当前位置:文档之家› AlN陶瓷金属化研究进展

AlN陶瓷金属化研究进展

AlN陶瓷金属化研究进展
AlN陶瓷金属化研究进展

AlN陶瓷金属化研究进展

纪成光,杨德安

天津大学材料科学与工程学院,天津(300072)

E-mail:sdjcg2008@https://www.doczj.com/doc/4c9112380.html,

摘要:本文论述了AlN陶瓷表面金属化技术的进展,介绍了金属化的主要方法及其基本原理,比较了各种方法的优缺点,并扼要阐述了AlN陶瓷的金属化机理。

关键词:AlN陶瓷,金属化,气密性,结合强度

1. 引言

近年来,随着大规模集成电路以及电子设备向着高速化、多功能、小型化、高功率的方向发展,各种应用对高性能、高密度电路的需求日益增加[1~4]。然而,电路密度和功能的不断提高导致电路工作温度不断上升,为了防止元件因热聚集和热循环作用而损坏,对基板材料的低介电常数、低热膨胀系数、高热导率等方面提出的要求越来越严格。目前,市场上高热导率材料主要有BeO、SiC和AlN。

BeO作为封装材料性能优良,遗憾的是,BeO是一种有毒物质,目前许多国家已将BeO 列入禁用材料,对含有BeO的元件或系统的使用也有诸多限制;SiC导热率虽然高达

270W/m·K,但其介电常数大(约40,1MHz),大大限制了其在高频领域的应用,不宜作基板材料;AlN不仅有高的热导率(约为Al2O3的10倍),单晶AlN高达320 W/m·K,而且具有优异的高温绝缘性、低介电常数以及与Si相近的热膨胀系数(4.5×10-6/℃,可以减少因热应力作用引起的元件/基片界面的剥离故障),另外,从结构上看,A1N陶瓷基片在简化结构设计、降低总热阻、提高可靠性、增加布线密度、使基板与封装一体化以及降低封装成本等方面均具有更大的优势。因而,随着航空、航天及其它智能功率系统对大功率耗散要求的提高,A1N基片已成为大规模集成电路及大功率模块的一种重要的新型无毒基片材料,以加强散热、提高器件的可靠性[4~9]。

AlN作为基片材料用于微电子系统封装中,在其表面进行金属化是必要的。但是,AlN 瓷是由强共价键化合物烧结而成,与其他物质的反应能力低,润湿性差,金属化存在一定的困难[4,10,11]。近年来,随着研究的不断深入,AlN陶瓷金属化取得了一定的成效。目前,应用于AlN陶瓷金属化的方法主要有薄膜法、厚膜法、直接敷铜(DBC)法、化学镀法等。

2. 薄膜法

薄膜法是采用真空蒸镀、离子镀、溅射镀膜等真空镀膜法将膜材料和AlN瓷结合在一起。由于为气相沉积,原则上讲无论任何金属都可以成膜,无论对任何基板都可以金属化。但是,金属膜层与陶瓷基板的热膨胀系数应尽量一致,以设法提高金属膜层的附着力。目前,研究最多的是Ti浆料系统,Ti层一般为几十纳米,对于多层薄膜,则在Ti层上沉积Ag、Pt、Ni、Cu等金属后进行热处理。鲁燕萍[12]等人针对AlN陶瓷在微波管中的应用特点,采用磁控溅射镀膜方法在AlN陶瓷表面溅射不同的金属薄膜,并与无氧铜焊接,测试焊接体的抗拉强度并对陶瓷-金属接合界面用EDX谱进行了微观分析。研究发现:在真空度优于2×10-3Pa的条件下,溅射Ti,Cu,Mo和Ni层会发生不同程度的氧化,影响了焊接强度和气密性。采用Ti/Au双层膜金属化可以起到防止Ti膜氧化的作用,但不能阻止焊料对Ti膜的溶解粘附,因而虽保证了焊接气密性,但强度较低;Ti/Ag金属化可以阻止焊料对Ti层的侵蚀,但其本身和

Ti膜作用较差。电镀Ni层可以起到很好的防氧化保护作用,甚至不需Cu,Mo等第二金属化层,直接镀Ni即可同时保证气密性和高焊接强度。对于Ti/电镀Ni样品,焊接强度随Ni层厚度增加而增加,电镀Ni(50 min)层可以覆盖A1N陶瓷的表面缺陷,起到表面改性的作用。

安本恭章[13]等认为基片与金属间的界面对结合强度起着重要作用,选用Ti/AlN、

Ta/AlN、和Ni/AlN系统,在氩气氛中于700~950℃范围内热处理,运用XRD和XPS等分析手段进行分析,结果表明:Ti和AlN的结合强度最高,并有Al的金属化合物生成,Ta和AlN结合强度较高,但没有铝化物生成,而Ni和AlN间既没有高的结合强度,也没有铝化物层。用反应的自由能解释:

2Ti+AlN = TiAl+TiN -23.1 kJ/g atom

4Ti+AlN = Ti3Al+TiN -19.2 kJ/g atom

2Ta+AlN = TaAl+TaN -2.30 kJ/g atom

29Ta+17AlN = Ta12Al17+17TaN +11.9 kJ/g atom

4Ni+AlN = NiAl+Ni3N +26.2 kJ/g atom

10Ni+3AlN = NiAl3+3Ni3N +44.4 kJ/g atom

11Ni+3AlN = Ni2Al3+3Ni3N +38.4 kJ/g atom

由此可以看出,AlN陶瓷薄膜金属化主要是依靠固态置换反应使金属层和陶瓷基片连接在一起,对于Ti、Zr等活性金属,其反应吉布斯自由能为负值,反应容易实现。此外,Ti 和AlN对氧的亲合能力强,在沉积Ti膜时,氧很可能溶于Ti中,或AlN表面被氧化,在界面生成Al2O3和钛的氧化物(Ti x O y),影响结合强度。

薄膜法的主要优点是金属层均匀,结合强度高,但设备投资大,制作困难,难以形成工业化规模。

3. 直接敷铜(DBC)法

在AlN基片上采用直接敷铜(Direct Bonded Copper,简称DBC)法金属化,是通过Cu-O 共晶液相与Al2O3发生化学键合反应而实现的。在制备AlN-DBC基板之前,必须对AlN陶瓷表面进行热处理,以使其表面形成Al2O3薄层,然后将铜箔贴于基板上,在1065℃左右形成Cu-O系共晶溶液,与Al2O3薄层发生键合反应,从而使AlN和Cu结合在一起[14~16]。Nobuo Iwase[16]等人研究了DBC的键合机制,发现在AlN-Cu界面上形成Cu2O层,而不是CuO,指出Cu2O层的存在提高了DBC基板的剥离强度。Anazai[17]等人研究了氧化层厚度对结合强度的影响,提出氧化层的适宜厚度为1~2μm,太厚,因Al2O3和AlN的热膨胀系数不匹配,产生残余应力,导致结合强度下降。因此,无论是铜箔还是AlN基片在预氧化时都要严格控制氧化的温度、气氛和时间,以使铜氧化生成Cu2O,在界区与Al2O3反应(Cu2O +Al2O3→2(CuAl)O2),提高AlN和Cu的结合强度。

DBC法结合温度低(1065~1075℃),导热性好,附着强度高,机械性能优良,便于刻蚀,绝缘性及热循环能力高,有着广阔的应用前景。不过,DBC法有一个缺点是对AlN 进行表面热处理形成的氧化物层降低了AlN基板的热导率。

4. 厚膜法

厚膜金属化技术一般采用含玻璃料的糊剂或印色,在陶瓷基板上通过丝网印刷形成封接

用金属层、导体(电路布线)及电阻等,经烧结形成钎焊金属层、电路及引线接点等。

根据以往的研究,金属化厚膜导体浆料在电子封装工业互联技术方面起着至关重要的作用,厚膜浆料一般由粒度为1-5μm的金属粉末,添加百分之几的玻璃粘结剂,再加有机载体(包括有机溶剂、增稠剂和表面活性剂等)经球磨混练而成,厚膜浆料不仅要有低的电阻,而且要与基片有良好的键合强度。Enokido[18]指出基片和金属层界面处玻璃相的存在对于获得高的结合强度是十分必要的。但是,玻璃相的存在却增加了AlN基板的热阻[22]。并且,已经商业化的应用于Al2O3基片的厚膜浆料体系通常不能直接用于AlN基片,Yamaguchi 和ageyama 等已经证实[19]:如果直接应用,厚膜导体浆料中的氧化物玻璃黏结剂,在高温下容易与AlN反应,产生N2,使得界面产生气泡,降低了金属化结合强度和封接的气密性。

为此,近来人们大量的研究了无玻璃的厚膜导体浆料系统。Zongrong Liu[20]用TiCu合金、锡、银、锌等金属替代玻璃料研究了空气烧结无玻璃金属电子厚膜导体浆料,发现添加少量(<0.5wt.%)锌可以增强结合强度,Ti组分含量在0.3-0.4wt.%时具有低电阻和高键合强度。

Kuninori Okamoto[21]在AlN基片上印刷银粉+ZrB2+有机载体的厚膜化合物,并在850℃左右的空气中烧结10min,然后用SEM、EDXA、DTA/TGA等现代分析手段进行分析,研究发现:在Ag-AlN的界面上生成了ZrO2和2Al2O3·B2O3,其最高结合强度可达24MPa,并且具有较好的抗热震性,证实了在烧结阶段ZrB2对AlN有蚀刻效应,指出对于黏结强度起作用的是ZrO2和AlOZr而不是2Al2O3·B2O3。反应机理如下:

ZrB2+O2→ ZrO2+B2O3

B2O3+AlN+O2→2Al2O3·B2O3+NO x

用金属硼化物(ZrB2)作为玻璃料的替代黏性增强剂,性能优异,并且,AlN基片不需要预氧化处理。

Adlabnig[22]用Cu-Ag合金掺杂Ti作为金属化系统,以萜品醇和磷酸二丁酯(DBP)作有机载体,用丝网印刷工艺对AlN瓷进行金属化。印刷后的AlN基板在850℃氩气氛下烧结,采用TEM、SEM-EDX等现代分析手段对金属化层和AlN瓷界面进行分析,发现结合强度与包含有Ti富集的界面结构以及形貌有关。

Wieslsw[23]在AlN基片上印刷金粉并在850℃的空气中进行热处理,用EMS、XPS等现代表面分析手段进行界面分析。结果发现:在Au-AlN瓷的界面上生成了Al2O3,并且在Au 层内始终有Al、O元素,指出Au元素沿着AlN颗粒边界向基板扩散是Au能够附着在基片上的主要原因。

厚膜法的优点是工艺简单,适于自动化和多品种小批量生产,且导电性能好,但结合强度尚不够高,特别是高温结合强度低,且受温度影响大。厚膜法是近来人们研究的热点。5. 化学镀法

化学镀法是指在没有外电流通过,利用还原剂将溶液中的金属离子还原在呈催化活性的物体表面,使之形成金属镀层。化学镀法金属化机理主要是机械联锁结合[24~26],结合强度很大程度上依赖于基体表面的粗糙度,在一定范围内,基体表面的粗糙度越大,结合强度越高。

Tetsuya Osaka[24,27]在陶瓷表面化学镀Ni-P合金,先将AlN基片用超声波清洗,去除表面杂质,置于NaOH溶液中腐蚀,再置于含镍盐的镀液中进行化学镀,研究发现:当表面粗糙度值为1.24μm时结合强度高达30MPa,其黏附机理是NaOH有选择性的在大颗粒之间

腐蚀,Ni-P膜则镶嵌在腐蚀掉的这些缝隙及孔洞中。

化学镀设备简单,成本低廉,无需二次高温处理,易于大规模生产。其不足之处是结合强度不高。

6. 结语

AlN陶瓷金属化要求膜层的电导率高,热阻率低,具有高的结合强度和良好的气密性等,各种物理化学性能要满足使用要求。但是,由于AlN陶瓷的金属化研究起步较晚,难度较大,发展一直比较缓慢,目前,AlN陶瓷的金属化实用研究仍在进行,金属化工艺需进一步改进,金属化层的性能有待进一步提高,另外,一些金属化机理尚不成熟,仍需进一步探索研究。相信在不久的将来,在基片和组件封装领域,AlN陶瓷基板终将取代Al2O3和BeO 陶瓷基板。

参考文献

[1] 牧野丰.电子材料(日)[J],1993,32(5):22~27

[2] 本多进.电子材料(日)[J],1993,32(5):28~32

[3] 高尚通.现代电子封装技术.半导体情报[J],1998,35(2):9~13

[4] 田民波等编著.高密度封装基板[M].北京:清华大学出版社,2003,193~195

[5] Gupta M, Lavernia E J. Effect of processing on the microstructural variation and heat-treatment response of a hypereutectic A1-Si alloy [J]. J Mater Proc Tech, 1995, 54:261

[6] Sumitomo Light Metal Industries Ltd. MPR, 1994, 49(1):26

[7] Fumio Miyashiro, Nobuo Iwase, Akihiko Tsuge, et al. High Thermal Conductivity Aluminum Nitride Ceramic Substrates and Packages[J]. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 1990,13(2):313~319

[8] L.M. Sheppard. AlN: A versatile but challenging materials[J]. Am. Ceram. Soc. Bull.,1990,69(11):1801~1812

[9] Wodson T.L. AlN stes up, take the heat and delivers[J]. Electronic Packaging and Production, 1995,35(7):26

[10] 高陇桥.陶瓷-金属材料实用封接技术[M]北京: 化学工业出版社,2005, 28~34

[11] Marija Trontelj, et al. Am Ceram Soc.1978, 61(5-6):204~207

[12] 鲁燕萍,高陇桥.AlN陶瓷的薄膜金属化及其与金属的焊接研究[J].真空科学与技术,2000,20(3):190~193

[13] 安本恭章,山川晃司,et al. J Am Ceram Soc Jpn.1993,101(9):969~973

[14] Carl Zweben. M etal-M atrix Composites for Electronic Packaging [J].JOM, 1992, 44(7):15

[15] 刘正春,王志法,姜国圣等.金属基电子封装材料进展[J].兵器材料科学与工程,2001,24:49

[16] Nubuo Iwase, Kazuo Anzai, Kazuo Shinozaki, et al. Thick Film and Direct Bond Copper Forming Technologies for Aluminum Nitride Substrate[J]. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 1985,8(2):253~258

[17] Anazi K, et al. p23 proceedings of the Components, Hybrids, and Manufacturing Technology Symposium[J]. IEEE, 1984, New York, 1985

[18] Enokido Y,Yamaguchi T. Adhesion Strength of Silver Thick-Film Conductors by Solder Free Test. J. Mater. Sci.1997, 32, No.18:4967~4971

[19] Takashi Yamaguchi, et al. Oxidation behavior of AlN in the presence of oxide and glass for thick film applications[J]. IEEE Transations,1989,12(3):22~25

[20] Zongrong Liu, D.D.L. Chung. Development of Glass-Free Metal Electrically Conductive Thick Films[J]. Journal of Electronic Packaging, 2001,123:64~69

[21] Kuninori Okamoto. Study on Thick Film Conductor Performances on AlN Substrate. TAL-5:195~198

[22] A. Adlabnig, J.C. Schuster, R.Reicher, et al. Development of glass frit free metallization systems for AlN[J]. Journal of Materials Science, 33(1998):4887~4892

[23] Wieslsw, et al. J Am Ceram Soc. 72[11] (1989):2084

[24] Tetsuya Osaka, et al. J Electrochem Soc, 1988, 135(10):2578~2581

[25] B shiou Chiou, et al. Plat and Surf Fin, 1993, 80(6):65~68

[26] 夏章能,徐洁,AlN陶瓷化学镀法金属化机理[J].表面技术,1999,28(2):20~22

[27] Tetsuya Osaka, et al. J Electrochem Soc, 1986, 133(11):2845

Advances of Study on Metallization for AlN

Ji Chengguang,Yang De’an

School of Materials Science and Engineering,Tianjin University,Tianjin(300072)

Abstract

Advances of metallization technology of AlN ceramics were summarized and the main method and fundamentals of metallization were introduced. Compared with virtues and defects of every method, and simply expound the mechanism of metallization for AlN.

Keywords:AlN ceramics,metallization,airproof,adhesion strength

作者简介:

杨德安,男,1965年生,副教授,主要从事复合材料的研究;

纪成光,男,1982年生,硕士研究生,主要研究方向是AlN陶瓷金属化。

七个方面让你全面了解氧化铝陶瓷基板的优势和应用

七个方面让你全面了解氧化铝陶瓷基板的优势和应用 氧化铝陶瓷基板在消费电子、汽车电子、LED照明等行业已经应用非常广泛,那么氧化铝陶瓷基板在行业应用科研创新方面起到了非常很重要的作用。今天我们就来全面分析一下氧化铝陶瓷基板。 首先了解什么是氧化铝陶瓷基板? 氧化铝陶瓷是一种以氧化铝(Al2O3)为主体的陶瓷材料,用于厚膜集成电路。氧化铝陶瓷有较好的传导性、机械强度和耐高温性。需要注意的是需用超声波进行洗涤。氧化铝陶瓷是一种用途广泛的陶瓷,因为其优越的性能,在现代社会的应用已经越来越广泛,满足于日用和特殊性能的需要。 其次:氧化铝陶瓷基板的结构和分类 氧化铝陶瓷基板的结构构成主要是:氧化铝(Al2O3)。普通型氧化铝陶瓷系按Al2O3含量不同分为99瓷、95瓷、90瓷、85瓷等品种,有时Al2O3含量在80%或75%者也划为普通氧化铝陶瓷系列。其中99氧化铝瓷材料用于制作高温坩埚、耐火炉管及特殊耐磨材料,如陶瓷轴承、陶瓷密封件及水阀片等;95氧化铝瓷主要用作耐腐蚀、耐磨部件;85瓷中由于常掺入部分滑石,提高了电性能与机械强度,可与钼、铌、钽等金属封接,有的用作电真空装置器件。 再次:氧化铝陶瓷基板的优缺点 1.硬度大 经中科院上海硅酸盐研究所测定,其洛氏硬度为HRA80-90,硬度仅次于金刚石,远远超过耐磨钢和不锈钢的耐磨性能。 2.耐磨性能极好

经中南大学粉末冶金研究所测定,其耐磨性相当于锰钢的266倍,高铬铸铁的171.5倍。根据我们十几年来的客户跟踪调查,在同等工况下,可至少延长设备使用寿命十倍以上。 3.重量轻 其密度为3.5g/cm3,仅为钢铁的一半,可大大减轻设备负荷。 氧化铝陶瓷主要技术指标 氧化铝陶瓷含量≥92% 密度≥3.6g/cm3 洛氏硬度≥80HRA 抗压强度≥850Mpa 断裂韧性KΙC≥4.8MPa·m1/2 抗弯强度≥290MPa 导热系数30~50W/m.K 热膨胀系数:7.2×10-6m/m.K 4,缺点: 比较易碎:相对与氮化铝陶瓷基板来说,更容易碎 导热没有氮化铝更好:氮化铝陶瓷基板导热可以到190~260W,氧化铝一般是25W~50W 五,氧化铝陶瓷基板导热 氧化铝陶瓷基板有较好的传导性、机械强度和耐高温性。氧化铝陶瓷基板的导热率差不多在45W/(m·K)左右。一般看到的就是这基板的覆铜对导热率也会有一定的影响,陶瓷板覆铜工艺也分很多种,有高温熔合陶瓷基板(HTFC)、低温共烧陶瓷基板

关于陶瓷表面金属化的应用与研究

斯利通关于陶瓷表面金属化的应用与研究现代新技术的发展离不开材料,并且对材料提出愈来愈高的要求。随着材料科学和工艺技术的发展,现代陶瓷材料已经从传统的硅酸盐材料,发展到涉及力、热、电、声、光诸方面以及它们的组合,将陶瓷材料表面金属化,使它具有陶瓷的特性又具有金属性质的一种复合材料,对它的应用与研究也越来越引起人们重视。 通过化学镀、真空蒸镀、离子镀和阴极溅射等技术,可以使陶瓷片表面沉积上Cu、Ag、Au等具有良好导电性和可焊性的金属镀层,这种复合材料常用来生产集成电路、电容等各种电子元器件。作为集成电路的方面,是将微型电路印刷在上面,用陶瓷做成的基片具有导热率高、抗干扰性能好等优点。随着电子工业、计算机的飞速发展,集成电路变得越来越复杂,包括的装置和功能也是越来越多,这样就要求电路的集成化程度越来越高。此时使用陶瓷金属化的基片能够大幅提高电路集成化,实现电子设备小型化。 电容器作为一种重要的电气件,它在电子工业和电力工业都有着很重要的用途。其中陶瓷电容器因具有优异的性能而占有很重要的地位,目前它的产销量是很大的,而且每年还在递增。 电子仪器在工作时。一方面向外辐射电磁波,对其他仪器产生干扰,另一面还要遭受外来电磁波的干扰。当今电子产品的结构日益复杂,品种与数量日益增多,灵敏度日益提高,所以电磁干扰的影响也日益严重,已经引起了人们的重视。 在电磁屏蔽领域,表面金属化陶瓷同样发挥着重要的作用,在陶瓷片表面镀上一层 Co-P和Co-Ni-P合金,沉积层中含磷量为0.2%-9%,其矫顽磁力在200-1000奥斯特,常作为一种磁性镀层来应用,由于其抗干扰能力强,作为最

高等级的屏蔽材料,可用于高功率和非常灵敏的仪器,主要用在军工产品上面。 陶瓷金属化在工艺上有化学镀、真空镀膜法、物理蒸镀法、化学气相沉淀法及喷镀法,再就是最新的离子化镀层法,像激光活化金属化技术,其优点明显: 1、结合力强,激光技术使金属层的结合强度可以达到45Mpa; 2、不管被镀物体形状如何复杂都能得到均匀的一层镀层; 3、成本大幅降低,效率提高; 4、绿色环保无污染。 陶瓷金属化作为一种新型材料具有许多独特的优点,它的应用和研究只是刚刚起步,还有非常大的发展空间,在不远的将来,陶瓷金属化材料必将大放光彩。

七大方面解析氮化铝陶瓷基板的分类和特性

七大方面解析氮化铝陶瓷基板的分类和特性 氮化铝陶瓷基板在大功率器件模组,航天航空等领域备受欢迎,那么氮化铝陶瓷基板都有哪些种分类以及氮化铝陶瓷基板特性都体现在哪些方面? 一,什么是氮化铝陶瓷基板以及氮化铝陶瓷基板的材料 氮化铝陶瓷基板是以氮化铝(AIN)为主晶相的陶瓷基板,也叫氮化铝陶瓷基片。热导率高,膨胀系数低,强度高,耐高温,耐化学腐蚀,电阻率高,介电损耗小,是大功率集成电路和散热功能的重要器件。 二,氮化铝陶瓷基板分类 1,按电镀要求来分 氮化铝陶瓷覆铜基板(氮化铝覆铜陶瓷基板),旨在氮化铝陶瓷基板上面做电镀铜,有做双面覆铜和单面覆铜的。 2,按应用领域分 LED氮化铝陶瓷基板(氮化铝led陶瓷基板),主要用于LED大功率灯珠模块,极大的提高了散热性能。 igbt氮化铝陶瓷基板,一般用于通信高频领域。 3,按工艺来分 氮化铝陶瓷基板cob(氮化铝陶瓷cob基板),主要用于Led倒装方面。 dpc氮化铝陶瓷基板,采用DPC薄膜制作工艺,一般精密较高。 dpc氮化铝陶瓷基板(AlN氮化铝dbc陶瓷覆铜基板),是一种厚膜工艺,一般可以实现大批量生产。 氮化铝陶瓷基板承烧板 3,按地域分

有的客户对特定的氮化铝陶瓷基板希望是特定地域的陶瓷基板生产厂家,因此有了: 日本氮化铝陶瓷基板 氮化铝陶瓷基板台湾 氮化铝陶瓷基板成都 福建氮化铝陶瓷基板 东莞氮化铝陶瓷基板 台湾氮化铝陶瓷散热基板 氮化铝陶瓷基板珠海 氮化铝陶瓷基板上海 4,导热能力来分 高导热氮化铝陶瓷基板,导热系数一般较高,一般厚度较薄,一般导热大于等于170W的。 氮化铝陶瓷散热基板,比氧化铝陶瓷基板散热好,大于等于50W~170W. 三,氮化铝陶瓷基板特性都有哪一些? 1,氮化铝陶瓷基板pcb优缺点 材料而言:陶瓷基板pcb是陶瓷材料因其热导率高、化学稳定性好、热稳定性和熔点高等优点,很适合做成电路板应用于电子领域。许多特殊领域如高温、腐蚀性环境、震动频率高等上面都能适应。氮化铝陶瓷基板,热导率高,膨胀系数低,强度高,耐高温,耐化学腐蚀,电阻率高,介电损耗小,是理想的大规模集成电路散热基板和封装材料。硬度较高,交工难度大,压合非常难,一般加工成单双面面陶瓷基板pcb. 2,氮化铝陶瓷基板产品规格(尺寸/厚度、脆性) 氮化铝陶瓷基板的产品规格尺寸厚度,有不同的尺寸对应不同个的厚度,具体如下: 氮化铝陶瓷基板尺寸一般最大在140mm*190mm,氮化铝陶瓷基板厚度一般在

陶瓷金属化产品与普通pcb板对比

陶瓷金属化产品与普通pcb板对比分析 当今是互联网时代,各种大数据一应俱全,在我们选择商品时,我们都会根据互联网给我们提供的大数据对要选择的产品进行详尽的分析,通过数据的对比,可以选择到更加适合自己的产品。陶瓷金属化产品和市面上普通的pcb板的竞争已经趋于白热化,现在我们就拿市面上最常见的pcb板和陶瓷金属化产品进行比较,来简要分析一下为什么后起之秀——陶瓷金属化产品有这么强的市场竞争力的原因。 原材料价格对比 材料价格是生产厂家和销售商获取利润的一大方面。市面上的普通PCB板根据材质不同价格也会相应不同。例如94VO纸基板FR-4价格在110~140元/平米其厚度,当然CEM-1 94HB单面纸基板价格也在500元/平米。普通的玻纤板价格则会相对较低,例如FR-4玻纤板在0.3-0.5mm价格在40~50元/平米。环氧树脂基板价格和化纤板的价格相差还不大。环氧树脂3mm黄色纤维板也在20元/Kg.当然如果选用的板材面积较大,其价格也会相对的发生变化例如:3mm 500*1000的黄色环氧树脂价格则是50元/张。这俩面产生的价格差异也是根据板材的厚度,大小,以及不同的工艺也会产生差异。 当今陶瓷板的价格也是参差不齐,他根据陶瓷板的厚度,材质,以及生产工艺的不同,所需要的价格也大不相同。其中陶瓷板子分为92氧化铝陶瓷板,95氧化铝陶瓷板,96氧化铝陶瓷板,99氧化铝陶瓷板.当然还有氮化硅陶瓷板,以及99氮化铝陶瓷板,在这些陶瓷版俩面跟据跟据陶瓷板的厚度以及大小进行定价。例如40*40*2mmIGBT基板每片在3元左右。氮化铝陶瓷板价格就会相对昂贵。0632*0.632*0.2mm氮化铝陶瓷般的价格基本在200元左右。 单纯从价格对比来说同体积普通的pcb板的价格相对于陶瓷板就便宜很多了,相对来说选用普通的pcb基板就要经济实惠多了。但是今年7月初,山东金宝、建滔、明康、威利邦、金安国纪等数家公司先后发布铜箔、覆铜板等涨价通知,上涨情况为:铜箔每吨上调1000-2000元,纸板上调10元/张,绝缘玻纤ccl上调5元/张,板料上调5元/张。7月底,福建木林森照明、东成宏业、摩根电子、海乐电子等多家PCB企业发布线路板涨价通知,涨幅几乎是清一色的10%。虽然普通的pcb基板所选用的材料经济实惠,但是经过这么大幅度的涨价显然是在抬升相应产品的价格,压缩了pcb基板的利润。 材料性能对比 在普通的pcb板材都是采用纸板,环氧树脂,玻纤板,除了玻纤板,其余的都是有机物。因此在宇宙射线上的照射下容易发生化学反应,改变其分子结构,使产品发生形变,因此是无法运用在航空航天的。 普通的pcb基板相对于陶瓷来说密度较小,重量较轻,利于远距离的运输。纸板和环氧树脂板韧性高,不易碎。 但是普通的pcb板所都耐不住高温,纸的着火点在在130℃,是相当低的,即使是添加

氧化铝陶瓷与金属连接的研究现状

万方数据

万方数据

万方数据

万方数据

周健等Ⅲo对A1203一A1203以及A1203和HAP(羟基磷灰石)生物陶瓷进行了焊接,并借助电镜、电子探针分析了界面结合情况。前者在2MPa、1300℃、保温15min时结合强度达到基体强度。后者在2.5MPa、1200℃、保温15min左右将两类材料焊接在一起。. 蔡杰等¨引采用1’E103型谐振腔分别在1300和1400℃对A1203一A1203进行焊接,认为在1300℃焊接时,虽经长时间保温,焊接效果不理想,在1400℃、保温20min,焊缝消失。如上所述,氧化铝陶瓷一般采用直接焊接,对于高纯度氧化铝陶瓷一般采用低纯氧化铝或玻璃做中间层,目前也有人用溶胶凝胶方法制备的氧化铝做中间层。 目前微波焊接腔体的微波场的均匀区域还不大,改进微波场的分布,提高加热均匀区域,可以提高材料的焊接尺寸。同时增加焊接材料的种类。 7激光焊接 激光焊接陶瓷是近年来发展的新技术,Mittweida公司开发了双束激光焊接陶瓷方法,其原理见图9。 图9双束激光焊接示意图¨引 Fig.9Skd【chofdoublelaserweldiIlg 采用高能束激光焊方法,可快速加热和冷却,配以氮气筛的冷却和温度场调节,诱导和改善复合材料增强相和基体界面反应,而提高接头强度。采用脉冲输入方式,可抑制界面反应,细化组织,减少缺陷,获得良好接头,在操作时对激光功率控制非常重要啪J。用该法焊接的Al:O,陶瓷试样,激光焊接区细晶粒均匀,在电子显微镜下,可以看到晶粒呈片瓦结构,防止了裂纹的产生和扩展。经100次反复加热和冷却后,试样的弯曲强度无明显下降。 8结语 随着Al,O,陶瓷的广泛应用,其连接技术已成为世界各国集中研究的重点,其中钎焊与扩散连接是最常用的连接方法,但都有其局限性。例如:用钎焊方法形成的陶瓷接头的高温性能和抗氧化性能较差;钎焊的界面反应机理现在还处于试验阶段,缺乏系统性和理论性。扩散连接虽然可以减小界面缺陷,并适合大尺寸构件的接合,但易发生试件的变形和损伤等。近来新发展的微波连接能很好地实现接头处均匀连接,避免了开裂的发生,而且由于升温速度极快,陶瓷内部的晶粒不会剧烈长大。而sHs焊接和激光焊接还处于起步阶段,有待于发展。 参考文献 1王颖.AJ:0,陶瓷与Kover合金钎焊工艺研究.哈尔滨工业大学硕士论文,2006:l一50 2Ham咖dJP,DB“dSA,SameUaMLB阳zingo既帅icox-id船tom吨IlsatlowteⅡ聊舶hlr酷.WeldJ,1992;(5):145—1493赵永清.利用化学镀实现A120,陶瓷与金属的连接.焊接技术,1999;(2):16—17 4顾小龙,王大勇,王颖.Al:0,陶瓷/AgCuT∥可伐合金钎焊接头力学性能.材料科学与艺,2007;15(3):366—3695吴铭方.反应层厚度对他03/AgCu7n/n一6m一4V接头强度的影响.稀有金属材料与工程,2000;19(26):419—4226王洪潇.氧化铝陶瓷与金属活性封接技术研究.大连交通大学硕士论文,2006:1—50 7刘军红.复相Al:0,基陶瓷/钢大气中直接钎焊连接界面的微观组织结构.焊接学报,2003;24(6):26—28 8张玮.镍离子注入灿203/1crl8Ni9Ti的钎焊界面成分分析.包头钢铁学院学报,2000;19(3):219—22l 9王大勇,冯吉才,刘会杰.灿:O,/Cu/Al扩散连接工艺参数的优化.材料科学与工艺,2003;11(1):73~76 10陈铮,赵其章,方芳等.陶瓷/陶瓷(金属)部分瞬间液相连接.硅酸盐学报,1999;27(2):186~188 1lMerzh锄ovAG.InterSymposium∞coIIIbus阴dpl嬲一眦syn.ofhigll—te呷.Mater.s明Fr锄cisco,cA,988 12余圣甫等.Al:0,陶瓷/不锈钢自蔓延高温原位合成连接.焊接学报,2004;25(2)119一122 13周健,章桥新,刘桂珍等.微波焊接陶瓷辊棒.武汉工业大学学报,1999;21(3):1~2 14MeekTT,BlalceRD.Ceramic?ce硼icsealsbymicro-w盯ehe砒ing.J.Mat.Sci.L肚.,1986;(5):270~274 15Fukushi眦H。YamanakaT,Ma协uiM.Micmwaveheat—ingof ce姗icsandi协applic砒i叩tojoining.JMat.R∞.,1990;5(2):397—405 16Bi衄erJGP,F唧ieJA,WhitakerPAeta1.Thee妇fect0fcompositi∞ontlIeIIlicn)wavebondirIg0falulIli啪ce捌【nics.JMat.sci.,1998;33(12):3017~3029 17zlI伽Ji蛐,Zh衄gQia喇n,MEIBingchueta1.Mic胁wavejoiIlingof aluIIli腿c廿枷candh”Iroxyl印atitebioce枷c.JWuh粕Univ.ofTech.Mater.Sci.,1999;14(2):46~4918ChenXinm伽,ⅡuW嘶.HigllFrequencyHeatillgDie.1ectricTechnology.BeijiIlg:scie眦ePr鹤s,1979:l一30 19C蛐G,K0caI【M.h咿ssinjoiniIlgofadv锄cedmate—rials.htematioIlalMaterialsRevie啪,1998;43(1):卜4420广赖明夫.金属基复合材料。结合.溶接会志,1996;65(4):l692一l698 (编辑吴坚) 宇航材料工艺2008年第4期 万方数据

陶瓷金属化技术

陶瓷金属化技术-钼锰法 新型陶瓷常用的钼锰法工艺流程与被银法基本相似。其金属化烧结多在立式或卧式氢气炉中进行。采用还原气氛,但需要含微量的氧化气体,如空气和水汽等,也可采用H2、N2及H2O三元气体。金属烧结的温度,一般比瓷件的烧成温度低30~100℃。[钼锰法也是烧结金属粉末法最重要的一种。] 金属件的膨胀系数与陶瓷的膨胀系数尽可能接近,互相匹配,封包陶瓷的金属应有较高的温度系数,封接与陶瓷内的金属应有较低的温度系数。这样,陶瓷保持受压状态。 钼锰法的工艺流程图: 1、金属化用的原料的处理与配制 (1)钼粉:使用前先在纯,干的H2气氛中1100 ℃处理,并将处理过的钼粉100g加入500ml

无水乙醇中摇动一分钟,然后静置三分钟,倾出上层的悬浮液,在静止数小时使澄清,最后取出沉淀在40 ℃下烘干。 (2)锰粉:电解锰片在钢球磨中磨48小时,以磁铁吸去铁屑,在用酒精漂选出细颗粒。(3)金属化涂浆的配制与涂制:取100g钼锰金属的混合粉末(钼:锰=4:1),在其中加入2.5g硝棉溶液及适量的草酸二乙酯,搅拌均匀,至浆能沿玻璃棒成线状流下为准。每次使用前如稠度不合适,可再加入少量硝棉溶液或者草酸二乙酯进行调节。涂层厚度为50um。 金属化的机理:锰被水气中的氧气在800℃下氧化,高温下,熔入玻璃相中,减低其黏度。玻璃相渗入钼层空隙,并向陶瓷坯体中渗透。由于Al2O3在玻璃相中溶解-重结晶过程,因此在界面上往往存在大颗粒的刚玉晶体。氧化锰还能与Al2O3生成锰铝尖晶石,或与SiO2生成蔷薇辉石。 钼在高温下烧结成多孔体,同时钼的表面被氧化,并渗入到金属化层空隙的玻璃相中,被润湿和包裹,这样容易烧结,并向瓷体移动。 冷却后,经书相层就通过过渡区而与瓷坯紧密的结合。由于以上的高温反应在氧化铝瓷和钼锰金属化层之间形成有一厚度的中间层。金属化层厚度约为50um时,中间层约为30um,金属化层厚度增加,中间层厚度也增加。 2、上镍 在金属化烧成以后,为改善焊接时金属化层与焊料的润湿性能,许在上面上一层镍,可用涂镍再烧,也可用电镀的方法。 1,烧镍:将镍粉用上述钼粉漂选方法获得细颗粒,并采用和制金属化钼锰浆一样的方法制成镍浆,涂在烧好的金属化层上,厚度为40um,在980℃干H2气氛中烧结15分钟。 2,镀镍:在金属化层上电镀镍,周期短,电极上采用的镍板纯度为99.52%。 3、焊接 经金属化并上有镍的陶瓷,与金属焊接在一起,是在干燥H2保护下的立式钼丝炉中进香。与可伐合金焊接时焊料用纯银,与无氧铜焊接时,只能用银铜低共熔合金。 纯银焊料:一般采用0.3mm厚的薄片,或直径0.1mm的银丝,纯度为99.7%,焊接温度为030-1050℃ 银铜焊料:也可采用0.3mm厚的薄片,或直径0.1mm的银丝,成分为72.98%银,27.02%铜焊接温度为030-1050 ℃

氮化铝综述

AlN陶瓷 0909404045 糜宏伟摘要:氮化铝陶瓷的结构性能,制备工艺即粉末的合成,成形,烧结几个方面详细介绍了氮化铝陶瓷的研究状况,指出低成本的粉末制备工艺和氮化铝陶瓷的复杂形状成形技术是目前很有价值的氮化铝陶瓷的研究方向。 关键词:氮化铝陶瓷制备工艺应用 氮化铝(AlN)是一种具有六方纤锌矿结构的共价晶体,晶格常数a=3.110?,c=4.978?。Al 原子与相邻的N 原子形成歧变的[AlN4]四面体,沿c 轴方向 Al-N 键长为1.917?, 另外3 个方向的Al-N 键长为1.885?。AlN 的理论密度为3.26g/cm3。氮化铝陶瓷综合性能优良,非常适用于半导体基片和结构封装材料。在电子工业中的应用潜力非常巨大。另外氮化铝还耐高温,耐腐蚀,不为多种熔融金属和融盐所浸润。因此,可用作高级耐火材料和坩埚材料也可用作防腐蚀涂层,如腐蚀性物质的容器和处理器的里衬等,粉末还可作为添加剂加入各种金属或非金属中来改善这些材料的性能,高纯度的氮化铝陶瓷呈透明状,可用作电子光学器件,还具有优良的耐磨耗性能,可用作研磨材料和耐磨损零件。 1 粉末的制备 AlN粉末是制备AlN陶瓷的原料。它的纯度,粒度,氧含量及其它杂质含量,对制备出的氮化铝陶瓷的热导率以及后续烧结,成形工艺有重要影响。一般认为,

要获得性能优良的AlN陶瓷材料,必须首先制备出高纯度,细粒度,窄粒度分布,性能稳定的AlN粉末。目前,氮化铝粉末的合成方法主要有3种:铝粉直接氮化法,碳热还原法,自蔓延高温合成法。其中,前2种方法已应用于工业化大规模生产,自蔓延高温合成法也开始在工业生产中应用。 1.1 铝粉直接氮化法 直接氮化法就是在高温氮气氛围中,铝粉直接与氮气化合生成氮化铝粉末,反应温度一般在800~1200℃化学反应式为: 铝粉直接氮化法优点是原料丰富,工艺简单,适宜大规模生产。目前已经应用于工业生产。但是该方法也存在明显不足,由于铝粉氮化反应为强放热反应,反应过程不易控制,放出的大量热量易使铝形成融块,阻碍氮气的扩散,造成反应不完全,反应产物往往需要粉碎处理,因此难以合成高纯度,细粒度的产品。 1.2 碳热还原法 碳热还原法的是将氧化铝粉末和碳粉的混合粉末在高温下1400~1800℃的流动N2气中发生还原氮化反应生成AlN粉末,反应式为: 为了提高反应速度和转化率,一般要求加入过量的碳。反应后过量的碳可在600~700℃的空气中氧化除去。该方法的优点是合成粉末纯度高,性能稳定,粉末粒度细小均匀,具有良好的成形,烧结性能,但该反应进行的温度高,合成时间长,同时需要二次除碳工艺。因此,工艺复杂,成本高。许多研究表明,碳热还原法合成氮化铝粉末的质量和氮化温度与原料的种类和性能密切相关,采用不同种类的原料,氮化温度相差可达200℃ 1.3 自蔓延高温合成法 自蔓延高温合成法是近年来发展起来的一种新型的氮化铝粉末制备方法。其实质就是铝粉的直接氮化。它充分利用了铝粉直接氮化为强放热反应的特点,将铝粉于氮气中点燃后,利用Al与N2之间的高化学反应热使反应自行维持下

陶瓷表面金属化Cu薄膜应力调控

龙源期刊网 https://www.doczj.com/doc/4c9112380.html, 陶瓷表面金属化Cu薄膜应力调控 作者:周灵平, 陈道瑞, 彭坤, 朱家俊,汪明朴 来源:《湖南大学学报·自然科学版》2010年第11期 摘要:利用直流磁控溅射方法在AlN陶瓷表面沉积了单层Cu薄膜,采用X射线衍射方 法研究了沉积温度对薄膜应力的影响,并用有限元方法模拟不同温度下沉积的Cu薄膜中的热应力及变形分布情况.沉积的薄膜应力表现为张应力,并随沉积温度的升高先增大后减小,沉积温度为200 ℃左右时,薄膜应力达到最大值;在AlN表面引入过渡界面可明显地减小薄膜 应力,并根据微观结构和物理性质的变化等对薄膜应力的变化进行了解释. 关键词:金属化;薄膜;应力;AlN;沉积温度 中图分类号:TB741 文献标识码:A Stress Control of Metalized Copper Thin Filmon AlN Ceramic Surface ZHOU Ling ping1,2,CHEN Dao rui1,PENG Kun1,ZHU Jia jun1,WANG Ming pu 2 (1.College of Materials Science and Engineering, Hunan Univ, Changsha, Hunan 410082, China; 2.College of Materials Science and Engineering, Central South Univ, Changsha, Hunan 410083,China) Abstract: A layer of copper thin films was deposited on AlN ceramic substrate in the DC magnetron sputtering method, the influences of deposited temperature on the stress of Cu thin films metallization on AlN substrate were studied in the X ray diffraction (XRD) method, and the effects of deposition temperature on the stress and deformation were also analyzed in the finite element analysis method. The residual stress in Cu film was tensile stresses, which increased first and then decreased with the increase of deposition temperature, and the stress reached the maximal value when the deposition temperature was 200 ℃. The stress of Cu thin films metallization on AlN substrate could be reduced by implanting the transition interface on AlN substrates. The change of stresses was explained according to its microstructure and physical properties. Key words: metallization; thinfilm; stress; AlN; deposited temperature

陶瓷与金属钎焊的方法、钎料和工艺

陶瓷钎焊 陶瓷与金属的连接是20世纪30年代发展起来的技术,最早用于制造真空电子器件,后来逐步扩展应用到半导体、集成电路、电光源、高能物理、宇航、化工、冶金、仪器与机械制造等工业领域。陶瓷与金属的连接方法比较多,如钎焊、扩散焊、熔焊及氧化物玻璃焊料连接法等,其中钎焊法是获得高强度陶瓷/金属接头的主要方法之一。钎焊法又分为金属化工艺法和活性钎料法。我国于50年代末才开始研究陶瓷—金属连接技术,60年代中便掌握了金属化工艺法(活化Mo-Mn法)和活性钎焊法,推动了陶瓷/金属钎焊用材料及其钎焊工艺的发展。 常用的金属和陶瓷钎焊方法 常用的钎焊方法有陶瓷表面金属化法和活性金属法 金属和陶瓷钎焊工艺 陶瓷与被连接金属的热膨胀系数相差悬殊,导致钎焊后使接头内产生较高的残余应力, 而且局部地方还存在应力集中现象,极易造成陶瓷开裂。为降低残余应力, 必须采用一些特殊的钎焊工艺路线。①合理选择连接匹配材料;②利用金属件的弹性变形减小应力;③避免应力集中;④尽量选用屈服点低, 塑性好的钎料;⑤合理控制钎焊温度和时间;⑥采用中间弹性过渡层。其中, 采用中间弹性过渡层的方法是研究和应用最多的方法之一, 采用中间弹性过渡层对降低残余应力的作用较大。该方法采用陶瓷/ 钎料/ 中间过渡层/ 钎料/ 金属的装配形式进行钎焊, E 和σs 减小, 接头强度越高, 这说明较“软”的中间层能够有效地释放应力, 改善接头强度。中间过渡层的热膨胀系数与Si3N4 接近固然有好处, 但如E 和σs 很高(如Mo 和W) , 不能缓和应力, 也就不能起到好的作用。因此, 可以认为E 和σs 是选择中间过渡层的主要着眼点。中间过渡层的选择应尽量满足下列条件: ①选择 E 和σs 较小的材料; ②中间过渡层与被连接材料的热膨胀系数差别要小; ③充分考虑接头的工作条件。采用弹性过渡层的陶瓷连接方法的缺点是接头强度不高, 原因是有效钎接面积小。但这种低应力或无应力接头具有良好的使用性能, 其优点是在热载荷下产生较低的热应力, 接头耐热疲劳, 抗热冲击性能好。 金属和陶瓷钎焊的发展前景 随着社会新材料的发展和金属与陶瓷钎焊技术日趋完善,其在工业领域的应用越来越广泛,可以预见,金属与陶瓷钎焊技术有着广阔的应用前景,无疑是今后研究的重点。传统的陶瓷金属化法工艺复杂、费时耗资,活性金属钎焊是目前最有可能得到大规模工业应用的连接方法,而部分瞬间液相连接充分结合了活性钎焊和固相扩散连接两者的优点,能在比常规连接方法低得多的温度下制备耐热接头,正不断引起人们极大的兴趣和关注。随着国民经济的发展, 特别是高科技领域的发展, 具有优异性能的结构陶瓷与金属的钎焊零部件的应用也日益广泛, 尤其是一些特殊工作条件, 如耐冲击负荷、耐腐蚀、耐高温、抗氧化性好等, 要求研究开发与之相适应的新材料及新工艺, 这样才会有助于推动我国陶瓷材料。

AlN陶瓷金属化研究进展

AlN陶瓷金属化研究进展 纪成光,杨德安 天津大学材料科学与工程学院,天津(300072) E-mail:sdjcg2008@https://www.doczj.com/doc/4c9112380.html, 摘要:本文论述了AlN陶瓷表面金属化技术的进展,介绍了金属化的主要方法及其基本原理,比较了各种方法的优缺点,并扼要阐述了AlN陶瓷的金属化机理。 关键词:AlN陶瓷,金属化,气密性,结合强度 1. 引言 近年来,随着大规模集成电路以及电子设备向着高速化、多功能、小型化、高功率的方向发展,各种应用对高性能、高密度电路的需求日益增加[1~4]。然而,电路密度和功能的不断提高导致电路工作温度不断上升,为了防止元件因热聚集和热循环作用而损坏,对基板材料的低介电常数、低热膨胀系数、高热导率等方面提出的要求越来越严格。目前,市场上高热导率材料主要有BeO、SiC和AlN。 BeO作为封装材料性能优良,遗憾的是,BeO是一种有毒物质,目前许多国家已将BeO 列入禁用材料,对含有BeO的元件或系统的使用也有诸多限制;SiC导热率虽然高达 270W/m·K,但其介电常数大(约40,1MHz),大大限制了其在高频领域的应用,不宜作基板材料;AlN不仅有高的热导率(约为Al2O3的10倍),单晶AlN高达320 W/m·K,而且具有优异的高温绝缘性、低介电常数以及与Si相近的热膨胀系数(4.5×10-6/℃,可以减少因热应力作用引起的元件/基片界面的剥离故障),另外,从结构上看,A1N陶瓷基片在简化结构设计、降低总热阻、提高可靠性、增加布线密度、使基板与封装一体化以及降低封装成本等方面均具有更大的优势。因而,随着航空、航天及其它智能功率系统对大功率耗散要求的提高,A1N基片已成为大规模集成电路及大功率模块的一种重要的新型无毒基片材料,以加强散热、提高器件的可靠性[4~9]。 AlN作为基片材料用于微电子系统封装中,在其表面进行金属化是必要的。但是,AlN 瓷是由强共价键化合物烧结而成,与其他物质的反应能力低,润湿性差,金属化存在一定的困难[4,10,11]。近年来,随着研究的不断深入,AlN陶瓷金属化取得了一定的成效。目前,应用于AlN陶瓷金属化的方法主要有薄膜法、厚膜法、直接敷铜(DBC)法、化学镀法等。 2. 薄膜法 薄膜法是采用真空蒸镀、离子镀、溅射镀膜等真空镀膜法将膜材料和AlN瓷结合在一起。由于为气相沉积,原则上讲无论任何金属都可以成膜,无论对任何基板都可以金属化。但是,金属膜层与陶瓷基板的热膨胀系数应尽量一致,以设法提高金属膜层的附着力。目前,研究最多的是Ti浆料系统,Ti层一般为几十纳米,对于多层薄膜,则在Ti层上沉积Ag、Pt、Ni、Cu等金属后进行热处理。鲁燕萍[12]等人针对AlN陶瓷在微波管中的应用特点,采用磁控溅射镀膜方法在AlN陶瓷表面溅射不同的金属薄膜,并与无氧铜焊接,测试焊接体的抗拉强度并对陶瓷-金属接合界面用EDX谱进行了微观分析。研究发现:在真空度优于2×10-3Pa的条件下,溅射Ti,Cu,Mo和Ni层会发生不同程度的氧化,影响了焊接强度和气密性。采用Ti/Au双层膜金属化可以起到防止Ti膜氧化的作用,但不能阻止焊料对Ti膜的溶解粘附,因而虽保证了焊接气密性,但强度较低;Ti/Ag金属化可以阻止焊料对Ti层的侵蚀,但其本身和

从四个维度充分了解氮化铝陶瓷

从四个维度充分了解氮化铝陶瓷氮化铝陶瓷在电子电路方面应用广泛,今天小编就从氮化铝陶瓷特性、产品应用、介电常数、以及加工方法方面全面阐述氮化铝陶瓷。 氮化铝陶瓷特性 氮化铝陶瓷(Aluminum Nitride Ceramic)是以氮化铝(AIN)为主晶相的陶瓷。特性导热高、绝缘性好、介电常数低等特点。主要有以下四个性能指标: (1)热导率高(约320W/m·K),接近BeO和SiC,是Al2O3的5倍以上; (2)热膨胀系数(4.5×10-6℃)与Si(3.5-4×10-6℃)和GaAs(6×10-6℃)匹配; (3)各种电性能(介电常数、介质损耗、体电阻率、介电强度)优良; (4)机械性能好,抗折强度高于Al2O3和BeO陶瓷,可以常压烧结; (5)光传输特性好; (6)无毒。 氮化铝陶瓷介电常数低有什么优势? 一般而言,介电常数是会随温度变化的,在0-70度的温度范围内,其最大变化范围可以达到20%。介电常数的变化会导致线路延时10%的变化,温度越高,延时越大。介电常数还会随信号频率变化,频率越高介电常数越小。介电常数(Dk,ε,Er)决定了电信号在该介质中传播的速度。电信号传播的速度与介电常数平方根成反比。介电常数越低,信号传送速度越快。氮化铝陶瓷的介电常数(25℃为8.8MHz),传输是速度是很快的。可以和罗杰斯等高频板材一起做成高频陶瓷pcb。 氮化铝陶瓷都应用在哪些领域?氮化铝陶瓷制品都有哪些? 一制作成氮化铝陶瓷基片,作为陶瓷电路板的基板。

二,氮化铝陶瓷基片,热导率高,膨胀系数低,强度高,耐高温,耐化学腐蚀,电阻率高,介电损耗小,是理想的大规模集成电路散热基板和封装材料。 三,通过AIN陶瓷的金属化,可替代有毒性的氧化铍瓷在电子工业中广泛应用。 四,利用AIN陶瓷耐热耐熔体侵蚀和热震性,可制作GaAs晶体坩埚、Al 蒸发皿、磁流体发电装置及高温透平机耐蚀部件,利用其光学性能可作红外线窗口。氮化铝薄膜可制成高频压电元件、超大规模集成电路基片等。 氮化铝陶瓷用什么加工成型和烧结? 一、常见的AlN坯体成型方法 由氮化铝粉末制备氮化铝陶瓷坯体,需要利用成型工艺把粉体制备成坯体,然后再进行烧结工作。氮化铝成型工艺主要有干压成型、等静压成型、流延法成型和注射成型等。 1、干压成型图2为干压成型机。干压成型(轴向压制成型)是将经表面活性剂改性等预处理的AlN粉体加入至金属模具中,缓慢施加压力使其成为致密的坯体成型工艺。实质是借助外部施压,依靠AlN粉末颗粒之间的相互作用力使坯体保持一定的形状和致密度高致密坯体,其有利于陶瓷烧结,可以降低烧结温度,提高陶瓷致密度。由于AlN粉末易水解,干压成型中常用的水-聚乙烯醇(PVA)不能用于AlN粉末的压制,可选用石蜡与有机溶剂代替。 优点:干压成型法操作简单,工艺环节少,效率高。缺点:不能压制复杂几何形状的坯体;需严格控制压力大小,过大或过小均不利于得到高致密度AlN 陶瓷烧结件。 2.,等静压成型

陶瓷表面改性技术

11.4 陶瓷表面改性技术 11.4.1 传统陶瓷表面改性技术 11.4.2 特种陶瓷表面改性技术 习题与思考题 参考文献 2.1 表面涂层法 2.1.1 热喷涂法 2.1.2 冷喷涂法 2.1.3 溶胶凝胶涂层 2.1.4 多弧离子镀技术 2.2 离子渗氮技术 2.2.1 离子渗氮的理论 2.2.2 离子渗氮技术的主要特点 2.2.3 离子渗氮的设备和工艺 2.2.4 技术应用 2.3 阳极氧化 2.3.1 铝和铝合金的阳极氧化 2.3.2 铝和铝合金的特种阳极氧化 2.3.3 铝和铝合金阳极氧化后的封闭处理 2.3.4 阳极氧化的应用 2.4 气相沉积法 2.4.1 化学气相沉积 2.4.2 物理气相沉积法 2.5 离子束溅射沉积技术 2.5.1 离子源 2.5.2 技术方法 2.5.3 应用 11.4.2 特种陶瓷表面改性技术 3.1 离子注入技术 3.1.1 离子注入技术原理 3.1.2 金属蒸气真空离子源(MEVVA)技术 3.1.3 离子注入对陶瓷材料表面力学性能的影响 3.2 等离子体技术 3.2.1 脉冲等离子体技术 3.2.2 等离子体辅助化学气相沉积

3.2.3 双层辉光等离子体表面合金化3.3 激光技术 3.3.1 激光表面处理技术的原理及特点3.3.2 激光表面合金化 3.3.3 激光化学气相沉积 3.3.4 准分子激光照射技术 3.4 离子束辅助沉积 3.4.1 基本原理 3.4.2 IBAD设备简介 3.4.3 IBAD工艺类型与特点 3.4.4 IBAD过程的影响因素 3.4.5 IBAD技术的应用 参考文献 4 传统陶瓷的表面装饰及改性 4.1 陶瓷表面的抗菌自洁性能 4.1.1 抗菌剂种类及其抗菌机理 4.1.2 抗菌釉的制备方法 4.1.3 影响表面抗菌性能的因素 4.2 陶瓷墙地砖的表面玻化 4.2.1 低温快烧玻化砖 4.2.2 陶瓷砖复合微晶化表面改性 4.2.3 陶瓷砖的表面渗花 4.2.4 抛光砖的表面防污性能 4.3 陶瓷砖的表面微晶化 4.3.1 微晶玻璃的概念 4.3.2 微晶玻璃的特性 4.3.3 微晶玻璃的应用 4.3.4 微晶玻璃的制备与玻璃析晶 4.3.5 主要的微晶玻璃系统 4.3.6 基础玻璃热处理过程 4.3.7 晶核剂的作用机理 4.3.8 微晶玻璃与陶瓷基板的结合性4.4 陶瓷表面的金属化 4.4.1 沉积法 4.4.2 烧结法 4.4.3 喷涂金属化法 4.4.4 被银法(Pd法) 4.4.5 化学镀实现陶瓷微粒表面金属化

氮化铝陶瓷的研制及应用

氮化铝陶瓷的研制及应用 魏军从 陈加庚 (河北理工学院材料系,唐山 063000) 摘 要 氮化铝(AlN)因具有高热导率、低介电常数、与硅相匹配的热膨胀系数及其他优良的物理特性,在新材料领域越来越引起人们的关注。此文主要介绍并分析了AlN粉体合成、烧结、性能结构、AlN陶瓷的应用与前景。 关键词 氮化铝;合成;烧结;显微结构;热导率 Development of Aluminum Nitride Ceramics Wei Juncong Chen Jiageng (Department of Materials,Hebei Institute of T echnology,T angshan 063000) Abstract The excellent thermal conduction,coupled with other characteristics such as low dielec2 tric constant and the expansion coefficient matched with silicon,makes aluminum nitride a promising ma2 terials,especially for electronic substrates.The developments of aluminum nitride ceramics are discussed, including powder preparation,sintering technology,microstructure investigation,as well as their properties and application. K ey Words aluminum nitride,synthesis,sintering,microstructure,thermal conductivity 1 前言 氮化铝(AlN)是一种具有六方纤锌矿结构的共价晶体,纯氮化铝呈蓝白色,通常为灰色或灰白色。晶格常数a=3.110 A,c=4.978 A。Al原子与相临的N原子形成岐变的[AlN4]四面体,沿c轴方向Al—N键长为1.917 A,另外三个的Al—N键长为1.88 A。AlN的理论密度为3.26g/cm3。常压下在2450°C升华分解。 有关合成AlN的报道最早出现于1862年。当时,AlN曾作为一种固氮剂用做化肥。本世纪50年代,又作为耐火材料用于铝及铝合金等的冶炼。近二三十年来,随着微电子技术的飞速发展,尤其是混合集成电路(HIC)和多芯片(MC M)对封装技术提出了越来越高的要求,作为电路元件及互连线承载体的基片也获得了相应的进步[1]。AlN陶瓷因具有高热导率(理论热导率为319W/(m?K))[2]、低介电常数(约为8.8)、与硅相匹配的热膨胀系数(293~773K,4.8×10-6K-1)、绝缘(体电阻率>1014?cm)、无毒等特点,成为一种理想的电子封装材料,应用前景十分广阔。90年代初,全世界AlN仅用于电子产品就有5.5亿美元的市场,其中半导体的封装占72%。 AlN已成为新材料领域的一大热点,在粉体合成、成形技术、烧结工艺、显微结构等方面的研究都取得了长足的进展。 2 粉体合成 AlN陶瓷的制备工艺和性能均受到粉体特性的直接影响,要获得高性能的AlN陶瓷,必须有纯度高、烧结活性好的粉体作原料。AlN粉体中的氧杂质会严重降低热导率,而粉体粒度、颗粒形态则对成形和烧结有重要的影响。因此,粉体合成是AlN陶瓷生产的一个重要环节。 AlN粉体合成的方法很多,其中用于大规模 3

《陶瓷工艺原理》学习指南

学习指南 说明:为配合学生《陶瓷工艺原理》课程的学习,根据材料科学与工程学院本科《陶瓷工艺原理》课程教学大纲的要求,对本课程基本情况、性质、任务、教材和多媒体课件的处理、学习参考书、考核要求及各章节重点、难点等均在本学习指南中做出了较详细的说明。同时针对各章的不同要求,配备了一定数量的自测练习题,学生通过自测检查可以发现自身学习中存在的问题,有的放矢地进行学习。 一、课程基本情况、性质、研究对象和任务 总学时:64学时。其中,课堂教学:57学时,实验教学:7学时。 先修课:《材料科学基础》、《材料物理性能》 《陶瓷工艺原理》是材料科学与工程专业复合材料方向本科生的必修课,其它专业方向的限定选修课。本课程主要讲述陶瓷原料、粉体的制备与合成、坯体和釉的配料计算、陶瓷坯体的成型及干燥、陶瓷材料的烧结、陶瓷的加工及改性等。目的在于使学生熟悉陶瓷生产中共同性的工艺过程及过程中发生的物理—化学变化,掌握工艺因素对陶瓷产品结构与性能的影响和基本的实验技能,能够从技术与经济的角度分析陶瓷生产中的问题和提出改进生产的方案,为毕业后从事专业工作打下必要的基础。 本课程重视“理论基础与工程实践并重”的课程教学体系及科研促进教学的教学方法,从而增强学生理论基础的实践性应用能力,既重视学生“应知应会”的陶瓷材料的设计、制备工艺、测试表征与应用的基础理论,又强调综合性、设计性、开放性、创新性实验教学,加强学生实验动手训练和设计能力培养,倡导学生创业能力的训练。 学完本课程应达到以下基本要求: 1.熟练掌握陶瓷主要原料的性能、用途,掌握部分新型陶瓷原料的性能、用途,对其它原料的性能和用途有所了解。 2.熟练掌握陶瓷制品的生产工艺流程,以及一些新型的工艺技术。

陶瓷的表面改性技术与应用

陶瓷的表面改性技术与应用 引言: 传统陶瓷是使用普通硅酸盐原料及部分化工原料,按照一定的工艺方法,加工、成形、烧成而得的满足人们日常生活需要的用于内外墙面、地面、厨房及卫生问等主要起装饰作用且功能性应用的陶瓷制品,包括日用陶瓷餐具、内墙砖、外墙砖、地砖、锦砖、玻化砖、瓦及陶管等。这些陶瓷制品是人们日常都会接触到的物体,随着科学的发展和社会文明的进步,人们对其提出了更高的要求,不但要求其具有良好的机械性能,而且要具有绿色保健功能,具有一定的功能性。因此传统陶瓷也逐步向功能化方向发展,这就需要对传统陶瓷进行表面改性处理,在赋予传统陶瓷一定的功能性之外又不会增加太多成本,从而提高其产品附加值。目前改性主要集中在抗菌,防污,耐磨,提高比表面积,致密度等方面,其他如负离子、发光、抗静电等方面也日益引起人们的重视。 正文: 2011-5-4笔者到宜阳县红星陶瓷厂实习,期间我们到成品展示仓库看到了精美的瓷器餐具,茶具。又从原料堆场,加工,成型,烧制,到出品流水线了解了瓷器的制作过程,依托工人熟练的操作,手工操作的过程依然占到成品过程的绝大部分。其中不乏有残品,次品在流程的各个部分出现。普通陶瓷制品主要依靠其表面釉色和艺术图案进行价值提升,制造具有某些方面功能强大的陶瓷制品显得尤为重要,这不仅具有极大的升值空间,而且能够超越其他材料制品的性能。 一、包覆型陶瓷粉体的研究进展 传统工艺中, 用球磨法混合两种或两种以上的粉料, 会造成混合不均, 从而制约了坯体在烧结中的致密化程度, 并在致密化过程中由于收缩率的不同而产生残余应力和裂纹。为了获得致密、 显微结构均匀的陶瓷材料, 人们发现用包覆的方法制备复合陶瓷粉体, 可以控制粉体的团聚状态, 改善其分散特性 [1,2]; 提高弥散相/烧结添加剂的均匀混合程度, 促进烧结]103[-;改变复合陶瓷中异相结合状态, 降低界面残余应力 ]12,11[;改性颗粒表面,调整粉料胶体特性]1713,2[-。因此,包覆型陶瓷粉体的研究, 近年来成为 陶瓷材料研究的一个热点。 用常规的方法混合多相粉体, 尤其是加入少量添加剂和纳米级弥散粒子时, 很难将它们与基体混合均匀。但如果将纳米级弥散粒子用基体相包覆或将添加剂包覆于基体粒子表面, 制备出包覆型陶瓷粉体, 则能将它们与基体相均匀混合]9,6,1[。 包覆型陶瓷粉体是陶瓷材料制备中各相均匀混合的最有效方法之一, 它可以达到一个粒子间的混合。因此可以预言, 随着包覆型陶瓷粉体的深入研究,它将会把陶瓷材料的制备科学提高到一个新的水平。

相关主题
文本预览
相关文档 最新文档