当前位置:文档之家› 鄂尔多斯盆地高伽马储层测井评价

鄂尔多斯盆地高伽马储层测井评价

鄂尔多斯盆地高伽马储层测井评价
鄂尔多斯盆地高伽马储层测井评价

鄂尔多斯盆地高伽马储层识别研究

李高仁,郭清娅,石玉江,马昌旭

(长庆油田分公司勘探开发研究院陕西西安710021)

摘要:针对鄂尔多斯盆地高伽马储层泥质含量定量计算难,本文分析了高自然伽马储层特征,指出了其成因为储层中矿物成分发生了变化或粘土颗粒吸附具放射性的有机分子。基于其成因和测井曲线特征介绍了ECS测井评价、中子-密度交会、基于Geoframe平台综合反演等识别方法,能有效识别高伽马砂岩储层。

关键词:高伽马储层;成因;粘土矿物;泥质含量

Identification on High Gamma Gay Reservoir of Ordos Basin

LI Gaoren GUO Qingya SHI Yujiang MA Changxu

(Research Institute of Exploration and Development,Changqing Oilfield Company, Petrochina, Xi’an Shaanxi 710021,China)

Abstract:It is difficulty that the shale content of high gamma gay reservoir in Ordos basin is calculated as rations。Through analyzing the typical characteristic of high gamma gay reservoir,it can be concluded that mineral components of reservoir are changed or organic matter with gamma gay is absorbed by clay particle. Based on its cause of high gamma gay reservoir and characteristic of log curves, ECS log evaluation, density–neutron crossing method,synthesized inversion on Geoframe etc are introduced, which can distinguish efficiently high gamma gay sandstone reservoir.

Key words:high gamma gay reservoir;Origin cause of formation;clay mineral;shale content

0 引言

受复杂放射性矿物的影响,长庆油田姬塬、白豹地区延长组、榆林地区山2等储层相继出现放射性异常现象。利用自然伽马划分储集层,解释岩性剖面适应性较差,出现高伽马砂岩或大段砂泥不分的剖面,将丢失有效储层。因此,搞清高伽马储层的成因,研究高伽马储层的有效识别方法亟待解决。

1 高伽马储层测井曲线特征

图1 典型高伽马储层测井曲线特征

所谓高伽马储层是与常规的砂岩储层相比,自然伽马呈高值,且与泥岩段接近的砂岩层。姬塬、白豹地区发现砂岩存在高自然伽马异常,整体自然伽马呈高值,无法区分有效储集层,如用自然伽马识别岩性,与取心结果不符合,将丢失储层的有效厚度。图1为长庆典型的高伽储层(红色虚框线所示),自然伽马平均值为103API,砂岩段自然伽马基值为50API,按照常规岩性识别法,此段地层岩性应解释为砂质泥岩,但该段取心岩性为褐灰色油斑细砂岩,含油面积3~35%,分析孔隙度11.85%,平均渗透率为0.7×10-3μm2,为较好的储层,自然伽马显示与取心结果不相符。

2 高伽马储层的成因分析

高伽马储层主要是地层中的矿物成分、粘土类型的变化及粘土颗粒吸附放射性有机分子引起的。盆地内姬塬长4+5、白豹长6储层放射性主要源于长石骨架颗粒,云母、高岭石等粘土矿物,榆林山2主要源于高岭石、水云母等粘土矿物。

统计姬塬、白豹高伽马砂岩储层粘土X衍射分析、薄片分析知高伽马储层①骨架颗粒中长石类矿物含量较高,长石类的含量为47.23%(表1),常规伽马储层长石类矿物含量为

38.63%,使白豹长6自然伽马整体呈高值;②具放射性的云母类矿物约占粘土体积的30%;

③高岭石含量较常规储层高, 产于沉积岩中的高岭石常含有K40,U和Th[4];④粘土含量为

26.95%,较常规伽马储层高9.30%,其中绿泥石膜含量较高,其粘土颗粒表面能吸附有机分子。上述原因使白豹长6、姬塬长4+5储层出现高钍现象,局部出现高铀特征。榆林山2储层骨架成分为石英砂岩,砂岩中富含粘土矿物主要为高岭石,水云母等粘土矿物(表2),

表现为高钍低钾异常。放射性元素多以吸附方式、阳离子交换形式、杂质方式存在于矿物或矿物的集合体中[4]。另外,地层中放射性元素的分布规律还与成岩作用、地下水的活动等因素有关[2]。

表1 高伽马储层与常规储层部分组分对比表

(样品数67,选自姬塬长4+5、白豹长6)

表2 高伽马储层与常规储层部分组分对比表

(样品数19,选自榆林山2)

表3 粘土矿物测井特征值[2]

A1井(姬塬) A 2井(白豹)A3 井(榆林山2)

图2 高伽马储层能谱曲线特征

表3给出了常见矿物中放射性元素的含量及密度值。从表3可知粘土矿物在能谱测井中

表现为①伊利石具有明显的高钾特征;②高岭石具有明显的高钍低钾特点;③绿泥石与高岭石的矿物测井响应特征非常接近[2]。对A1、A2、A3井加测了自然伽马能谱测井项目,基于自然伽马能谱测井对砂岩高伽马储层成因进行了分析,高伽马异常的贡献主要为钍,局部出现高铀现象(图2)。

3 高伽马储层测井识别方法

3.1 地层元素俘获谱(ECS)测井

地层元素俘获谱测井利用不同的元素俘获中子的能力不同将地层中、井眼中元素H和Cl,地层骨架中Si、Ca、Fe、S、Ti等元素区分开,经过计算、处理可以得到地层中矿物含

图3 B井利用ECS和自然伽马能谱测井识别岩性

量,可识别复杂岩性地层[1]。

B井2995.34~3003.34m段取心为8米的石英砂岩,常规自然伽马测井岩性解释与取心不符。元素俘获在该段测量结果显示,储层中硅的含量在85%~90%之间,解释7.5米砂岩,与取心比较吻合(图3)。在钍—钾—去铀伽玛Z值交会图上,泥质类型主要表现为混层粘土(图4),可见自然伽马高值主要是由于粘土类型的变化引起,并非是泥质含量增大。在这种情况下,利用自然伽马计算储层泥质含量,必然导致有效厚度减小。

通过B井的元素俘获谱测井结果得出一个重要结论就是:高伽马地层并非泥质层,而有可能是很好的储层。因此,我们可以应用元素俘获测井标定目前的常规测井,同时寻求更合理的解释方法,弥补常规测井的不足[1]。

图4 C井气层段钍钾交会图

3.2高伽马储层泥质含量计算

高伽马有效储层含有放射性物质时仅引起自然伽马升高,即自然伽马与其它曲线不匹配,而三孔隙度曲线(声波时差、密度、补偿中子)具有很好的匹配关系,自然电位也表现出较大负异常(地层水矿化度大于泥浆滤液矿化度时);而泥岩层自然伽马值升高其地层密度值也响应增加,因为研究区粘土矿物主要有高岭石、云母,其密度平均值大于2.60g/cm3。

基于高伽马储层的成因和在测井曲线上的表征,有以下两种计算高伽马有效储层泥质含量的方法。

3.2.1基于Geoframe平台的综合反演

综合利用储层中岩石矿物成分在不同曲线上的反映,求取地层泥质含量,此方法的特点:采用多参数优化方法而非单一方程求解地层组分,对测井信息的利用率高;可根据测井曲线质量或地层组分对测井值的贡献调整方程权重,能同时采用多个解释模型进行优化计算,然后自动合成最终解释结果。避免了单一利用自然伽马计算泥质含量的缺点,能有效识别高自然伽马储层。在综合反演中需降低自然伽马曲线的权重,提高密度、自然电位、补偿中子曲

线的权重。如图5:2058.2~2060.3m 处,第九道利用自然伽马计算泥质含量平均值36.25%,不能有效识别该段高伽马储层;第八道利用密度、自然电位、补偿中子综合反演计算砂泥岩剖面,泥质含量均值为23.07%,储层参数与取心分析吻合很好,储层有效厚度增加了4.5m 。

图5 D 井不同方法计算岩性剖面对比图

3.2.2补偿中子-密度交会

由于中子、密度测井对泥质及油气反应比较灵敏,而且不像声波测井那样易受泥质分布形式和砂岩压实程度的影响,因而对于自然伽马不能很好反映地层泥质含量的高伽马储层,而中子、密度、声波匹配关系好,自然电位呈负异常,可利用中子-密度交会法求取泥质含量。其理论公式的推导基于砂泥岩的岩石体积物理模型,忽略残余油气,且假设利用补偿中子、密度计算储层孔隙度相等,泥质含量计算公式如下:

)/()(Dsh Nsh D N sh V φφφφ--=

而:)/()(f ma b ma D ρρρρφ--=,)/()(mf ma sh ma D ρρρρφ--=;

)/()(Nmf Nma N Nma N φφφφφ--=,)/()(Nmf Nma Nsh Nma Nsh φφφφφ--=[3]

图6 E井中子-密度交会计算泥质含量

式中表4 利用高伽马识别方法储层V sh-泥质含量;有效厚度增加表

ρma,ρsh,ρm f—分别为纯砂岩骨

架、泥质、泥浆滤液的密度;

φNma,φNsh,φNmf—分别为纯砂岩骨

架、泥质、泥浆滤液的中子孔隙度值。

D井利用补偿中子与密度曲线交会

(图6),如果二者的填充面积窄或二者重

合,则指示的是高伽马砂岩储层,如果二者的

填充面积较宽,则指示的非储层。D井1887~

1889m,1894~1898m段属高伽马储层,利用

补偿中子-密度交会能很好识别,储层的有效

厚度增加了6.0m。

4应用效果

经过统计,在鄂尔多斯盆地利用以上方法

识别高伽马储层50余口,其中13口井储层的有效厚度显著增加(表4),增加了研究区参与储量计算的有效厚度,取得了良好的应用效果。

结论

①鄂尔多斯盆地高自然伽马储层成因主要为长石骨架颗粒具有放射性,储层中云母、高岭石等粘土含有放射性矿物或粘土吸附有机质引起,砂岩储层高伽马现象在自然伽马能谱测井上表现为高钍异常,局部出现高铀特征。

②在高伽马储层利用自然伽马计算岩性剖面与取心不符,将丢失储层的有效厚度,利用ECS测井、基于Geoframe平台的综合反演、中子-密度交会能快速、准确、有效地识别高伽马储层。

在论文编写过程中,中国石油集团测井有限公司长庆事业部冯春珍提出了良好的建议,在此表示感谢。

参考文献

[1]侯雨庭,李高仁.元素俘获谱测井在长庆天然气勘探中的应用.中国石油勘探,2005.03.48~49.

[2]刘国强. 岩性油气藏的测井评价方法与技术.石油工业出版社,2005.03,334.

[3]雍世和、张超谟主编. 《测井数据处理与综合解释》.石油大学出版社,1996年,164~165.

[4]沈明道主编.《矿物岩石学及沉积相简明教程》.石油大学出版社,1996年,56,89.

李高仁,男,2002年毕业于西南石油学院技术勘查与工程专业,现从事测井精细解释与测井解释方法研究。通讯地址:陕西省西安市长庆兴隆园电话:(029)86594727 E -mail:lgr2_cq@https://www.doczj.com/doc/4f5613149.html,

鄂尔多斯盆地沉积及构造

鄂尔多斯盆地沉积——构造演化及油气勘探新领域 2002年9月

目录 前言 一.地质背景与构造演化 (一)地质背景 (1) (二)构造演化 (2) 二.鄂尔多斯盆地古生代—中生代沉积演化 (一)奥陶系沉积体系划分及岩相古地理演化 (4) (二)石炭—二叠纪沉积体系划分及岩相古地理演化 (10) (三)中生界沉积体系划分及岩相古地理演化 (18) 三.鄂尔多斯盆地下古生界奥陶系生、储、盖特征及天然气富集规律(三)烃源岩特征 (25) (四)储集岩特征 (33) (五)盖层特征 (44) (六)天然气富集规律……………………………………………………四.尔多斯盆地上古生界生、储特征及天然气富集规律 (一)烃源岩特征 (55) (二)储集岩特征 (56) (三)天然气富集规律 (69) 五.鄂尔多斯盆地中生界生、储特征及石油资源评价 (一)烃源岩特征………………………………………………………… (二)储集岩特征………………………………………………………… (三)石油成藏规律………………………………………………………

前言 本课题以新理论、新思路为指导,以收集、综合分析和总结已有成果为主,重点野外调查和岩芯观察为辅,深化、综合、总结前人研究成果,研究盆地沉积演化历史,确定生储盖组合、结合研究和总结石油地质规律和油气勘探新领域。 为了完成有关研究内容,课题组成员自合同鉴定之后进行了大量的资料收集,露头剖面观测,钻井岩芯观察等工作,完成了大量工作量,具体见表1。 表1 完成工作量一览表 通过一年的工作取得了如下认识 1.确定了奥陶系、石炭—二叠系、中生界三叠—侏罗系沉积体系类型,其中奥陶系主要为碳酸岩沉积,包括4大沉积体系,石炭—二叠系主要为陆源碎屑岩沉积,包括6大沉积体系,中生界侏罗系包括三大沉积体系。 2.详细讨论了各时期岩相古地理特征及演化 3.深入论述了奥陶系、石炭—二叠系及中生界生储留特征,特别是详细讨论了各时代储集岩特征 4.在上述基础上分别讨论了奥陶系、石炭—二叠系及中生界的油气有无勘探目标区,认为今后不同时代油气勘探具有重要的指导意义。

鄂尔多斯盆地天然气分布及利用

鄂尔多斯盆地天然气分布及利用 鄂尔多斯盆地是我国第二大沉积盆地,面积37×104km2。自中国陆上第一口油井在陕北钻探成功以来,已历经了近一个世纪的油气勘探,可谓勘探历史悠久,然而对于天然气勘探来说,仍可看作是一个新的地区,因为盆地天然气大规模的研究、勘探和开发仍比较滞后,靖边、苏里格、榆林、乌审旗等4个上千亿立方米的大气田都是上世纪90年代以来才发现。因此,盆地天然气资源潜力大,储量发现率低,天然气工业发展前景大。 鄂尔多斯盆地截至2004年底共探明8个气田,探明地质储量 11955.56×108m3,可采储量7082.56×108m3。天然气藏主要以地层—岩性气藏为主,具有低孔、低渗、低压、低丰度等特征。盆地常规天然气资源主要分布在古生界,有C-P和O两套主力产层,勘探面积25×104km2。其中上古生界预测资源量8.59×1012m3,有利勘探区带资源量为3.92×1012m3;下古生界预测资源量为2.36×1012m3,有利勘探区资源量为1.16×1012m3。煤层甲烷资源主要分布在C-P 和J,预测煤层气资源11.2×1012m3,有利勘探区资源量为4.4×1012m3;另外盆地中生界还包括油田伴生气资源3416.94×108m3。因此,盆地天然气资源潜力雄厚,资源配置合理,后备资源充足,预计到2010年,鄂尔多斯盆地天然气累计探明储量可达15000×108~20000×108m3,可成为我国最大的天然气资源战略接替基地。 鄂尔多斯盆地天然气分布 鄂尔多斯盆地常规天然气资源量(煤成气及碳酸盐岩气)为10.95×1012m3,占全国二次资源评价天然气总资源量38×1012m3的三分之一,占最新资源评价结果50.6×1012m3的21%。煤层气占全国煤层甲烷总量32.6×1012m3的34%。

鄂尔多斯盆地地层组基本特征

鄂尔多斯盆地地层组基本特征 第四系:第四系自下向上包括更新统和全新统。晚第三纪末,受喜山运动的影响,鄂尔多斯盆地曾一度抬升,大约以北纬38°为界,北部为一套河湖相沉积,南部为黄土沉积,黄土分布广,厚度大,构成塬、梁、峁的物质主体,与下伏新近系呈不整合接触。第四纪主要是人类的出现并有多期冰期,可见人类化石、旧石器与大量相伴生的哺乳动物化石和鸟类化石。 新近系:曾称新第三系、上第三系,自下而上包括中新统和上新统。中国新近系仍以陆相为主,仅在大陆边缘,如台湾、西藏等地有海相沉积。 古近系:曾称老第三系,自下而上包括古新统、始新统和渐新统,主要分布在河套、银川、六盘山等盆地。鄂尔多斯盆地早第三纪古新世,盆地继承了晚白垩世的挤压应力状态,断裂活动性强,沉积速度快,多发育冲积扇、水下扇等各种扇体。地层厚度厚50~300米左右,岩性主要为红色泥岩、砂质泥岩夹泥灰岩。 白垩系:主要出露下白垩统,又称志丹群,分六个组,从上往下为泾川组、罗汉洞组、环河组、华池组、洛河组及宜君组。 泾川组:命名地点在甘肃省泾川县。地层厚100-400米,岩性主要为暗紫、浅棕红、浅灰、浅灰绿色等杂色砂质泥岩、泥页岩、灰质泥岩与泥质粉砂岩互层,夹浅灰、浅紫红色灰

岩和浅灰色、浅黄色砂岩,与下伏罗汉洞组呈整合接触。 罗汉洞组:命名地点在甘肃省泾川县罗汉洞。主要为河流相的砂泥岩沉积。地层厚度100~260米,上部为发育巨大斜层理的红色细至粗粒长石砂岩,含细砾和泥砾;中部以紫红色为主的泥岩及泥质粉砂岩,夹发育斜层理的细粒长石砂岩为主;下部岩性以紫红色为主的泥岩底部为发育巨大斜层理的黄色中至粗粒长石砂岩为主,与下伏环河组呈整合接触。 环河组:命名地点在甘肃省环县环江。地层厚240米左右,岩性为黄绿色砂质泥岩与灰白色、暗棕黄色砂岩、粉砂岩互层,与下伏华池组呈整合接触。 华池组:命名地点在甘肃省华池县。地层厚290米左右,岩性以灰紫、浅棕色砂岩夹灰紫、灰绿色泥岩为主,含中华弓鳍鱼、狼鳍鱼、原始星介、女星介等化石,与下伏洛河组呈整合接触。 洛河组:旧称“洛河砂岩”,命名地点在陕西省志丹县北洛河。地层厚度250~400米,从西南往东北变厚,在黄陵沮水以南与宜君组为连续沉积;在沮水以北,宜君组缺失,假整合于侏罗系之上。岩性以河流相的紫红、桔红、灰紫色块状、发育巨型斜层理的粗一中粒长石砂岩为主,局部发育夹较多的砾岩、砾状砂岩。含介形类、狼鳍鱼、达尔文虫等化石。 宜君组:主要分布在黄陵沮水、宜君、旬邑、彬县一带,

复杂油气藏的解释评价及测井系列-测井技术06

复杂岩性油气藏的测井系列及解释评价 魏钢王忠东 (辽河石油勘探局测井公司,辽宁盘锦 124011) 摘要:近些年来,在各种碳酸盐岩、火成岩、变质岩等复杂岩性地层中均发现了较为可观的工业油、气藏,但要如何高效、准确的利用测井资料来寻找开发此类油气藏,如何有效地对这类油气藏进行解释评价,仍然是较为复杂的难题。本文针对辽河油田复杂油气藏类型多的特点,充分利用丰富的测井资料及测井新技术对几种复杂岩性油气藏的配套测井系列及测井解释评价提出几点认识。 关键词:复杂油气藏测井系列新技术储层评价 WEI GANG,WANG ZHONGDONG WELL-LOGGING SERIES AND INTERPRETATION TO COMPLICATED OIL AND GAS RESERVOIRS. (Well logging Co.,Liaohe Petroleum Exploration Bureau,Panjin,liaoning 124011 ,China) ABSTRACT: Recent years,considerable industrial oil and gas reservoirs were found in all kinds of carbonatite、igneous rock、metamorphic rock,but how to use well-logging material high efficiently and accurately continue to find these kinds of oil and gas reservoirs ,and how to evaluate these reservoirs is still very complicate difficult problem.According to the feature of various oil and gas reservoir in LiaoHe oil field,efficiently useing abundant well-logging material and advance well-logging technology ,this paper gives some cognitions about well-logging interpretation and well-logging series to several complicate oil and gas reservoirs. Subject Terms: complicate oil and gas reservoir low resistivity sand rock well-logging series advance technology reservoir evaluation 引言 辽河油田含油气储层的岩性多种多样,既有常见的沉积岩,也有岩浆岩和变质岩。具体岩性有砂泥岩、灰岩、白云岩、灰质白云岩、白云质灰岩、泥质白云岩、花岗岩、粗面岩、玄武岩、凝灰岩、辉绿岩、安山岩、英安岩、角砾岩以及石英岩等。其中碳酸盐岩、火成岩、及变质岩复杂岩性地层电阻率普遍较高,三孔隙度曲线接近骨架值,很难反映储层的特征,用常规测井曲线较难判断储层参数(φ,k,Sw),结合测井新技术较为容易地解决了这一困难,针对这些特殊岩性油气藏主要加测了微电阻率扫描成像测井或井周声波成像测井,另外在其中部分井又增加了核磁测井、阵列声波测井,其应用评价效果比较显著。

鄂尔多斯盆地高伽马储层测井评价

鄂尔多斯盆地高伽马储层识别研究 李高仁,郭清娅,石玉江,马昌旭 (长庆油田分公司勘探开发研究院陕西西安710021) 摘要:针对鄂尔多斯盆地高伽马储层泥质含量定量计算难,本文分析了高自然伽马储层特征,指出了其成因为储层中矿物成分发生了变化或粘土颗粒吸附具放射性的有机分子。基于其成因和测井曲线特征介绍了ECS测井评价、中子-密度交会、基于Geoframe平台综合反演等识别方法,能有效识别高伽马砂岩储层。 关键词:高伽马储层;成因;粘土矿物;泥质含量 Identification on High Gamma Gay Reservoir of Ordos Basin LI Gaoren GUO Qingya SHI Yujiang MA Changxu (Research Institute of Exploration and Development,Changqing Oilfield Company, Petrochina, Xi’an Shaanxi 710021,China) Abstract:It is difficulty that the shale content of high gamma gay reservoir in Ordos basin is calculated as rations。Through analyzing the typical characteristic of high gamma gay reservoir,it can be concluded that mineral components of reservoir are changed or organic matter with gamma gay is absorbed by clay particle. Based on its cause of high gamma gay reservoir and characteristic of log curves, ECS log evaluation, density–neutron crossing method,synthesized inversion on Geoframe etc are introduced, which can distinguish efficiently high gamma gay sandstone reservoir. Key words:high gamma gay reservoir;Origin cause of formation;clay mineral;shale content 0 引言 受复杂放射性矿物的影响,长庆油田姬塬、白豹地区延长组、榆林地区山2等储层相继出现放射性异常现象。利用自然伽马划分储集层,解释岩性剖面适应性较差,出现高伽马砂岩或大段砂泥不分的剖面,将丢失有效储层。因此,搞清高伽马储层的成因,研究高伽马储层的有效识别方法亟待解决。 1 高伽马储层测井曲线特征

鄂尔多斯盆地简介

鄂尔多斯盆地是一个含油气沉积盆地[24-27]。盆地北以阴山为界,向南经陕西, 至北秦岭;西与六盘山、贺兰山毗邻,向东延伸,至山西吕梁山[7]。盆地横跨内 蒙古、陕西、山西、甘肃、宁夏五省份,总面积约33×104km2。 2.1 大地构造背景及研究区范围 2.1.1 大地构造背景 从大地构造背景来看(图2-1),鄂尔多斯盆地地块北隔河套盆地与内蒙地轴 相望,南与秦岭褶皱带相接;西与北祁连褶皱带为界,至东部鄂尔多斯地块[28]。 图2-1 鄂尔多斯盆地及其邻区构造格局图(据陈刚,1994)构造区划:Ⅰ鄂尔多斯地块;Ⅰ1天环向斜,Ⅰ2东部斜坡,Ⅰ3东南部挠褶带;Ⅱ贺兰断褶带;Ⅲ华北地块南缘构造带:Ⅲ1六盘山-鄂尔多斯南缘过渡带,a 六盘山弧形逆冲构造带;b 南北向构造带;c 鄂尔多斯南缘冲断带;Ⅲ2 祁连—北秦岭带:a 北祁连构造带; b 中祁连构造带; c 南祁连构造带; d 北秦岭带;Ⅳ阿拉善地块(阿拉善隆起);Ⅴ山西地块;Ⅵ伊盟隆起;Ⅶ内蒙加里东海西褶皱带;Ⅷ内蒙隆起。 主要断裂:①离石断裂;②桌子山东断裂;③贺兰山东麓断裂;④地块西南缘边界断裂:(4a)龙首山—查汉布鲁格断裂,(4b)金塔泉—马家滩断裂,(4c)惠安堡—沙井子断裂,(4d)草碧—老龙山—口镇圣人桥断裂;⑤青铜峡—固原断裂;⑥地块南缘过渡带与祁连—北秦岭构造带分界断裂:(6a)北祁连—海原断裂,(6b)宝鸡—洛南—栾川断裂;⑦(华北)地块南缘构造带与南秦岭构造带分界断裂:(7a)临夏—武山断裂,(7b)商县—丹凤断裂。 图例说明:1、祁连—北秦岭变质杂岩(Ar-Pt1),2、一级构造单元分界断裂,3、二、三级构造单元分界 2.1.2 研究范围

测井储层评价

1、测井资料评价孔隙结构 储集岩的孔隙结构特征是指岩石所具有的孔隙和喉道的几何形状、大小、分布及其相互连通关系,对于碳酸盐岩来说其孔隙结构主要是指岩石具有的孔、洞、缝的大小、形状及相互连通关系。储集层岩石的孔隙结构特征是影响储层流体(油、气、水)的储集能力和开采油、气资源的主要因素,因此明确岩石的孔隙结构特征是发挥油气层的产能和提高油气采收率的关键。 常规岩石孔隙结构特征的描述方法主要包括:室内实验方法和测井资料现场评价法。室内实验方法是目前最主要,也是应用最广泛的描述和评价岩石孔隙结构特征的方法,主要包括:毛管压力曲线法(半渗透隔板法、压汞法和离心机法等)、铸体薄片法、扫描电镜法及CT扫描法利用测井资料研究岩石孔隙结构特征则为室内实验开辟了另一条途径,且测井资料具有纵向上的连续性,大大方便了储层孔隙结构的研究。 1.1 用测井资料研究孔隙结构 1.1.1 用电阻率测井资料研究岩石孔隙结构 利用电阻率测井资料研究储层岩石的孔隙结构特征,主要还是建立在岩石导电物理模型和Archie公式的基础之上。 电阻率测井资料反应的是岩石复杂孔隙结构内在不同流体(油、气、水)时的电阻率,因此储层岩石不同的孔隙结构特征一定会对电阻率测井响应产生影响。国内外关于岩石微观孔隙结构模型、物理模型也较多,包括毛管束模型、曲折度模型、电阻网络模型和渗流理论、有效介质理论等。毛志强等采用网络模型模拟岩石孔喉大小及分布、水膜厚度、孔隙连通性等微观孔隙结构特征参数的变化对含两相流体岩石电阻率的影响,得出了影响油气层电阻率变化规律的2个主要因素分别是孔隙连通性(以孔喉配位数表示)和岩石固体颗粒表面束缚水水膜厚度。孔隙连通性差的储集层具有较高的电阻率;相反,当岩石颗粒表面束缚水水膜厚度增加时,储集层的电阻率则明显降低。杨锦林等采用简化的岩石导电物理模型,定义了一个岩石孔隙结构参数S,综合反映了储层孔隙孔道的曲折程度及其大小。如果孔隙孔道越大越平直,S值越大,说明储层条件越好;反之孔隙孔道越小,越曲折,S值越小,说明储层条件越差。利用测井资料求取S的公式为: S=0.564(R w/R0)0.75φ—0.25 (1) 式中:R w为地层水电阻率,Ω·m;R0为岩石100%含水时的电阻率,Ω·m;φ为岩石孔隙度。 Archie公式表明,地层的电阻率因素F主要决定于岩石孔隙度,且与岩石性质、胶结程度和孔隙结构有关。李秋实等研究表明,Archie公式中的电阻率因素F不但与储层孔隙度、孔隙曲折度有关,还与储层的孔喉比有关,孔喉比越小,F值越低。 同时地层电阻率指数n值的大小也主要受储层孔喉比的影响,当储层是孔喉比为1的管状孔时,n最小(等于1),孔喉比越大,n值越大。n值反映的是储层孔喉比的大小。 1.1.2 用核磁共振测井研究岩石孔隙结构 核磁共振测井是20世纪90年代以来投入使用的最新测井技术之一,它是通过研究地层中孔隙流体的原子核磁性及其在外加磁场作用下的振动特性,来研究各种流体孔隙度,进而评价岩石的孔隙结构。 核磁共振测井测量的信号是由不同大小的孔隙内地层水的信号叠加,经过复杂的数学拟合得到核磁共振T2分布,因此T2的分布反映了岩石孔隙大小的分布,大孔隙内的组分对应长的T2分布,小孔隙组分对应短的T2分布,这就是利用核磁共振测井资料研究储层岩石孔隙结构的基础。目前利用核磁共振测井资料研究地层孔隙结构的方法都是进行室内实验,将岩心的压汞毛管压力曲线和核磁共振T2分布对比,建立其相关性,进而通过核磁共振T2分布,间接地利用岩石的毛管压力分布曲线来研究岩石的孔隙结构。

鄂尔多斯盆地南缘低渗储层测井响应特征

鄂尔多斯盆地南缘低渗储层测井响应特征 金鑫 (江汉油田分公司勘探开发研究院湖北潜江 433124) 摘要:目的总结鄂南地区低孔低渗储层在测井上的响应特征,为下一步的勘探工作做好技术支撑。方法利用测井储层综合评价技术,应用取岩芯、录井和测井资料,对鄂南地区延长组探井展开四性关系分析和研究工作。 结果建立孔隙度、渗透率和含油饱和度的解释模型,总结了该区延长组利用测井资料区分砂、泥岩,划分油水干层应注意的问题,以及油水干层及泥岩、油页岩的识别标准。结论解决低孔隙度储集层的问题,除了加强测井工作外,应当更多地依靠非测井资料和经验进行综合性的分析和判断。 关键词:鄂尔多斯盆地;延长组;低渗透储层;测井响应特征 低渗透储层广泛分布于世界各产油区,不同埋藏深度和不同时代的地层,均可以形成不同规模、不同圈闭类型的油藏,据二十世纪九十年代末期统计资料,我国已探明低渗透储层的油田285个,地质储量超过40亿吨,占全部探明储量的24.5%。根据我国当前勘探的趋势,随着勘探程度的深入,油层改造工艺技术的不断提高和完善,低渗透储层油藏发现的比例将会不断增加,原认为没有经济价值的低渗透油藏经过储层改造获得较高产量,也使其具有了工业经济价值,低渗透油藏所占产量将越来越多。鄂尔多斯盆地油气资源丰富,具有广大的勘探领域和良好的发展前景,盆地延长组油田全部为低渗透油藏,以发育低渗和特低渗储层的岩性油藏而著称,盆地中低渗透油田多而隐蔽,油层厚而致密,最近几年随着西峰油田的发现,储量的不断扩大,盆地南缘逐渐成为油气勘探的热点地区。 低渗储层与常规储层虽然具有一定的相似性,但由于其自身低孔低渗导致束缚水含量高的特殊性,因此其测井响应特征具有与常规储层不一致之处,通过我们最近几年在鄂尔多斯盆地南缘实际油气勘探发现,利用常规储层测井解释参数常常会误判储层或者误解储层流体性质。下面根据鄂南地区某区块探井四性关系分析结果探讨测井曲线在鄂南低孔低渗储层上的响应特征。 1 常用测井系列 该区探井采用两种测井仪器,一种是DF-1测井仪,主要采用在表层和对比测井以及固井质量检测上,测井项目包括4米电阻、自然伽玛、自然电位、井径、井斜、声幅和磁定位,比例尺为1:500,磁定位一般1:100或者1:200,测井曲线主要用于现场地层对比、初步解释及固井质量检测;另一种是3700或者是521测井仪,主要采用于完井电测,测井系列一般包括4米电阻、自然伽玛、自然电位、井径、自然伽玛能谱、双感应、八侧向、双侧向、微球、声波、密度、补偿中子和地层倾角,比例尺有1:500和1:200两种,在地质研究中经常用到该测井系列所测曲线。另外,在重点探井中有时也会加测高精度成像测井,但一般不测。 2 岩性响应特征 采用3700或521测井仪测井时所得到测井系列中自然伽玛、自然电位、自然伽玛能谱、声波、密度等都对岩性特征有所响应,但自然伽玛、自然电位响应特征更为明显,同时也是在科研生产上常用的两条曲线。

鄂尔多斯盆地致密砂岩气层测井评价新技术

作者简介:杨双定,1966年生,高级工程师;1991年毕业于西南石油学院测井专业,1999年获西南石油学院地球探测与信息专业硕士学位;现从事测井资料综合解释及方法研究工作。地址:(710201)陕西省西安市长庆路方元大厦。电话:(029) 86029722。E 2mail :cjc_ysd @https://www.doczj.com/doc/4f5613149.html, 鄂尔多斯盆地致密砂岩气层测井评价新技术 杨双定 (中国石油集团测井有限公司长庆事业部) 杨双定.鄂尔多斯盆地致密砂岩气层测井评价新技术.天然气工业,2005;25(9):45~47 摘 要 鄂尔多斯盆地上古生界以陆相、海陆交互相碎屑岩为主,属于低孔、低渗的致密砂岩储集层。由于其低孔、低渗、非均质性强等原因,使利用常规测井资料正确识别气层的难度增大。文章分析认为,上古生界气田测井特征受岩性物性作用比较明显,石英砂岩和岩屑砂岩的测井特征与含气特征不同,电性上高低电阻率气层共存。在综合利用成象测井新技术提供的新方法及多信息、高精度参数,在分析储层特征的基础上,结合实验数据确定了核磁共振变等待时间的测井参数,提出了对致密气层识别有效的气层识别新方法,主要为基于核磁共振测井的差谱法、移谱法,基于交叉偶极声波测井纵波差值法。通过实例分析,证明了方法的有效性,较好地解决了低孔、低渗致密气层和低阻砂岩储层的气层识别问题,提高了测井识别的准确率,解释符合率达85%以上。 主题词 鄂尔多斯盆地 核磁测井 声波测井 致密砂岩 储集层 流体 一、储层特征 鄂尔多斯盆地上古生界以陆相、海陆交互相碎屑岩为主。自下而上发育着石炭系本溪组、太原组、 二叠系山西组、石盒子组和石千峰组。其中太原组、山西组、石盒子组是主要储集层,储集层岩性为浅灰色含砾粗砂岩,灰—灰白色中粒石英砂岩,灰绿色岩屑质石英砂岩,岩屑砂岩等。 上古生界主要储集层砂岩经历了漫长而复杂的成岩后生作用的改造,储集岩中的原生孔隙大部分遭受破坏,仅存残余粒间孔、自生溶孔以及高岭石晶间孔,从而构成了上古生界低孔、低渗砂岩的储集体系。通过12口井的岩心分析样品统计,其物性特征如表1所示。 表1 储层物性统计表 地 层孔隙度(%)平均孔隙度(%) 渗透率(10-3μm 2) 平均渗透率 (10-3μm 2) 石盒子组3~169.60.05~6.79 1.09山西组 4~10 6.1 0.01~5.63 0.69 该类储层一般必须经压裂改造才有产能,是否产气的影响因素多,即使采用成像测井,也存在多解 性,测井解释难度大。 二、电性特征 在鄂尔多斯盆地上古生界气田,测井特征受岩 性物性作用比较明显,随岩石中岩屑含量增加,或粒度变细,孔隙度减小,渗透率降低,密度增大,电阻率增大,双测向曲线趋于重合。相反,随岩石中岩屑含量减小,或粒度变粗,孔隙度增大,渗透率升高,密度变小,双测向曲线幅度差异变大。一般纯石英砂岩的自然伽马值小于35A PI ,Pe 值小于2b/e ,骨架密度值为2.65g/cm 3,井径正常或缩径;岩屑砂岩自然伽马值大于40A PI ,Pe 介于2.2~3.2b/e ,骨架密度值为2.7g/cm 3,常扩径。高低阻气层并存,山2 段储层电阻率在100Ω?m 可能出水,而盒8段电阻率20Ω?m 可出纯气。 三、气层测井识别新方法 常规测井识别气层主要是通过气层与水层的电阻率差异来识别,对于低孔、低渗、低阻气层识别难度较大。测井新技术的应用,为气层识别提供了新的依据。利用核磁共振测井、交叉偶极声波测井等成象测井资料提取气层识别方法,提高气层识别精度。 ? 54?第25卷第9期 天 然 气 工 业 地质与勘探

友谊油田复杂储层测井综合评价方法研究与应用

友谊油田复杂储层测井综合评价方法研究与应用 为进一步提高目标区块水淹层、薄互层和高阻水层的解释精度,提高测井解释符合率,为开发调整决策提供可靠依据,本文以友谊油田为例,通过开展测井曲线标准化、储层四性关系研究、建立油气水层判别标准等工作,建立了一套较为系统的精度更高的测井解释模型和解释标准。 标签:测井曲线标准化;储层四性关系;油气水层判别 1 研究区概况 友谊油田位于羊二庄油田主体部位西南约6km,为赵北断层控制下的一个逆牵引鼻状构造,区域构造属羊二庄断阶带,断层十分发育,含油面积3.7 km2,探明地质储量445×104t。该油田为岩性、构造双重控制的复杂油气藏,储层横向变化大,碳酸岩含量高,受储层物性、钻井、测井等多因素影响,测井解释符合率较低。通过统计历史上51个单试层的试油结果,测井解释符合率仅60.8%,严重制约油田开发效果。因此需建立一套系统的精度更高的测井解释模型和标准,进一步提高目标区块水淹层、薄互层和高阻水层的解释精度,为开发调整决策提供可靠依据。 2 测井曲线标准化 不同测井系列的测井仪器的测量结果可能存在误差,为确保研究工作的準确性及进行多井评价和横向对比,必须对测井曲线进行标准化。 泥浆与地层放射性的差别越大,即泥浆的密度越大,对地层放射性响应的影响与干扰也就越大。井径大小的变化,对自然伽马曲线测量值会产生重要的影响。一般来说,泥浆的放射性明显低于地层,同时又吸收地层自然伽马射线。所以,当井径扩大与泥浆密度增加时,将会造成自然伽马测井曲线数值的显著降低。基于上述考虑,需对自然伽马测井曲线进行井径与泥浆密度校正。 在进行储层“四性”关系研究时,使用的是自然伽马相对值与泥质含量建立关系图版。采用相对值法求泥质含量可消除测井仪器非标准化对测井值的影响,因此求自然伽马相对值本身也就对自然伽马曲线进行标准化。 在友谊油田65口处理井中,选择沙一中的稳定泥岩段进行标准化,基本上该段声波时差在310-320μs/m之间。同时根据所确定的声波时差标准,利用直方图平移技术对所处理井的声波时差曲线进行标准化。例如庄1608-1井在该段的声波时差标准值峰值在320-330μs/m之间,与该段的声波时差标准相差10μs/m,通过直方图平移技术对其进行标准化,保证以后计算的准确性。 3 储层四性关系研究

试述鄂尔多斯盆地油气地质与勘探对策

试述鄂尔多斯盆地油气地质与勘探对策 鄂尔多斯盆地横跨宁陕蒙甘等多个省区,是国内第二大沉积盆地,对其进行油气地质勘探和开发,能够有效缓解当前油气能源供应不足的问题。本文首先对鄂尔多斯盆地的油气形成和分布特点进行介绍,在此基础上,探讨鄂尔多斯盆地油气地质勘探策略,包括根据资源分布特点进行勘探、加强科研和选区评价、引进新技术提高勘探效率等。 标签:鄂尔多斯盆地;油气勘探;地质勘探 鄂尔多斯盆地拥有丰富的天然气资源和石油资源,在漫长的地质发展过程中,形成大量煤、碳酸盐岩和其他矿物资源,对鄂尔多斯盆地油气资源的勘探和开发受到国内的高度重视。地质学家通过对鄂尔多斯盆地进行长时间的勘探,对其地层构造和资源分布特点已经有所了解,现代勘探技术的快速发展为推进鄂尔多斯盆地油气地质勘探工作提供了有力支持。有必要在总结已有成果的基础上,明确现阶段勘探工作的要点。 1 鄂尔多斯盆地油气形成及分布特点 1.1 油气形成分析 鄂尔多斯盆地位于华北和西北两地的纽带部位,总面积约为37万平方公里,占总国土面积的4%左右,已查明的煤炭资源占全国总储量39%左右,能源资源占全国总储量35%以上,出调量超过50%,是我国最重要的能源供应基地之一。关于鄂尔多斯盆地油气形成的研究主要包括:①沉积控制成藏,从岩层和地理形态特征出发,分析油气层与岩层沉积作用的关系,在其形成过程中,也会受到地理位置、生物、氣候等方面的影响;②运动动力成藏,从油气移动和汇聚角度出发,研究在其运动过程中的物化变化条件,具体包含初次运动和再次运动两个阶段,经过再次运动后,油气储藏趋于稳定[1]。 1.2 油气分布特点 从已有勘探和研究成果来看,鄂尔多斯盆地油气分布主要具备以下几方面特点:①地质因素变化复杂,由于鄂尔多斯盆地位于华北和西北地质构造的纽带位置上,既拥有较为稳定的碳酸盐岩结构,又存在盆地自身演化结构,由此导致其油气有不同的形成方式,储藏和分布状态已较为复杂。在进行油气开采前,必须运用科学方法对其分布情况和形成机理等进行研究,为油气开采提供理论支持; ②油层物性较差,虽然鄂尔多斯盆地的油气总储存量高,但储层岩主要为砂岩,且含有大量的石英和碎屑。储层岩大部分为黏土框和碳酸盐岩组成的胶结物,岩石渗透率、孔隙度较差,具有较强的非匀质性特点[2]。 2 鄂尔多斯盆地油气地质勘探策略

作好测井评价擦亮地质家的眼睛

作好测井评价擦亮地质家的眼睛-工程论文 作好测井评价擦亮地质家的眼睛 令狐松 将油气从地下采到地面,要用到地震、测井、钻井等多种技术。其中,测井技术被称为地质家的“眼睛”,它将专业仪器放入井内,沿钻井剖面向上测量地层的各种物理参数。测井学是应用地球物理学的一个重要分支,从基础、研发到应用层次,分为测井方法理论、测井仪器与数据采集、测井数据处理和综合解释评价三部分,测井评价就是测井技术直接与地质家交流的环节。通过油气测井评价可以找出油气隐藏在地下的具体位置,帮助地质家回答如下问题:地下是否有油气?有多少可开采?开采时间?开采效率?下一口井布在哪里?这也是测井为什么被称为地质家的“眼睛”的原因。 油气测井评价是一项贯穿于油田勘探开发全过程的工作,利用从井中测量的各种测井信息(曲线),以岩石物理实验为基础,通过先进数学统计方法、计算机处理手段评价地下储层信息,最终提供给地质家。油气测井评价的核心是将地层的声、电、核磁等物理参数反演为孔隙度、渗透率和饱和度的地层地质参数过程。 按照不同储层地质对象,油气测井评价可分为泥质砂岩测井评价、碳酸盐岩测井评价、火成岩测井评价、煤层气测井评价、致密油气测井评价和页岩气测井评价等类型。每一类对象地质特点不同,测井评价重点有很大差异,这也是不同测井评价的难点所在。 单井测井评价研究包括资料预处理、成像测井处理、岩石物理实验、储层四性关系(岩性、物性、电性、含油性)研究、油气定性解释、油气定量评价等

方面,可以为地质提供岩性剖面、储层划分原则、油气水层判别标准、孔隙度饱和度等参数信息。以单井解释为基础,可以开展多井油气藏测井综合评价。测井评价技术涉及面很广,下面就针对一些关键方面进行介绍。 测井定量评价的核心是确定孔隙度、渗透率和饱和度等几个储层地质参数,通过这些参数,解决了“地下是油是水?有多少?”的问题。孔隙度的计算,理论上是采用体积模型方法。以声波测井为例,在压实和胶结良好的纯砂岩中,按照体积模型,有声波时差公式: Rw——地层水电阻率,Ω·m; R1_地层电阻率,Ω·m; Ф——孔隙度,%。

鄂尔多斯盆地天然气地质特征

鄂尔多斯盆地天然气地质特征 主讲:马振芳 长庆油田分公司勘探部 一、盆地勘探概况 (一)盆地概况:是中国第二大沉积盆地,盆地范围北起阴山,南抵秦岭,西至六盘山,东达吕梁山。盆地面积37万km2,本部面积25万km2。行政区划分:内蒙15万km2,陕西11万km2。地形地貌:北部为沙漠、草原及丘陵区,地势相对平坦,平均海拔 1200-1350m;南部为黄土塬。 (二)地质概况 1.盆地演化:是典型的克拉通盆地,基底为太古界及下元古界变质岩系。盆地演化经 历了五个阶段,天然气主要在晚古生代,石油主要在中生代。 2.构造单元划分:主要依据白垩系划分六个二级构造单元。主要特征为南油北气。 a.伊盟隆起:主要发育构造油气藏。 b.天环坳陷:主要发育构造、地层油气藏。 c.伊陕斜坡:主要发育古地貌油气藏和岩性油气藏。 d.渭北隆起:主要发育构造油气藏。 e.晋西挠褶带:发育构造油气藏。 f.西缘掩冲带:发育构造油气藏。 3.地层:除缺失上奥陶系(O)、志留系(S)、泥盆系(D)外,其余地层均发育存在。 沉积岩厚度平均约6000m,纵向上具有“上油下气”的特征,即中生界产油,古生 界产气,天然气主要分布在山西组、太原组和马家沟组。部分地区本溪组也有。 4.含气层系:主要有两套层系十八个地层组。 下古生界:以奥陶系(O)马家沟组顶部马五1~马五4白云岩气田为主。 上古生界:以二叠系(P)、石炭系(C)砂岩气田为主。二叠系又以石盒子组盒8底 部砂岩、山西组山2、太原组太1砂岩为主要产气层;石炭系以本溪组底部砂岩为 主要产气层。 (三)勘探历史阶段:1907年第一口油井到现在近百年历史。分六个阶段: 1.1907年~1949年:延1井发现油苗经历了清末官办期(1907年~1911年)和中美合 办期(1911年~1919年)。 2.1949年~1969年:构造指导期,发现断层。 3.1970年~1979年:长庆油田会战阶段,第一个储量增长阶段。 4.1980年~1989年:调整稳定阶段,在三角洲理论指导下找油,为第二个储量增长高 峰期。 5.1989年~1999年:油气并举,协调发展阶段。 6.1999年~现在:油气快速发展阶段。 二、天然气勘探成果:发现古生界靖边气田、榆林气田、苏里格气田、乌审旗气田、子洲气田、胜利井气田等8个气田1.4万亿m3,其中下古生界0.43万亿m3,上古生界1.00万亿m3。可采储量0.913538万亿m3。 1.靖边气田:构造位置为伊陕斜坡中部,地理位置为靖边、横山、安塞。发现井为陕 参1井,也是长庆天然气的发现井,为岩溶古地貌气藏。探明储量4699.96×108m3,

测井储层评价方法

{页岩气测井评价技术特点及评价方法探讨} 3页岩气测井系列、解释方法及研究方向 3.1页岩气与其他储层测井解释的差异性分析 (1)成藏与存储方式不同。页岩具自生自储的特点,页岩气主要以吸附状态存在,游离气较少;而常规油气主要以游离状态存在。 (2)储层性质不同。页岩气储层属致密储层,其岩性与裂缝是影响页岩气开发的重要因素,与常规油气藏相比,岩石矿物组成与裂缝识别尤为重要(见表2)。 (3)评价侧重不同。页岩气储层有机碳含量、成熟度等相关参数的评价极为关键;常规油气藏主要是评价其含油气性。 (4)开采方式不同。页岩气储层均需经过压裂改造才能开发,因此对压裂效果的预测至关重要。 3.2页岩气测井技术系列探讨 (1)常规测井系列。包括自然伽马、自然电位、井径、深浅侧向电阻率、岩性密度、补偿中子与声波时差测井,能满足页岩储层的识别要求。自然伽马强度能区分含气页岩与普通页岩;自然电位能划分储层的有效性;深浅电阻率在一定程度上能反映页岩的含气性;岩性密度测井能定性区分岩性;补偿中子与声波时差在页岩储层为高值。通常密度随着页岩气含量的增加变小、中子与声波时差测井随着页岩气含量的增加而变大[29],因此利用常规测井系列能有效地区分页岩储层。但该系列对于页岩储层矿物成分含量的计算、裂缝识别与岩石力学参数的计算等方面存在不足,常规测井系列并不能完全满足页岩储层评价的要求,因此还需开展特殊测井系列的应用。 (2)特殊测井系列。应用于页岩储层的特殊测井系列可选择元素俘获能谱(ECS)测井、偶极声波测井、声电成像测井等。ECS元素测井可求取地层元素含量,由元素含量计算出岩石矿物成分。它所提供的丰富信息,能满足评价地层各种性质、获取地层物性参数、计算黏土矿物含量、区别沉积体系、划分沉积相带和沉积环境、推断成岩演化、判断地层渗透性等的需要。偶极声波测井能提供纵波时差、横波时差资料,利用相关软件可进行各向异性分析处理,判断水平最大地层应力的方向,计算地层水平最大与最小地层应力,求取岩石泊松比、杨氏模量、剪切模量、破裂压力等重要岩石力学参数,满足岩石力学参数计算模型建立的要求,指导页岩储层的压裂改造。声、电成像测井具有高分辨率、高井眼覆盖率和可视性特点,在岩性与裂缝识别、构造特征分析方面具有良好的应用效果。识别页岩储层裂缝的类型,对指导页岩气的改造、评定页岩储层的开发效果有着重要的意义。 3.3页岩气测井评价技术探讨 (1)页岩气有效储层评价技术。主要依托常规测井系列,可在一定程度上满足页岩气储层的孔隙度、渗透率、含气饱和度的评价需要。 (2)岩石力学参数评价技术。主要依托特殊测井系列与岩石物理实验[30-31],如全波列声

作好测井评价擦亮地质家的眼睛

作好测井评价擦亮地质家的眼睛

————————————————————————————————作者:————————————————————————————————日期:

作好测井评价擦亮地质家的眼睛-工程论文 作好测井评价擦亮地质家的眼睛 令狐松 将油气从地下采到地面,要用到地震、测井、钻井等多种技术。其中,测井技术被称为地质家的“眼睛”,它将专业仪器放入井内,沿钻井剖面向上测量地层的各种物理参数。测井学是应用地球物理学的一个重要分支,从基础、研发到应用层次,分为测井方法理论、测井仪器与数据采集、测井数据处理和综合解释评价三部分,测井评价就是测井技术直接与地质家交流的环节。通过油气测井评价可以找出油气隐藏在地下的具体位置,帮助地质家回答如下问题:地下是否有油气?有多少可开采?开采时间?开采效率?下一口井布在哪里?这也是测井为什么被称为地质家的“眼睛”的原因。 油气测井评价是一项贯穿于油田勘探开发全过程的工作,利用从井中测量的各种测井信息(曲线),以岩石物理实验为基础,通过先进数学统计方法、计算机处理手段评价地下储层信息,最终提供给地质家。油气测井评价的核心是将地层的声、电、核磁等物理参数反演为孔隙度、渗透率和饱和度的地层地质参数过程。 按照不同储层地质对象,油气测井评价可分为泥质砂岩测井评价、碳酸盐岩测井评价、火成岩测井评价、煤层气测井评价、致密油气测井评价和页岩气测井评价等类型。每一类对象地质特点不同,测井评价重点有很大差异,这也是不同测井评价的难点所在。 单井测井评价研究包括资料预处理、成像测井处理、岩石物理实验、储层四性关系(岩性、物性、电性、含油性)研究、油气定性解释、油气定量评价

关于鄂尔多斯盆地石油及油气开发的研究 高峰

关于鄂尔多斯盆地石油及油气开发的研究高峰 发表时间:2018-01-31T14:04:13.340Z 来源:《基层建设》2017年第31期作者:高峰 [导读] 摘要:鄂尔多斯盆地中生界延长组主要发育"低渗、低压、低丰度"的"三低"油藏,油藏受优质烃源岩和大型储集砂体控制。 中国石油化工股份有限公司华北油气分公司宁东油田项目部河南郑州 450000 摘要:鄂尔多斯盆地中生界延长组主要发育"低渗、低压、低丰度"的"三低"油藏,油藏受优质烃源岩和大型储集砂体控制。勘探实践中,突破了传统的理论认识和勘探思路,不断创新和完善了低渗透油藏勘探理论体系,构建了曲流河三角洲成藏模式、辫状河三角洲成藏模式、多层系复合成藏模式、坳陷湖盆中部成藏模式和致密油成藏模式等,不断开创了石油勘探的新局面。研究人员通过创新的地质理论,提高了鄂尔多斯盆地三低油藏的综合勘探效益,也加速了低渗透油田的快速发展。 关键词:鄂尔多斯盆地;石油分布特征;低渗透油田;开发技术; 前言 鄂尔多斯盆地是我国第二大沉积盆地,盆地内的石油及油气资源丰富,经过近几年的石油及油气的勘探开发,盆地的油气产量有了大幅度的增长。2009年,鄂尔多斯盆地大型岩性地层油气藏的勘探开发被列为国家重大专项示范工程,长庆油田和延长石油油气作为盆地内的两大主要油气生产企业,石油及油气的产量曾创历史新高,一度使鄂尔多斯盆地成为我国第二大油气生产盆地及第一大天然气产区。这对于促进我国油气资源的勘探开发和提高我国的油气产量,以及缓解国内油气资源供需矛盾和保证国家能源安全具有重要的战略意义。 一、鄂尔多斯盆地概况 鄂尔多斯盆地位于我国的中部,也就决定了那里水源丰富,气候也比较适宜,从而造就了鄂尔多斯盆地主要是中、新生代的盆地叠加,并且是在华北古生代古拉通浅海台地作为基础发展起来的。鄂尔多斯盆地处在了几大构造应力场的交汇处,应力相互的削弱,从整体上来说内部的构造是相对稳定的。鄂尔多斯盆地是比较大的内陆盆地,具有稳定的沉降、沉积范围广的特点。在鄂尔多斯盆地上的长庆油田勘探区,石油的储藏层普遍的具有三低的特点。正因为有三低的特点,长庆油田具有以下的优势:油层的埋藏适中;储油面积比较大;储油层的分布相对稳定;储藏的石油流动性好。 二、鄂尔多斯盆地石油及油气分布特征及富集规律 鄂尔多斯盆地是我国大型含油气盆地之一,石油及油气资源相当丰富,随着长期大量的石油及油气的勘探开发发现,鄂尔多斯盆地具有“下气上油”、含油气层较多且含油气范围大的特点,这对增加我国的石油气产量具有很重要的作用。鄂尔多斯盆地的地形和地质特点决定了盆地的石油及油气具有如下的分布特征和富集规律: 1、鄂尔多斯盆地主要发育了以下3套烃源岩:下古生界寒武―奥陶系海相碳酸盐岩、上古生界石岩―二叠系海陆交互相含煤碎屑岩、中生界内陆湖泊相碎屑岩,具有很大的石油及油气资源开发潜力。 2、鄂尔多斯盆地的石油主要分布在中生界,发育三叠系、侏罗系两套含油层系,盆地的中南部为已开发的油田分布地点,原油一般属于典型的“油型油”,主要生油层是三叠系延长组,为成熟-高成熟生油岩,油藏是以岩性油藏为主的。另外,鄂尔多斯盆地中生界的地质演化奠定了该地区的油气藏的条件及油气分布特征,其中三角洲体系中砂体发育相带与低幅鼻翼配合形成了富集油气藏,油气分布形成了“东西分带,南北分区”的特征,不同地区的石油及油气开发有各自不同的特点,需要选择不同的突破方向,从而提高开发效益。 3、鄂尔多斯盆地的天然气主要分布在古生界,其中奥陶系属于浅海台地碳酸盐沉积岩系,石炭二叠纪是滨海平原碎屑岩和煤屑沉积体系,盆地的天然气藏分为上下两套含气层系:上古生界的天然气属煤成气,气源为上古生界煤系;下古生界的气源具有“油型”和“煤型”的混源成因特点,主要源岩是石炭系气源岩,而混合型生烃母质的石炭系灰岩可能是气藏中油型气的主要提供者。上古生界的生气中心于下古生界的生气中心在盆地中具有一定的叠合点,叠合面积达到了7500平方千米。 三、鄂尔多斯盆地石油勘探研究与实践 1、不断完善石油勘探理论体系 位于鄂尔多斯盆地上的长庆油田主要是进行低渗透岩性油藏实践,为了要不断的更新和深化鄂尔多斯盆地石油勘探地质理论及实践体系,必须要不断的完善石油勘探理论体系,随着科技进步和研究人员不断在实际勘探中总结经验,已经获得了许多的进步,比如多层系石油富集规律、大型三角洲沉积模式、特殊油藏的储存特征总结,使得石油勘探技术得到不断的发展,为我国的石油开采做出巨大的贡献,使得长庆油田持续的发展。 2、通过曲流河三角洲成藏理论为基拙,在陕北地区发现储油量比较大的区域 陕北地区主要位于鄂尔多斯盆地的东部地区,这里的构造十分的平缓,气候比较潮湿,雨水比较充足,水源也比较丰富,主要是这里发育了许多河流,在这样环境下造就了当地的物产资源比较丰富,盆地里的沉积比较严重,也为许多大型三角洲的形成提供了有力的条件。通过研究人员的实际勘探,从中总结出了通过三角洲寻找石油富集区的规律,通过三角洲找油的基本理论依据和综合分析盆地形成的规律,发现了陕北地区储油量非常大的区域,为我国的石油产业做出了巨大的贡献。 四、鄂尔多斯盆地低渗透油田的开发研究 鄂尔多斯盆地是典型的低渗、低压、低产油田,经过几代人的坚持不懈的努力,取得了一系列重要的认识和多个高效开发管理模式,使油气产量有了明显的增长。下面以长庆油田为例介绍油气开发中的几个认识和低渗透油田的开发技术问题。 1、盆地石油及油气开发中的几个主要认识 首先是“五条大剖面”:是长庆油田为了整体认识鄂尔多斯盆地而部署,是鄂尔多斯盆地油气勘探开发的基础,对于后期盆地的油气事业具有重要的指导意义。其次“三个重新认识”:即重新认识鄂尔多斯盆地、重新认识长庆低渗透、重新认识自己,使人们在某种程度上认识到了鄂尔多斯盆地具有丰富的油田资源,而且大部分的低渗透油田具备开采条件。第三,集约化二元攻关:即利用系统工程理论,技术攻关与管理创新完美结合,集中人力、物力、投资、组织等要素,以实现油气田的低成本、成规模的有效开发模式。将管理引入到技术中,通过管理上的创新以达到提高油气勘探开发的效率和降低开发成本的目的,并且尊重了低渗透油田的客观规律,在技术上提高了开发成功率和效率,一定程度上解决了油田开发中的技术难题。第四开发经济界限论:是指油气田的开发阶段的资金投入是建立在油气田投产后所得的最大的投资回报、投资利润基础上的,投入产出合算即实施开发,不合算则暂不考虑,这有利于保持油气田开发中的经济效益的稳定

相关主题
文本预览
相关文档 最新文档