当前位置:文档之家› 电缆直流电阻计算

电缆直流电阻计算

电缆直流电阻计算
电缆直流电阻计算

电缆直流电阻与长度的关系

您好!电线、电缆每1千米的直流电阻计算公式:每1千米的直流电阻=电阻系数×1000÷截面积(平方毫米)·欧/1000米电阻系数:其中当温度T=20℃时,铜的电阻系数为0.0175欧·平方毫米/米铝的电阻系数为0.0283欧·平方毫米/米其中当温度T=75℃时,铜的电阻系数为0.0217欧·平方毫米/米铝的电阻系数为0.0346欧·平方毫米/米注意不论是单根或是多根都是以总截面积为计。例如以1.5平方毫米铜芯线(环境温度为20℃)计算: 0.0175×1000÷1.5≈11.667(欧/1000米)

绝缘铜电线最大直流电阻计算方法

20度时铜导体直流电阻=17.241/实际截面积单位:欧/km t度时铜导体直流电阻=(17.241/实际截面积)*(1+0.00393*(t-20))* 1.012*1.007 若为铝芯,17.241换为28.264,0.00393换为0.004 03 求出的是单位长度电阻,有多长再乘即可注:20度时最大电阻可查GB3956-1997,有国标就尊重国标

直流电动机: 4.0.2 测量励磁绕组和电枢的绝缘电阻值,不应低于 0.5MΩ。 4.0.7 测量励磁回路连同所有连接设备的绝缘电阻值不应低于0.5MΩ。交流电动机: 1 额定电压为 1000V 以下,常温下绝缘电阻值不应低于 0.5MΩ;额定电压为 1000V及以上,折算至运行温度时的绝缘电阻值,定子绕组不应低于1MΩ/KV,转子

绕组不应低于0.5MΩ/KV。此外还应考虑温度对绝缘电阻值的影响。

直流电阻和20℃电阻率的单位及计算公式

1)定义或解释电阻率是用来表示各种物质电阻特性的物理量。某种材料制成的长1米、横截面积是1平方毫米的导线的电阻,叫做这种材料的电阻率。 (2)单位国际单位制中,电阻率的单位是欧姆·米,常用单位是欧姆·平方毫米/米。 (3)说明①电阻率ρ不仅和导体的材料有关,还和导体的温度有关。在温度变化不大的范围内,:几乎所有金属的电阻率随温度作线性变化,即ρ=ρo(1+at)。式中t是摄氏温度,ρo是O℃时的电阻率,a是电阻率温度系数。②由于电阻率随温度改变而改变,所以对于某些电器的电阻,必须说明它们所处的物理状态。如一个220 V 1OO W电灯灯丝的电阻,通电时是484欧姆,未通电时只有40欧姆左右。③电阻率和电阻是两个不同的概念。电阻率是反映物质对电流阻碍作用的属性,电阻是反映物体对电流阻碍作用的属性。下表是几种金属导体在20℃时的电阻率. 材料电阻率(Ω m) (1)银 1.6 × 10-8 (5)铂 1.0 × 10-7 (9)康铜 5.0 ×10-7 (2)铜 1.7 × 10-8 (6) 铁 1.0 × 10-7 (10)镍铬合金 1.0 × 10-6 (3)铝 2.9 × 10-8 (7)汞 9.6 × 10-7 (11)铁铬铝合金1.4 × 10-6 (4)钨 5.3 × 10-8 (8)锰铜 4.4 × 10-7 (12) 铝镍铁合金1.6 × 10-6 (13)石墨(8~13)×10-6 可以看出金属的电阻率较小,合金的电阻率较大,非金属和一些金属氧化物更大,而绝缘

体的电阻率极大.锗,硅,硒,氧化铜,硼等的电阻率比绝缘体小而比

金属大,我们把这类材料叫做半导体 (semiconductors). 总结:常态下(由表可知)导电性能最好的依次是银,铜,铝,这三种材料是最常用的,常被用来作为导线等,其中铜用的最为广,几乎现在的导线都是铜的(精密一起,特殊场合除外)铝线由于化学性质不稳定容易氧化已被淘汰.银导电性能最好但由于成本高很少被采用,只有在高要求场合才被使用,如精密仪器,高频震荡器,航天等...顺便说下金,在某些场合仪器上触点也有用金的,那是因为金的化学性质稳定故采用,并不是因为其电阻率小所至.

接地网电阻计算公式

接地网电阻计算公式 三维方法设计变电站的接地电阻 陈光辉1 江建武2 (1 深圳市长科防雷技术有限公司,深圳) (2 深圳供电局变电部,深圳) 【摘要】用三维方法设计变电站的接地电阻,可使接地电阻比传统设计更加准确,结合现有国内外接地新材料.新技术,新 工艺,可使变电站接地网接地电阻达到最佳效果 【关键词】三维地网设计、新材料,新工艺施工。 前言 目前,由于征地等原因,变电所的占地面积越来越小,有的GIS 室内型110kV 变电站占地面积仅有1500m2, 且大部分建在山上,这些地方往往电阻率很高,欲在这样的地方不扩网、不外引,在原地使其工频接地电阻达到 规程要求标准,用常规方法很难实现。我公司在实践过程中,采用三维方法设计,即A-T-N 方案,成功解决了 土壤电阻率300Ωm,占地面积为5000m2 情况下的接地电阻R≤0.5Ω的国家规定标准。 1 A 方案 用常规的方法实现工频接接地电阻RA,主要是用于解决地网的电位分布均匀,均衡最大值下的冲击电压,以 及降低水平网的工频接地电阻,它可以利用工地的自然接地体,如建筑物、自来水管等来完成网格式接地网的接 地电阻,它是在不扩网、不外引、不使用任何降阻剂的情况下计算出的工频接地阻抗值,计算公式采用部颁《交流 电气装置的接地》[1]有关规定的公式进行。 a e R a R 1 = (1) 1 3ln 0 0.2 L S S L a ? ?? ? ? ?? ? = ?(2) ?? ? ??= + + ? ? B

hd S L B S Re 5 9 ln 2 0.213 (1 ) π ρρ (3) S h B 1 4.6 1 + = (4) 式中:Ra—任意形状边缘闭合接地网的接地电阻(Ω); Re—等值(即等面积、等水平接地极总长度)方形接地网的接地电阻(Ω); S—接地网的总面积(m2); d—水平接地极的直径或等效直径(m); h—水平接地极的埋设深度(m); LO—-接地网的外缘边线总长度(m); L—水平接地极的总长度(m)。 简化后的计算方法: S R a ′ = 0.5ρ(5) 式中:ρ—土壤电阻率(Ωm); S—地网面积(m2)。 上式公式中, a R 和土壤电阻率ρ成正比,和地网占地面积S 成反比。如果取p=300Ωm,欲达到R=0.5Ω面 积S 则必须达到90000m2。 在正方型接地网中,当网格数超过16 个时,基本(1)式=(5)式;当网格数少于16 个时,a R > R′a 。 日本川漱太朗公式为: ?? ? ?? ? + ? ′

常用导体材料电阻率计算公式

常用导体材料电阻率计 算公式 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

【电学部分】 1电流强度:I=Q电量/t 2电阻:R=ρL/S 3欧姆定律:I=U/R 4焦耳定律: ⑴Q=I2Rt普适公式) ⑵Q=UIt=Pt=UQ电量=U2t/R (纯电阻公式) 5串联电路: ⑴I=I1=I2 ⑵U=U1+U2 ⑶R=R1+R2 ⑷U1/U2=R1/R2 (分压公式) ⑸P1/P2=R1/R2 6并联电路: ⑴I=I1+I2

⑵U=U1=U2 ⑶1/R=1/R1+1/R2 [ R=R1R2/(R1+R2)] ⑷I1/I2=R2/R1(分流公式) ⑸P1/P2=R2/R1 7定值电阻: ⑴I1/I2=U1/U2 ⑵P1/P2=I12/I22 ⑶P1/P2=U12/U22 8电功: ⑴W=UIt=Pt=UQ (普适公式) ⑵W=I^2Rt=U^2t/R (纯电阻公式) 9电功率: ⑴P=W/t=UI (普适公式) ⑵P=I2^R=U^2/R (纯电阻公式) 电流密度的问题:一般说铜线的电流密度取6A/mm2,铝的取 4A,考虑到大电流的趋肤效应,越大的电流取的越小一些,100A

以上一般只能取到左右,另外还要考虑输电线路的线损,越长取的也要越小一些。 计算所有关于电流,电压,电阻,功率的计算公式 1、串联电路电流和电压有以下几个规律:(如:R1,R2串联) ①电流:I=I1=I2(串联电路中各处的电流相等) ②电压:U=U1+U2(总电压等于各处电压之和) ③电阻:R=R1+R2(总电阻等于各电阻之和)如果n个阻值相同的电阻串联,则有R总=nR 2、并联电路电流和电压有以下几个规律:(如:R1,R2并联) ①电流:I=I1+I2(干路电流等于各支路电流之和) ②电压:U=U1=U2(干路电压等于各支路电压) ③电阻:(总电阻的倒数等于各并联电阻的倒数和)或。 如果n个阻值相同的电阻并联,则有R总= R 注意:并联电路的总电阻比任何一个支路电阻都小。 电功计算公式:W=UIt(式中单位W→焦(J);U→伏(V);I→安(A);t→秒)。

电线电缆导体直流电阻测量的误差分析

电线电缆导体直流电阻测量的误差分析 摘要:对于电线电缆产品,根据GB/T3048.4-2007标准要求和实际检测工作,对电线电缆中导体电阻项目的原理、实验过程、影响实验结果的因素及检测中应注意的事项进行探讨。 关键词:电线电缆;直流电阻;截面积;电流;温度 引言 在诸多电线电缆质量检验项目中,导体电阻是重要的检测项目之一。实际检测过程中往往由于忽略某些因素,导致测量结果的偏离。本文通过多年检测实践,分析对测量结果产生影响的因素并给出了相应的解决办法,与大家共同探讨。 1.概述 电线电缆直流电阻测量的依据是GB/T3048.4-2007《电线电缆电性能实验方法第4部分:导体直流电阻试验》。试验的方法如下:从被测电线电缆上按要求切取不小于1m的试样,去除试验导体外表的绝缘、护套或其他覆盖物,露出导体。在试样接入测量系统前,清洁其连接部位的导体表面,去除附着物和油污,连接处表面的氧化层尽可能除尽后,将导体试样固定在专用四端卡具上,双臂电桥的四个测试端与导体两端可靠连接后闭合直流电源开关,仪器完成预热后开始测量。调节电桥平衡。读取电桥读数,记录至少四位有效数字,关闭试验电源后准确测量卡具间被测导线的实际长度,记录环境温度,将测量结果换算到20℃时1km导体长度的电阻数值作为最终的报出值。 2.系统误差 一般情况下,我们检测的样品的导体电阻都远小于1Ω/m,通常采用双臂电桥和专用的四端测量卡具,再配合试样、标准电阻、检流计、变阻器、电流表、连接导线、开关、温度计等实验器材,组合成一个测量系统进行检测。不难看出,检测设备的精度、检定及校准是造成系统误差的主要原因。如何减少系统误差呢?我们应定期对检测设备进行检定和校准,以保证所有设备的精度都能满足检测的需要。使用双臂电桥时,标准电阻和试样间的导线电阻应明显小于标准电阻和试样的电阻。否则应采取适当的方法予以补偿,如导线补偿,使线圈和引线阻值比例达到足够平衡。对卡具的要求是每个电位接点与相应的电流接点之间的距离应不小于试样截面周长的1.5倍。 3.过程误差 过程误差我们也可以称之为方法误差,就是在整个测量过程中,由于方法使用不当,或测量程序出错为导致的误差。标准中,对导体电阻的检测做出了明确的规定。(一)取样。试样的制备很重要,涉及到试样表面处理、电流引入方式、

电力系统基本公式

1、已知电缆电阻率,长度,横截面积,可求出电缆电阻 电缆电阻计算:根据电阻公式:R=ρ×l/s.其中ρ为电阻率,l为长度,s为横截面积.由此便可求铜导线得电阻.注意,电阻与温度也有关系,不过这里我们一般都认为是常温.故暂不考虑温度影响. 铜的电阻率ρ=0.01851Ω.mm2/m,这个是常数. 物体电阻公式:R=ρL/S 式中: R为物体的电阻(欧姆); ρ为物质的电阻率,单位为欧姆米(Ω. mm2/m)。 L为长度,单位为米(m) S为截面积,单位为平方米(mm2) 这样距离是L(米)的单条线缆的电阻为 R(导线)=ρ*L /S 2、已知电缆电阻,供电电压,可求出电缆额定电流 电流计算公式I=U/R(I表示电流、U代表电压、R代表电阻) 已知导线电阻,供电电压,求导线额定电流--I(导线)=U(12V)/R(导线) 3、已知设备工作电流,电缆额定电流,可求出线路总电流 集中供电各设备为并联关系,并联电路总电流等于各支路电流之和 线路总电流I(总)=I(设备1)+I(设备N)+I(导线) 4、已知线路总电流,电缆电阻,可求出电缆压降 电压计算公式 U=IR 电线上的电压降等于电线中的电流与电线电阻的乘积 U(导线)=I(总)*R(导线) 5、推导电缆压降计算总公式 推导 U(导线)=I(总)*R(导线)=【I(设备1)+I(设备N)+I(导线)】*【ρ*L/S】 =【I(设备1)+I(设备N)+U(12V)/R(导线)】*【ρ*L/S】 ={I(设备1)+I(设备N)+U(12V)/【ρ*L/S】}*【ρ*L/S】 最后结论 U(导线)={I(设备1)+I(设备N)+U(12V)/【ρ*L/S】}*【ρ*L/S】 考虑供电构成回路,使用的是相同的线缆。对于两条电缆来说在线路中的电压损耗是 U(导线)=I(总)*R(导线),再乘以2就是实际压降。 声明:此计算仅限于直流供电,另外这只是一个工程计算,有一定误差。在计算的过程中要注意单位(量纲)问题。问清电缆厂家的产品准确的ρ值。

导体结构及直流电阻

导体直流电阻 Resistance of Conductor (摘自DINVDE0295, IEC60228和HD383) 铜导体普通线(?/km)铜导体镀锡线(?/km)焊接电缆(?/km) 标称截面积 mm2Class 1 and 2 Class 5 and 6 Class 1 and 2Class 5 and 6 铜导体普通线铜导体镀锡线 0.05 -~380 -~392 -- 0.08 -~237 -~244 -- 0.11 -~170 -~175 -- 0.126 -~150 -~155 -- 0.14 -~134 -~138 -- 0.22 -~96 -~99 -- 0.25 -~76 -~79 -- 0.34 -~53 -~56 -- 36.7 40.1 -- 39.0 0.5 36.0 26.7 -- 24.8 26.0 0.75 24.5 18.2 20.0 -- 19.5 1.0 18.1 12.2 13.7 -- 13.3 1.5 1 2.1 7.56 8.21 -- 7.98 2.5 7.41 4.70 5.09 -- 4.95 4.0 4.61 3.39 -- 3.11 3.30 6.0 3.08 1.84 1.95 -- 1.91 10.0 1.83 1.16 1.24 1.16 1.19 16.0 1.15 1.21 0.734 0.795 0.758 0.780 25.0 0.727 0.780 0.529 0.565 0.536 0.552 0.554 35.0 0.524 0.391 0.393 0.379 0.390 50.0 0.387 0.386 0.270 0.277 0.268 0.276 0.272 70.0 0.268 0.195 0.210 0.198 0.204 95.0 0.193 0.206 120.0 0.153 0.161 0.154 0.164 0.155 0.159 150.0 0.124 0.129 0.126 0.132 0.125 0.129 185.0 0.0991 0.106 0.100 0.108 0.102 0.105 240.0 0.0754 0.0801 0.0762 0.0817 -- 0.0641 0.0607 0.0654 -- 300.0 0.0601 0.0486 0.0475 0.0494 -- 400.0 0.0470 这些数据摘自DIN VDE0295(等效于国际标准IEC60228和HD383),按照截面积0.5mm2开始,每束导体 的单线直径不允许超过列出的最大值(参考DIN VDE0295),因此要求导线的最大电阻不允许超过在20℃成 束导体的最大电阻值。

圆柱形导体接地电阻的计算

电磁场仿真实验报告

2010级4班 吴开宇2010302540009

圆柱形导体接地电阻的计算 一、基本原理 一般来说,接地电阻由连接导线的电阻、连接导线和接地体的接触电阻、接地体本身的电阻和电流流入大地时所具有的电阻组成。由于前三项与最后一项相比很小,可忽略不计,所以接地电阻为电流从接地体流入地中时所具有的电阻,即:R=U/I(其中U为接地体对于无穷远的电压,I为流经接地体而注入大地的流散电流)。 二、相关数据 试求长为1m,直径0.05m,与大地垂直的、上圆柱表面与地面持平的管形接地体电阻(电阻率ρ1= 1.5×10-7Ω·m)。 我们无法建一个无穷大的土壤模型,而离开接地电极距离为接地电极尺寸10倍以内的土壤对接地电阻值有较大影响,因此一个长宽高分别为4m、4m、20m 的长方体土壤块基本满足我们的精度要求(电阻率ρ2=500Ω·m)。

圆柱形导体接地体接地电阻计算的物理模型 三、实验步骤 0、定义分析类型。 进入Main Menu>Preferences,在弹出的对框中选中“Electric”,点击“OK”(command: /COM, Electric)。 1、进入前处理菜单。 进入Main Menu>Preprocessor,点开菜单即可(command: /PREP7)。 2、建立一个圆柱体模型。 点击Modeling>Create>Volumes>Cylinder>Solid Cylinder。在弹出的对话框中,“WPX”和“WPY”分别为圆心在工作平面上的X和Y坐标,“Radius”为圆柱体的半径,“Depth”为圆柱体的深度;依次填入“0,0,0.025,-1”,点击“OK”。这样

线圈电阻计算方法

计算电阻公式为:R 其中,为铜的电阻率,值为:17.24 * mm ( 0.01724 导线的横截面积。 1.导线长度的求法:方法有两种。第一种,估算: D2分别为内外径,K为不足一圈的长度 D1D2 2 D1=4.8mm , D2=24.4mm , K=0。 算得L=1467mm , E=45.8,贝U L 应该大于1421.1mm,而小于1512.8mm 第二种,精确计算: pl 设螺线的方程为r ——* ,式中,d代表相邻螺线间的距离,在本文中,指代间距( 2 和一半线宽(b, 8mil)之和(4mil+4mil=8mil=0.203mm ) L d 1 -.12 ln( 1 2)N K 则4 D N D M N M d d 式中,D N是外径,D M是开始时的内径。d也可表示为( [D N-D M) /2n 带入算得:L 0.122 -.12 ln( 2 250 1叽0 , L=1466.6mm 有结果看出,两者相差不大。对计算阻抗影响不大。 * m), L为导线长度,S为 *nD D2 式中n为圈数,D1、 其中,误差有:|E 由我们的线圈n=32 ,

2.计算铜线截面积 在PCB 工艺中,铜线为长方体,其厚度由敷铜时的参数决定,一般是1oz (盎司)敷铜,此时铜线厚度为35微米,相应的,若在制板时采用2oz 或者更厚的敷铜,则厚度倍增。 计算时假设是1oz敷铜,设计时导线宽度为8mil ( 0.2032mm)所以横截面积为 2 S=0.2032*0.035=0.00711 2mm 由此算得:R=17.24*1466.6/0.007112= ,大概3.55 欧姆 那么两个线圈串联电阻约为2*3.55=7.1 欧姆

接地电阻计算要求

标准接地电阻规范要求 一、规范值; 1、独立的防雷保护接地电阻应小于等于(≤)10欧; 2、独立的安全保护接地电阻应小于等于(≤)4欧; 3、独立的交流工作接地电阻应小于等于(≤)4欧; 4、独立的直流工作接地电阻应小于等于(≤)4欧; 5、防静电接地电阻一般要求小于等于(≤)100欧。 6、共用接地体(联合接地)应不大于接地电阻1欧。 【避雷针的地线属于防雷保护接地,如果避雷针接地电阻和防静电接地电阻都是按要求设置的,那么就可以将防静电设备的地线与避雷针地线接在一起,因为避雷针的接地电阻比静电接地电阻小10倍,因此发生雷电事故时,大部分雷电将从避雷针地泄放,经过防静电地的电流则可以忽略不计。】 二、接地分三种 1、保护接地:电气设备的金属外壳,混凝土、电杆等,由于绝缘损坏有可能带电,为了防止这种情况危及人身安全而设的接地。1Ω以下。 2、防静电接地:防止静电危险影响而将易燃油、天然气贮藏罐和管道、电子设备等的接地。 3、防雷接地:为了将雷电引入地下,将防雷设备(避雷针等)的接地端与大地相连,以消除雷电过电压对电气设备、人身财产的危害的接地,也称过电压保护接地。

注意的是.三种接地要分离设置. 三、接地线的标识: 区分线别接地体规定 保护接地线黄绿双色线三种接地体间的距离必须大于20米 防静电接地线绿色线 防雷接地线镀锌圆钢 四、接地要求: 交流电气装置的接地应符合下列规定: 1 、当配电变压器高压侧工作于小电阻接地系统时,保护接地网的接地电阻应符合下式要求: R≤2000/I (12.4. 1-1) 式中 R――考虑到季节变化的最大接地电阻(Ω); I――计算用的流经接地网的人地短路电流(A)。 2、当配电变压器高压侧工作于不接地系统时,电气装置的接地电阻应符合下列要求: 1)高压与低压电气装置共用的接地网的接地电阻应符合下式要求,且不宜超过4Ω: R≤120/I (12.4.1-2) 2)仅用于高压电气装置的接地网的接地电阻应符合下 式要求,且不宜超过100,: 尺≤250/I (12.4.1-3) 式中 R――考虑到季节变化的最大接地电阻(Ω);

常用导体电阻偏心度计算方法

各规格导体外径及线材偏心度计算 偏心度=最小厚度/平均厚度*100% 芯线平均厚度=(芯线外径-导体绞合外径)/2 绞合外径见上表。 外被平均厚度=(外被外径-屏蔽外径)/2 USB2.0编织线材屏蔽外径=芯线平均外径*2.3+0.1+4*编织丝单根外径 USB2.0缠绕线材屏蔽外径=芯线平均外径*23+0.1+2*缠绕丝单根外径 USB2.0铝箔线材屏蔽外径=芯线平均外径*2.3+0.1 导体规格 (AWG) 单支导体20℃ MAX. 绞合导体20℃ MAX. 我司常用导体 Ω/Kft Ω/Km Ω/Kft Ω/Km 规格 Ω/Kft Ω/Km 绞合外径 32 171.78 563.49 171.70 580.85 7/0.08 156.1 512.1 0.244mm 30 110.09 361.13 114.40 376.96 7/0.10 99.88 327.7 0.305mm 28 69.32 227.39 72.00 237.25 7/0.127 61.94 203.2 0.388mm 19/0.075 65.43 214.6 0.378mm 26 43.53 142.79 45.20 148.94 7/0.16 39.03 128 0.489mm 17/0.10 41.15 135 0.476mm 19/0.10 36.79 120.7 0.503mm 19/0.105 33.37 109.5 0.528mm 30/0.08 36.64 120 0.506mm 30/0.075 41.48 136 0.474mm 24 27.25 89.39 28.30 93.25 7/0.20 24.99 81.99 0.611mm 30/0.10 23.32 76.5 0.632mm 34/0.10 20.56 67.45 0.673mm 41/0.08 26.68 87.47 0.591mm 22 16.50 54.30 16.70 55.00 7/0.254 15.48 50.8 0.776mm 21 13.00 42.70 13.30 43.60 7/0.27 13.7 44.97 0.825mm 20 10.30 33.90 10.50 34.60 7/0.31 10.4 34.12 0.947mm 19 8.21 26.90 8.37 27.50 18 6.52 21.40 6.64 21.80 17 5.15 16.90 5.27 17.20 16 4.10 13.50 4.18 13.70

接地电阻的计算与测量

接地电阻的计算与测量(转贴) 2003-2-28 路灯设施的接地保护事关国家财产和人民生命安全的大事。为做好接地保护并有效地设置接地电阻,必须正确计算和测量接地电阻。 理论上,接地电阻越小,接触电压和跨步电压就越低,对人身越安全。但要求接地电阻越小,则人工接地装置的投资也就越大,而且在土壤电阻率较高的地区不易做到。在实践中,可利用埋设在地下的各种金属管道(易燃体管道除外)和电缆金属外皮以及建筑物的地下金属结构等作为自然接地体。由于人工接地装置与自然接地体是并联关系,从而可减小人工接地装置的接地电阻,减少工程投资。 一、接地电阻值的规定 在1000V以下中性点直接接地系统中,接地电阻Rd应小于或等于4Ω,重复接地电阻应小于或等于10Ω。而电压1000V以下的中性点不接地系统中,一般规定接地电阻R为4Ω。因此,根据实际安装经验,在路灯照明系统中接地电阻Rd应小于或等于4Ω。 二、人工接地装置接地电阻的计算 人工接地装置常用的有垂直埋设的接地体、水平埋设的接地体以及复合接地体等。此外,接地电阻大小还与接地体形状有关,在路灯施工应用中,通常使用垂直、水平接地体,这里只简要介绍上述两种接地电阻的计算。 1、垂直埋设接地体的散流电阻 垂直埋设的接地体多用直径为50mm,长度2-2.5m的铁管或圆钢,其每根接地电阻可按下式求得:Rgo=[ρLn(4L/d)]/2πL 式中:ρ—土壤电阻率(Ω/cm) L—接地体长度(cm) d—接地铁管或圆钢的直径(cm) 为防止气候对接地电阻值的影响,一般将铁管顶端埋设在地下0.5-0.8m深处。若垂直接地体采用角钢或扁钢(见图1),其等效直径为: 等边角钢d=0.84b 扁钢d=0.5b 为达到所要求的接地电阻值,往往需埋设多根垂直接体,排列成行或成环形,而且相邻接地体之间距离一般取接地体长度的1-3倍,以便平坦分布接地体的电位和有利施工。这样,电流流入每根接地体时,由于相邻接地体之间的磁场作用而阻止电流扩散,即等效增加了每根接地体的电阻值,因而接地体的合成电阻值并不等于各个单根接地体流散电阻的并联值,而相差一个利用系数,于是接地体合成电阻为Rg=Rgo/(ηL*n) 式中,Rgo—单根垂直接地体的接地电阻(Ω); ηL—接地体的利用系数; n—垂直接地体的并联根数。 接地体的利用系数与相邻接地体之间的距离a和接地体的长度L的比值有关,a/L值越小,利用系数就越小,则散流电阻就越大。在实际施工中,接地体数量不超过10根,取a/L=3,那么接地体排列成行时,ηL在0.9-0.95之间;接地体排列成环形时,ηL约为0.8。 2、水平埋设接地体的散流电阻 一般水平埋设接地体采用扁钢、角钢或圆钢等制成,其人工接地电阻按下式求得: Rsp=(ρ/2πL)*[Ln(L2/dh)+A]

导体电阻计算

导体电阻计算 在长度为L,横截面为S的导体AB两端加电压U,经过时间t,从导体一端(设为A端)流出的(电荷)自由电子的电荷量为q;则:电流I=q/t,R=U/I。如果t保持不变,q越大则电阻越小。1、1 温度的影响从A端流出的自由电子是在电场力作用下做定向运动,并且运动的速率很小(约10-5m/s);同时自由电子还要做杂乱无章(运动方向不确定)的热运动,其速率较大(常温下约105m/s),并且随着温度的升高热运动速率增大。由于自由电子热运动方向不确定,形成对定向运动的阻碍,并且这种阻碍作用随着温度变大而变大(热运动速率增大)。这样从A端流出的自由电子的总电荷量随温度升高而减少,即电阻变大。1、2 导体长度的影响如果在温度不变时,将AB的长度增加,自由电子定向运动通过导体的时间增加,自由电子的热运动对定向运动的影响也随之增加。从A端流出的自由电子总电荷量q 随着导体长度增加而减少,即R变大。1、3 导体横截面的影响如果在温度不变的条件下,将AB的横截面加倍时,从A端流出的自由电子数目是原来的两倍,所以当导体的横截面增加时,其电阻变小。1、4 材料的影响导体AB选择不同的材料时,其内部单位体积内自由电子数目越多,则从A端在相同时间内流出的自由电子数目也越多,其电阻也就越小。2、电阻率2、1 电阻率的定义电阻率(resistivity)是用来表示各种物质电阻特性的物理量。某种材

料制成的长1m、横截面积是1m2的在常温下(25℃时)导线的电阻,叫做这种材料的电阻率。2、2 电阻率的单位国际单位制中,电阻率的单位是欧姆米(Ωm或ohmm),常用单位是欧姆毫米和欧姆米。2、3 电阻率的计算公式电阻率的计算公式为:ρ=RS/L 式中:ρ为电阻率常用单位ΩmS为横截面积常用单位m2R为电阻值常用单位ΩL为导线的长度常用单位m3、导体电阻的计算(以铜为例)根据上面公式,则电阻计算公式为:R=ρL/S。以铜为例。铜电阻率(20℃时)为0、0185Ωmm2/m,也就是截面积为1平方毫米、长度为1米的铜导线电阻是0、0185Ω。不同温度下的电阻率会有些差别,电阻率温度系数是0、00393/℃。电阻率温度系数公式为:ρ=ρ0(1+a*t)式中:ρ在t℃时的电阻率Ρ0在0℃时的电阻率 t温度,单位为℃查表可得不同温度下铜的电阻率:0℃ 0、0165Ωmm2/m10℃ 0、0172Ωmm2/m20℃ 0、 0178Ωmm2/m(这个有点趋近真实值,但是还是有一点点偏大)30℃ 0、0185Ωmm2/m35℃ 0、0188Ωmm2/m40℃ 0、 0192Ωmm2/m50℃ 0、0200Ωmm2/m60℃ 0、0206Ωmm2/m70℃ 0、0212Ωmm2/m75℃ 0、0216Ωmm2/m80℃ 0、0219Ωmm2/m90℃ 0、0226Ωmm2/m100℃ 0、0233Ωmm2/m按照电阻率与电阻之间计算关系有:0度时:R(0)= ρL/S=0、0165*250/6=0、6875Ω30度时:R(30)= ρL/S=0、0185*250/6=0、7708Ω4、常用金属导体的电阻率几种金属导体在20℃时的电阻率(Ωm):(1)银1、6510-8(2)铜1、7510-8(3)铝2、8310-8(4)钨5、4810-8(5)铁

综合接地电阻计算

接地电阻计算方法 单根垂直接地体(棒形):RE1≈σ/l 单根水平接地体:RE1≈2σ/l 多根放射形水平接地带(n≤12,每根长l≈60m): RE≈0.062σ/n+1.2 环形接地带: RE≈0.6σ/√A σ值(参考): 土壤类别Ω.m 较湿时较干时 黑土、田园土50 30~100 50~300 粘土60 30~100 50~300 砂质粘土、可耕地100 30~300 80~1000 黄土200 100~200 250 含砂粘土、砂土300 100~1000 >1000 多石土壤400 砂、砂砾100 250~1000 1000~2500 接地体及接地线的最小尺寸规格 类别材料及使用场所最小尺寸 接地体圆钢直径10mm 角钢厚度4mm 钢管壁厚3.5mm 扁钢截面48mm2 厚度4mm 接地线圆钢室内直径6mm 室外直径8mm

扁钢室内截面48mm2 厚度3mm 室外截面48mm2 厚度4mm 垂直接地体根数确定:n≥RE1/ηRE 垂直接地体的利用系数η值(环形敷设) 根数10 20 30 1 0.52~0.58 0.44~0.50 0.41~0.47 垂直接地体的间距与其长度比 2 0.66~0.71 0.61~0.66 0.58~0.63 3 0.74~0.78 0.68~0.73 0.66~0.71 满足热稳定的最小截面:Smin=4.52I(1)k

接地电阻的计算与测量 路灯设施的接地保护事关国家财产和人民生命安全的大事.为做好接地保护并有效地设置接地电阻,必须正确计算和测量接地电阻.理论上,接地电阻越小,接触电压和跨步电压就越低,对人身越安全.但要求接地电阻越小,则人工接地装置的投资也就越大,而且在土壤电阻率较高的地区不易做到.在实践中,可利用埋设在地下的各种金属管道(易燃体管道除外)和电缆金属外皮以及建筑物的地下金属结构等作为自然接地体.由于人工接地装置与自然接地体是并联关系,从而可减小人工接地装置的接地电阻,减少工程投资. 一、接地电阻值的规定 在1000V以下中性点直接接地系统中,接地电阻Rd应小于或等于4Ω,重复接地电阻应小于或等于10Ω.而电压1000V以下的中性点不接地系统中,一般规定接地电阻R为4Ω.因此,根据实际安装经验,在路灯照明系统中接地电阻Rd应小于或等于4Ω. 二、人工接地装置接地电阻的计算 人工接地装置常用的有垂直埋设的接地体、水平埋设的接地体以及复合接地体等.此外,接地电阻大小还与接地体形状有关,在路灯施工应用中,通常使用垂直、水平接地体,这里只简要介绍上述两种接地电阻的计算. 1、垂直埋设接地体的散流电阻 垂直埋设的接地体多用直径为50mm,长度2-2.5m的铁管或圆钢,其每根接地电阻可按下式求得: Rgo=[ρLn(4L/d)]/2πL 式中:ρ—土壤电阻率(Ω/cm) L—接地体长度(cm) d—接地铁管或圆钢的直径(cm) 为防止气候对接地电阻值的影响,一般将铁管顶端埋设在地下0.5-0.8m 深处.若垂直接地体采用角钢或扁钢(见图1),其等效直径为: 等边角钢d=0.84b 扁钢d=0.5b 为达到所要求的接地电阻值,往往需埋设多根垂直接体,排列成行或成环形,而且相邻接地体之间距离一般取接地体长度的1-3倍,以便平坦分布接地体的电

线圈电阻计算方法

计算电阻公式为: S L R *ρ= 其中,ρ为铜的电阻率,值为:mm *24.17Ωμ(m *01724.0Ωμ),L 为导线长度,S 为导线的横截面积。 1. 导线长度的求法:方法有两种。 第一种,估算: K D D n L ++≈2*21π 式中 n 为圈数,D 1、D 2分别为内外径,K 为不足一圈的长度 其中,误差有:2 21D D E +≤π 由我们的线圈n=32,D 1=4.8mm ,D 2=24.4mm ,K=0。 算得L=1467mm ,E=45.8,则L 应该大于1421.1mm ,而小于1512.8mm 第二种,精确计算: 设螺线的方程为θπ *2d r =,式中,d 代表相邻螺线间的距离,在本文中,指代间距(d )和一半线宽(b ,8mil )之和(4mil+4mil=8mil=0.203mm ) 则[] d D d D K In d L M M N N N M π?π?θθθθπ??==+++++=,)1(1422 式中,D N 是外径,D M 是开始时的内径。d 也可表示为(D N -D M )/2n 带入算得:[]0)1(1122.0250 4922+++++=θθθθIn L ,

L=1466.6mm 有结果看出,两者相差不大。对计算阻抗影响不大。 2.计算铜线截面积 在PCB工艺中,铜线为长方体,其厚度由敷铜时的参数决定,一般是1oz(盎司)敷铜,此时铜线厚度为35微米,相应的,若在制板时采用2oz或者更厚的敷铜,则厚度倍增。计算时假设是1oz敷铜,设计时导线宽度为8mil(0.2032mm)所以横截面积为 S=0.2032*0.035=0.007112mm2 μ,大概3.55欧姆 由此算得:R=17.24*1466.6/0.007112=Ω 那么两个线圈串联电阻约为2*3.55=7.1欧姆

常用导体材料电阻率计算公式

常用导体材料电阻率计算 公式 Prepared on 24 November 2020

【电学部分】 1电流强度:I=Q电量/t 2电阻:R=ρL/S 3欧姆定律:I=U/R 4焦耳定律: ⑴Q=I2Rt普适公式) ⑵Q=UIt=Pt=UQ电量=U2t/R (纯电阻公式) 5串联电路: ⑴I=I1=I2 ⑵U=U1+U2 ⑶R=R1+R2 ⑷U1/U2=R1/R2 (分压公式) ⑸P1/P2=R1/R2 6并联电路: ⑴I=I1+I2

⑵U=U1=U2 ⑶1/R=1/R1+1/R2 [ R=R1R2/(R1+R2)] ⑷I1/I2=R2/R1(分流公式) ⑸P1/P2=R2/R1 7定值电阻: ⑴I1/I2=U1/U2 ⑵P1/P2=I12/I22 ⑶P1/P2=U12/U22 8电功: ⑴W=UIt=Pt=UQ (普适公式) ⑵W=I^2Rt=U^2t/R (纯电阻公式) 9电功率: ⑴P=W/t=UI (普适公式) ⑵P=I2^R=U^2/R (纯电阻公式) 电流密度的问题:一般说铜线的电流密度取6A/mm2,铝的取 4A,考虑到大电流的趋肤效应,越大的电流取的越小一些,100A

以上一般只能取到左右,另外还要考虑输电线路的线损,越长取的也要越小一些。 计算所有关于电流,电压,电阻,功率的计算公式 1、串联电路电流和电压有以下几个规律:(如:R1,R2串联) ①电流:I=I1=I2(串联电路中各处的电流相等) ②电压:U=U1+U2(总电压等于各处电压之和) ③电阻:R=R1+R2(总电阻等于各电阻之和)如果n个阻值相同的电阻串联,则有R总=nR 2、并联电路电流和电压有以下几个规律:(如:R1,R2并联) ①电流:I=I1+I2(干路电流等于各支路电流之和) ②电压:U=U1=U2(干路电压等于各支路电压) ③电阻:(总电阻的倒数等于各并联电阻的倒数和)或。 如果n个阻值相同的电阻并联,则有R总= R 注意:并联电路的总电阻比任何一个支路电阻都小。 电功计算公式:W=UIt(式中单位W→焦(J);U→伏(V);I→安(A);t→秒)。

电线电缆用导体直流电阻不合格的因素

电线电缆用导体直流电阻不合格的因素 六是线芯结构不合理(主要是指紧压线芯)等。解决的方法:成品直流电阻的水平,即越接近国家标准中所规定的直流电阻值越好,但由于目前,我们的工艺水平、管理水平、设备状况和国外发达国家比还有差距,所以,一般的成品电阻余量都在 3~5%,有的余量达10%,这样材料耗用很大,经济效益明显下降。我们目前的水平控制在1~3%的电阻余量是可行的。降低材料的消耗是我们的长期目标。第一,电阻的测量,可采用在线电阻测量法,即在绞合电缆的导体时,就测量导体的直流电阻,(仪器可换算成20℃时直流电阻值),这样我们就可以预先设定电阻值,余量大时可调整线芯的截面,余量小时可加大导线截面,这样就不会造成在成品时才发现直流电阻值不合格,而造成损失。第二,最小截面的设定法,对紧压线芯最小截面的设定,按下式进行。S压=ρ20K1K2K3R20 mm2式中,S压紧压线芯称重最小截面,mm ρ20金属材料20℃时的电阻率,Ωmm2/mR20标准中规定的成品最大直流电阻值,Ω/KmK1平均绞入系数,一般来讲,紧压系数节距比较小可取1、01 50、91,K2可选用1、02、塑力缆用扇形紧压线芯,紧压系数为0、8 51、012。架空绝缘用紧压一般为0、8

11、012。K3成缆系数,一般为1、006—1、008第三,工艺线路定位法,也就是说:杆料生产厂家、规格、型号固定,拉制设备及工艺固定,退火设备及工艺固定,绞线、压型工艺及工艺准备固定,一旦工艺试成功后,稳定性很高,全部在控制范围内,一旦成品直流电阻出现波动,原因分析比较容易,解决起来也比较容易。当然影响成品电阻的原因还有不少,紧压线芯结构设计不合理,也会造成波动(主要由于测量不准所致),线芯变色、测量误差等,这些都需要进一步摸索和试验。

接地电阻测仪的原理及计算方法

近年来,随着电力系统的发展,发生接地故障时经地网流散的电流愈来愈大,地网的电位也随之升高,由于接地措施的缺陷而造成的事故也屡有发生,接地问题已得到人们的普遍重视。接地的目的是为了在正常、事故以及雷击的情况下,利用大地作为接地电流回路的一个组件,从而将设备接地处限制为所允许的接地电位。当有电流通过接地极流人地中时,设备接地处的电位会相当高,雷击时瞬时电位甚至可达几万伏。 接地电阻的大小直接关系到设备安全和人身安全。其大小除和大地的结构、土壤的电阻率有关外,还和接地极的几何尺寸及形状有关,在雷电冲击电流流过时还和流经接地极的冲击电流的幅值和波形有关。 1998年实施的我国电力行业标准《交流电气装里的接地》中规定了交流标称电压500kV及以下发电、变电、送电和配电电气装置以及建筑物电气装置的接地要求和方法。各种接地电阻的实际值需要在地网铺设完毕后通过实测得出。大中型发、变电站的接地电阻测量普遍采用电压电流表法,并用工频交流电源供电(即220一380V电源经隔离变压器供电)。小型发、变电站的接地电阻一般采用接地电阻测量仪测量。

接地电阻测的基本原理,接地电流在地中流散时地中的电位分布。 接地电流肠通过接地极以半球面形状向地中流散时,地中的电位分布曲线如图1所示,从图中可以看出,愈靠近接地极E,散流电阻愈大,电位愈高。试验表明,在离开单根接地极或接地短路点20m以外的地方,散流电阻已近于零,也即电位趋近于零。接地电阻的测量就是利用了这一结论。 接地电阻测仪的原理及计算方法 测量接地电阻的基本原理是利用欧姆定律。根据欧姆定律,接地极的接地电阻风d 等于其电位Ujd与扩散电流Ijd的比值。即Rjd=Usd/Isd。要想测童接地电阻的值,必须首先给接地极注人一定大小的电流,从而需要设置一个能构成电流回路的电流极C,并用电流表加以测定。同时,为了用电压表测出接地极的对地电位,还需要设置一个能反应零电位的电压极P。通过测量电压和电流来获得接地电阻。 根据实践,在离开单根接地极或接地短路点E20m以外的地方,散流电阻已近于零,

关于电极接地电阻的计算分析

对于均匀土壤中的工频接地电阻 的分析计算 要计算圆棒形接地电极的接地电阻(见图1),我们首先将电极切分成很多的部分,切分后设任意点电流p 上流出的电流为I P 。 下图1为无限大均匀土质中的圆棒电极: 图1 我们假设经圆棒流入地中的电流为I ,则I P= I /l ,于是就可以得到电极对土壤的漏电流密度为:24R I P πδ=,设土壤电阻率为ρ,则点电流p 在距离它R 的地方产生的电场强度为:24R I E P πρρδ?=?=。若取无穷远处为零电位,则该点电流对此点的电位贡献为: R I dR R I dR E dU P R P R πρπρ442?=?==??∞ ∞ (1) 由式(1)可以得到,任意坐标为(r,θ,Z )点电流p 对空间任意一点N (r N ,θ,Z N )产生的电位贡献为: 22)(144N n k k NP r Z Z I R I U NP +-??=?=πρπρ (2) 因为对电极的切分是连续的,故通过积分进而可以得到整个电极在N 点产生的电位为:

22220220)(ln 4)(144N N N N N N k l N n k l k NP r l Z l Z r Z Z I dZ r Z Z I dZ R I U NP +-+-++??=+-??=?=??πρπρπρ (3) 如果电极的电位U 用沿电极长度中点表面的电位U p 表示,即取a d r l Z N N ===2 ,2,则可得电极的电位为: a l l I a l l l l a l l I U U k P ln 2)2 (2)2(2ln 42 22 2??≈+-+-++?==πρπρ, 故用中点电位计算所得的电极接地电阻为: ==I V R a l l ln 2?πρ

线材导体电阻的计算

线材导体电阻的计算: R=ρ*L/S 电阻率的计算公式 电阻率的计算公式为:ρ=R*S/L 式中: ρ为电阻率——常用单位Ω·m S为横截面积——常用单位m2 R为电阻值——常用单位Ω L为导线的长度——常用单位m 查表可得不同温度下铜的电阻率: 0℃0.0165Ω·mm2/m 10℃0.0172Ω·mm2/m 20℃0.0178Ω·mm2/m(这个有点趋近真实值,但是还是有一点点偏大)30℃0.0185Ω·mm2/m 35℃0.0188Ω·mm2/m 40℃0.0192Ω·mm2/m 50℃0.0200Ω·mm2/m 60℃0.0206Ω·mm2/m 70℃0.0212Ω·mm2/m 75℃0.0216Ω·mm2/m 80℃0.0219Ω·mm2/m 90℃0.0226Ω·mm2/m 100℃0.0233Ω·mm2/m 按照电阻率与电阻之间计算关系有: 0度时:R(0)= ρL/S=0.0165*250/6=0.6875Ω 30度时:R(30)= ρL/S=0.0185*250/6=0.7708Ω 常用金属导体的电阻率 几种金属导体在20℃时的电阻率(Ω·m): (1)银1.65 ×10-8 (2)铜1.75 ×10-8 (3)铝2.83 ×10-8 (4)钨5.48 ×10-8 资料20140108 Company Confidential v1.0 3 / 3 (5)铁9.78 ×10-8 (6)铂2.22 ×10-7 (7)锰铜4.4 ×10-7 (8)汞9.6 ×10-7

(9)康铜5.0 ×10-7 (10)镍铬合金1.0 ×10-6 (11)铁铬铝合金1.4 ×10-6 (12)铝镍铁合金1.6 ×10-6 (13)石墨(8~13)×10-6

电缆直流电阻计算

电缆直流电阻与长度的关系 您好!电线、电缆每1千米的直流电阻计算公式:每1千米的直流电阻=电阻系数×1000÷截面积(平方毫米)·欧/1000米电阻系数:其中当温度T=20℃时,铜的电阻系数为0.0175欧·平方毫米/米铝的电阻系数为0.0283欧·平方毫米/米其中当温度T=75℃时,铜的电阻系数为0.0217欧·平方毫米/米铝的电阻系数为0.0346欧·平方毫米/米注意不论是单根或是多根都是以总截面积为计。例如以1.5平方毫米铜芯线(环境温度为20℃)计算: 0.0175×1000÷1.5≈11.667(欧/1000米) 绝缘铜电线最大直流电阻计算方法 20度时铜导体直流电阻=17.241/实际截面积单位:欧/km t度时铜导体直流电阻=(17.241/实际截面积)*(1+0.00393*(t-20))* 1.012*1.007 若为铝芯,17.241换为28.264,0.00393换为0.004 03 求出的是单位长度电阻,有多长再乘即可注:20度时最大电阻可查GB3956-1997,有国标就尊重国标 直流电动机: 4.0.2 测量励磁绕组和电枢的绝缘电阻值,不应低于 0.5MΩ。 4.0.7 测量励磁回路连同所有连接设备的绝缘电阻值不应低于0.5MΩ。交流电动机: 1 额定电压为 1000V 以下,常温下绝缘电阻值不应低于 0.5MΩ;额定电压为 1000V及以上,折算至运行温度时的绝缘电阻值,定子绕组不应低于1MΩ/KV,转子

绕组不应低于0.5MΩ/KV。此外还应考虑温度对绝缘电阻值的影响。 直流电阻和20℃电阻率的单位及计算公式 1)定义或解释电阻率是用来表示各种物质电阻特性的物理量。某种材料制成的长1米、横截面积是1平方毫米的导线的电阻,叫做这种材料的电阻率。 (2)单位国际单位制中,电阻率的单位是欧姆·米,常用单位是欧姆·平方毫米/米。 (3)说明①电阻率ρ不仅和导体的材料有关,还和导体的温度有关。在温度变化不大的范围内,:几乎所有金属的电阻率随温度作线性变化,即ρ=ρo(1+at)。式中t是摄氏温度,ρo是O℃时的电阻率,a是电阻率温度系数。②由于电阻率随温度改变而改变,所以对于某些电器的电阻,必须说明它们所处的物理状态。如一个220 V 1OO W电灯灯丝的电阻,通电时是484欧姆,未通电时只有40欧姆左右。③电阻率和电阻是两个不同的概念。电阻率是反映物质对电流阻碍作用的属性,电阻是反映物体对电流阻碍作用的属性。下表是几种金属导体在20℃时的电阻率. 材料电阻率(Ω m) (1)银 1.6 × 10-8 (5)铂 1.0 × 10-7 (9)康铜 5.0 ×10-7 (2)铜 1.7 × 10-8 (6) 铁 1.0 × 10-7 (10)镍铬合金 1.0 × 10-6 (3)铝 2.9 × 10-8 (7)汞 9.6 × 10-7 (11)铁铬铝合金1.4 × 10-6 (4)钨 5.3 × 10-8 (8)锰铜 4.4 × 10-7 (12) 铝镍铁合金1.6 × 10-6 (13)石墨(8~13)×10-6 可以看出金属的电阻率较小,合金的电阻率较大,非金属和一些金属氧化物更大,而绝缘 体的电阻率极大.锗,硅,硒,氧化铜,硼等的电阻率比绝缘体小而比

相关主题
文本预览
相关文档 最新文档