及在任意两点直接到达的可行性。五维空间是某一点产生无限个发展趋势,七维是所有点即无限点上产生无限个时间线。,八维空间中包括了从大爆炸处产生的无限多个宇宙,这些宇宙中有不同的物理定律,不同的引力常数,或许有没有万有引力也说不定,不同的光速。九维空间则是八维空间的弯曲,在八维空间中,不到直接在各个宇宙中到达不同的两点,而九维空间中则可以在八维空间中的两点间直接到达。根据超弦理论,最小粒子不是实体的物质,而是由不同振动频率的超弦形成的物质,不同的频率产生了不同外在表现。在十维空间中,物质已经没有差别,或是已经没有物质。只存在不同振动频率的弦。在十维空间中一切皆有可能。在超弦理论的研究中,发现十维空间还有理论漏洞,新的膜理论就在超弦的线上展拓成超膜,以十一维空间来解释宇宙。 理解了宇宙的空间有更多维存在,再回过来看相对论与量子理论是如何产生矛盾的,我们就很容易理解了:这两个理论在日常的三维空间里是不可能统一的,它们的矛盾是必然的,只有在高维空间里才能得到统一。

对称性原理在物理学中的表现形式

对称性原理在物理学中的表现形式 在近代科学的开端,哥白尼对日心说的数学结构做了美学说明和论证,他从中看到令人惊异的“对称性”与“和谐联系”——这可以说是科学美学的宣言书.开普勒醉心于宇宙的和谐,他在第谷的庞杂数据中清理出具有美感的行星运动三定律,并由衷地感到难以置信的狂喜和美的愉悦.伽利略对落体定律的揭示,在纷繁的事实多样性中求得统一的定律.牛顿的严整而简单的力学体系把天地间的万物运动统摄在一起,他推崇和倡导节约原理,并认为上帝最感兴趣的事情是欣赏宇宙的美与和谐.这一切,谱写了近代科学的美的协奏曲.以相对论和量子力学为代表的现代科学,更是把科学审美发挥到了极致.撇开这些理论的抽象的理性美和雅致的结构美不谈,令人叫绝的是,数学实在和物理实在之间的(神秘的)一致是由群的关系保证的,科学理论中审美要素的存在是由群的真正本性决定的——对称性或不变性(协变性,invariance)之美跃然纸上! (1)经典物理学中的对称性原理 在原始的意义上,对称是指组成某一事物或对象的两个部分的对等性.物理是研究客观世界的最基本规律的一美科学,而它们在很多方面存在着对等性,例如:正电荷和负电荷、电荷的负极与正极、光速的可逆性、空间与时间、正功与负功、质子与中子、电子与正电子等均具有对称性.万有引力公式F=GMm/r2与静电力公式F=KQ1Q2/r2,弹性势能公式E=0.5kx2与动能公式E=0.5mv2,凸透镜成象公式1/u+1/v=1/f与并联电阻公式1/R1+1/R2=1/R、弹簧串联公式1/k1+1/k2=1/k,欧姆定律公式I=U/R与压强公式P=F/S、密度公式ρ=m/V 、电场强度E=F/Q、电压U=W/Q与电容C=Q/U,安培力F=BIL与电功W=Uit,重量G=ρgV与热量Q=cm Δt等均具有相似性根据这些相似性.开普勒用行星轨道的椭圆对称性代替了古希腊人所坚持的圆形对称性, 开普勒第一定律:每个行星都沿椭圆轨道运行,太阳就在这些椭圆的一个焦点上. 物理学中有一些规律属于基本定律,它们具有支配全局的性质,掌握它们显然是极端重要的.例如力学中的牛顿定律是质点、质点组机械运动(非相对论)的基本定律,电磁学的麦克斯韦方程组是电磁场分布、变化的基本定律,物理学中还有另外一种基本定律的表述形式,这就是最小作用原理(变分原理),它可表述为系统的各种相邻的经历中,真实经历使作用量取极值.可以看出最小作用原理的表述形式与牛顿定律、麦克斯韦方程组的表述形式极不相同.牛顿定律告诉我们,质点此时此刻的加速度由它此时此刻所受的力和它的质量的比值决定;麦克斯韦方程组告诉我们,此时此刻的电场分布由此时此刻的电荷分布以及此时此刻的磁场的变化决定,此时此刻的磁场分布由此时此刻的电流分布以及此时此刻的电场

相关主题
文本预览
相关文档 最新文档