当前位置:文档之家› 金属学及材料科学基础复习提纲

金属学及材料科学基础复习提纲

金属学及材料科学基础复习提纲
金属学及材料科学基础复习提纲

金属学和热处理

第一章 金属的晶体结构

1.这种原子在三维空间作有规则的周期性重复排列的物质称为晶体。

2.晶体与非晶体的区别不在外形,主要在于内部的原子排列情况;先,晶体具有一定的熔点;体的另一个特点是在不同方向三测量其性能时,表现出各向异性或异向性。

3.最典型最常见的金属晶体结构有3种类型:体心立方结构,面心立方结构和密排六方结构。

4.体心立方晶格:除了在晶胞的八个角上各有一个原子外,在立方体的中心还有一个原子: 原子半径a r 43

=,原子数8x1/8+1=2,配位数(所谓配位数是指晶体结构中与任一个

原子最近邻、等距离的原子数)为8;致密度(原子排列的紧密程度可用原子所占体积与晶胞 体积之比表示)V nV k 1

=

5.面心立方品格和密排六方晶格的:原子半径,原子数,配位数,致密度

6.晶向指数的确定,晶向族包括的晶向;

7.晶面指数的确定,晶面族包括的晶面。

8.在实际应用的金属材料中,总是不可避免的存在着一些原子偏离规则排列的不完整性区域, 这就是晶体缺陷。

9.根据晶体缺陷的几何特征,可以分为以下三类:

1)点缺陷:空位、间隙原子和置换原子

2)线缺陷:最简单、最基本的类型有两种:刃型位错、螺型位错。

3)面缺陷:包括晶体的外表面和内界面两类,

10.晶体结构相同但位向不同的晶粒之间的界面称为晶粒间界,或简称晶界。

11.具有不同晶体结构的两相之间的分界称为相界。 第二章 纯金属的结晶

1.纯金属结晶的条件:满足热力学条件和结构条件。

2.为什么液态金属在理论结晶温度不能结晶,而必须在一定的过冷条件下才能进行呢?

热力学第二定律指出:在等温等压条件下,物质系统总是自发地从自由能较高的状态向自由能较低的状态转变,如果液相的自由能比固相的自由能低,那么金属将自发地从固相转 变为液相,即金属发生熔化;如果液相的自由能高于固相的自由能,那么液相将自发地转变为固相,即金属发生结晶,从而使系统的自由能降低,处于更稳定的状态;液相金属和固相金属的自由能之差构成了金属结晶的驱动力;过冷度越大,液、固两相自由能的差值越大,即相变驱动力越大,结晶速度越快。

3.液态金属结晶时存在的结构起伏和能量起伏,液态金属中的均匀形核和非均匀形核

3.金属结晶是晶核的形成和长大的过程。

4.液态金属中的近程有序的原子集团处于瞬间出现,瞬间消失,此起彼伏,变化不定的状态,这种不断变化着的近程有序原子集团称为结构起伏,或相起伏。

5.液态金属的一个重要特点是存在着相起伏,只有在过冷液体中的相起伏才能成为晶胚。

6.在过冷液体中形成固态晶核可能有两种形核方式:均匀形核和非均匀形核。

7.形核功…一在形成临界晶核时,体积自由能的下降只补偿了表面能的2/3,还有1/3 的表面能没有补偿,需要另外供给,即需要对形核做功,这个功称为形核功。

8.形核功从哪里来?这部分能量可以由晶核周围的液体对晶核做功来提供。在各微观区域内的自由能并不相同,有的微区高些,有的微区低些,即各微区的能量也是处于此起彼伏,变化不定的状态,这种微区内暂时偏离平衡能量的现象即为能量起伏。当液相中某一微观区域的高能原子附着于晶核

上时,将释放一部分能量,一个稳定的晶核便在这里形成,这就是形核时所需要的能量来源。在过冷液相中的相起伏和能量起伏是形核的基础,任何一个晶核都是这两种起伏的共同产物。

9.固液界面的微观结构分为两类:光滑界面和粗糙界面。

10.晶体长大机制:二维晶核长大机制和螺型位错长大机制。

l 1.固液界面前沿液体中的温度梯度:正温度梯度和负温度梯度,

12.晶体生长的界面形态:(1)正温度梯度下以平面状态的长大形态。(2)负温度梯度下以树枝状长大。13.晶粒大小的控制:(1)控制过冷度,增大结晶时的过冷度,形核率和长大速度均随之增加,但形核率的增长率大于长大速度的增长率,过冷度越大,则比值N/G越大,因而晶粒越细小。(2)变质处理,是在浇注前往液态金属中加入形核剂,促使形成大量的非均匀晶核来细化晶粒,(3)振动和搅动,一方面是依靠从外面输入能量促使晶核提前形成,另一方面是使成长中的晶枝破碎,使晶核数目增加。

14.金属铸锭的三晶区,即外表层的细晶区,中间的柱状晶区和心部的等轴晶区。

1 5.各晶区产生的原因p55

16.为什么过冷液体形核要求晶核具有一定的临界尺寸?

在过冷液体中出现晶胚时,一方面原子从液态转变为固态将使系统的自由能降低,它是结晶的驱动力;另一方面,由于晶胚构成新的表面,形成表面能,从而使系统的自由能升高,它是结晶的阻力。当r≤rk时,随着晶胚尺寸r的增大,则系统的自由能增加,显然这个过程是不能自动进行,这种晶胚不能成为稳定的晶胚,而瞬时形成,又瞬时消失。但当r≥rk时,则随着晶胚尺寸的增大,伴随着系统自由能的降低,这一过程可以自动进行,晶胚可以自发地长大成稳定的晶核,将不再消失。

第三章二元合金的相结构与结晶

1、相的概念…一相是指合金中结构相同、成分和性能均一并以界面相互分开的组成部分。组织的概念…一可以直接用肉眼观察到的或借助放大镜、显微镜观察到的微观形貌图象统称为组织。相是组成组织的基本组成部分。

2、相的分类:固溶体…合金的组元之间以不同的比例相互混合,混合后形成的固相的晶体结构与组成合金的某一组元的相同,这种相称为固溶体。金属化合物…是合金组元问发生相互作用而形成的一种具有一定金属性质的新相。

3、固溶体的分类……………一p61~p62

4、置换固溶体/间隙固溶体/无限固溶体/无序固溶体的概念…一p62

5、置换阎溶体的固溶度的影响因素………………p62

6、相图是表示合金系中合金的状态与温度、成分间的关系的图解,是表示合金系在平衡条件下,在不同温度、成分下的各相关系的图解。

7、相律是表示在平衡条件下,系统的自由度、组元数和相数之间的关系,是系统的平衡条件的数学表达式。F=c—p+l

8、匀晶相图:(1)两组元不但在液态无限互溶,而且在固态也无限互溶的合金系所形成的相图,称为匀晶相图。

(2)成分过冷:由于固溶体合金在结晶时,溶质组元重新分布,在同液界面处

形成溶质的浓度梯度,从而产生成分过冷。

9、共晶相图:(1)两组元在液态相互无限互溶,在固态时相互有限互溶,发生共晶转变,形成共晶组织的_二元系相图,称为二元共晶相图。

(2)伪共晶:在不平衡结晶条件下,成分在共晶点附近的亚共晶和过共品合金,也可能得到全部共晶组织,这种非共晶成分的合金所得到的共晶组织称为伪共晶。

(3)离异共晶:在先共晶数量较多而共晶组织甚少的情况下,有时共品组织中与先共晶相相同的那一相,会依附于先共晶相上生长,剩下的另一相则单独依存丁晶界处,从而使共晶组织的特征消

失,这种两相分离的共晶称为离异共晶。

10、包晶相图:两组元液态相互溶解,在固态相互有限溶解,并发生包晶转变的二元合金相图系,称为包晶相图。

1 1、共析转变:一定成分的固相,在一定温度下分解为另外两个一定成分固相的转变过程,称为共析转变。

第四章铁碳合金

1.铁碳合金的基本相及其机械混合物:铁素体,奥氏体,渗碳体:珠光体,莱氏体P109 2.铁碳合金的7种类型及含碳量:纯铁/亚共析钢/共析钢/过共析钢/亚共晶白口铁/共晶白口铁/过共晶白口铁Pll 3

3.画出铁碳合金相图,点、线、相区的标注:

4.计算与分析:分析某一含碳量的铁碳合金在室温下的相组成和组织组成,并分别计算其室温下的相组成物和组织组成物的相对含量。

第五章三元合金相图

1.成分三角形中合金成分的确定:三元合金的成分通常用三角形表示,这个三角形叫做成分三角形或浓度三角形。图5一l中,三个顶点分别表示三个组元,三角形的边AB、BC、cA分别表示三个二元系A—B、B—c、C.A的成分。三角形内的任一点则代表一定成分的三元合金。

2.成分三角形中具有特定意义的直线:

1)通过三角形顶点的任一直线:凡成分位于该线上的合金,它们所含的、由这条边对应顶点所代表的组元的含量为一定值,

2)平行丁三角形某一边的直线:凡成分位于该直线上的三元合金,它们所含的、由另两个顶点所代表的两组元的量之比是恒定的。

第六章金属及合金的塑性变形与断裂

1.单晶体塑性变形过程中涉及的基本概念:

滑移一一晶体的塑性变形是晶体的一部分相对于另一部分沿某些晶面和晶向发生滑动的结果,这种变形方式叫滑移。

滑移面一一滑移是晶体的一部分沿着一定的晶面和晶向相对于另一部分作相对滑动,这种品面称为滑移面滑移带一一取金属单晶体试样,表面经磨制抛光,然后进行拉伸。当试样经适量塑性变形后,在金相显微镜F.观察,则可在表面见到许多相互平行的线条,称为滑移带。

滑移系一一个滑移面和此面上的一个滑移方向结合起来,组成一个滑移系。滑移系表示金属品体在滑移时滑移动作可能采取的空间位向。

滑移向一一滑移是晶体的一部分沿着一定的晶面和晶向相对于另一部分作相对滑动,晶体在滑移面上的滑动方向称为滑移向。

2.塑性与滑移系和滑移向数量的关系:以三种常见品格为例分析,见P165

3.单晶体滑移时晶体的转动:软取向/硬取向……P166

几何软化/几何硬化…P1 68

5.多晶体的晶粒大小对塑性变形过程的影响:细晶强化(晶界强化)Pl 75

6.为什么多晶体的晶粒越细小,材料的强度、硬度、塑性、韧度越高?

在相同外加应力下,大晶粒的位错。。…………。使材料具有较好的综合机械性能。

7.塑性变形对金属组织与性能的影响:

(1)对组织的影响:显微组织纤维化、亚结构的细化和变形织构。P}80

(2)对性能的影响:加工硬化…P183

第七章金属及合金的回复与再结晶j

1.冷变形后的金属在退火过程中性能的变化:P195

2.回复与再结晶:概念P196 P199

3.热加工与冷加工:定义和区别P209

第八章扩散

1.扩散的基本概念:异扩散/化学扩散/自扩散/上坡扩散/下坡扩散……P2 1 8 原子扩散/反应扩散……一P2 1 9

2.影响扩散的因素:P225(1)温度,温度是影响扩散系数的最主要因素。随温度的升高,扩散系数急剧增大。(2)晶体结构,(3)同溶体类型,(4)晶体缺陷(5)化学成分

一、室温下相的组成物为F+Fe3(铁素体+渗碳体)

求含碳量为x%的铁碳合金在室温下的各相的含量

解:F=(6.69一X)/(6.69—0.008)×100%

Fe3C=(X1-0.008)/(6.69—0.008)×100%

二、室温下组织组成物:

1、求含碳量小于等于0.02%的铁碳合金在室温下的各组织的含量

解:室温下的组织为F+Fe3C(含碳量为X I%)

F=(6.69-X1)/(6.69—0.008)×100%

Fe3C=(X1一0.008)/(6.69—0.008)×100%

2、求含碳量0.02%

解:室温下的组织为F+P(铁素体+珠光体)

F=(0.77一X2)/(0.77-0.008)×100%

P=(X2—0.008)/(0.77—0.008)×100%

3、含碳量为0.77%的铁碳合金在室温下的组织只有P(珠光体)其组合含量为l 00%

4、求含碳量0.77%

解:室温下的组织为P+Fe3C(珠光体+渗碳体)

P=(6.69-X3)/(6.69—0.77)×100%

Fe3C=(X3—0.77)/(6.69—0.77)×100%

5、求含碳量2.111%

解:室温卜的组织为(P+Fe3C)+L.d(珠光体+渗碳体+莱氏体)

第一步:A=(4.33-X4)/(4.33—2.11)×100%

Ld=(X4一2.11)/(4.33-2.11)×100%

第二步:P=[(6.69-2.11)/(6.69-0.77)]×[(4.33一X4)/(4.33—2.11)】×100%

Fe3C=(2.1l一0.77 )/(6.69-0.77)×100%

6、含碳量为4.3%的铁碳合金在室温下的组织只有Ld(莱氏体)其组合含量为100%

7、求含碳量4.3%<×5%<6.69%的铁碳合金在室温下的各组织的含量

解:室温下的组织为Ld+Fe3C(莱氏体+渗碳体)

Ld=(6.69一X5)/(6.69—4.33)×100%

Fe3C=(X5-4.33)/(6.69-4.33)×100%

材料科学基础复习大纲

材料科学基础复习大纲 第二章晶体结构 2.1 结晶学基础 1、概念:晶体晶胞晶胞参数七大晶系晶面指数晶面族晶向指数晶向族 2、晶面指数和晶向指数的计算 2.2 结合力与结合能 按照结合力性质不同分为物理键和化学键 化学键包括离子键共价键金属键 物理键包括范德华键氢键 晶体中离子键共价键比例估算(公式2.16 离子晶体晶格能 2.3 堆积(记忆常识 1、最紧密堆积原理及其使用范围:原理略 适用范围:典型的离子晶体和金属晶体 原因:该原理是建立在质点在电子云分布呈球形对称以及无方向性的基础上的 2、两种最紧密堆积方式:面心立方最紧密堆积ABCABC 密排六方最紧密堆积ABABAB 系统中:每个球周围有6个八面体空隙 8个四面体空隙

N个等径球体做最紧密堆积时系统有2N个四面体空隙N个八面体空隙八面体空隙体积大于四面体空隙 3、空间利用率:晶胞中原子体积与晶胞体积的比值(要学会计算 两种最紧密堆积方式的空间利用率为74.05﹪(等径球堆积时 4、影响晶体结构的因素 内因:质点相对大小(决定性因素 配位数(概念及计算 极化(概念,极化对晶体结构产生的影响 外因(了解:同质多晶 类质多晶 同质多晶转变 2.4 单质晶体结构(了解 2.5 无机化合物结构(重点每年必考 分析结构从以下几个方面入手:晶胞分子数,何种离子做何种堆积,何种离子添隙,添隙百分比,正负离子配位数,正负离子电价是否饱和,配位多面体,添隙半径的计算(刚好相切时,隙结构与性质的关系。 1、NaCl型:4个NaCl分子 Cl离子做面心立方密堆积,Na离子填充八面体空隙,填充率 100﹪,正负离子配位数均为6,电价饱和。【NaCl6】或【ClNa6】八面体结构与性能:此结构在三维方向上键力均匀,因此无明显解理,破碎后呈颗粒状,粒为多面体 形状。离子键结合,因此有较高的熔点和硬度

材料科学基础习题及参考答案复习过程

材料科学基础习题及 参考答案

材料科学基础参考答案 材料科学基础第一次作业 1.举例说明各种结合键的特点。 ⑴金属键:电子共有化,无饱和性,无方向性,趋于形成低能量的密堆结构,金属受力变形时不会破坏金属键,良好的延展性,一般具有良好的导电和导热性。 ⑵离子键:大多数盐类、碱类和金属氧化物主要以离子键的方式结合,以离子为结合单元,无方向性,无饱和性,正负离子静电引力强,熔点和硬度均较高。常温时良好的绝缘性,高温熔融状态时,呈现离子导电性。 ⑶共价键:有方向性和饱和性,原子共用电子对,配位数比较小,结合牢固,具有结构稳定、熔点高、质硬脆等特点,导电能力差。 ⑷范德瓦耳斯力:无方向性,无饱和性,包括静电力、诱导力和色散力。结合较弱。 ⑸氢键:极性分子键,存在于HF,H2O,NF3有方向性和饱和性,键能介于化学键和范德瓦尔斯力之间。 2.在立方晶体系的晶胞图中画出以下晶面和晶向:(1 0 2)、(1 1 -2)、(-2 1 -3),[1 1 0],[1 1 -1],[1 -2 0]和[-3 2 1]。

(213) (112) (102) [111] [110] [120] [321] 3. 写出六方晶系的{1 1 -20},{1 0 -1 2}晶面族和<2 -1 -1 0>,<-1 0 1 1>晶向族中各等价晶面及等价晶向的具体指数。 {1120}的等价晶面:(1120)(2110)(1210)(1120)(2110)(1210) {1012}的等价晶面: (1012)(1102)(0112)(1012)(1102)(0112)(1012)(1102)(0112)(1012)(1102)(0112) 2110<>的等价晶向:[2110][1210][1120][2110][1210][1120] 1011<>的等价晶向: [1011][1101][0111][0111][1101][1011][1011][1101][0111][0111][1101][1011] 4立方点阵的某一晶面(hkl )的面间距为M /,其中M 为一正整数,为 晶格常数。该晶面的面法线与a ,b ,c 轴的夹角分别为119.0、43.3和60.9度。请据此确定晶面指数。 h:k:l=cos α:cos β:cos γ l k h d a 2 22hk l ++= 5. Cu 具有FCC 结构,其密度为8.9g/cm 3,相对原子质量为63.546,求铜的原子半径。

(完整版)厦大材料科学基础知识点总结

第一章原子结构和键合 原子中一个电子的空间和能量的描述 (1)主量子数ni:决定原子中电子能量和核间平均距离,即量子壳层,取正整数K、L、M、N、O、P、Q (2)轨道动量量子数li:给出电子在同一量子壳层内所处的能级(电子亚层),与电子运动的角动量有关,s,p,d,f (3)磁量子数mi:给出每个轨道角动量数或轨道数,决定原子轨道或子云在空间的伸展方向 (4)自旋角动量量子数si:表示电子自旋的方向,取值为+1/2 或-1/2 核外电子的排布规律 (1)能量最低原理:电子总是占据能量最低的壳层,使体系的能量最低。而在同一电子层,电子依次按s,p,d,f的次序排列。 (2)Pauli不相容原理:在一个原子中不可能有运动状态完全一样的两个电子。因此,主量子数为n的壳层,最多容纳2n2电子。 (3)Hund原则:在同一个亚能级中的各个能级中,电子的排布尽可能分占不同的能级,而且自旋方向相同。 原子间的键(见作业) 第二章固体结构 晶体结构的基本特征:原子(或分子、离子)在三维空间呈周期性重复排列。即存在长程有序。性能上两大特点:(1)固定的熔点;(2)各向异性 空间点阵的概念将晶体中原子或原子团抽象为纯几何点(阵点)即可得到一个由无数几何点在三维空间排列成规则的阵列—空间点阵特征:每个阵点在空间分布必须具有完全相同的周围环境 晶胞:代表性的基本单元(最小平行六面体) 选取晶胞的原则: Ⅰ)选取的平行六面体应与宏观晶体具有同样的对称性; Ⅱ)平行六面体内的棱和角相等的数目应最多; Ⅲ)当平行六面体的棱角存在直角时,直角的数目应最多; Ⅳ)在满足上条件,晶胞应具有最小的体积。 晶体结构与空间点阵的区别: 空间点阵是晶体中质点的几何学抽象,用以描述和分析晶体结构的周期性和对称性,由于各点阵的周围环境相同,只有14种。 晶体是指晶体中实际质点(原子、离子和分子)的具体排列情况,它们能组成各种类型的排列,因此,实际存在的晶体结构是无限的。 晶带 所有相交于某一晶向直线或平行于此直线的晶面构成一个“晶带”。此直线称为晶带轴,所有的这些晶面都称为共带面。晶带轴[u v w]与该晶带的晶面(h k l)之间存在以下关系 hu+kv+lw=0 ————晶带定律 凡满足此关系的晶面都属于以[u v w]为晶带轴的晶带

1999-2016年北京航空航天大学911材料综合考研真题及答案解析 汇编

2017版北京航空航天大学《911材料综合》全套考研资料 我们是布丁考研网北航考研团队,是在读学长。我们亲身经历过北航考研,录取后把自己当年考研时用过的资料重新整理,从本校的研招办拿到了最新的真题,同时新添加很多高参考价值的内部复习资料,保证资料的真实性,希望能帮助大家成功考入北航。此外,我们还提供学长一对一个性化辅导服务,适合二战、在职、基础或本科不好的同学,可在短时间内快速把握重点和考点。有任何考北航相关的疑问,也可以咨询我们,学长会提供免费的解答。更多信息,请关注布丁考研网。 以下为本科目的资料清单(有实物图及预览,货真价实): 北京航空航天大学《材料综合》全套考研资料 一、北京航空航天大学《材料综合》历年考研真题及答案解析 2015年北京航空航天大学《材料综合》考研真题(含答案解析) 2015年北京航空航天大学《材料综合》考研真题(含答案解析) 2014年北京航空航天大学《材料综合》考研真题(含答案解析) 2013年北京航空航天大学《材料综合》考研真题(含答案解析) 2012年北京航空航天大学《材料综合》考研真题(含答案解析) 2011年北京航空航天大学《材料综合》考研真题(含答案解析) 2010年北京航空航天大学《材料综合》考研真题(含答案解析) 2009年北京航空航天大学《材料综合》考研真题(含答案解析) 2008年北京航空航天大学《材料综合》考研真题(含答案解析) 2007年北京航空航天大学《材料综合》考研真题(含答案解析) 2006年北京航空航天大学《材料综合》考研真题(含答案解析) 2005年北京航空航天大学《材料综合》考研真题(含答案解析) 2004年北京航空航天大学《材料综合》考研真题(含答案解析) 2003年北京航空航天大学《材料综合》考研真题(含答案解析) 2002年北京航空航天大学《材料综合》考研真题(含答案解析) 2000年北京航空航天大学《材料综合》考研真题(含答案解析) 1999年北京航空航天大学《材料综合》考研真题(含答案解析) 二、材料分析重点总结 三、金属学原理重点总结 四、金属学原理名称解析总结 五、物理化学复习总结 六、无机非金属材料复习总结 七、高分子物理复习总结 八、高分子化学复习总结 以下为截图及预览: 2015真题及答案

材料科学基础练习题

练习题 第三章 晶体结构,习题与解答 3-1 名词解释 (a )萤石型和反萤石型 (b )类质同晶和同质多晶 (c )二八面体型与三八面体型 (d )同晶取代与阳离子交换 (e )尖晶石与反尖晶石 答:(a )萤石型:CaF2型结构中,Ca2+按面心立方紧密排列,F-占据晶胞中全部四面体空隙。 反萤石型:阳离子和阴离子的位置与CaF2型结构完全相反,即碱金属离子占据F-的位置,O2-占据Ca2+的位置。 (b )类质同象:物质结晶时,其晶体结构中部分原有的离子或原子位置被性质相似的其它离子或原子所占有,共同组成均匀的、呈单一相的晶体,不引起键性和晶体结构变化的现象。 同质多晶:同一化学组成在不同热力学条件下形成结构不同的晶体的现象。 (c )二八面体型:在层状硅酸盐矿物中,若有三分之二的八面体空隙被阳离子所填充称为二八面体型结构 三八面体型:在层状硅酸盐矿物中,若全部的八面体空隙被阳离子所填充称为三八面体型结构。 (d )同晶取代:杂质离子取代晶体结构中某一结点上的离子而不改变晶体结构类型的现象。 阳离子交换:在粘土矿物中,当结构中的同晶取代主要发生在铝氧层时,一些电价低、半径大的阳离子(如K+、Na+等)将进入晶体结构来平衡多余的负电荷,它们与晶体的结合不很牢固,在一定条件下可以被其它阳离子交换。 (e )正尖晶石:在AB2O4尖晶石型晶体结构中,若A2+分布在四面体空隙、而B3+分布于八面体空隙,称为正尖晶石; 反尖晶石:若A2+分布在八面体空隙、而B3+一半分布于四面体空隙另一半分布于八面体空隙,通式为B(AB)O4,称为反尖晶石。 3-2 (a )在氧离子面心立方密堆积的晶胞中,画出适合氧离子位置的间隙类型及位置,八面体间隙位置数与氧离子数之比为若干?四面体间隙位置数与氧离子数之比又为若干? (b )在氧离子面心立方密堆积结构中,对于获得稳定结构各需何种价离子,其中: (1)所有八面体间隙位置均填满; (2)所有四面体间隙位置均填满; (3)填满一半八面体间隙位置; (4)填满一半四面体间隙位置。 并对每一种堆积方式举一晶体实例说明之。 解:(a )参见2-5题解答。1:1和2:1 (b )对于氧离子紧密堆积的晶体,获得稳定的结构所需电价离子及实例如下: (1)填满所有的八面体空隙,2价阳离子,MgO ; (2)填满所有的四面体空隙,1价阳离子,Li2O ; (3)填满一半的八面体空隙,4价阳离子,TiO2; (4)填满一半的四面体空隙,2价阳离子,ZnO 。 3-3 MgO 晶体结构,Mg2+半径为0.072nm ,O2-半径为0.140nm ,计算MgO 晶体中离子堆积系数(球状离子所占据晶胞的体积分数);计算MgO 的密度。并说明为什么其体积分数小于74.05%?

材料科学基础知识点总结

金属学与热处理总结 一、金属的晶体结构 重点内容:面心立方、体心立方金属晶体结构的配位数、致密度、原子半径,八面体、四面体间隙个数;晶向指数、晶面指数的标定;柏氏矢量具的特性、晶界具的特性。 基本内容:密排六方金属晶体结构的配位数、致密度、原子半径,密排面上原子的堆垛顺序、晶胞、晶格、金属键的概念。晶体的特征、晶体中的空间点阵。 晶胞:在晶格中选取一个能够完全反映晶格特征的最小的几何单元,用来分析原子排列的规律性,这个最小的几何单元称为晶胞。 金属键:失去外层价电子的正离子与弥漫其间的自由电子的静电作用而结合起来,这种结合方式称为金属键。 位错:晶体中原子的排列在一定范围内发生有规律错动的一种特殊结构组态。 位错的柏氏矢量具有的一些特性: ①用位错的柏氏矢量可以判断位错的类型;②柏氏矢量的守恒性,即柏氏矢量与回路起点及回路途径无关;③位错的柏氏矢量个部分均相同。 刃型位错的柏氏矢量与位错线垂直;螺型平行;混合型呈任意角度。 晶界具有的一些特性: ①晶界的能量较高,具有自发长大和使界面平直化,以减少晶界总面积的趋势;②原子在晶界上的扩散速度高于晶内,熔点较低;③相变时新相优先在晶界出形核;④晶界处易于发生杂质或溶质原子的富集或偏聚;⑤晶界易于腐蚀和氧化;⑥常温下晶界可以阻止位错的运动,提高材料的强度。 二、纯金属的结晶 重点内容:均匀形核时过冷度与临界晶核半径、临界形核功之间的关系;细化晶粒的方法,铸锭三晶区的形成机制。 基本内容:结晶过程、阻力、动力,过冷度、变质处理的概念。铸锭的缺陷;结晶的热力学条件和结构条件,非均匀形核的临界晶核半径、临界形核功。 相起伏:液态金属中,时聚时散,起伏不定,不断变化着的近程规则排列的原子集团。 过冷度:理论结晶温度与实际结晶温度的差称为过冷度。 变质处理:在浇铸前往液态金属中加入形核剂,促使形成大量的非均匀晶核,以细化晶粒的方法。 过冷度与液态金属结晶的关系:液态金属结晶的过程是形核与晶核的长大过程。从热力学的角度上看,

《材料科学基础》复习提纲剖析

《材料科学基础》复习提纲 一、(共20分)名词解释(每个名词2分) 简单正交点阵、晶向族、无限固溶体、配位数、交滑移、大角度晶界、上坡(顺)扩散、形核功、回复、滑移系 底心正交点阵、晶面族、有限固溶体、致密度、攀移、小角度晶界、下坡(逆)扩散、形核率、再结晶、孪生 二、(共30分)简要回答下列问题 1、计算面心立方晶体的八面体间隙尺寸。 2、简述固溶体与中间相的区别。 3、已知两个不平行的晶面(h1k1l1)和(h2k2l2),求出其所属的晶带轴。 4、计算面心立方晶体{111}晶面的面密度。 5、简述刃型位错线方向、柏氏矢量方向、位错运动方向及晶体运动方向之间的关系。 6、简述刃型位错攀移的实质。 7、简述在外力的作用下,螺型位错的可能运动方式。 8、当碳原子和铁原子在相同温度的 -Fe中进行扩散时,为何碳原子的扩散系数大于铁原子的扩散系数? 9、简述单组元晶体材料凝固的一般过程。 10、如图,已知A、B、C三组元固态完全不互溶,成分为80%A、10%B、10%C的O 合金在冷却过程中将进行二相共晶反应和三相共晶反应,在二元共晶反应开始时,该合金液相成分(a点)为60%A、20%B、20%C,而三元共晶反应开始时的液相成分(E点)为50% A、10%B、40%C,写出图中I和P合金的室温平衡组织。 1、计算体心立方晶体的八面体间隙尺寸。 2、简述决定组元形成固溶体与中间相的因素。 3、已知二晶向[u1v1w1]和[u2v2 w2],求出由此二晶向所决定的晶面指数。· 4、计算体心立方晶体{110}晶面的面密度。 5、简述螺型位错线方向、柏氏矢量方向、位错运动方向及晶体运动方向之间的关系。 6、简述刃型位错滑移的实质。 7、简述在外力的作用下,刃型位错的可能运动方式。 8、当碳原子和铁原子在相同温度的a-Fe 中进行扩散时,为何碳原子的扩散系数大于铁原子的扩散系数? 9、简述纯金属凝固的基本条件。 10、如图,已知A、B、C三组元固态完全不互溶,成分为80%A、10%B、10%C的O合 金在冷却过程中将进行二相共晶反应和三相共晶反应,在二元共晶反应开始时,该合金液相成分(a点)为60%A、20%B、20%C,而三元共晶反应开始时的液相成分(E点)为 %、(A+B)%和(A+B+C)%的相对量。 50% A、10%B、40%C,试计算A 初

《金属学原理》练习题-金属和合金的固态结构

1.图2.在和[2 3. 用等晶 4.写 5.晶于同 6.计结构 7.氢 8.铜固溶 9.纯径计算转 图Ex1-1的晶结构基元。 在一个单斜单211]等晶向。用四轴坐标系晶向。 写出图Ex1-2晶面:(234)同一个晶带?计算面心立方构的(0001)、氢原子溶解在铜的密度为溶体点阵常数纯铁在912°C 计算BCC 结构转变后的体积晶体结构中包单胞中画出(0 系画出六方晶2中晶向的四、(120)、(1求出该晶带方、体心立方(1010)晶面的在铝中形成什8.96g/cm 3。数a=0.3795nm C 由BCC 结构的原子半径积变化。这些包含两类原子010)、(110)、(晶系的(0211)四轴坐标晶向11)、(241)、带轴。 方结构的(100的面密度。 什么类型固溶①计算铜的点m ,密度为1结构转变为FC 径。它们的相 些结果说明了什子,把这个晶图Ex1-1121)、(312)、(0121)、向指数。 图Ex1-2 (122)、(40)、(110)、(1溶体?它应存点阵常数和原14.213g/cm 3,CC 结构,体相对变化为多什么? 晶体结构抽象 )等晶面;以及(1110)等晶面 13)、(101)、111)、(112)晶存在于点阵的原子半径。②计算说明这体积减少1.06多少? 如果假定象出空间点阵及画出[111]面及[211]、(010)和(34晶面的面密度的什么位置?②测得x(Au)这合金是什么6%,根据FC 定转变前后原阵,画出其中、[231]、[[1132]、[32)中有哪些度,计算密排为什么? u)=40%的Cu 么类型的固溶CC 结构的原原子半径不变一个 011]125]些面属排六方u--Au 溶体。 子半变,计

材料科学基础要背知识总结

2010级材料科学基础复习参考材料 一、名词解释 第二章 2-1 Crystalline and Non-crystalline 结晶态与非晶态 Crystalline: The state of a solid material characterized by a periodic and repeating three-dimensional array of atoms,ions,or molecules. Non-crystalline:The solid state wherein there is no long-range atomic order.sometimes the terms amorphous,glassy,and vitreous are used synonymously. 2-2 Single crystalline materials and polycrystalline materials 单晶与多晶材料 Single crystalline materials:A crystalline solid for which the periodic and repeated atomic pattern extends throughout its entirety without interruption. polycrystalline materials:Referring to crystalline materials that are composed of more than one crystal or grain. 2-3 Crystal structure, point lattice and unit cell 晶体结构、空间点阵、单位晶胞 Crystal structure:For crystalline materials,the manner in which atoms or ions are arrayed in space.It is defined in terms of the unit cell geometry and the atom positions within the unite cell. point lattice:The regular geometrical arrangement of points in crystal space. unit cell:The basic structural unit of a crystal structure.It is generally defined in terms of atom(or ion) positions within a parallelepiped volume. 2-4点群与空间群 点群:是指宏观晶体中对称要素的集合。它包含了宏观晶体中全部对称要素的总和以及它们相互间的组合关系。 空间群:晶体内部结构中全部对称要素的集合。 2-5 Direction indices and plane indices 晶向指数与晶面指数 晶向指数:晶体点阵在任何方向上分解为相互平行的结点直线组,质点等距离地分布在直线上。位于一条直线上的质点构成一个晶向。用表示,其中u v w是晶向矢量在参考坐标系X Y Z轴上的矢量分量等比例化简而得到。 晶面指数:可将晶体点阵在任何方向上分解为相互平行的结点平面,即晶面,用表示,h l k是晶面在三个坐标轴(晶轴)上截距倒数的互质整数比。 2-6 Coordination number and coordination polyhedron配位数与配位多面体 配位数:一个原子(或离子)周围同种原子(或异号离子)的数目为原子或离子的配位数 配位多面体:由原子(或离子)与其配位原子(或异号离子)组成的多面体结构为配位多面体。

江苏大学金属学原理复习题

形核功:要形成一个临界晶核,必须获得像△G*这样一部分能量,所以称△G*为临界形核功,简称形核功。 晶胚:液态金属中,时聚时散的小晶团称为晶胚 临界晶核:在r=r*时,粒子处于临界状态,因此半径r*的晶核叫做临界晶核。 动态过冷度:能保证凝固速度大于熔化速度的过冷度称为动态过冷度。 粗糙界面:在固、液两相之间的界面以微观来看是高低不平的,存在几个原子层厚度的过渡层,在过渡层中约有半数的位置为固相原子所占据。 光滑表面:在光滑界面以上为液相,以下为固相,液、固两相截然分开,固相的表面为基本完整的原子. 伪共晶:不是共晶成分的合金而得到完全共晶的组织叫伪共晶。 不平衡共晶:在不平衡凝固条件下,合金冷却到共晶温度以下时仍有少量液体存在,剩余液相的成分达到共晶成分而发生共晶转变,由此产生不平衡共晶。 离异共晶:在先共晶相数量较多,而共晶体数量甚少的情况下,共晶体中与先共晶相相同的那一相将依附于已有的粗大先共晶相长大,并把先共晶体中的另一部分推向最后 凝固的边界处,从而使共晶组织的特征消失,这种两相分离的共晶称为离异共晶。反应扩散:通过扩散而产生新相的现象被称为反应扩散 成分过冷:固溶体结晶时,尽管实际温度分布不变,但液固界面前沿液相中溶质分布发生变化,液相的熔点也随着变化,这种由于液相成分改变而形成的过冷称为成分过冷。平衡分配系数:达到平衡时,固相线成分也液相线成分之比。 区域熔炼:对于k<1的合金,溶质富集于末端,始端得到提纯,对于k>1合金,溶质富集于始端,末端得到提纯。(利用稳态凝固产生宏观偏析的原理进行金属提炼的办 法) 有效分配系数:结晶过程中固体在相界处的浓度和此时余下液体的平均浓度之比。 直线法则:在一定温度下,三元合金两相平衡合金的成分点和两个平衡相的成分点必然位于成分三角形内的同一条直线上,这一规律称为直线法则。 重心法则:当三元合金在一定温度下处于三相平衡时,合金的成分点为3个平衡相的成分点组成的三角形的质量重心,由此称之为重心定律。 连接线:两个平衡相的成分存在着对应的关系,连接对应成分点的直线叫连接线。 单变量线:三元系统中,平衡相的成分随温度变化的空间曲线。 临界分切应变:滑移系统开动所需最小份切应力。 单滑移:外力作用下,当只有一个滑移系统上的分切应力最大并且达到了临界切应力时,系统中只有一个滑移系开动,这种滑移叫做单滑移。 复滑移:由于晶体的转动,使拎一个滑移系参加滑移,从而形成双华谊,多组滑移系参加滑移,称为复滑移。 交滑移:两个或两个以上的滑移面沿同一个滑移方向进行交替滑移的过程,称为交滑移。孪生:晶体受力后,以产生孪晶的方式进行的切变过程叫孪生。 加工硬化:随着变形程度的增加,强度和硬度升高,塑性和韧性下降,此现象就是加工硬化。形变织构:金属和合金塑性变形时,由于各晶粒的转动,当形变量很大时,各晶粒的取向会大致趋于一致,形变中的这种组织状态叫做形变织构。 位错点阵阻力:位错在晶体中运动,每隔一个原子间距必然越过一个能垒,因此位错本身受到一种阻力,称为点阵阻力。 纤维组织:当形变量很大时,各晶粒已辨别不出来,而呈现纤维状的条纹,称为纤维组织。再结晶:经冷变形的金属,在足够高的温度地下加热时,通过新晶粒重新形核和长大,以无畸变的新晶核逐渐取代变形晶粒的过程。

材料科学基础之金属学原理扩散习题及答案

《材料结构》习题:固体中原子及分子的运动 1. 已知Zn在Cu中扩散时D0= 2.1×10-5m2/s,Q=171×103J/mol。试求815℃时Zn在Cu中的扩散系数。 2. 已知C在γ铁中扩散时D0=2.0×10-5m2/s,Q=140×103J/mol; γ铁中Fe自扩散时 D0=1.8×10-5m2/s,Q=270×103J/mol。试分别求出927℃时奥氏体铁中Fe的自扩散系数和碳的扩散系数。若已知1%Cr可使碳在奥氏体铁中的扩散激活能增加为Q=143×103J/mol,试求其扩散系数的变化和对比分析以上计算结果。 3. 若将铁棒置于一端渗碳的介质中,其表面碳浓度达到相应温度下奥氏体的平衡浓度C S。试求 (1)结合铁-碳相图,试分别示意绘出930℃和800℃经不同保温时间(t1

习题4答案: 1.解:根据扩散激活能公式得 3-5132017110exp() 2.110exp 1.2610m /s 8.314(815273)-???=-=??-=? ??+?? Cu Zn Q D D RT 2.解:根据扩散激活能公式得 3γ-5172027010exp() 1.810exp 3.1810m /s 8.314(927273)-???=-=??-=? ??+??Fe Q D D RT 3γ-5112014010exp() 2.010exp 1.6110m /s 8.314(927273)-???=-=??-=? ??+??C Q D D RT 已知1%Cr 可使碳在奥氏体铁中的扩散激活能增加为Q =143×103J/mol , 所以,3γ-51120143.310exp() 2.010exp 1.1610m /s 8.314(927273)-???'=-=??-=? ??+??C Q D D RT 由此可见,1%Cr 使碳在奥氏体铁中的扩散系数下降,因为Cr 是形成碳化物的元素,与碳的亲和力较大,具有降低碳原子的活度和阻碍碳原子的扩散的作用。 3.(1)参见204页。 (2)若渗碳温度低于727℃,不能达到渗碳目的。因为在727℃以下,铁为α相,而C 在α-Fe 中的溶解度非常小(最高为在727℃时为0.0218%)。 4.解:(1)在870℃下, 3γ-5122014010exp() 2.010exp 8.010m /s 8.314(870273)-???=-=??-=? ??+??C Q D D RT 在930℃下, 3γ-5112014010exp() 2.010exp 1.6710m /s 8.314(930273)-???=-=??-=? ??+??C Q D D RT (2)低碳钢渗碳的扩散方程解为 0()erf =--S S C C C C 所以,渗层厚度∝x = 所以,1122112 1 1.67101020.9h 8.010--??===?D t t D 。 (3 )根据低碳钢渗碳的扩散方程解0()erf S S C C C C =--得,

上海大学2018年硕士《材料科学基础》考试大纲

上海大学2018年硕士《材料科学基础》考试大纲复习要求: 要求考生掌握金属材料的结构、组织、性能方面的基本概念、基本原理;理解金属材料的结构、组织、性能之间的相互关系和基本变化规律。 二、主要复习内容: (一)晶体学基础 理解晶体与非晶体、晶体结构与空间点阵的差异;掌握晶面指数和晶向指数的标注方法和画法;掌握立方晶系晶面与晶向平行或垂直的判断;掌握立方晶系晶面族和晶向族的展开;掌握面心立方、体心立方、密排六方晶胞中原子数、配位数、紧密系数的计算方法;掌握面心立方和密排六方的堆垛方式的描述及其它们之间的差异。 重点:晶体中原子结构的空间概念及其解析描述(晶面和晶向指数)。 (二)固体材料的结构 掌握波尔理论和波动力学理论对原子核外电子的运动轨道的描述。掌握波粒两相性的基本方程。掌握离子键、共价键、金属键、分子键和氢键的结构差异。了解结合键与电子分布的关系和键合作用力的来源。掌握影响相结构的因素。了解不同固溶体的结构差异。 重点:一些重要类型固体材料的结构特点及其与性能的关系。 (三)晶体中的缺陷 掌握缺陷的类型;掌握点缺陷存在的必然性;掌握点缺陷对晶体性能的影响及其应用。理解位错的几何结构特点;掌握柏矢量的求法;掌握用位错的应变能进行位错运动趋势分析的方法。掌握位错与溶质原子的交互作用,掌握位错与位错的交互作用。掌握位错的运动形式。掌握位错反应的判断;了解弗兰克不全位错和肖克莱不全位错的形成。 重点:位错的基本概念和基本性质。 (四)固态中的扩散 理解固体中的扩散现象及其与原子运动的关系,掌握扩散第一定律和第二定律适用的场合及其对相应的扩散过程进行分析的方法。掌握几种重要的扩散机制适用的对象,了解柯肯达尔效应的意义。掌握温度和晶体结构对扩散的影响。 重点:扩散的基本知识及其在材料科学中的应用 (五)相图 掌握相律的描述和计算,及其对相平衡的解释;掌握二元合金中匀晶、共晶、包晶、共析、二次相析出等转变的图形、反应式;掌握二元典型合金的平衡结晶过程分析、冷却曲线;掌握二元合金中匀晶、共晶、共析、二次相析出的平衡相和平衡组织名称、相对量的计算;掌握铁-渗碳体相图及其典型合金的平衡冷却曲线分析、反应式、平衡相计算、平衡组织计算、组织示意图绘制;掌握简单三元合金的相平衡分析、冷却曲线分析、截面图分析;定性的掌握单相固溶体自由能的求解方法,掌握单相固溶体自由能表达式,掌握固溶体的自由能-成分曲线形式,掌握混合相自由能表达式,了解相平衡条件表达式,掌握相平衡的公切线法则。

2018——803材料科学基础考纲——南京工业大学

803《材料科学基础》复习大纲 一、考试的基本要求 要求学生比较系统地理解和掌握材料科学基础的基本概念和基本理论, 掌握晶体结构、结晶化学、晶体结构缺陷的基本概念和基础理论;掌握玻璃体、表面与界面的基本理论与基本概念;熟悉相平衡图的基本概念,掌握相图的应用,能进行相图的分析,能进行材料配料区的选择;掌握扩散、固相反应、相变和烧结等高温过程动力学的基本理论与基本概念;具备一定的分析和解决实际问题的能力。 二、考试方式和考试时间 闭卷考试,总分150,考试时间为3小时。 三、参考书目(仅供参考) 《无机材料科学基础》,张其土主编,华东理工大学出版社,2007年 《材料科学基础》,张联盟等编,武汉理工大学出版社,2008年 四、试题类型: 主要包括填空题、选择题、是非题、计算题、论述题、相图分析等类型,并根据每年的考试要求做相应调整。 五、考试内容及要求 第一部分晶体结构基础 掌握:晶体的基本概念与性质,单位平行六面体的划分原则,晶体的对称要素、点群、结晶符号,晶体化学的基本原理,晶体的宏观对称,晶体的微观对称,晶胞的概念,空间群的概念,球体紧密堆积原理;以及NaCl结构、萤石结构、金红石结构,刚玉结构、钙钛矿结构、尖晶石结构,硅酸盐结构与分类,层状硅酸盐结构等典型的晶体结构类型。 熟悉:晶体的宏观对称,晶体的微观对称,晶胞的概念,空间群的概念,球体紧密堆积原理,NaCl结构、萤石结构、钙钛矿结构、尖晶石结构和层状硅酸盐结构,离子晶体结构中负离子的堆积方式、正离子的配位数、正离子占据的空隙位置。

第二部分晶体结构缺陷 掌握:点缺陷的概念与类型,热缺陷的分类,热缺陷浓度的计算,固溶体的概念与分类,能熟练书写缺陷化学反应方程式和相应的固溶式,形成连续置换型固溶体的条件,组份缺陷的形成原因,非化学计量化合物的概念与分类,间隙型固溶体的形成规律,固溶体的研究方法,位错的基本概念,刃位错与螺位错。 熟悉:点缺陷的概念与类型,固溶体的概念与分类,能熟练书写缺陷化学反应方程式和相应的固溶式,形成连续置换型固溶体的条件,组份缺陷的形成原因,刃位错与螺位错。 第三部分非晶态固体 掌握:熔体的概念,粘度的概念,玻璃的通性,玻璃态物质的形成方法,玻璃形成的热力学观点和动力学手段,形成玻璃的结晶化学条件,玻璃的结构,硅酸盐玻璃的结构特征和玻璃结构参数的计算,硼酸盐玻璃。 熟悉:玻璃的结构,粘度的概念,形成玻璃的结晶化学条件,玻璃结构参数的计算。 第四部分材料的表面与界面 掌握:固体的表面力场、晶体的表面结构,固体表面的双电层对表面能的影响,弯曲表面效应,润湿与粘附的概念与特点,表面粗糙度对润湿的影响,界面行为,晶界结构与分类,多晶体的组织;粘土的荷电性,粘土的离子吸附与交换,粘土胶体的电动性质,粘土泥浆的流动性和稳定性,粘土泥浆发生触变性的条件,粘土具有可塑性的原因。 熟悉:固体表面的双电层对表面能的影响,润湿与粘附的概念与特点,表面粗糙度对润湿的影响,粘土的荷电性,粘土泥浆的流动性和稳定性。 第五部分相图 掌握:相图的基本知识,水型物质与硫型物质,单元系统相图,可逆与不可逆多晶转变的单元相图,二元系统相图的特点,二元相图的分析,三元系统相图的特点、杠杆规则、连线规则、切线规则、重心规则、三角形规则等,三元相图的分析与析晶路程。 熟悉:可逆与不可逆多晶转变的单元相图,三元系统相图的特点,三元相图的分析与析晶路程。

材料科学基础知识点大全

点缺陷1范围分类1点缺陷.在三维空间各方向上尺寸都很小,在原子尺寸大小的晶体缺陷.2线缺陷在三维空间的一个方向上的尺寸很大(晶粒数量级),另外两个方向上的尺寸很小(原子尺寸大小)的晶体缺陷.其具体形式就是晶体中的位错3面缺陷在三维空间的两个方向上的尺寸很大,另外一个方向上的尺寸很小的晶体缺陷 2点缺陷的类型1空位.在晶格结点位置应有原子的地方空缺,这种缺陷称为“空位”2.间隙原子.在晶格非结点位置,往往是晶格的间隙,出现了多余的原子.它们可能是同类原子,也可能是异类原子3.异类原子.在一种类型的原子组成的晶格中,不同种类的原子替换原有的原子占有其应有的位置3点缺陷的形成弗仑克耳缺陷:原子离开平衡位置进入间隙,形成等量的空位和间隙原子.肖特基缺陷:只形成空位不形成间隙原子.(构成新的晶面)金属:离子晶体:1 负离子不能到间隙2 局部电中性要求 4点缺陷的方程缺陷方程三原则: 质量守恒, 电荷平衡, 正负离子格点成比例增减. 肖特基缺陷生成:0=V M,,+ V O··弗仑克尔缺陷生成: M M=V M,,+ M i ·· 非计量氧化物:1/2O2(g)=V M,,+ 2h·+ O O不等价参杂:Li2O=2Li M,+ O O + V O··Li2O+ 1/2O2 (g) =2Li M, + 2O O + 2h· .Nb2O5=2Nb Ti ·+ 2 e, + 4O O + 1/2O2 (g) 5过饱和空位.晶体中含点缺陷的数目明显超过平衡值.如高温下停留平衡时晶体中存在一平衡空位,快速冷却到一较低的温度,晶体中的空位来不及移出晶体,就会造成晶体中的空位浓度超过这时的平衡值.过饱和空位的存在是一非平衡状态,有恢复到平衡态的热力学趋势,在动力学上要到达平衡态还要一时间过程. 6点缺陷对材料的影响.原因无论那种点缺陷的存在,都会使其附近的原子稍微偏离原结点位置才能平衡即造成小区域的晶格畸变.效果1提高材料的电阻定向流动的电子在点缺陷处受到非平衡力(陷阱),增加了阻力,加速运动提高局部温度(发热)2加快原子的扩散迁移空位可作为原子运动的周转站3形成其他晶体缺陷过饱和的空位可集中形成内部的空洞,集中一片的塌陷形成位错4改变材料的力学性能.空位移动到位错处可造成刃位错的攀移,间隙原子和异类原子的存在会增加位错的运动阻力.会使强度提高,塑性下降. 位错 7刃型位错若将上半部分向上移动一个原子间距,之间插入半个原子面,再按原子的结合方式连接起来,得到和(b)类似排列方式(转90度),这也是刃型位错. 8螺型位错若将晶体的上半部分向后移动一个原子间距,再按原子的结合方式连接起来(c),同样除分界线附近的一管形区域例外,其他部分基本也都是完好的晶体.而在分界线的区域形成一螺旋面,这就是螺型位错 9柏氏矢量.确定方法,首先在原子排列基本正常区域作一个包含位错的回路,也称为柏氏回路,这个回路包含了位错发生的畸变.然后将同样大小的回路置于理想晶体中,回路当然不可能封闭,需要一个额外的矢量连接才能封闭,这个矢量就称为该位错的柏氏矢10柏氏矢量与位错类型的关系刃型位错,柏氏矢量与位错线相互垂直.(依方向关系可分正刃和负刃型位错).螺型位错,柏氏矢量与位错线相互平行.(依方向关系可分左螺和右螺型位错).混合位错,柏氏矢量与位错线的夹角非0或90度. 柏氏矢量守恒1同一位错的柏氏矢量与柏氏回路的大小和走向无关.2位错不可能终止于晶体的内部,只能到表面,晶界和其他位错,在位错网的交汇点, 11滑移运动--刃型位错的滑移运动在晶体上施加一切应力,当应力足够大时,有使晶体上部向有发生移动的趋势.假如晶体中有一刃型位错,显然位错在晶体中发生移动比整个晶体移动要容易.因此,①位错的运动在外加切应力的作用下发生;②位错移动的方向和位错线垂直;③运动位错扫过的区域晶体的两部分发生了柏氏矢量大小的相对运动(滑移);④位错移出晶体表面将在晶体的表面上产生柏氏矢量大小的台阶.螺型位错的滑移在晶体上施加一切应力,当应力足够大时,有使晶体的左右部分发生上下移动的趋势.假如晶体中有一螺型位错,显然位错在晶体中向后发生移动,移动过的区间右边晶体

805材料科学基础课程考试大纲

805《材料科学基础》课程考试大纲 一.绪论: 了解材料的发展史、材料科学的研究对象和内容以及学习本课程的目的意义和要求。 二.原子排列 1.了解组成材料的原子间的键合方式及其与性能间的关系。 2.了解晶体学基础的基本概念 3.掌握晶面、晶向的表示方法 4.掌握三种典型的晶体结构及其结合特征 5.掌握晶体缺陷的基本类型、基本特征、基本性质 三.固体中的相结构 1.掌握合金相的主要类型、形成条件和性能特点 2.了解玻璃相的形成条件、分子相的结构特点及分子晶体 四.凝固 1.理解金属结晶的基本规律 2.掌握结晶的基本条件:热力学条件、结构条件 3.理解晶核的形成及其特点:均匀形核、非均匀形核 4.了解晶体长大的条件、长大机制及长大形态 5.了解铸态晶粒的控制 五.相图 1.掌握相、相平衡及相图制作 2.理解匀晶、共晶、包晶三种基本相图 的特点,掌握其平衡凝固过程和组织变化。 3.了解其他类型的二元相图 4.掌握二元相图的分析方法 5.掌握铁碳合金相图、铁碳平衡结晶过程及室温下相和组织组成及其相对含量的计算 6.理解铁碳合金的组织与其力学性能间的关系 7.理解相图的热力学解释方法 8.了解铸锭的组织控制及偏析

9.了解三元相图的几何特性,掌握三元合金结晶过程中相与组织的转变规律,掌握三元相图简单的等温截面图和变温截面图 六.材料中的扩散 1.掌握扩散基本定律,了解扩散定律的应用 2.掌握金属扩散的微观机理及热力学理论 3.了解影响金属扩散的因素 七.塑性变形 1.了解单晶体的塑性变形:滑移和孪生的特点 2.了解多晶体塑性变形特点及细晶强化 3.了解合金的塑性变形特点及其强化机制 4.掌握冷变形金属的组织与性能 5.了解陶瓷材料的塑性变形 八.回复和再结晶 1.了解冷变形金属在加热时组织和性能的变化 2.了解回复机制及动力学 3.掌握再结晶时组织的变化及影响再结晶的因素 4.掌握再结晶后晶粒的长大及其控制 5、了解金属的热变形 九.固态相变 1.了解固态相变的类型与特征, 2.掌握扩散性相变新相形核与长大规律, 3.熟悉脱溶分解、调幅分解马氏体相变。 十.复合效应与界面 1.了解复合材料概念、分类及特点 2.掌握复合材料的界面

2018年中南大学粉末冶金学院959材料科学基础考纲

发布时间:2017/9/28 17:55 浏览次数:113 次本考试大纲由粉末冶金研究院教授委员会于2017年9 月27日通过。 粉末冶金研究院2017年硕士研究生入学考试《材料科学基础》试题形式分为3个专业特色模块,分别为:金属材料、无机非金属材料、高分子材料与工程,考生根据自身优势选择其中1个模块答题即可,每个模块均为150分。 I.考试性质 《材料科学基础》是材料科学与工程及相关学科专业硕士研究生的入学专业基础考试课程。材料科学是研究材料内在结构、性能和制备工艺之间相互作用关系的科学学科。《材料科学基础》考试成绩是评价考生是否具备从事材料科学与工程研究能力的基本标准。 II.考查目标 材料科学与工程学科主要探讨材料组成-制备工艺-组织结构(电子、原子和微观结构等)-性能-外界环境之间的相互作用关系。其中,材料结构在很大程度上决定了材料的性能。本课程考试通过重点考察学生对材料科学的基本概念和定律的理解基础上,旨在评估考生运用材料科学的基本原理和方法解决实际材料工程问题的能力。 III.考试形式和试卷结构 1、试卷满分及考试时间 本试卷满分为150分,考试时间180分钟。 2、答题方式 答题方式为闭卷,笔试。 3、试卷内容结构 本试卷分为3个模块,分别为金属材料、无机非金属材料、高分子材料与工程专业特色模块,每个模块均为150分。考生可根据自身的优势选择3个专业特色模块中的任何1个模块答题即可。 IV.试卷题型结构及比例 包括名词解释、简答题、计算和综合分析论述等不同形式的题目。 名词解释约20% 简答题约40%

计算和综合分析论述题等约40% V.考查内容 (1)金属材料模块考点: 一、晶体结构 金属材料中的原子键合方式、特点及其对材料性能的影响; 晶体学基础:空间点阵与晶体结构的基本概念、晶向指数与晶面指数;常见典型金属的晶体结构及其特征、晶体材料的多晶型性; 合金相结构:固溶体、金属间化合物的概念及分类、影响固溶体溶解度的因素、合金相与材料性能的关系。 二、晶体缺陷 晶体缺陷的概念及分类; 点缺陷:点缺陷的类型、平衡浓度、产生及其运动、点缺陷与材料行为; 位错:位错的基本类型和特征、柏氏矢量、位错的运动、位错的应力场及其与其他缺陷的相互作用、位错的增值、位错反应、实际晶体中的位错、位错理论的应用; 表面与界面:表面与表面吸附、晶界与相界的概念和分类、界面特性、晶体缺陷在材料组织控制(如扩散、相变)和性能控制(如材料强化)中的作用。 三、凝固 金属结晶与凝固的概念、金属结晶的基本规律、金属结晶的热力学条件、均匀形核、非均匀形核、晶核的长大、凝固理论的应用。 四、相图 相图的表示及相图的热力学基础; 二元合金相图:匀晶、共晶、包晶相图中合金的平衡、非平衡结晶过程及其组织、杠杆定律及应用、二元合金相图分析方法、相图与性能的关系;

相关主题
文本预览
相关文档 最新文档