当前位置:文档之家› 导管架式海上风电基础结构分析

导管架式海上风电基础结构分析

导管架式海上风电基础结构分析
导管架式海上风电基础结构分析

海上风电项目的“一体化设计”难点分析

海上风电项目的“一体化设计”难点分析 自从我国风电行业开始涉足海上项目以来,“一体化设计”的概念一直被广泛传播。这个最初源于欧洲海上风电优化设计的名词,相信无论是整机供应商、设计院,还是业主、开发商,都在各种场合不止一次地使用或者听到过。 而对于“一体化设计”的真正内涵以及国内风电项目设计中阻碍“一体化设计”目标实现的因素,并不是每个使用这个词的人都能说得清楚,甚至很多从业者把实现“一体化建模”等同于实现“一体化设计”,对该设计解决和优化了哪些问题也缺乏探究,不利于未来通过“一体化设计”在优化降本上取得切实成效。 本文对当前海上风电行业在“一体化设计”方向上需要解决的部分客观问题加以描述,以增进行业对此的了解,并提出可能的研究方向。 “一体化设计”的内容和意义 “一体化设计”是把海上风电机组,包括塔架在内的支撑结构、基础以及外部环境条件(尤其是风况、海况和海床地质条件)作为统一的整体动态系统进行模拟分析与校核,以及优化的设计方法。运用这种方法,不仅能更全面地评估海上风电设备系统的受力状况,提升设计安全性,也能增强行业对设计方案的信心,不依赖于过于保守的估计保证设计安全,为设计优化提供了空间,有利于系统的整体降本。

根据鉴衡认证对某5.5MW 四桩承台机组模拟测算的结果,相比现有的机组与基础分离迭代的设计方法,海上风电一体化设计能够进一步优化整体结构(见表1)。在平价上网压力下,“一体化设计”是海上风电行业降本的必然途径之一。 “一体化设计”难点分析 目前,机组和基础的设计分别由整机供应商、设计院负责。想要实现真正的“一体化设计”,仍有以下几个方面必须做到统一:设计标准、建模一体化、工况设定与环境条件加载的一体化以及动态载荷的整体提取。 一、标准一体化 当下,海上风电行业涉及的标准较多,与风电机组设计相关的主要是IEC61400系列国际标准及其对应国标,设计院的基础设计主要受港工设计标准(如:JTJ215、JTS167-4 等)以及部分行业标准(如:NB-T10105 等)的约束。国际标准从整体设计的角度,对基础的设计方法一并明确了要求,但其与港工设计标准、行业标准在一些要求或指标上存在重叠与冲突。其中一个比较突出的例子是,在极限载荷上,风电行业的国际标准通常使用1.35 的安全系数,而国内港标、行标使用1.4、1.5 的安全系数,从而增加了基础的成本。行业正在积极推进这些标准的统一化工作,例如,提出一些风电专属标准,以解除设计院受到的束缚。 二、建模一体化 海上风电机组、基础与多种外部环境条件是一个统一的整体,对这些结构和边界条件进行整体建模仿真是“一体化设计”最基本的要求,因为只有这样才能充分考虑机组和基础的整体动力学响应,并且有可能实现设计优化上的整体调整和全局寻优。目前,很多项目或多或少都会开展一体化建模工作,并将其作为完成了“一体化设计”的标志。但是如果因此就忽视了其他问题,可能让行业对“一体化设计”的理解过于狭隘。受限于机组和基础设计责任主体分离的现状,即使仅对“一体化建模”这一项,关注点也不应为有没有进行整体建模仿真,而是是否实现了全局寻优。 随着整机企业研发能力的提升,设计院合作模式的开放,以及第三方在其中可以起到的知识产权保护和协调粘合的作用,全局优化是可能实现的。由于基础模型相对于机组模型更易于开放,因此,这个任务更多地有赖于整机供应商机组整体设计能力的提升,以及他们能够影响设计院基础设计的程度。

海上风电导管架制造步骤及检验注意点概述

龙源如东海上风电导管架基础制造流程及检验 注意点简介 BV I&F CHINA WIND POWER Nicky Cheng 12th Jun, 2013

目录 1.项目背景简介 2.导管架概况 3.导管架制造流程介绍 4.检验计划介绍及检验过程中的注意点

1.项目背景简介 江苏如东150MW海上风电场示范工程一期由21台西门子2.38MW风电机组及15台华锐3MW风电机组组成,其中西门子2.38MW风电机组采用五管桩导管架基础,华锐3MW风电机组采用单管桩基础。 BV风电部门负责该36套海上风电机组基础钢结构的制造过程监造任务,其中单管桩在振华大南通基地生产,导管架由南通海洋水建总包,四家制作单位分包生产。整个项目历时月6个月,截止2011年12月10日南通中洲最后一台导管架装船结束。 本次介绍即为在南通中洲监造的11台导管架的一些情况。

2. 导管架概况 本项目导管架总高11550mm,桩腿轴线直径Φ19000mm。导管架由不同厚度的热轧低合金高强度结构钢板(标准:GB/T1591-2008、GB5313-85)经下料、卷制、拼装、焊接、防腐、舾装件安装、检测等多道工序而成,材质为:Q345D及Q345D-Z15(T=50mm及T=35mm),且要求所有钢板必须为正火一级探伤板。 该导管架由主筒体、上斜撑、下斜撑、水平撑和桩套管组成,舾装件有平台、爬梯、电缆管、牺牲阳极及防撞装置。主筒体由4段筒节(上直段Φ4200X50mm、锥体Φ4200XΦ2500X40mm和下直段Φ2500X50mm)和桩顶法兰组成,主筒体内部有加强结构及内平台。桩套管由2节T=35mm钢板组成,内部焊有螺纹钢剪力键。上斜撑由T=28mm、T=24mm及T=18mm钢板组成,其中T=28mm筒节位于上斜撑与主筒体合拢节点,T=24mm筒节位于上斜撑与桩套管合拢节点。下斜撑由T=24mm及T=18mm钢板组成,其中T=24mm筒节位于下斜撑与主筒体及下斜撑与桩套管合拢节点。水平撑为T=10mm直缝钢管。

(完整版)海上风电导管架安装专项方案.

珠海桂山海上风电场一期导管架安装专项方案 编制: 复核: 审批: 中铁大桥局股份有限公司 2014年9月

目录 1、工程概况 (1) 1.1工程位置及项目规模 (1) 1.2 导管架设计概况 (1) 2、自然环境 (2) 2.1地质及地貌 (2) 2.2 气象条件 (4) 2.3 特征气象参数 (4) 2.4 潮汐 (4) 2.5 波浪 (5) 2.6 海流 (6) 3、导管架安装方案 (6) 3.1 总体安装方案 (6) 3.2 施工步骤 (6) 3.3 构件进场检查 (6) 3.4 导管架安装 (6) 3.5 牺牲阳极接地电缆安装 (7) 3.6 施工重难点及控制措施 (7) 4、施工设备及劳动力组织 (7) 4.1 施工设备 (7) 4.2 劳动力组织 (8) 5、施工周期分析 (8) 6、HSE保证措施 (8) 6.1 职业健康保证措施 (8) 6.2 特种作业安全保证措施 (10) 6.3 环境保证措施 (12) 6.4 施工安全保证措施 (14) 7、附图 (14)

1、工程概况 1.1工程位置及项目规模 珠海桂山海上风电场场址位于珠江河口的伶仃洋水域,处于珠海市万山区青洲、三角岛、大碌岛、细碌岛、大头洲岛与赤滩岛之间的海域。场区内海底地貌形态简单,水下地形较平坦,海底泥面标高一般为-6.0m~12.0m,属于近海风电场。在三角岛上设置110kV升压站,风机电能通过8条35kV集电海缆汇集到三角岛升压站,再通过2回110kV送出海缆,接入220kV吉大站,实现与珠海电网的联网,并在珠海陆域设一集控中心。同时兴建三角岛-桂山岛、三角岛-东澳岛-大万山岛的35kV海底电缆,实现三个海岛的微网与珠海电网联网。 本工程风电场共安装17个风电机组,主要施工内容为:钢管桩沉桩、导管架安装、防腐、灌浆、钢管桩嵌岩、风机整体运输安装、零星工程。 图1-1 风机总体布置图 1.2 导管架设计概况 导管架下部与4根钢桩对接后,通过灌浆进行连接,顶面通过法兰与风机连接,

风电机组结构及选型

第一节风电机组结构 1.外部条件 根据最大抗风能力和工作环境的恶劣程度,按强度变化的程度对风电机组进行分级。根据IEC61400设计标准,共分为4级。 一类风场I:参考风速为50m/s,年平均风速为10m/s,50年一遇极限风速为70m/s,一年一遇极限风速为s; 二类风场II:参考风速为s,年平均风速为s,50年一遇极限风速为s,一年一遇极限风速为s; 三类风场III:参考风速为s,年平均风速为s,50年一遇极限风速为s,一年一遇极限风速为s; 四类风场IV:低于三类风场风速,属低风速区,鲜有商业风电场开发。 对电网的要求:电压波动为额定值±10%,频率波动为额定值±5%。2.机械结构 总体描述 整机是建立在钢结构底座上,该结构应具有很大的强韧度,底部由坚固底法兰组成,风电机组所有的主要部件都连接于其上。 发电机固定位置与机舱轴线偏离,以使得风电机组在满载运行时,整机质心与塔架和基础中心相一致。 偏航机构直接安装在机舱底部,机舱通过偏航轴承与偏航机构连

接,并安装在塔架上,整个机舱底部对叶轮转子到塔架造成的动力负载和疲劳负荷有很强的吸收作用。 机舱座上覆盖有机舱罩,材料是玻璃钢,具有轻质高强的特点,有效地密封,以防止外界侵蚀,如雨、潮湿、盐雾、风砂等。产品生产采用多种工艺,包括:滚涂、轻质RTM、真空灌注等,机舱罩主体部分设置PVC泡沫夹层,以增加强度。内层设置消音海绵,以降低主机噪声。 机舱上安装有散热器,用于齿轮箱和发电机的冷却;同时,在机舱内还安装有加热器,使得风电机组在冬季寒冷的环境下,机舱内保持在10℃以上的温度。 载荷情况 - 启动:从任一静止位置或空转状态到发电过渡期间,对风电机组产生的载荷。 - 发电:风电机组处于运行状态,有电负荷。 - 正常关机:从发电工况到静止或空转状态的正常过渡期间,对风电机组产生的载荷。 - 紧急关机:突发事件(如故障、电网波动等),引起的停机。 - 停机:停机后的风电机组叶轮处于静止状态,采用极端风况对其进行设计。 - 运输/安装/维护:整体装配结构便于运输,安装、维护易于实施。 叶片

海上风电施工控制重点

海上风电施工控制重点 (一)自然条件是影响海上风电施工的重要因素 1、分析 海上风电场都是离岸施工,工作场地远离陆地,受海洋环境影响较大,可施工作业时间偏短,因此施工承包商要根据工程区域海洋环境特点,选择施工设备、确定施工窗口期、制定施工工艺和对策,才能更好地完成本工程。 2、控制措施 (1)要求施工承包商必须充分收集现场自然条件资料,包括风、浪、流、潮汐、气温、降雨、雾等的历年统计资料和实测资料; (2)根据统计和实测资料,分析影响施工的自然条件因素; (3)分析统计影响施工作业的时间和可施工的窗口期; (4)根据统计资料和现场施工计划,有针对性的布置现场自然条件观测仪器,以便对自然条件的现场变化进行预测和指导施工安排。 (5)施工承包商必须根据自然条件的可能变化,做出有针对的现场施工应变措施。 (二)质量方面 1、海上测量定位是本工程的重点、难点 (1)分析 在茫茫大海是进行工程建设,测量定位是决定项目成败的关键。海上风电对质量要求很高,例如风机基础施工中单桩结构对桩的垂直度要求很高;导管架结构对桩台位置、桩的垂直度与间距要求很高,不是一般的测量与控制措施能够实现。另外,导管架安装定位精度高,如何通过测量定位手段指导安装导管架难度大,因此海上测量定位是本工程的重点、难点。 (2)控制措施 ①要求施工承包商制定测量施工专项方案;使用高精度测量仪器设备在投入工程使用前,必须进行精测试比对; ②借鉴其他海上风电场的成功施工经验,特制专用的打桩的定位及限制垂直度的定位及限定垂直度的辅助“定位架”,保证桩的垂直度及间距高精度要求; ③施工承包商必须有专用的打桩船,减少风浪对打桩的影响;

海上风电施工简介(经典)

海上风电施工简介 二○一三年十月

目录 1 海上风电场主要单项工程施工方案 (1) 1.1 风机基础施工方案 (1) 1.2 风机安装施工方案 (13) 1.3 海底电缆施工方案 (19) 1.4海上升压站施工方案 (23) 2 国内主要海上施工企业以及施工能力调研 (35) 2.1 中铁大桥局 (35) 2.2 中交系统下企业 (41) 2.3 中石(海)油工程公司 (46) 2.4 龙源振华工程公司 (48) 3 国内海洋开发建设领域施工业绩 (52) 3.1 跨海大桥工程 (52) 3.2 港口设施工程 (55) 3.3 海洋石油工程 (55) 3.4 海上风电场工程 (58) 4 结语 (59)

1 海上风电场主要单项工程施工方案 1.1 风机基础施工方案 国外海上风电起步较早,上世纪九十年代起就开始研究和建设海上试验风电场,2000年以后,随着风力发电机组技术的发展,单机容量逐步加大,机组可靠性进一步提高,大型海上风电场开始逐步出现。国外海上风机基础一般有单桩、重力式、导管架、吸力式、漂浮式等基础型式,其中单桩、重力式和导管架基础这三种基础型式已经有了较成熟的应用经验,而吸力式和漂浮式基础尚处于试验阶段。舟山风电发展迅速。 目前国内海上风机基础尚处于探索阶段,已建成的四个海上风电项目,除渤海绥中一台机利用了原石油平台外,上海东海大桥海上风电场和响水近海试验风电场均采用混凝土高桩承台基础,江苏如东潮间带风电场则采用了混凝土低桩承台、导管架及单桩三种基础型式。 图1.1-1 重力式基础型式 图1.1-2 多桩导管架基础型式

图1.1-3 四桩桁架式导管架基础型式图1.1-4单桩基础型式 图1.1-5 高桩混凝土承台基础型式图1.1-6低桩承台基础型式基于国内外海上、滩涂区域风电场的建设经验,结合普陀6号海上风电场2区工程的特点及国内海洋工程、港口工程施工设备、施工能力,可研阶段重点考察桩式基础,并针对5.0MW风电机组拟定五桩导管架基础、高桩混凝土承台基础和四桩桁架式导管架基础作为代表方案进行设计、分析比较。 1.1.1 多桩导管架基础施工 图1.1-7 五桩导管架基础型式图1.1-8 四桩桁架式基础型式

海上风电施工简介(经典)

海上风电施工简介 目录 1 海上风电场主要单项工程施工方案 (1) 1.1 风机基础施工方案 (1) 1.2 风机安装施工方案 (13) 1.3 海底电缆施工方案 (19)

1.4海上升压站施工方案 (23) 2 国内主要海上施工企业以及施工能力调研 (35) 2.1 中铁大桥局 (35) 2.2 中交系统下企业 (41) 2.3 中石(海)油工程公司 (46) 2.4 龙源振华工程公司 (48) 3 国内海洋开发建设领域施工业绩 (52) 3.1 跨海大桥工程 (52) 3.2 港口设施工程 (55) 3.3 海洋石油工程 (55) 3.4 海上风电场工程 (58) 4 结语 (59)

1 海上风电场主要单项工程施工方案 1.1 风机基础施工方案 国外海上风电起步较早,上世纪九十年代起就开始研究和建设海上试验风电场,2000年后,随风力发电机组技术的发展,单机容量逐步加大,机组可靠性进一步提高,大型海上风电场开始逐步出现。国外海上风机基础一般有单桩、重力式、导管架、吸力式、漂浮式等基础型式,其中单桩、重力式和导管架基础这三种基础型式已经有了较成熟的应用经验,而吸力式和漂浮式基础尚处于试验阶段。舟山风电发展迅速。 目前国内海上风机基础尚处于探索阶段,已建成的四个海上风电项目,除渤海绥中一台机利用了原石油平台外,上海东海大桥海上风电场和响水近海试验风电场均采用混凝土高桩承台基础,江苏如东潮间带风电场则采用了混凝土低桩承台、导管架及单桩三种基础型式。 图1.1-1 重力式基础型式 图1.1-2 多桩导管架基础型式

图1.1-3 四桩桁架式导管架基础型式图1.1-4单桩基础型式 图1.1-5 高桩混凝土承台基础型式图1.1-6低桩承台基础型式基于国内外海上、滩涂区域风电场的建设经验,结合普陀6号海上风电场2区工程的特点及国内海洋工程、港口工程施工设备、施工能力,可研阶段重点考察桩式基础,并针对5.0MW风电机组拟定五桩导管架基础、高桩混凝土承台基础和四桩桁架式导管架基础作为代表方案进行设计、分析比较。 1.1.1 多桩导管架基础施工 图1.1-7 五桩导管架基础型式图1.1-8 四桩桁架式基础型式

海上风力发电机组基础设计

摘要 这篇文章介绍了海上风电场建设概况、海上风力发电机组的组成、海上风电机组基础的形式、海上风电机组基础的设计。 关键词电力系统;海上风电场;海上风电机组基础;设计

Abstract This article describes the overview of offshore wind farm construction, the composition ofthe offshore wind turbine, offshore wind turbines based on the form-based design ofoffshore wind turbines. Key Words electric power system;Offshore wind farm; Offshore wind turbine foundation; design

1前言 1.1全球海上风电场建设概况 截止到2012年2月7日,全球海上风电场累计装机容量达到238,000MW,比上年增加了21%。 1.2 中国 截至2010年底,中国的风电累计装机容量达到44.7GW,首次居世界首位,亚洲的另外一个发展中大国印度也首次跻身风电累计装机容量世界前五位。 1.3海上风力发电机组通常分为以下三个主要部分: (1)塔头(风轮与机舱) (2)塔架 (3)基础(水下结构与地基) ?与场址条件密切相关的特定设计;?约占整个工程成本的20%-30%; ?对整机安全至关重要。支撑结构

2 海上风电机组基础的形式 2.1海上风电机组基础的形式 目前经常被讨论的基础形式主要涵盖参考海洋平台的固定式基础,和处于概念阶段的漂浮式基础,具体包括: ?单桩基础; ?重力式基础; ?吸力式基础; ?多桩基础; ?漂浮式基础 2.1.1单桩基础:(如图1所示) 采用直径3~5m 的大直径钢管桩,在沉好桩后,桩顶固定好过渡段,将塔架安装其上。单桩基础一般安装至海床下10-20m,深度取决于海床基类型。此种方式受海底地质条件和水深约束较大,需要防止海流对海床的冲刷,不适合于25m 以上的海域。 2.1.2重力式基础:(如图2所示) 图1 单桩基础示意图

海上风电机组导管架基础水下灌浆施工技术 卓豪海

海上风电机组导管架基础水下灌浆施工技术卓豪海 发表时间:2019-06-13T10:15:33.617Z 来源:《电力设备》2019年第3期作者:卓豪海 [导读] 摘要:文章以海上风电导管结构及桩基灌浆连接施工技术为研究对象,首先对海上风电导管架结构进行了阐述分析,随后分析探讨导管架基础灌浆连接段与导管架施工难点,最后结合实际案例对海上风电导管桩基灌浆连接施工技术进行了探讨,以供参考。 (中国能源建设集团广东火电工程有限公司广东广州 510000) 摘要:文章以海上风电导管结构及桩基灌浆连接施工技术为研究对象,首先对海上风电导管架结构进行了阐述分析,随后分析探讨导管架基础灌浆连接段与导管架施工难点,最后结合实际案例对海上风电导管桩基灌浆连接施工技术进行了探讨,以供参考。 关键词:海上风电;导管架构;桩基灌浆连接施工技术 前言 我国沿海风能资源丰富,有着非常高的有效利用小时数,并且用电负荷中心也比较近,因此在海上风电发展上有着得天独厚的地利优势。随着国家越来越重视绿色可持续能源开发利用,为海上风电发展带来了空前的机遇。风机导管架基础是海上风电建设的重要组成部分,做好海上风电导管结构及桩基灌浆连接施工技术分析,对于促进我国海上风电产业发展具有重要的意义。 一、海上风电导管架结构分析 导管架结构形式一般包括两种,一种是先桩法导管架,另一种是后桩法导管架。两种导管架有着相同的主体结构,即都是框架对称结构,结构材料均为钢制材料。但在结构细节部分有着明显的差异。对于先打桩导管架而言,在自身支撑腿末端不需要进行桩靴设置,而后打桩导管架则需要设置桩靴。导管架结构一般分为两部分,一部分是导管架结构基础,一部分是过渡段,过渡段主要包括平台甲板、主斜撑、主筒体等。 在实际开展灌浆施工作业时,一般地点会选择专业灌浆船上,并在完成打桩、下部导管架施工等工序后,正式开始进行桩基灌浆作业。在具体进行灌浆施工时,需要遵循如下施工流程,首先稳步停靠灌浆船,保证船体在有灌浆终端面板的导管架一侧,方便灌浆管连接,然后连接好灌浆管,并向环形空间内进行淡水压注;接着在正式灌浆前,需要做好环形空间气密性检查,并向灌浆管进行润管料压注,使得灌浆管道处于湿润状态,随后将拌制好的灌浆料由灌浆泵灌入灌浆区域,一般完成单桩灌浆的标志是在溢浆口处有浓浆溢出,然后将灌浆管拔出,连接导管架同侧的另一根导管线,继续进行灌浆,在完成导管架同侧灌浆后,移动灌浆管到导管架另一侧,重复上述步骤,对另外两个单桩进行灌浆,全面完成灌浆工作。 二、导管架基础灌浆连接段分析 (一)先桩法导管架基础灌浆连接阶段 对于先桩法导管架基础的灌浆连接而言,一般是钢管桩在外,导管架腿柱在内,在导管架腿柱之上,会设置有灌浆管线与灌浆孔,从而在内外管之间形成一个环形空间,在实施灌浆作业时即是通过灌浆孔向该环形空间进行浆料灌注,具体如图一所示。在导管架基础的灌浆连接阶段设计上,需要注意防止灌浆过程产生的循环往复荷载引发的裂缝问题。对于先桩法导管架基础连接阶段来说,从灌浆连接段底部朝上,一直到连接段一半范围内,不会受到较强的弯矩影响,而自灌浆连接段顶部朝下,一直到连接段一半范围内,则会受到较大的弯矩影响,因此为防止在该区域内出现裂纹,应尽量避免设置剪力键。 三、导管架施工难点分析 (一)布置导管架管线 导管架管线布置对灌浆施工质量有着非常大的影响,在实际进行管线布置时,一般会选择双管线系统,即一个管线用于灌浆,另一个管线用于备用,当出现管线堵塞突发问题时,能够及时替换导管,避免影响正常施工。在灌浆管线材质选择上,一般会选择橡胶软管或钢管,直径应大于50mm。灌浆管设置在灌浆空间的底部,通过焊接的方式固定在导管架套筒外壁上,管口为圆形外包管形式,内部沿圆周方向,设置有6或8只灌浆嘴。在这种设计方式下,能够有效提升灌浆的均匀、平稳性,为灌浆质量提供有力的保障。通过上文叙述可知,一般会在灌浆船上开展灌浆作业,但在实际作业过程中,受船自身体积影响,作业钢管桩很难贴近船机,并且导管架桩腿之间的距离比较大,因此需要灌浆管长度够长,并且需要一定的弯曲度,才能够成功与预制灌浆管线对接。 (二)灌浆材料选择 灌浆材料选择是海上风电桩基灌浆连接施工的关键所在,在实际选择时,会以灌浆连接段分析结果与设计要求为依据,选择普通水泥灌浆料或高强水泥灌浆料。对于普通水泥灌浆料而言,自身价格低、取材方便,广泛应用于海洋石油工程中,但缺点也很明显,容易浆结收缩,抗压强度与粘结强度较低。高强水泥灌浆料相对于普通水泥灌浆料来说,主要采用了收缩补偿技术,因此灌浆料比较均匀,流动性强,更容易进行泵送灌浆,因此更加适合海上风电基础灌浆要求,除此之外,在海上风电桩基灌浆连接施工方面,高强水泥灌浆料还具备

海洋风电支撑结构的随机性动力优化设计

海洋风电支撑结构的随机性动力优化设计 发表时间:2018-05-21T16:00:37.530Z 来源:《基层建设》2018年第5期作者:刘炳辰 [导读] 摘要:二十一世纪以来,我国的社会主义经济和科学技术水平得到了很大的发展和进步,对于能源的获取和使用方式也有了很大的改善。 上海振华重工(集团)股份有限公司上海 200125 摘要:二十一世纪以来,我国的社会主义经济和科学技术水平得到了很大的发展和进步,对于能源的获取和使用方式也有了很大的改善。随着我国科技水平的提高,对于海洋和天空的勘探与开采也提高了很大的工作力度。就海洋风电支撑结构而言,与陆地风电相比较而言,海洋锋利支撑结构成本较大,风电支撑结构受到了诸多因素的影响,给支撑结构的维护和施工费用增加了很大的成本。所以在进行设计过程当中,应当对支撑结构进行全面细致的考虑,提高风电支撑结构的可靠性和安全性,并且在此基础上实现节约成本的目的。 关键词:随机性动力优化;海洋风电;支撑结构;设计 从目前的情况来看,海洋风电具有高速稳定的特点,并且具有丰富的资源,占有空间较小,环保功能极高,以此受到了国家和有关企业的高度重视,并且在近些年当中取得了飞速的发展和进步。经过有关专家和学者的调查研究发现,与陆地相比,海上的风速较快,通过海洋风力发电能够使发电量得到有效的提高,进而可以满足当今时代国家发展和人民日常工作生活的基本需求,对促进国家的发展和进步具有十分重要的意义。 1海洋风电支撑结构概述 从目前的情况来看,海洋风电支撑结构已经衍生出很多的类型,不同的类型具有不同的结构特点和固定方式,所使用的施工材料也存在着很多的不同,需要对其进行细致的划分。通常情况之下,对于海洋风电支撑结构从总体上可以分为重力基础结构、桩基结构、锚泊浮式结构以及桩裙筒型结构。就固定式支撑结构而言,大致可以分为四种类型,重力基础结构、单桩结构、导管架结构以及三桩结构。 一般情况下,桩基结构用于单桩结构、导管架结构以及散装结构,利用焊接和水力锤把桩固定在海床之上,这种方式是当前海洋风电最为普遍的基础结构。与桩基结构限制平台水平和垂直运动有所不同,重力基础结构主要是从整体上对海床的升沉运动进行适当的调整,主要的工作机理是通过压载物的重力负载来保证结构的稳定与平衡,并且将岩石、铁矿石、混凝土等物质填充到压载物当中。 2海洋风电载荷分析 2.1海洋环境载荷 影响海洋结构的主要因素主要包括海风、海流以及海浪等,有些特殊的地域甚至会受到内波、地震或者是冰载的影响。在进行波浪作用的计算之时,应当先确定进行设计所依据的波浪要素,其中包括:波长、波高以及周期等,同时也要对波浪下的整个流场进行确定,其中包括加速度分布、水分子速度等因素。首先,将所选建设地点的海洋环境作为根本依据,对相关的波浪参数进行统计,将统计结果作为设计波的波浪要素值。再根据选定的波浪理论确定加速度分布和水分子速度等。最后,再利用有关的公式和方式计算出风电塔柱上的流体动力载荷。 2.2地震载荷 很多时候,发生地震的原因主要来自于海底板块移动错位。从地理的角度来讲,我国的沿海地区大多处于地震的多发地带。根据我国有关研究单位的材料显示,我国的渤海以及台湾东部和西部以及东南沿海都处于地震带之上,我国海洋风电大多处于前文所描述的位置,所以在进行海洋风电载荷的过程当中,一定要将地震对支撑结构的影响进行充分的考虑。如果支撑结构所处的环境地震强烈,可以允许该结构存在部分塑性状态,受到一定程度的破坏,但是不能完全损坏或者是倒塌。所以,在进行设计的过程当中,应当将抗震能力的设计工作考虑在内,对于支撑结构的动力可靠性具有非常重要的意义。同时,由于地震负荷并不是常见的环境影响因素,所以在进行载荷组合的计算工作当中,可以不必将地震载荷因素融入到组合当中。 2.3风载荷 在进行海洋风电支撑结构的随机性动力优化设计工作之时,应该将筒顶部与整个机舱和叶片等部位进行连接。叶片由于风力的作用进行发电之时,机舱内部会出现相应的非线性时域载荷,并将载荷传递到塔筒,再利用相应的软件对机舱和叶片进行模拟试验,从而能够获取风力发电机在正常工作的状态之下的载荷数据。风能的总能量主要包括极重力势能、动能以及静压能,按照伯努利得出,流体的总能量不变,当气流靠近风轮的附近之时,速度和动能减小,静压增加,在风轮前达到最大值,从而使得风轮能够获取到气流当中的最大能量。 3海洋风电结构动力分析 3.1海洋风电动力分析现状 从目前的情况来看,对于海洋风电动力的分析仅仅只是局限于元模型,主要是进行模态分析和时域响应分析,对于很多结构的动力分析方法大致相同,海洋风电的特殊性主要来自于支撑结构受力情况过于复杂,风力发电机对于支撑结构产生极大的影响,造成严重的振动现象。有关专家通过空气动力仿真软件对陆上风电设计分析的基础,针对海洋风电设计增加了新的功能,使之能够不规则波或者是规则波作用之下支撑结构运动与风机之间的耦合效应。有些专家和学者还对风浪作用下浮式风电系统的耦合动力进行了分析和探索,并且通过对模态进行分析,对这种耦合作用的过程进行了明确的分析和解释。 3.2三脚架结构模态分析 在海洋风电支撑结构当中,三脚架结构是比较常见的一种结构方式之一,在进行随机性动能优化设计工作的过程当中,对于塔架整体的刚度应该进行充分的考虑,对其进行高度的重视,从而能够防止支撑结构在载荷的作用之下出现严重的形变,使得刚度受损,降低整个支撑结构的安全性和稳定性。因为风轮会受到不同方向的外力而产生周期性的动载荷,这是塔架振动的主要原因之一,因此要求塔架系统的固有频率需要与风轮转动的频率相区分,也不能与之成为整数倍的关系,从而能够避免塔架承受的交变载荷所可能造成的风电机组系统出现共振的情况。所以,要对塔架结构进行全面仔细的模态分析。 3.3海洋风电支撑结构随机性动能优化设计 对风电支撑结构的随机性动力进行优化的主要目的在于满足各种约束条件的前提下,找到最为有效的设计变量,从而导致目标函数呈现最佳的状态。在这当中,如果把经济性能作为目标函数进行优化设计一般能够把结构尺寸降到最低,同时也可以使和工作性能有关系的函数值处于临界状态,这种设计方法非常危险。原因在于,在实际工作过程当中优化设计种的设计变量和外部变量通常会存在一定的不确

海上风电机组导管架基础水下灌浆技术应用分析

龙源期刊网 https://www.doczj.com/doc/512647098.html, 海上风电机组导管架基础水下灌浆技术应用分析 作者:冯勇 来源:《山东工业技术》2017年第17期 摘要:我国是一个资源消耗大国,对于电力资源需求极为庞大。在资源需求和环境保护 的压力下,寻找电力资源的目光瞄向了风力发电。我国的海上风力资源充足,建立起了海上风电机组,进行风力发电已是一种必然趋势。在海上建立发电机组需要用到导管架基础水下灌浆技术,导管架基础需要能够承受风电机组设备的长期动力荷载,这就要求导管架基础灌浆具备高强度、高抗疲劳、高抗离析等性能。面对不同的海域情况,又要进行区别对待,我们因此对海上风电机组导管架基础水下灌浆技术进行研究分析。 关键词:海上风电机组;导管架基础;水下灌浆技术 DOI:10.16640/https://www.doczj.com/doc/512647098.html,ki.37-1222/t.2017.17.152 0 引言 随着科技的不断发展,人们对于能源的需求也是越来越大。在使用水力、燃煤和核能发电的同时,风力发电也相对应用而生。我国的辽阔海域上风力资源充足,建立起海上发电机组,可以为沿海城市提供电能。海上风力发电机组建立在海上,基础形式大多为桩式基础,桩式基础又可以分为单桩基础,多桩导管架基础等形式。这些基础都建立在海水中,我们使用的是先进的水下灌浆技术,然而不同的海域条件还会对技术有不同的要求。一些复杂的海域条件,会导致水下灌浆难度提升,对海上风电机组基础的支撑结构安装起到不良影响。在这里我们对导管架基础水下灌浆技术进行研究。 1 导管架基础结构 导管架基础是一种应用较为广泛的海上风电机组,具有重量轻、地理条件适应性好和稳定性极佳等优点,在较深海域也可以广泛应用。导管架结构是一种钢制框架结构,主要分为过渡段和导管架基础。导管架基础一般分为先打桩导管架和后打桩导管架两种结构形式。先打桩导管架是在海底先做出固定模架,然后打入四根呈正方形分布的钢管桩,然后再进行整体吊装,之后进行水下灌浆,连接并固定钢管桩和导管架基础。另外的后打桩导管架则是在导管架的支腿底部安置桩靴,在导管架吊装结束后,钢管桩通过桩靴打入海底,在进行水下灌浆连接起来。 2 导管架基础水下灌浆材料

浅谈导管架式海上风电基础结构分析

浅谈导管架式海上风电基础结构分析 风能是清洁性能源,具有可再生性以及独特的优越性,随着社会和科技的不断进步,推动了海上风能的开发以及利用。在海上风电产业发展的背景下,我国对新型能源的需求量在不断增加,从而促使海上风机发展成海洋工程结构物,目前,我国已经建成的具有代表性的海上风电场有山东的荣成项目、上海的东海大桥项目等。 标签:导管架式;海上风电;基础结构 风能是一种清洁性能源,具有可再生性、可利用性、长期性、周期性等特点。风能与煤炭、石油等化石能源的特性不同,不存在能源勘探、能源挖掘、能源加工等问题,在其使用过程中,不会因为使用量的增加而减少,其中风能的应用主要是风力机发电,而海上风力机会受到海洋环境以及桩基结构的影响。 一、海上风电基础结构型式 目前,针对海上风电的开发阶段,降低海上风电场建设的经济投资是海上风电开发和利用的关键,其中经济投资中成本占比最大的是风电机组基础结构的建设成本,而这部分也直接影响风机运行的结构稳定性和安全性,因此,风电基础结构的研发成本低、可靠稳定性高,能够保证海上风电场的顺利建设[2]。在海上风电场的利用和发展过程中,通过对海上固定式平台基础结构的加工和衍变,形成了我国现有的海上风机基础结构,根据海上风机装机容量的不同,以及海水深度、海水环境、建设投资的不同,可以将海上风电基础型式分为以下四种: ①重力式基础:是指海上风电基础结构需要依靠其自身的重力来维持结构的稳定性和强度性,常见的型式是钢筋混凝土结构。如图1所示 ②桩承式基础 桩承式基础结构受力模式和建筑工程中传统的桩基础类似,由桩侧与桩周土接触面产生的法向土压力承担结构的水平向荷载,由桩端与土体接触的法向力以及桩侧与桩周土接觸产生的侧向力来承载结构的竖向荷载。桩承式基础分类 按材料分:钢管桩基础和钢筋混凝土桩基础;按结构形式分:单桩基础、三脚架基础、导管架基础和群桩承台基础。如图2所示 ③浮式基础:是指利用系泊或者锚杆在海底进行位置的固定,通过三力的平衡来维持海上风机基础结构的稳定性,其中三力是指自身重力、系缆回复力、结构浮力,并且还能够精准控制海流影响产生的摇晃角度。如图3所示 二、导管架式海上风机基础结构型式

各种海上风电地基基础的比较及适用范围

各种海上风电地基基础的适用范围 1 海上风电机组基础结构设计需考虑的因素 海上风电机组基础结构设计中,基础形式选择取决于水深、水位变动幅度、土层条件、 海床坡率与稳定性、水流流速与冲刷、所在海域气候、风电机组运行要求、靠泊与防撞要求、 施工安装设备能力、预加工场地与运输条件、工程造价和项目建设周期要求等。 当前阶段国内外海上风电机组基础常用类型包括单桩基础、重力式基础、桩基承台基础 (潮间带风电机组)、高桩承台基础、三脚架或多脚架基础、导管架基础等。试验阶段的风电 机组基础类型包括悬浮式、吸力桶式、张力腿式、三桩钢架式基础等形式,但仅处于研究或 试验阶段。 基础型式结构特征优缺点造价成本适用范围安装施工 重力式有混凝土重 力式基础和 钢沉降基础结构简单、抗风 浪袭击性能好; 施工周期长,安 装不便 较低浅水到中等水 深(0~10m) 大型起重船等 单桩式靠桩侧土压 力传递风机 荷载安装简便,无需 海床准备;对土 体扰动大,不适 于岩石海床 高浅水到中等水 深(0~30m) 液压打桩锤、钻 孔安装 多桩式上部承台/三 脚架/四脚架/ 导管架适用于各种地质 条件,施工方便; 建造成本高,难 移动 高中等水深到深 水(>20m) 蒸汽打桩锤、液 压打桩锤 浮式直接漂浮在 海中(筒型基 础/鱼雷锚/平 板锚)安装灵活,可移 动、易拆除;基 础不稳定,只适 合风浪小的海域 较高深水(>50m)与深水海洋平 台施工法一致 吸力锚利用锚体内 外压力差贯 入海床 节省材料,施工 快,可重复利用; “土塞”现象,倾 斜校正 低浅水到深水 (0~25m) 负压下沉就位表1 当前常用风电基础形式的比较 2 中国各海域适用风电基础形式的分析 我国渤海水深较浅,辽东湾北部浅海区水深多小于10 m ,海底表层为淤泥、粉质粘土、淤泥质粉砂,粉土底部沉积物以细砂为主,承载力相对较大,可作持力层。和粉砂层,承载力小,易液化,不适宜作持力层;而黄河口海域多为黄河泥沙冲淤海底,因此,渤海的大部分海域为淤泥质软基海底,冲刷现象也较为严重,且冬季有冰荷载的作用,不宜采用重力式基础和负压桶基础,可采用单桩结构。单桩结构在海床活动区域和海底冲刷区域是非常有利的,主要是缘于其对水深变化的灵活性。相比黄河口海域,长江口、杭州湾、珠江口受潮汐影响大,水流速度较快,近场区分布有多个岛屿,造成海底地层的岩面起伏大,且容易受到台风等气象因素影响,宜采用重力式或多桩式结构。

海上风电导管架安装专项工作方案样本

海上风电导管架安装专项工作方案

珠海桂山海上风电场一期导管架安装专项方案 编制: 复核: 审批: 中铁大桥局股份有限公司 2014年9月

目录 1、工程概况 ........................................... 错误!未定义书签。 ................................................ 错误!未定义书签。 导管架设计概况................................. 错误!未定义书签。 2、自然环境 ........................................... 错误!未定义书签。 ................................................ 错误!未定义书签。 气象条件....................................... 错误!未定义书签。 特征气象参数................................... 错误!未定义书签。 潮汐........................................... 错误!未定义书签。 波浪........................................... 错误!未定义书签。 海流........................................... 错误!未定义书签。 3、导管架安装方案...................................... 错误!未定义书签。 总体安装方案................................... 错误!未定义书签。 施工步骤....................................... 错误!未定义书签。 构件进场检查................................... 错误!未定义书签。 导管架安装..................................... 错误!未定义书签。 牺牲阳极接地电缆安装........................... 错误!未定义书签。 施工重难点及控制措施........................... 错误!未定义书签。 4、施工设备及劳动力组织................................ 错误!未定义书签。 施工设备....................................... 错误!未定义书签。 劳动力组织..................................... 错误!未定义书签。 5、施工周期分析........................................ 错误!未定义书签。 6、HSE保证措施........................................ 错误!未定义书签。 职业健康保证措施............................... 错误!未定义书签。 特种作业安全保证措施........................... 错误!未定义书签。 环境保证措施................................... 错误!未定义书签。 施工安全保证措施............................... 错误!未定义书签。 7、附图 ............................................... 错误!未定义书签。

1.5兆瓦风力发电机组塔筒及基础设计

1.5兆瓦风力发电机组塔筒及基础设计 摘要:风能资源是清洁的可再生资源,风力发电是新能源中技术最成熟、开发条件最具规模和商业化发展前景最好的发电方式之一。塔筒和基础构成风力发电机组的支撑结构,将风力发电机支撑在60—100m的高空,从而使其获得充足、稳定的风力来发电。塔筒是风力发电机组的主要承载结构,大型水平轴风力机塔筒多为细长的圆锥状结构。一个优良的塔筒设计,可以保证整机的动力稳定性,故塔筒的设计不仅要满足其空气动力学上得要求,还要在结构、工艺、成本、使用等方面进行综合分析。基础设计与基础所处的地质条件密不可分,良好的地质条件可以为基础提供可靠的安全保证,从风机塔筒基础特点的分析可以看出,风机塔筒基础的重要性及复杂性是不言而喻的。在复杂地质条件下如何确定安全合理的基础方案更是重中之重。 关键词:1.5兆瓦;风力发电机组;塔筒;基础;设计 1、我国风机基础设计的发展历程 我国风机基础设计总体上可划分为三个阶段,即2003年以前小机组基础的自主设计阶段,2003— 2007年MW机组基础设计的引进和消化阶段,2007年以后MW机组基础的自主设计阶段, 在2003年以前,由于当时的鼓励政策力度不大,风电发展缓慢,2002年末累计装机容量仅为46.8万kw,当年新增装机容量仅为6.8万kw,项目规模小、单机容量小,国外风机厂商涉足也较少,风机基础主要由国内业主或厂商委托勘测设计单位完成,设计主要依据建筑类的地基规范。 从2003年开始,由于电力体制改革形成的电力投资主体多元化以及我国开始实施风电特许权项目,尤其是2006年《可再生能源法》生效以后,国外风机开始大规模进入中国,且有单机容量600kw、750kw很快发展到850kw、1.0MW、1.2MW、1.5MW 和2.0MW,国外厂商对风机基础设计也非常重视,鉴于国内在MW风机基础设计方面的经验又不够丰富,不少情况下基础设计都是按照厂商提供的标准图、国内设计院

海上风电风机基础选型

海上风电场风机基础选型 1.概述 风能作为一种清洁的可再生能源,越来越受到世界各国的重视。海上有丰富的风能资源和广阔平坦的区域,离岸10 km的海上风速通常比沿岸陆上25%;海上风湍流强度小,具有稳定的主向,机组承受的疲劳负荷较低,使得风机寿命;风切变小,因而塔架可以较低;在海上开发风能,受噪声、景观、鸟类、电磁波干扰等问题较少;海上风电场不涉及土地征用等问题,人口比较集中,陆地面积相对较小、濒临海洋家或地区,较适合发展海上风电。海上风能利用不会造成大气污染和产生任何有害,可减少温室效应气体的排放,环保价值可观,海上风电的这些优点,使得近海风力发电技术成为近年来研究和应用的热点。 发电成本是海上风电发展的瓶颈,影响海上风电成本的主要因素是基础结构成本(包括制造、安装和维护)。目前,海上风电场的总投资中,基础结构占20~30%,而陆上风电场仅为5~10%。因此发展低成本的海上风电基础结构是降低海上风电成本的一个主要途径。 2.风机基础结构型式 海上风电机组的基础被认为是造成海上风电成本较高的主要因素之一。目前国外研究和应用的海上风机基础从结构结构型式上主要分为重力式基础、桩基础及悬浮式基础。前两种形式已在欧洲海上风电场建设中得到广泛应用,悬浮式基础为正在研制阶段的深水海上风电技术。 2.1.重力式基础 重力固定式基础体积较大,靠重力来固定位置,主要有钢筋混凝土沉箱型或钢管柱加钢制沉箱型等等,其基础重量和造价随着水深的增加而成倍增加,丹麦的Vindeby 、Tun? Knob、Middelgrunden和比利时的Thornton Bank海上风电场基础采用了这种传统技术。 重力式基础适合坚硬的黏土、砂土以及岩石地基,地基须有足够的承载力支撑基础结构自重、上部风机荷载以及波浪和水流荷载。重力式基础一般采用预制圆形空腔结构(图2-1),空腔内填充砂、碎石或其他密度较大的回填物,使基础有足够自重抵抗波浪、水流荷载以及上部风机荷载对基础产生的水平滑动、

相关主题
文本预览
相关文档 最新文档