当前位置:文档之家› 交直流混合微电网结构分析与研究

交直流混合微电网结构分析与研究

交直流混合微电网结构分析与研究
交直流混合微电网结构分析与研究

交直流混合微电网结构分析与研究

微电网通过运用各种分布式可再生能源,已成为现代电网重要组成部分。而交直流混合微电网,有效解决分布式电源容量瓶颈以及间歇性接入问题,并具有一定的错峰填谷功能,使其供电可靠性及其电能质量进一步提高,符合电力发展需求。

标签:交直流混合;微电网;分布式电源;储能系统

1 概述

随着电网技术的发展,与大电网相比,交直流混合微电网结构更加灵活方便,可控性强,并且更加稳定和安全,已成为现代大电网的重要组成部分。对于近端或者重要用户,微电网可实现自行完成供电服务,从而满足用户多样化需求;而对于重要负荷,交直流混合微电网供电更加可靠和安全,可有效减少大电网供电的不稳定性,确保电能质量,可有效降低由大电网供电故障引起的经济损失,从而降低大电网的建设成本投入,故具有良好经济和社会效益。同时,微电网能够有效地调节大电网峰值,并且可以避免增加发电装机容量所引起的高额成本,可以有效改善峰谷差值。

2 交直流混合微电网电源

2.1 燃料电池

燃料电池作为一种常见的分布式电源,其能量转换方式和普通电池相似,结构主要包括电解质、电极和联接电池正负极的端部设备,反应过程能量遵循从化学能到电能的转化。在燃料电池反应过程中,内部物质并不是静止不动的,正式由于燃料不间断的流向负电极,而空气不断的流向正电极,从而形成一个循环,需要在电极表面添加催化剂,经过催化剂的作用,燃料和水将会发生化学反应,在其反应过程中主要是氢气和氧气在催化剂的作用下从而生成水,由于电子是可以在水中运动的,电子的定向移动会形成一定的轨迹,而大量电子的移动便形成封闭电路,从而形成电流。不会对环境产生污染,推广应用前景广阔。

2.2 光伏电池

太阳能是地球上最基本、最常见的可再生能源,相对于当前的人类社会发展,太阳可看作是人类永恒的能量来源,其实质就是传递到地球上的电磁能能够被人类储存和使用。在当前,太阳能发电主要分为并网运行和离网运行两种工作方式,其中并网运行方式是当前主要的研究方向。并网光伏发电系统主要包括光伏阵列模块(又称太阳能电池板)、控制器与逆变器等三部分。

2.3 风能电池

交直流混合微电网关键技术研究

交直流混合微电网关键技术研究 本文是中新国际合作项目“含分布式电源的微电网运行与优化控制的合作研究”(2010DFB63200)的主要研究内容之一,它针对当今中国日益加剧的环境污染、日趋匮乏的一次能源及低效的可再生资源利用率而提出的。交直流混合微电网(Hybrid Micro-grid)为解决大电网的很多问题带来了巨大便利和契机,同时也 为各种分布式电源的高效利用提供新的思路。 近几年国内外学者对交直流混合微电网相关课题进行了大量研究,很多方面已取得一定成果。然而,交直流混合微电网是极其复杂的配电网形式,整个系统的协调控制、系统的经济性、系统的可靠性及优化配置等方面均存在很多问题,技术尚不成熟。 因此,对交直流混合微电网上述存在问题等关键技术的研究具有重要的理论价值和现实意义。针对交直流混合微电网存在的上述问题,本文采用理论分析、结构建模、仿真及实验相结合的方法,从控制策略,经济性、效率及优化配置等方面对交直流混合微电网进行了深入研究。 主要研究内容如下:搭建交流、直流及交直流混合微电网的模型结构,并详细分析三种微电网的工作原理。分析比较混合微电网常用的P/Q控制、V/f控制和Droop控制三种控制方式,指出了其使用场合,描绘了各自的下垂曲线并详细分 析研究了它们的控制原理,以仿真对其原理进行验证。 针对传统下垂控制按微电源额定功率比例分配功率的问题,在建立发电单元成本函数的基础上,提出了改进的最大成本线性下垂控制函数,即最大发电成本 与最小频率及最大发电成本与电压的关系。搭建实验电路,对于各个微源,验证发电功率与成本的反比关系;对于微电网,验证频率波动小、运行稳定及发电成本小。

含分布式电源的多电压等级交直流混合配用电测试系统

第38卷第2期2019年2月 电工电能新技术 Advanced Technology of Electrical Engineering and Energy Vol.38,No.2 Feb.2019 收稿日期:2018-06-21 基金项目:国家重点研发计划项目(2017YFB0903300)二国家电网公司科技项目 交直流柔性互联配电网络构建及协调 控制关键技术 作者简介:程 林(1973-),男,湖南籍,副教授,博士,研究方向为电力系统可靠性理论二主动配电网规划; 田立亭(1983-),女,山西籍,高级工程师,博士研究生,研究方向为主动配电网规划二能源互联网规划三含分布式电源的多电压等级交直流混合 配用电测试系统 程 林1,田立亭1,葛贤军1,刘满君1 ,黄仁乐2 (1.电力系统及发电设备控制和仿真国家重点实验室,清华大学电机系,北京100084; 2.国家电网北京市电力公司,北京100031) 摘要:交直流混合的配电网络为分布式电源及新型负荷的广泛接入提供条件,是未来配电网形态的重要发展方向三本文考虑分布式光伏二风电二电化学储能二交直流负荷的接入,考虑电力电子变压器二直流变压器二故障电流限制器等电力电子设备的应用,建立交直流混合的配用电测试系统,并依据设备的控制模式,给出系统典型的运行方式三所建立的测试系统具有一定适用性,可为交直流混合的配用电系统的稳态计算和相关研究提供基础三 关键词:交直流混合配用电系统;电力电子变压器;直流变压器;分布式电源 DOI :10.12067/ATEEE1806056 文章编号:1003-3076(2019)02-0060-12 中图分类号:TM72 1 引言 随着分布式光伏二风电二储能等分布式电源 (Distributed Energy Resource,DER)以及电动汽车 等新型负荷接入比例的不断提高,传统配电网在供电能力二运行控制等方面面临极大挑战三现有配电网单向的辐射状拓扑结构无法适应高比例DER 的接入需求,通过柔性互联设备将传统的辐射状配网发展为环形网络[1],是应对DER 大量接入的重要方式三同时,由于分布式电源二储能和负荷中存在大量 直流设备,直流配电网在供电能力二可控性二可扩展性等方面具有一定优势,可降低电力电子设备的总体成本,减少电能损耗,充分发挥DER 的效益[2,3]三未来配电网将由传统的单一交流配电网络逐步发展成交直流混合的配电网络,多个交直流电压等级构成多层次环网状结构将成为未来配电网的主要结构 [1] 三未来配电网形成交流和直流系统的优势互 补,显著提高系统的灵活性和可靠性三在多电压等级交直流混联环状网络结构下,实现DER 灵活接入,同时具备分层分区运行控制方式,实现可再生能 源在本地和大范围内的消纳三 未来配电网将在高压二中压以及低压形成基于环形母线的多层级交直流混联结构,形成包含区域综合配电系统二局域综合配电系统二综合微网和直流信息纳电网的四层网络结构[4]三目前,交直流混合配电网的结构二运行控制技术等仍处于研究阶段,实 际工程通常局限于单个电压等级和网络形式,缺乏具有一定普适性的参考算例三 本文梳理交直流混合系统的结构和电压等级,依据分布式光伏二风电二电化学储能等DER 的接入方式,考虑电力电子变压器二直流变压器二故障电流限制器等柔性设备的典型结构和控制方式,建立系统稳态模型,提出交直流混合的配用电测试系统,并给出系统典型的运行方式,为交直流混合配用电系统的研究提供基础三 2 交直流混合配用系统的电压等级和典型 结构 参照GB /T 156 [5] 和GB /T 35727[6],按照电压等 级,交直流混合配电系统可分为高压交直流二中压交 万方数据

电力交直流一体化电源解决方案

关于变电站交直流一体化电源解决方案的 探讨 背景及现状 1、背景 电力系统中变电站内的操作电源是保证变电站控制、信号、保护、自动装置可靠运行的保障,变目前隆化分公司变电站一般配置三套各自独立的操作电源系统,即直流操作电源、通信电源、交流不间断电源(UPS),每套电源系统单独配置蓄电池组和监控管理系统。为控制、信号、保护、自动装置以及操作机构等供电的直流电源系统,通常称为直流操作电源。为微机、载波、消防等设备供电的交流电源系统,通常称为交流操作电源;为交换机、光端机、远动等通信设备供电的直流电源系统,则称为通讯电源。 2、现状 1、2、1直流操作电源 直流操作电源室站用交流电源正常和事故状态下都能保持可靠供电给变电站内所有控制、保护、自动装置等控制负荷和各类直流电动机、断路器合闸机构等动力负荷的电源。直流操作电源系统电源一般选择220V或110V,采用不接地方式。隆化分公司现有35千伏变电站均装设1组蓄电池及1套充电装置,采用单母线接线。 1、2.2通信电源 通信电源提供给变电站载波机、光端机等通信设备及保护复用设备电源。系统电压为48V,采用正接地方式。 1、2.3交流不间断电源 交流不间断电源在变电站中UPS主要是给不允许短时停电的计算机监控设备供

电,可靠性及稳定性较高,一般均采用一主一备串联运行方式,即正常时由主机供电,主机故障时,从机自动投入。UPS正常由交流电源供电,当交流电源消失或整流器、逆变器等元件故障,则由自带的蓄电池向逆变器供电。 隆化分公司现有变电站16座,各变电站内均配有UPS电源,由于其内置的蓄电池组容量小且没有专业的维护措施,因此造成蓄电池容量不足或损坏而无法满足自动化的要求。 1、2.4独立操作电源存在的问题 无法综合优化资源,各自独立的操作电源系统重复配置蓄电池组,使一次投资增加。 分散布置的设备增加了日常运行维护工作。 各操作电源系统的由于不同的厂家使安装、服务等协调困难。 分公司各操作电源维护班组无法统一管理。 智能一体化电源系统解决方案 2、1系统综述 基于以上各独立操作电源的现状及存在的问题,我们与有关厂家咨询提出智能一体化电源系统的解决方案,优化系统资源。智能一体化电源系统采用分层分布结构,各功能测控模块采用一体化设计、一体化配置,各功能测控模块运行状况和信息数据采用(IEC61850)标准建模并接入信息一体化平台。实行智能一体化电源各子单元分散测控和几种管理,实现对智能一体化电源系统运行状态信息的实时监测。 智能一体化电源系统应能够为全站交直流设备提供安全、可靠的工作电源,包括:380V/220V交流电源、DC220V或DC110V直流电源和DC48V通信用直

交直流混合微电网结构分析与研究

交直流混合微电网结构分析与研究 微电网通过运用各种分布式可再生能源,已成为现代电网重要组成部分。而交直流混合微电网,有效解决分布式电源容量瓶颈以及间歇性接入问题,并具有一定的错峰填谷功能,使其供电可靠性及其电能质量进一步提高,符合电力发展需求。 标签:交直流混合;微电网;分布式电源;储能系统 1 概述 随着电网技术的发展,与大电网相比,交直流混合微电网结构更加灵活方便,可控性强,并且更加稳定和安全,已成为现代大电网的重要组成部分。对于近端或者重要用户,微电网可实现自行完成供电服务,从而满足用户多样化需求;而对于重要负荷,交直流混合微电网供电更加可靠和安全,可有效减少大电网供电的不稳定性,确保电能质量,可有效降低由大电网供电故障引起的经济损失,从而降低大电网的建设成本投入,故具有良好经济和社会效益。同时,微电网能够有效地调节大电网峰值,并且可以避免增加发电装机容量所引起的高额成本,可以有效改善峰谷差值。 2 交直流混合微电网电源 2.1 燃料电池 燃料电池作为一种常见的分布式电源,其能量转换方式和普通电池相似,结构主要包括电解质、电极和联接电池正负极的端部设备,反应过程能量遵循从化学能到电能的转化。在燃料电池反应过程中,内部物质并不是静止不动的,正式由于燃料不间断的流向负电极,而空气不断的流向正电极,从而形成一个循环,需要在电极表面添加催化剂,经过催化剂的作用,燃料和水将会发生化学反应,在其反应过程中主要是氢气和氧气在催化剂的作用下从而生成水,由于电子是可以在水中运动的,电子的定向移动会形成一定的轨迹,而大量电子的移动便形成封闭电路,从而形成电流。不会对环境产生污染,推广应用前景广阔。 2.2 光伏电池 太阳能是地球上最基本、最常见的可再生能源,相对于当前的人类社会发展,太阳可看作是人类永恒的能量来源,其实质就是传递到地球上的电磁能能够被人类储存和使用。在当前,太阳能发电主要分为并网运行和离网运行两种工作方式,其中并网运行方式是当前主要的研究方向。并网光伏发电系统主要包括光伏阵列模块(又称太阳能电池板)、控制器与逆变器等三部分。 2.3 风能电池

交直流混合电力系统潮流计算

交直流电力系统潮流计算 摘要:由于我国能源分布与经济发达地区的不均衡性,今后能源大规模、远距离流动成为必然。特高压直流输电具有送电容量大、送电距离远等优点,在今后的能源流动中具有不可替代的地位。本文首先阐述了高压直流输电系统的发展及运行特点,总结已有的交直流电力系统潮流计算的一般方法,提出一种实用新型交直流电力系统潮流计算方法。同时对大规模交直流互联系统,提出了分区并行潮流算法的思路。 关键词:电力系统,交直流互联,潮流计算 1. 引言 我国地域辽阔,水能、煤炭资源较丰富,油、气资源相对贫乏,发电能源资源的分布和用电负荷的分布极不均衡。一方面,全国可开发的水电资源有近2/3 分布在西部的四川、云南、西藏三省区,煤炭保有储量的2/3分布在山西、陕西、内蒙古三省区;另一方面,东部沿海和京广铁路沿线以东地区经济发达,用电负荷约占全国的 2/3。今后我国水能和煤炭资源的开发多集中在西南、西北和晋、陕、蒙地区,并逐步西移和北移,而东部沿海和京广铁路沿线东地区国民经济持续快速发展,导致能源产地与能源消费地区之间的距离越来越远,使得我国能源配置的距离、特点和方式都发生了巨大变化,因此必然引起能源和电力的跨区域大规模流动。 直流输电一般定位于一定距离、一定规模的电力外送,在今后的电网发展中将日益受到重视。随着电力大规模流动的距离逐渐加大,现有的±500kV直流输电将无法满足要求,客观上需要采用更高一级的直流输电电压等级。根据对我国西南水电外送输电方案的多次滚动规划研究成果并结合国外的相关研究结论,±800kV 直流输电在技术上是可行的,比较适合我国的实际情况。

随着高压直流输电的应用越来越广泛,交直流混合电力系统将越来越普遍存在,其潮流算法也应当相应的有所发展,以适应实际的需求。交直流互联电力系统潮流算法主要分为联合求解法和交替求解法。联合求解法的收敛性好,但破坏了交流潮流算法中雅可比矩阵的结构,计算效率会随着直流系统的增加而降低;交替求解法的收敛条件相对苛刻,不需要修改交流系统的雅可比矩阵,易于实现。 在讨论算法的同时,也应当考虑到大规模交直流混合电力系统的区域特性,因此如何对大规模交直流混合电力系统进行区域划分,进行并行求解也是本文讨论的范围。 本文首先对高压直流输电系统进行阐述,表明其未来具有良好的发展空间,因此研究交直流电力系统的潮流计算是非常有必要的。其次适当总结当前交直流电力系统的算法,并提出一种实用新型算法。最后对大规模交直流电力系统的分区并行计算思路做出阐述。 2. 高压直流输电 人们对电力的应用和认识以及电力科学的发展都是首先从直流电开始的。19世纪初期发展起来的信号传输——电报,虽然传输的电流是很微弱的,但是人们从此得到启发,并引用于电力传输。法国物理学家德普勒提出:如果输电电压选择的足够高,即使沿着电报线路也可能输送较大的功率到较远的距离。他并于1882年,用装设在米斯巴赫煤矿中的直流发电机,以1500——2000伏电压,沿着57公里的电报线路,把电力送到在慕里黑举办的国际展览会,完成了第一次输电试验,也是有史以来的第一次直流输电试验。 此后,直流输电的电压、功率和距离分别达到125千伏,20兆瓦和225公里。但由于当时是采用直流发电机串联组成高压直流电源,受端电动机也是串联方式运行的。不但高电压大容量直流电机的换向有困难,而且串联的运行方式比较复杂,可靠性差,因此直流输电在当时没有得到进一步的发展。与此同时,随着生产的发展和电能需求的不断增长,在十九世纪八十和九十年代,人们逐步掌握了

城市交直流混合配电网的发展及应用技术

城市交直流混合配电网的发展及应用技术 经济全球化快速发展,城市规模越来越大,电能需求持续增长,发展分布式可再生能源接入配电网系统是改善城市用电需求紧张的一种有效途径。随着电力电子技术的快速发展,关键技术问题不断突破,交直流混合用电技术及经济优势逐渐凸显。本文根据当下城市用能形势,分析了交直流混合供电模式、交直流电能转换装备、直流电开断装置及系统运行控制等4个方面,对当前理论及应用情况进行了论述。最后,对城市交直流混合配电网的未来研究方向进行了展望。 标签:交直流混合;配电系统;电力电子技术;运行控制 0引言 近年来随着能源革命的进行,以新能源为代表的清洁能源在实现我国能源转型中起着至关重要的作用[1]。随着城市化的进程,越来越多的人居住在城市,城市用电量不断增加。城市地区空调负荷耗能在高峰期占比超过40%,当前,以变频空调、IT 类负载及电动汽车为代表的广义直流负荷正蓬勃发展[2],传统交流配用电系统存在“源-荷-储”接入传统交流电网变流环节多、损耗高、融合难,以及多种分布式能源欠缺互补机制及灵活调控手段等问题[3]。 目前城市配电网的网架结构单一,供电可靠性还有待进一步提高。为适应城市用电的不断攀升,满足城市用电多元化需求,充分利用各种分布式可再生能源,未来城市配电网需进一步更新换代,向交直流混合的、可供广泛可再生能源及储能设备接入的配电网发展。发展以分布式可再生能源为核心,实现“源-网-荷-储”协调优化运行的新型城市配用电系统,并在不断扩大的城市供电中发挥安全、稳定、充足的能源供应,为经济提供源源不断的动力[4-5]。研究交直流混合供电模式、交直流电能转换装备、直流电开断装置及运行控制策略,对未来大规模应用交直流混合配电网做好充足的技术储备。 2 交直流混合供电模式 在电力电子技术快速发展的驱动下,直流配用电技术被广泛研究,直流配用电系统具有结构简单、损耗小、供电质量优等特点。现阶段的配用电系统中存在大量交流电源及设备,完全进行直流配用电系统的改造不具备经济性,因此,在现有的交流配用电系统的基础上,发展交直流混合配用电系统成为目前最为经济、可行的方案。交直流混合配用电系统结合了交流及直流的优点,能够有效的减少分布式可再生能源、广义直流负荷电能转换过程中的中间环节。 针对上述新型配用电系统发展方向,建设交直流混合、可再生能源和储能设备广泛接入的交直流混合供电系统具有极大的经济性和灵活性,该系统的可再生能源可包括光伏、风机、光热发电,储能设备可为热利用系统、储电系统。通过多端口多功能电力电子变压器实现多种分布式可再生能源高比例接入、交直流配用电多级混联。通过储电、储热等综合储能系统,实现源、网、荷高效互补,同

交直流混合微电网的规划设计_王红阳

(河南开封供电公司,开封 475000) 摘 要:由于交直流混合微电网可以减少多重变换器运行所产生的损耗、谐波电流,同时能够提高系统的经济性、可靠性,所以现在已成为当今微电网的主要发展方向。笔者将从电压等级、接地方式、母线结构和网络拓扑等角度,探讨交直流混合微电网的规划设计,以供有意对交直流混合微电网进行深入研究的专家学者参考。 关键词:交直流混合微电网 规划设计 网络拓补 示范工程 前言 目前,社会在能源需求不断增加的同时,环境保护的概念越来越强烈。结合电网结构在发展过程中的一些问题,微电网作为一种新型模式不断发展起来。微电网从供电方式以及网架结构的角度进行分类,有交流微电网、直流微电网以及交直流混合微电网三种类型。交直流混合微电网是当前发展环境下最主流的一种。虽然其运用广泛,但是分布式电源并联接入时带来的谐振、谐波等问题还需得到进一步分析研究来解决。和交流微电网相比,直流微电网的优势主要在于不需考虑各DG之间的同步问题。因此,可以看出,直流微电网的优势主要体现在环流抑制上。另外,直流微电网的另一个优点是,它只需要在和主网连接的地方应用逆变器即可,使得系统成本包括相关损耗降低。 现在,智能电网正在以其可持续性以及对环境的改善作用,作为当今社会提供高质量的、可靠电能的建设理念,获得了人们的认可。其特点主要在于能够便捷地将不同的储能系统、交直流发电系统以及不同的交直流负载进行连接,从而使运行效率达到最大化。直流微电网以及交流微电网在这种背景下,则有明显的不足之处。因此,为了降低纯粹的交流、直流微电网在实际运用中的多种弊端,交直流混合微电网应运而生。 1 交直流混合微电网的电压等级分类 1.1 交流子微电网电压等级 目前,交流微电网并没有严格固定的电压等级相关标准。所以,分布式电源容量是目前部分微电网工程圈定电压等级的主要判断标准。主要有以下几点:如果电源的总容量在0.2MW及以下,那么并网电压就要处在0.4KV水平;如果电源的总容量是0.2MW到8MW之间,那么并网电压就要处在10KV水平;在并网电压处于35KV时,电源总容量是在8MW到30MW之间;当网电压就要处于110KV水平时,其电源总容量则需要在30MW及以上。 微电网还处理发展研究阶段, 6.6KV/200V,通过双向变流器可转 是我国使用的唯一单相电压有效值, ~400V则是直流母线的电压范围。目前,380V是得到了国际相关标准认可的电压。这项标准确定的根据来自美国数据中心的直流配电,而且进行了严密的可行性研究,符合我国居民直流供电系统。 2 交直流混合微电网的母线结构 交流微电网母线结构是由单母线、单母分段、双母线等多种接线方式完成的,与交流配电网的连接方式很相像。通常而言,直流微电网的母线结构不同于交流微电网的母线结构。直流微电网母线的结构包括单母线结构、双母线结构、双层式母线结构以及冗余式母线结构。 2.1 单母线结构 一般来说,单母线结构的直流微电网和现存的交流接线板等相关的转接设备都可兼容。假如给低压设备供电,如计算机,那么变流器的电压应力就会增大。考虑到这种情况,在进行输电时,应该对每个低压电子设备配置电源适配器。 2.2 双层式母线结构 双层式母线结构是利用分层设计的原理重新调整了单母线结构。一般来说,一级母线的电压比较高,二级母线的电压比较低。双层式母线结构主要是运用当住宅流入高直流电压等级的母线后,高直流电压通过变换器进行转化,从而转换为较低的电压等级。相比而言,这种双层式母线结构更加适用含有多种电压等级的电力设备。 2.3 双母线结构 实现与目前存在的转接设备的相互兼容,同时也能够完成较为复杂的电力输送工作,即完成较高程度的工作是具备双母线结构的直流微电网的重要特点之一。但是,这种结构存在着一定的缺点。在电源侧变流器具体运作时,主从母线之间电压关系需要通过均衡才能完成工作。所以,在具体设备如储能装置、连接电网与分布式电源的变流器拓扑和传统拓扑结构上,都有具体的不同之处。 2.4 冗余式的母线结构 通常情况下,冗余式的母线结构会运用在要求较高质量的电能的配电区,如飞机、船舶、数据中心等相应的供电系统。一般情况下,施工人员会采取通过使用两条母线的方法来确保供电的可靠性,其中一条是带电的,另一条则为备用的。当然,虽然这种方法提高了母线结构的可靠性,但同时也增加了相应的投资成本。 3 交直流混合微电网的接地方式 一般来说,系统的性能、相应的保护方案的配置都会 DOI:10.16107/https://www.doczj.com/doc/504427919.html,ki.mmte.2016.0156

特高压交直流混联电网稳定控制探讨

特高压交直流混联电网稳定控制探讨 发表时间:2019-05-05T09:39:50.337Z 来源:《基层建设》2019年第5期作者:亢煜王嘉薇 [导读] 摘要:十三五规划后,我国政府对特高压交直流混联电网运行稳定性提出了更高的要求。 国网山西省电力公司检修分公司山西太原 030000 摘要:十三五规划后,我国政府对特高压交直流混联电网运行稳定性提出了更高的要求。依据电力系统安全运行原则,对特高压交直流混联电网安全稳定现状进行了简单分析。并依据关键安全稳定风险,提出了几点特高压交直流混联电网稳定控制措施。以期为特高压交直流混联电网稳定性控制方案的制定及电网安全运行提供有效的参考。 关键词:特高压;交直流混联电网;稳定控制 1特高压交直流混联电网特性探究 (一)受端电网电压调节功能下降特高压电网直流密集投运的特性,在一定程度上为受端常规火电机组提供了支撑。而直流电网大范围馈入机组,极易致使系统电压调节特性恶化,进而导致混联电网电压稳定性风险突出。如××电网受电比例在 46%以下,发生 500kV 线路 N-1 故障,导致××地区出现电压崩溃风险。(二)电网频率性稳定故障频发交流系统转动惯量、机组调频能力是电网频率调节的主要依据。但是随着特高压交直流电网的建设,系统转动惯量不断增加,其需要承受频率波动效能也需要逐步增加。而直流转动特性的缺失,极易导致送受端电网转动惯量下降。如××电网仿真分析数据表明,70GW 负荷水平下,损失 4.0GW 发电功率时,若电网内无风电,则电力系统频率将下跌 0.70Hz。(三)交直流、送受端间全局性故障突出从理论层面进行分析,特高压交直流混联电网的建设,促使交直流及送受端间联系不断紧密。而发生频率较高的单相短路故障,就可能导致多回直流同时换相异常,进而对交流断面造成大规模冲击。如 ××电网某 500kV 线路 A 相故障跳闸,导致该区域特高压直流连续三次换相失败,最终致使送端特高压交流长线产生高达 1800MW 的有功冲击。 2特高压交直流混联电网稳定控制措施 2.1电压稳定 电压稳定是指受到小的或大的扰动后,系统电压能够保持或恢复到允许的范围内,不发生电压崩溃的能力。受扰后,系统中发电机和调相机、静止电容器、动态无功补偿器、以及线路充电功率等构成的无功电源,以及线路和变压器等设备无功损耗、感应电动机无功消耗等构成的无功负荷,两者间供需平衡能力决定了电压稳定的维持能力。交流长距离供电、多直流馈人、高马达比例等受端电网,电压稳定问题较为突出。 2.2完善电网稳定控制目标体系 一方面,在《国家电网安全稳定计算技术规范》的基础上, 依据特高压交直流混联电网威胁电网安全运行故障特点,电网维护人员可进一步完善电网稳定控制目标体系。同时综合考虑直流系统单、双击闭锁故障等因素,将不同形态故障因素纳入电网稳定控制目标体系中。如直流连续换相失败、直流功率突降、再启动、受端多回直流同时换相失败等。另一方面,依据特高压交直流混联电网运行特点,为进一步完善交直流混联电网运行控制目标体系,电网维护人员可综合利用直接法、时域仿真等方法,对特高压交直流混联电网运行稳定性进行全方位分析。其中直接法主要是依据函数变化,通过故障对比分析,在初始时间刻能量、临界能量的基础上,构建高维度电网运行模型,以便直接判定电网稳定性;而时域仿真法则是针对干扰源头,利用微分方程,对获得电气运行数据进行分析。常用的时域仿真法主要为电磁暂态仿真、机电暂态仿真等。依据特高压电网规模,可选择合理的仿真分析模型,进而确定仿真控制基准。 2.3构建合理的电网结构 构建合理的拓扑互联结构,是提升输电能力的重要保障。为此,依据电网功能的不同定位,选用送端电源分散接人、受端合理分区的差异化设计原则;综合区域电网不同互联模式的技术特点,选择适用的交流互联、直流互联、交直流混联方案;统筹电网整体性能要求,兼顾网源协调发展、多电压等级有序发展、省级电网与区域电网协同发展以及一二次系统同步发展。 2.4优化电力系统运行控制方案 首先,在特高压交直流混联电网运行期间,针对电网功率输送不均匀的情况,可以直流紧急功率控制为核心,针对电网交流分担功率超标问题,构建完善的特高压交直流混联电网功率应急控制方案。通过对直流系统传输功率的控制,可以适当强化交直流混联电网中直流传输功率及负载能力,从而提高特高压交直流混联电网运行稳定性。需要注意的是,在直流功率应急控制方案中,为保证电网短路能量的有效释放,特高压交直流混联电网维护人员可将局部潮流故障问题较严重交流电网作为维护重点。在直流系统控制的前提下,设置回降控制直流功率、紧急控制直流功率提升等附加措施。其次,依据修订后《国家电网安全稳定计算技术规范》的相关要求,特高压电网运行系统维护人员可以新一代数模混合仿真平台为依据,进一步拓展电磁暂态仿真分析范围。结合实际稳定性控制装置的设置,对特高压混联电网交直流特性进行全方位分析。如针对单回特高压直流连续换相失败情况,可以主动闭锁直流、联切送端机组为要点,从根本上切断直流换相联锁反应。同时优化直流再启动速切交流滤波方案。结合受端电网交流线路重合闸时间的延长,可有效降低直流扰动现象对混联电网交流系统的不利影响。最后,针对大规模交直流并网导致的同步频率提升问题,电网维护人员可以新能源主要应用地区为管理要点,开展全方位实时同步谐波监测。同时依据新能源次同步振荡原理,制定完善的次同步振荡安全控制方案。结合系统性新能源场站调频调压,可从源头解决电网调节能力不足导致的稳定性故障。 2.5强化特高压交直流主网架结构 依据特高压运行理论,只有交流电网、直流容量一致,才可以保证特高压交直流混联电网具有足够的抗频率冲击能力。据此,在特高压交直流混联电网建设阶段,国家电网应以交流电网建设为要点,依据现有特高压混联电网直流电规模及容量,构建坚强交直流同步电网。同时以国家清洁能源发展战略为依据,驱动特高压交直流混联电网全面优化完善,为“强直弱交”问题的彻底解决提供依据。 结束语 综上所述,在特高压交直流混联电网迅速发展进程中,特高压直流输电规模呈阶跃式提升,导致特高压交直流混联电网出现严重的“强直弱交”问题。这种情况下,依据特高压交直流混联电网运行特性,相关人员可以特高压交直流主网架结构为要点,对特高压交直流主网架结构进行优化完善。同时在完善的电网运行控制目标体系的指导下,进一步优化电网运行控制方案,为特高压交直流混联电网稳定性控制

TCEC20181043-交直流混合配电网二次装置技术规范-编制说明

交直流混合配电网二次装置 技术规范 编制说明

目次 1编制背景 (14) 2编制主要原则 (14) 3与其他标准文件的关系 (14) 4主要工作过程 (15) 5标准结构和内容 (15) 6条文说明 (15)

1编制背景 近年来的研究成果表明,基于柔性直流技术的交直流混合配电网更适合现代城市配电网的发展。交直流混合配电网可更好地接纳分布式电源和直流负荷,可缓解城市电网站点走廊有限与负荷密度高的矛盾,同时在负荷中心提供动态无功支持,可提高系统安全稳定水平并降低损耗。交直流混合配电网是配电网的一个重要发展趋势,可提升城市配电系统的电能质量、可靠性与运行效率。柔性直流互联装置接入配网后,产生新的故障特征及控制难题,传统交流系统保护控制装置将不适用。交直流混合合配电网二次装置可有效解决含柔性直流互联装置的交直流混合配电网保护和安全稳定控制问题,提升配网可靠性。 本标准编制主要目的,促进柔性直流技术在配电领域健康、有序发展,提升配电网灵活主动控制的能力,为交流10kV(20kV)/直流±10kV及以下的交直流混合合配电网二次装置的生产应用提供规范化导则。 2 编制主要原则 本标准根据以下原则编制: a) 标准编制的原则是遵守现有相关法律、条例、标准和导则等,兼顾配电网运行和交 直流混合配电网发展的要求; b) 本标准的出发点和基本原则是保障交直流混合配电网的安全和稳定,简化交流 10kV(20kV)/直流±10kV及以下的交直流混合配电网二次设备,同时尽量使条文 具有较好的可操作性,便于理解、引用和实施; c) 本标准的编制兼顾了现有电网结构和配置,以及柔性直流互联装置的技术水平,在 不需要大量投资改变交流二次装置的基础上发展交直流混合配电网。 3 与其他标准文件的关系 本标准与相关技术领域的国家现行法律、法规和政策保持一致。 本标准参考并引用了DL/Z 1697-2017柔性直流配电系统用电压源换流器技术导则、DL/T 584 -2007 3kV~110kV电网继电保护装置运行整定规程、DL/T 478—2013 《继电保护和安全自动装置通用技术条件》、DL/T 634.5101 《远动设备及系统第5-101部分:传输规约基本远动任务配套标准》、DL/T 634.5104 《远动设备及系统第 5-104 部分:传输规约采用标准传输协议集的 IEC60870-5-101 网络访问》。 本标准不涉及专利、软件著作权等知识产权问题。 4 主要工作过程 2018年1月,根据中电联配电网规划委员会要求启动编制工作。 2018年2月,确立编研工作的总体目标,构建编制工作小组,开展课题前期研究工作。 2018年7月,完成标准大纲编写,组织召开《技术规范》编写大纲研讨会,确定了《技

电力交直流一体化电源解决方案

电力交直流一体化电源解决方案 关于变电站交直流一体化电源解决方案的 探讨 背景及现状 1、背景 电力系统中变电站内的操作电源是保证变电站控制、信号、保护、自动装置可靠运行的保障~变目前隆化分公司变电站一般配置三套各自独立的操作电源系统~即直流操作电源、通信电源、交流不间断电源,UPS,~每套电源系统单独配置蓄电池组和监控管理系统。为控制、信号、保护、自动装置以及操作机构等供电的直流电源系统~通常称为直流操作电源。为微机、载波、消防等设备供电的交流电源系统~通常称为交流操作电源,为交换机、光端机、远动等通信设备供电的直流电源系统~则称为通讯电源。 2、现状 1、2、1直流操作电源 直流操作电源室站用交流电源正常和事故状态下都能保持可靠供电给变电站内所有控制、保护、自动装置等控制负荷和各类直流电动机、断路器合闸机构等动力负荷的电源。直流操作电源系统电源一般选择220V或110V,采用不接地方式。隆化分公司现有35千伏变电站均装设1组蓄电池及1套充电装置~采用单母线接线。 1、2.2通信电源 通信电源提供给变电站载波机、光端机等通信设备及保护复用设备电源。系统电压为48V~采用正接地方式。 1、2.3交流不间断电源

交流不间断电源在变电站中UPS主要是给不允许短时停电的计算机监控设备供电~可靠性及稳定性较高~一般均采用一主一备串联运行方式~即正常时由主机供电~主机故障时~从机自动投入。UPS正常由交流电源供电~当交流电源消失或整流器、逆变器等元件故障~则由自带的蓄电池向逆变器供电。 隆化分公司现有变电站16座~各变电站内均配有UPS电源~由于其内置的蓄电池组容量小且没有专业的维护措施~因此造成蓄电池容量不足或损坏而无法满足自动化的要求。 1、2.4独立操作电源存在的问题 无法综合优化资源~各自独立的操作电源系统重复配置蓄电池组~使一次投资增加。 分散布置的设备增加了日常运行维护工作。 各操作电源系统的由于不同的厂家使安装、服务等协调困难。分公司各操作电源维护班组无法统一管理。 智能一体化电源系统解决方案 2、1系统综述 基于以上各独立操作电源的现状及存在的问题~我们与有关厂家咨询提出智能一体化电源系统的解决方案~优化系统资源。智能一体化电源系统采用分层分布结构~各功能测控模块采用一体化设计、一体化配置~各功能测控模块运行状况和信息数据采用,IEC61850,标准建模并接入信息一体化平台。实行智能一体化电源各子单元分散测控和几种管理~实现对智能一体化电源系统运行状态信息的实时监测。 智能一体化电源系统应能够为全站交直流设备提供安全、可靠的工作电源~包括:380V/220V交流电源、DC220V或DC110V直流电源和DC48V通信用直流电源及电力用逆变电源。直流电源、电力用交流,UPS,和电力用逆变电源,INV,、通信用直流

交直流混合微电网关键技术研究综述

交直流混合微电网关键技术研究综述 发表时间:2016-12-14T15:30:01.123Z 来源:《电力设备》2016年第19期作者:曹景洲张磊 [导读] 微电网是未来智能电网发展不可或缺的重要元素。 (1.国网甘肃省电力公司合水县供电公司甘肃合水 745400; 2. 国网甘肃省电力公司庆城县供电公司甘肃庆城 745100) 摘要: 微电网是未来智能电网发展不可或缺的重要元素,其发展对实施国家可持续发展的能源战略及推动电力系统的良性发展有积极地推动作用。本文首先对微电网领域在交直流混合微电网的结构﹑网络拓扑、稳定控制等几个方面的相关研究现状进行了分析与归纳;然后对交直流混合微电网在电力领域的发展进行了总结与展望。 关键词:交直流混合微电网;网络拓扑;光伏发电;控制策略;蓄电池储能 引言 21世纪,随着科技与经济的高速发展,电力系统在电网结构方面的发展局限性越来越明显。分布式可再生能源发电系统及微电网技术的应用为优化电网结构提供了一条新的发展思路,微电网是未来分布式能源发电系统的一种新的发展模式,是未来智能配用电系统的关键部分,对促进环境保护和能源可持展略的实施具有重要意义。 1、交直流混合微电网的结构 目前,交直流混合微电网是一种最优的组网形式,交直流混合微电网较于简单的交﹑直流微电网简化了变换环节与变换装置,提高了整个电网运行系统的安全性、经济性、高效性和可靠性。为了减少微网中电力电子器件的使用,减小损耗,提高微网系统的综合利用效率。各国相继开展了对含有交流母线和直流母线的交直流混合微网的研究。交直流混合微网能够继承传统微网的优点,且相对于单一的交流或直流微网,交直流混合微电网具有如下特点:1)其母线由交流和直流两根母线组成,直流元件和交流元件分别连接在直流母线和交流母线上,通过双向 AC/DC 变流器实现交﹑直流之间的相互转换,这种组网形式有效的减少 AC/DC、DC/AC 等变流器的使用,降低了电力系统建设成本,并减轻了系统中谐波电流对电网的不利影响。2)既可以直接向交流负载供电,又可以直接向直流负载供电,日常生活中的直流用电设备可直接或者通过变换器与直流母线相连,交流用电设备可直接与交流母线相连。这样能够有效的降低变流器装置的使用率,缩减了电器体积与电器制造成本。3)交直流混合微电网存在并网模式和孤岛模式两种运行模式,各子系统可独立运行也可协调运行,且交、直流子系统间功率可双向流动。4)大量降低了整流、逆变装置的使用率,提高系统的灵活性﹑高效性﹑可靠性和经济性。 2、交直流混合微电网的网络拓扑结构 微电网的网络拓扑结构一般由分布式电源﹑负荷类型和微电网并网接口等关键信息组成。随着智能电网的发展,微电网运行过程中电压的稳定性、系统潮流控制能力以及不同运行模式切换时负荷分配等问题越来越凸显。合理的微电网拓扑结构在一定程度上能够有效的提高微电网接入低压配电网的安全性与灵活性。大多数交流微网的网架结构都具有相似性,多采用辐射状网架结构。储能装置、分布式能源发电装置等交流负荷大多是通过电力电子装置与交流母线连接。微电网并网运行和孤岛运行两种模式之间的切换是通过控制公共连接点处的开关实现的。 直流微电网的拓扑结构有三种,分别是双端供电式、单端供电式和环网供电式。单端供电式结构适用于负荷较低、供电范围较小的场所。双端供电式结构则一般运用在有较高负荷供电需求的场所。环网供电结构具有供电范围广、可靠性高等诱人优势,但其前期投资巨大,且仍有网络结构复杂、系统控制难度大、故障识别以及保护配合难度较大等关键性问题有待解决。 3、一种交直流混合微电网的控制策略 交直流混合微电网根据总网的负荷要求有并网运行和孤岛运行两种运行模式,并网运行时,在蓄电池等储能元件的平抑作用下,直流侧的分布式可再生能源发电以恒定的功率通过交流侧并入大电网,提高直流侧可再生能源的利用率。孤岛运行时,蓄电池等储能元件作为平衡节点和双向AC/DC变换器一起维持整个混合微网系统的电压、频率稳定,典型的交直流混合微电网系统由交流子微网系统、直流子微网系统、功率转换系统、微电网控制器等组成。交流侧,光伏发电单元通过DC/AC逆变器与交流母线连接,实现MPPT及单位功率因数控制,交流负荷直接连接到交流母线。直流侧,光伏发电单元通过Boost变换器实现最大功率跟踪,蓄电池储能单元通过双向DC/DC变换器实现充放电控制,直流负荷直接连接到直流母线。功率交换单元由隔离变压器及双向AC/DC变换器构成。 4、交直流混合微电网的关键稳定控制技术及相应研究 4.1直流微电网直流母线电压控制 由于分布式电源功率输出具有随机性、间歇性,联网运行时其间歇性波动功率对电网的冲击容易影响本地电网的安全。直流母线电压的稳定控制是保证系统稳定运行以及维持系统瞬时功率平衡的关键。直流分层控制系统,在各接口变换器之间合理分配直流负荷,同时补偿下垂控制带来的直流母线电压跌落,改进交直流混合微电网中直流侧的母线电压性能。鉴于含有储能环节的分布式发电系统的直流母线电压难以准确控制,通过电压下垂控制及改进V-f 逆变控制策略确保无储能环节的直流子网的直流母线电压的稳定性。考虑交直流混合微电网中的 AC/DC 双向变流器对系统的稳定运行和功率的协调分配有重要作用,具有AC/DC双向变流器的交直流混合微电网提出了一种基于非线性干扰观测器﹑功率平衡﹑一阶微分环节相结合的电压环前馈补偿方法﹑DC-AC死区补偿及DC-DC稳态占空比的直流母线电压控制方式,有效的保证了系统的稳定运行和功率的协调分配。 4.2微电网运行模式无缝切换控制 微电网运行模式平滑切换是微电网的重要功能和特征之一,微电网运行模式切换时,如果静态开关切换指令和主电源控制模式切换信号同时发出,会导致主电源输出电流和电压不受控,当微电网输出功率与负荷不匹配时,会使负荷电压幅值和频率发生偏移,在切换过程中极易出现暂态电流或电压冲击,导致无缝切换失败。因此实现微电网运行模式无缝切换是隔离电网故障的安全保障。文献提出了基于控制器状态跟随的微电网平滑切换控制方法,有效减小微电网运行模式切换过程中产生的暂态振荡,保证微电网的平滑切换。采用主从控制的微电网系统,提出了一种平滑切换补偿控制算法,可以克服切换过程中出现过压或过流现象,有效抑制切换后微电网母线电压和主电源输出电流波形的畸变,同时也能避免切换造成微电网母线电压的突降,减小切换对微电网内主电源的暂态冲击。

特高压交直流混联电网特点、挑战及未来方向分析

特高压交直流混联格局呈现出哪些特点?需要应对哪些挑战?未来发展方向在哪?本文从浙江电网入手进行了分析。 刚刚过去的G20 峰会见证了杭州乃至整个浙江的繁荣辉煌。 毫无疑问,浙江的经济发展令人瞩目,而特高压正是支撑浙江腾飞的重要保障。 由于一次能源资源的匮乏、地理条件的限制以及本省燃煤装机减排压力的加大,浙江省内发电装机容量难以支撑日益增长的负荷需求,建设特高压是浙江绿色发展的必然选择。也正因如此,浙江成为目前我国特高压落点最为密集的省份之一,浙江电网也是最早进入特高压交直流混联运行的省级电网之一。从浙江电网的运行可以窥见到特高压交直流混联格局所呈现出的特点、需要应对的挑战,以及未来发展的方向。 浙江样本 特高压入境给浙江带来了巨大的发展动力。同时,保障特高压安全稳定运行也需要配备相应的技术手段。 过去,浙江500 千伏主网架主要承载本省及华东区域的电力,随着宾金、浙福、灵绍等特高压交直流工程相继投运,浙江电网结构发生了质的变化:跨区输电规模进一步扩大、省外来电大幅提升、电网交直流混联运行安全稳定特性发生重大改变,交直流耦合关系更趋紧密,电源与电网间交互影响更复杂。 目前浙江电网的结构清晰呈现出特高压网架建设过渡时期所面临的新情况。“一个足够坚强的电网结构应分层分区合理,各级电网协调发展,电网结构清晰,大容量直流工程输电到受端电网,要送得出、落得下、用得上。”中国电科院原总工程师印永华这样描述科学的坚强电网。目前在特高压建设发展的过渡阶段,直流强而交流弱,在这样的形势下,需要针对特高压交直流混联电网运行特性进行深入研究,不断提升驾驭大电网运行的能力。 为了保障特高压电网安全,国网浙江省电力公司深入研究大电网运行新特性,加强大电网运行管控,并通过“三强化,三提升”,推动大电网运行水平上新台阶。 “三强化”即强化分级分区电力平衡,有效应对发用电平衡复杂局面;强化运行风险预警管控,实现电网运行风险预警预控闭环管理;强化应急预案编制落实,确保应急全面精准、响应及时。“三提升”即提升快速反应技术手段,发电侧创新部署机组AGC 快速群控功能,用电侧创新部署负荷“群控、顺控”功能;提升电网应急处置能力,建立宾金直流应急响应工作机制,常态化开展调度应急演练,切实提升应急协同处置能力;提升网厂协同机制,落实电源开机方式优化、研究燃气机组快速启停,确保日常安全生产管理和应急响应网源协同。 这些手段的实施有效保障了浙江电网安全稳定运行。在今年迎峰度夏中,浙江电网应用负荷批量控制功能为全省电网的安全运行增添了一层保护屏障,提升了技术人员对电网调度的预防控制能力,这正是“三提升”的重要组成部分。“事故拉限电序列表植入负荷批量控制系统后,只要输入需要拉掉的量,系统就可自动操作,大大提升了事故处理的响应速度。”国

交直流混合配电网的运行模式和协调控制方法

交直流混合配电网的运行模式和协调控制方法是保证其高效可靠运行需要解决的关键技术之一。针对这一问题,提出了一种交直流混合配电网的协调控制方法,详细分析了交直流混合配电网在正常运行和交流侧短路故障情况下的运行模式,给出了不同运行模式下互联装置、储能系统和光伏发电单元的控制框图。最后通过Matlab/Simulink仿真软件进行了仿真研究,仿真结果验证了所提出控制策略的可行性和有效性。 0.引言 能源危机和环境污染问题已经引起了世界各国的广泛关注,大力开发和利用可再生能源进行并网发电是解决上述问题的主要措施。在目前配电网中,交流配电网仍然为主流形式,其更加适合交流分布式电源接入,而接入直流分布式电源和储能单元时需要电力电子装置实现能量转换,增加了能量转换次数和投资成本,降低了工作效率。随着直流负荷的不断增加,直流配电网的研究得到了快速发展,与传统交流配电网相比,直流配电网具有转换次数少、效率高、成本低、控制结构简单、无需考虑频率和相位以及无功补偿设备等优势。 尽管直流配电网具有特有的优势,然而由于交流配电网基础设施完善、交流电源和负载的长期存在,直流配电网难以取代交流配电网;此外,在交流配电网和直流配电网中,直流负载和交流负载的供电需要经过AC/DC和DC/AC变换器进行能量转换。而采用交直流混合配电网,交流负载和直流负载可以分别接入交流母线和直流母线,减小能量转换环节,降低成本,使得交直流负载更易于接入系统,因此交直流混合配电网是未来配电网的发展趋势。 交直流混合配电网中通常集成了多个柔性互联装置、分布式发电单元、负载单元以及储能单元,如何实现多个单元之间的协调控制以确保整个系统安全可靠运行是交直流混合配电网发展的主要技术挑战。针对这一问题,提出了交直流混合配电网的协调控制方法,考虑了交直流混合配电网的正常运行和交流侧发生短路故障2种情况,给出了2种不同运行模式下不同单元的控制策略,并且通过仿真软件对所提出的控制策略进行了仿真研究。 1.交直流混合配电网结构 交直流混合配电网系统结构见图1,内部含有3个柔性互联装置,其直接通过直流母线进行互联,交流侧接有交流本地负载,直流侧集成了光伏发电单元,蓄电池储能系统以及直流负载,当直流负载电压等级与母线电压等级不匹配时可以通过DC/DC变换器进行转换。 交直流混合配电网通过采用柔性互联装置实现交流网络和直流网络互联,通过对互联装置的控制能够实现能量双向流动、功率因数可控和不间断供电等功能。光伏发电单元由光伏电池

相关主题
文本预览
相关文档 最新文档