当前位置:文档之家› 低应变反射波法检测细则.

低应变反射波法检测细则.

低应变反射波法检测细则.
低应变反射波法检测细则.

低应变反射波法检测

1适用范围

本细则适用于低应变反射波法检测混凝土桩的桩身完整性,判定桩身缺陷的程度及位置。其有效检测桩长范围应通过现场试验确定。

2编制依据

《建筑基桩检测技术规范》 JGJ 106-2014。

3检测仪器设备

检测仪器设备主要为 RS-1616K (S 基桩动测仪、力锤、力棒。

4受检桩种类及要求

4.1 受检桩种类

1、混凝土预制桩

2、混凝土灌注桩

4.2 受检桩要求

4.2.1受检桩混凝土强度至少达到设计强度的 70%,且不小于 15MPa 。

4.2.2桩头的材质、强度、截面尺寸应与桩身基本等同。

4.2.3桩顶面应平整、密实,并与桩轴线基本垂直。

5现场检测

5.1准备工作

5.1.1收集工程桩的桩型、桩长、桩径、设计桩身混凝土强度、施工记录及地质勘察报告等有关技术资料。

5.1.2检查桩顶条件和桩头处理情况

受检桩桩顶的混凝土质量、截面尺寸应与设计条件基本相同。

灌注桩应凿去桩顶浮浆或松散、破损部分, 并露出坚硬的混凝土表面; 桩顶平面应平整干净无积水,必要时宜采用便携式砂轮机磨平;妨碍正常测试的桩顶外露主筋应割掉。预应力管桩当法兰盘与桩身混凝土之间结合紧密时, 可不进行处理, 否则, 应采用电锯将桩头锯平。

当桩头与承台或垫层相连时,应将桩头与混凝土承台或垫层断开。

5.1.3检查仪器设备,使测试系统各部分之间匹配良好。

5.2现场仪器设备配置(如下图 :

5.3测量传感器的选择和安装

5.3.1传感器的选择

检测长桩的桩端反射信息或深部缺陷时, 应选择低频性能好的传感器; 检测短桩或桩的浅部缺陷时,应选择加速度传感器或宽频带的速度传感器。

5.3.2传感器的安装

1、传感器安装应采用化学粘结剂或石膏、黄油等粘贴,不应采用手扶式。安装时必须保证传感器与桩顶面垂直。

2、激振点和传感器安装位置应避开钢筋笼的主筋影响。

3、实心桩的激振点位置应选择在桩中心,测量传感器安装位置宜为距桩中心2/3半径处; 空心桩的激振点与测量传感器安装位置宜在同一水平面上, 且与桩中心连线形成的夹角宜为 90度,激振点和测量传感器安装位置宜为桩壁厚的 1/2处。

5.4激振操作

1、激振方向应沿桩轴线方向。

2、激振方式应通过现场敲击试验,选择合适重量的激振力锤和锤垫。宜采用小锤(窄脉冲获取短桩或桩的上部缺陷反射信号,宜采用大锤(宽脉冲获取长桩或桩的下部缺陷反射信号。

5.5测试参数设定

1、时域信号记录的时间段长度应在 2L/c时刻后延续不少于 5ms ;幅频信号分析的频率范围上限不应小于 2000Hz 。

2、设定桩长应为桩顶测点至桩底的施工桩长,设定桩身截面积应为施工截面积。

3、桩身波速根据本地区同类桩型的测试值初步设定。一般可按下表选择:

4、采样间隔或采样频率应根据桩长、桩身波速和频域分辨率合理选择;时域信号采样点数不宜少于 1024点,在保证测得完整信号的前提下,选用较高的采样频率或较小的采样时间间隔。

5、放大器增益应结合激振方式通过现场对比试验确定。

6、传感器的设定值应按计量检定结果设定。

5.6测试信号采集和筛选

1、根据桩径大小, 桩心对称布置 2~4个检测点; 每个检测点记录的有效信号数不宜少于 3个,通过叠加平均提高信噪比。

2、检查判断实测信号是否反映桩身完整性特征。

3、不同检测点及多次实测时域信号一致性较差时,应分析原因,增加检测点数量。

4、信号不应失真和产生零漂,信号幅值不应超过测量系统量程(避免信号波峰削波。

5、每根被检测的基桩均应进行二次以上重复测试,当检测波形重复良好时方可存储记录。当重复性不好时应及时清理激振点, 改善传感器安置条件或排除仪器故障后重新进行测试。对于异常波形, 应在现场及时分析研究, 排除可能存在的激振或接收条件不良因素的影响后重新测试。

6检测数据的分析与判定

6.1桩身波速平均值的确定

1、当桩长已知、桩底反射信号明确时,在地质条件、设计桩型、成桩工艺相同的基桩

中,选取不少于 5根Ⅰ类桩的桩身波速值按下式计算其平均值:

c m =1

1n

i i c n =∑ c i =2000L T

c i =2L ?f

2、对于超长桩或无法明确找出桩底反射信号的桩,可根据本地区经验并结合混凝土强

度等级, 综合确定波速平均值; 或利用成桩工艺、桩型相同且桩长相对较短并能够找出桩底反射信号的桩确定的波速作为波速平均值。

6.2桩身缺陷位置按下列公式计算:

x =12000

t ? x ?c x =' 12c f

? 6.3桩身完整性类别判定原则

桩身完整性类别应结合缺陷出现的深度、测试信号衰减特性及设计桩型、成桩工艺、地

质条件、施工情况,按下列表中的信号特征和规定进行综合分析判定。

桩身完整性分类表

6.4完整桩和桩身缺陷桩的实测信号曲线的波形特征及判别

1、施工质量好的单桩,其反射波具有下列特征;

a. 桩底反射波明显,易于读到双程传播时间值;

b. 波形规则,波列清晰;

c. 桩材平均波速符合设计砼强度的波速;

d. 在频谱分析图上,基波的主峰明显;

e. 同一工区桩体波形,桩底反射信号特征往往有较好的相似性。

2、桩体浅部断裂的定性评价,可依据横向激振对同类桩横向震动特征之间的差异来进行判别。存在横向裂缝的桩有自振频率降低、衰减历时明显增加及波列复杂等现象, 在一定实践经验基础上, 可对桩体浅部断裂缺陷做出定性评价, 为了保证判别准则的一致性, 桩身露出长度大体相同,激振及仪器接收参数应保持不变。

3、根据波形图中入射波、反射波振幅、频率、相位以及波的到达时间,分析判别桩底反射或桩间反射。

4、断裂界面或严重离析部位所产生的反射波, 其到达时间要小于桩底反射波到达时间。断裂界面或严重离析的存在将减弱桩底反射波的强度, 甚至影响桩底反射波的出现, 多个断面或多处严重离析存在, 将记录到多个相互干涉的反射波组, 形成复杂波形, 应结合地质资料进行分析,以排除地质变化对波形带来的影响。

5、缩径与扩径的判别:缩径与扩径部位截面积变化将导致明显的反射波,其部位可按反射历时加以估算, 类型可按相位判别, 严重程度要结合施工记录及该异常部位的地层情况综合分析。

6.5桩身完整性判定的注意事项

1、完整性判定时,应注意区分因桩身构造、成桩工艺、土层影响造成的类似缺陷信号, 如预制桩的接缝、灌注桩的逐渐扩径再缩回原桩径的变截面、地层硬夹层等。

2、根据测试信号幅值大小判定缺陷程度时,应考虑桩周土阻尼大小和缺陷所处的深度位置的影响; 还应结合基础和上部结构对桩的承载安全性要求, 考虑桩身承载力不足引发桩身结构破坏的可能性。

3、对设计条件有利的扩径灌注桩,不应判为缺陷桩。

4、对于嵌岩桩,桩底时域反射信号为单一反射波且与锤击脉冲信号同相时,应采取其它方法核验桩端嵌岩情况。

5、出现下列情况之一,桩身完整性判定应结合其他检测方法进行:

a. 实测信号复杂,无规律,无法对其进行准确评价。

b. 桩身截面渐变或多变,且变化幅度较大的混凝土灌注桩。

7、检测报告

低应变反射波法检测报告除应包含工程信息、各方主体、建筑物特征、桩基设计施工信息、检测要求、地质条件、检测设备、检测方法、检测过程等内容外, 还应包括以下内容:

1、桩身完整性检测的实测信号曲线;

2、桩身波速取值;

3、桩身完整性描述、缺陷的位置及桩身完整性类别;

4、时域信号时段所对应的桩身长度标尺、指数或线性放大的范围及倍数;或幅频信号曲线分析的频率范围、桩底或桩身缺陷对应的相邻谐振峰间的频差。

8、检测过程出现异常情况的处理及注意事项

1、因外界干扰中断试验,当影响检测质量时,检测工作必须重新开始。

2、因检测设备故障或损坏而中断试验的,必须将损坏的仪器设备修复。待重新检定合格后才能重新开始检测。

3、低应变检测仪器属高精度仪器,在运输和检测过程中应注意采取防震、防水(雨, 防晒等措施,以确保其不受损伤。

9、检测原始记录

1、检测原始记录应每格填写,填写应及时、清楚,未做项目用” /”划去;

2、检测原始记录的存档和管理应遵守本中心有关文件的规定。

反射波法基本测试原理与波形分析

一. 反射波法基本测试原理与波形分析 1.广义波阻抗及波阻抗界面 设桩身某段为一分析单元,其桩身介质密度、弹性波波速、截面面积分别用ρ,C ,A 表示,则令 Z =ρCA (7-1) 称Z 为广义波阻抗。当桩身的几何尺寸或材料的物理性质发生变化时,则相应的ρ、C 、A 发生变化,其变化发生处称为波阻抗界面。界面上下的波阻抗比值为 2 2211121A C A C Z Z n ρρ== (7-2) 称n 为波阻抗比。 2.应力波在波阻抗界面处的反射与透射 设一维平面应力波沿桩身传播,当到达一与传播方向垂 直的某波阻抗界面(如图7-2所示)时。根据应力波理论,由连续性条件和牛顿第三定律有 V I +V R =V T (7-3) A 1(σI +σR )=A 2σT (7-4) 式中,V 、σ分别表示质点振动的速度和产生的应力,下标I 、R 、T 分别表示入射波、反射波和透射波。 由波阵面的动量守恒条件导得 σI =-ρ1C 1V I σR =ρ1C 1 V R σT =-ρ2C 2V T 代入式(7-4),得 ρ1C 1A 1(V I -V R )=ρ2C 2A 2V T (7-5) 联立式(7-3)和(7-5),求得 V R =-FV I (7-6a ) V T =nTV I (7-6b ) 式中 n n F +-=11 称为反射系数 (7-7a ) n T +=12 称为透射系数 (7-7b ) 式(7-6)是反射波法中利用反射波与入射波的速度量的相位关系进行分析的重要关系式。 3.桩身不同性况下应力波速度量的反射、透射与入射的关系 (1)桩身完好,桩底支承条件一般。此时,仅在桩底存在界面,速度波沿桩身的传播情况如图7-3所示。 因为ρ1C 1A 1>ρ2C 2A 2,所以n = Z 1/Z 2>1,代入式(7-7)得 F <0,(T 恒>0) 由式(7-6)可知,在桩底处,速度量的反射波与入射波同号,体现在V (t )时程曲线上,则为波峰相同(同向)。典型的完好桩的实测波形如图7-4。 由图7-3、图7-4分析可得激振信号从触发到返回桩顶所需的时间t 1、纵波波速C 、桩长L 三者之间的关系为 Z 1=ρ1C 1A 1 Z 2=ρ2C 2A 2 图7-2 应力波的反射与透射

经典低应变反射波法的基本原理

的1/3乃至1/5以下。以加速度计为例,如其安装谐振频率为14kh,则频率上限只能达到3-4kh。由于桩基动测对幅值的定量要求不高,可以放宽限度,但也绝不能使谐振频率接近甚至位于要求的频率范围内。然而,地震检波器的使用者却不同程度地犯了这个错误,以28hz和38hz的速度检波器为例,研究表明,当锥形杆被手按于混凝土表面,且用铁锤激发时,谐振频率在830hz左右;通过钻孔方式将锥形杆紧紧地全部插入孔中或取下锥形杆用石膏粘固在混凝土表面时,如用铁锤敲击,谐振频率多在1200hz以上,此时如用尼龙锤或铁锤垫橡皮等低频锤敲击则可完全排除安装谐振频率的影响。显而易见,正确安装方式应以后者为宜。 理论推导表明,传感器的安装谐振频率与传感器的安装刚度和传感器底座质量有关。一般可以减化理解为:安装刚度越高,基座质量越小,安装谐振频率就越高,而安装刚度与安装的松紧程度、传递杆(锥形杆)长短有关。正因如此,一般要求取消锥形杆(或全部埋入被测连续介质中),也要求传感器基座越轻越好。 对于位移型惯性传感器而言(如速度计),安装谐振频率有f1,f2两个,f1比传感器的自然谐振频率还低,在40Hz以内,一般对测试没有影响;f2即是所讲安装谐振,处理较好时应在1200Hz以上。加速度型惯性传感器也有两个安装谐振频率,但均位于高频段,引起我们关注的是第一谐振频率,处理较好时在大几千赫兹至几万赫兹变化,但是,如用弹性较好的橡皮泥安装将只有1-2kHz。 在对基桩进行低应变反射波法测试时选用速度或加速度传感器。其中速度计在低频段的幅频特性和相频特性较差,在信号采集过程中,因击振激发其安装谐振频率,而产生寄生振荡,容易采集到具有振荡的波形曲线,对浅层缺陷反应不是很明显。同速度计相比,加速度计无论是在频响特性还是输出特性方面均具有巨大优势,并且它还具有高灵敏度的优点,因此用高灵敏度加速度计测试所采集到的波形曲线,没有振荡,缺陷反应明显。所以建议在对基桩进行低应变反射波法测试时选用高灵敏度加速度计检测。 理论上讲位移计型惯性传感器包括速度计(所谓高阻尼速度计和地震检波器)的高频部分是完全满足应力波反射法测试要求的,但由于生产工艺等方面的原因,其高频部分往往受到很大的限制,有的仅几百赫兹,最高一般亦在2kHz左右会掉下来。在现场测桩时,传感器的安装刚度又会导致安装谐振的出现,进一步使传感器的可测范围变窄,那么怎样判断传感器的优劣呢? 利用牙膏、石膏、黄油、橡皮泥等粘接剂将不含锥形杆的速度计紧紧地粘贴在被正确清理干净,满足测试要求的桩头上或用冲击电锤打孔,将有锥形杆的速度计牢牢地插入孔中,确保安装方法正确后,利用小铁锤直接敲击砼表面,仪器的模拟滤波档置2.5kHz以上。对被测信号进行谱分析,如果此桩两米内没有毛病,其幅值谱最高峰(一般为传感器的安装谐振峰)频率大于1200Hz,此传感器即可满足测试要求。频率越高在以后的测试过程中浅部测试效果将越好;分析幅值谱的低频部分(固有频率以下)还可判断出低频特性的好坏。换用低频锤,如力棒、尼龙锤(桩头再垫层橡皮更好)或铁锤+汽车外胎垫测试,如无振荡或振荡很小,这类传感器将更好。如果传感器的谐振峰仅几百赫兹,用低频锤时又不能消振,那么这种传感器是满足不了测试要求的。 需要指出的是,这种测试方法与桩头强度、砼龄期、浅部缺陷以及安装紧凑程度很有关系,以预制桩桩头测试效果最好,而如果在素混凝土上测试,效果将最差,最不能说明问题。速度计是自生电动势型的,虽然价格低廉,但也应注意保护,一般的保护方法是将其输出端短路或两个传感器对接。开路贮放将减少传感器寿命,是不合适的。测桩界较流行的速度计:灵敏度大约为280mV/cm/s,固有频率:10~28Hz,阻尼系数ξ=0.6~1.0。 如果判断速度计测试效果的好坏?从传感器频响,特别是安装后的频响特性来考虑,速度计用于测桩是应当慎重的,因此从某种意义上讲,提高速度计的安装刚度,降低安装质量

低应变反射波法检测细则

低应变反射波法检测 1适用范围 本细则适用于低应变反射波法检测混凝土桩的桩身完整性,判定桩身缺陷的程度及位置。其有效检测桩长范围应通过现场试验确定。 2编制依据 《建筑基桩检测技术规范》JGJ 106-2014。 3检测仪器设备 检测仪器设备主要为RS-1616K(S)基桩动测仪、力锤、力棒。 4受检桩种类及要求 4.1 受检桩种类 1、混凝土预制桩 2、混凝土灌注桩 4.2 受检桩要求 4.2.1受检桩混凝土强度至少达到设计强度的70%,且不小于15MPa。 4.2.2桩头的材质、强度、截面尺寸应与桩身基本等同。 4.2.3桩顶面应平整、密实,并与桩轴线基本垂直。 5现场检测 5.1准备工作 5.1.1收集工程桩的桩型、桩长、桩径、设计桩身混凝土强度、施工记录及地质勘察报告等有关技术资料。 5.1.2检查桩顶条件和桩头处理情况 受检桩桩顶的混凝土质量、截面尺寸应与设计条件基本相同。 灌注桩应凿去桩顶浮浆或松散、破损部分,并露出坚硬的混凝土表面;桩顶平面应平整干净无积水,必要时宜采用便携式砂轮机磨平;妨碍正常测试的桩顶外露主筋应割掉。 预应力管桩当法兰盘与桩身混凝土之间结合紧密时,可不进行处理,否则,应采用电锯将桩头锯平。 当桩头与承台或垫层相连时,应将桩头与混凝土承台或垫层断开。 5.1.3检查仪器设备,使测试系统各部分之间匹配良好。 5.2现场仪器设备配置(如下图):

5.3测量传感器的选择和安装 5.3.1传感器的选择 检测长桩的桩端反射信息或深部缺陷时,应选择低频性能好的传感器;检测短桩或桩的浅部缺陷时,应选择加速度传感器或宽频带的速度传感器。 5.3.2传感器的安装 1、传感器安装应采用化学粘结剂或石膏、黄油等粘贴,不应采用手扶式。安装时必须保证传感器与桩顶面垂直。 2、激振点和传感器安装位置应避开钢筋笼的主筋影响。 3、实心桩的激振点位置应选择在桩中心,测量传感器安装位置宜为距桩中心2/3半径处;空心桩的激振点与测量传感器安装位置宜在同一水平面上,且与桩中心连线形成的夹角宜为90度,激振点和测量传感器安装位置宜为桩壁厚的1/2处。 5.4激振操作 1、激振方向应沿桩轴线方向。 2、激振方式应通过现场敲击试验,选择合适重量的激振力锤和锤垫。宜采用小锤(窄脉冲)获取短桩或桩的上部缺陷反射信号,宜采用大锤(宽脉冲)获取长桩或桩的下部缺陷反射信号。 5.5测试参数设定 1、时域信号记录的时间段长度应在2L/c时刻后延续不少于5ms;幅频信号分析的频率范围上限不应小于2000Hz。 2、设定桩长应为桩顶测点至桩底的施工桩长,设定桩身截面积应为施工截面积。 3、桩身波速根据本地区同类桩型的测试值初步设定。一般可按下表选择: 4、采样间隔或采样频率应根据桩长、桩身波速和频域分辨率合理选择;时域信号采样点数不宜少于1024点,在保证测得完整信号的前提下,选用较高的采样频率或较小的采样时间间隔。 5、放大器增益应结合激振方式通过现场对比试验确定。 6、传感器的设定值应按计量检定结果设定。 5.6测试信号采集和筛选 1、根据桩径大小,桩心对称布置2~4个检测点;每个检测点记录的有效信号数不宜少于3个,通过叠加平均提高信噪比。 2、检查判断实测信号是否反映桩身完整性特征。 3、不同检测点及多次实测时域信号一致性较差时,应分析原因,增加检测点数量。 4、信号不应失真和产生零漂,信号幅值不应超过测量系统量程(避免信号波峰削波)。 5、每根被检测的基桩均应进行二次以上重复测试,当检测波形重复良好时方可存储记录。当重复性不好时应及时清理激振点,改善传感器安置条件或排除仪器故障后重新进行测试。对于异常波形,应在现场及时分析研究,排除可能存在的激振或接收条件不良因素的影响后重新测试。

低应变法检测桩身完整性

低应变反射波法 目前国内外普遍采用瞬态冲击方式,实测桩顶加速度或速度响应时域曲线。籍一维波动理论分析来判定基桩得桩身完整性,这种方法称之为反射波法(或瞬态时域分析法)。 传感器得安装方法: 实心桩得激振点位置应选择在桩中心,测量传感器安装位置宜为距桩中心 2/3 半径处; 空心桩得激振点与测量传感器安装位置宜在同一水平面上,且与桩中心连 线形成得夹角宜为90 度,激振点与测量传感器安装位置宜为桩壁厚得1/2 处。

传感器藕合: 把藕合剂抹在传感器底部,再把传感器放入桩顶部,松手后传感器不会移动与侧斜为佳。传感器安装地点,一点要平整。不然会影响采集效果,藕合可以用牙膏,黄油,口香糖,但不可用泥巴。 敲击: 敲击以力棒自由落体来敲击桩头,力棒落到桩头反弹后,立马抓住力棒。落距为5cm—15cm 为佳。视桩得长度而定,桩稍长可稍加大落距。长桩用得锤头最好为橡胶头,短桩用铝合金头。 波形分析完整桩:入射波与反 射波同相

也有桩底反射与初始入射波先反相再同相得扩底桩 下图为,某小区得住宅楼,长7、2 米人工挖孔桩,设计砼强度为C25。V=3675,经检测桩底反射明显,底部扩底属完整桩 缩径桩:在时程曲线上反映比较规则,缩径部位与缺陷呈先同相再反相,或仅现其同相反射信号,视严重程度,可能有多次反射,此类缺陷 桩一般可见桩底信号

离析:由于离析部位得混凝土松散,对应力波能量吸收较大,形成缺 陷波不规则,后续信号杂乱,而且频率较低,波速偏小,通常很难瞧到 桩底反射。 断桩:测试曲线呈等距多次同相反射。上部断裂往往趾呈高频多次同 时反射,反射幅值较高,衰减较慢,中部断裂反映为多次同相反射, 缺 陷得反射波幅值较低,而深部断裂波形反映下,类就是摩擦桩桩底反射,但算得得波速明显高于正常桩得波速。

低应变反射波法信号识别方法

低应变反射波法信号识别方法 从理论上讲,传感器越轻且越贴近桩顶面,测试信号也越接近桩面质点振动,测试效果越好。 目前,传感器安装普遍采用粘贴方式。橡皮泥具有柔性大、污染小、衰减小、价格便宜等优点,将橡皮泥用作传感大器的黏合剂一般可取得较好的检测信号。如果桩同处理不平整、桩顶面未清洗干净或寒冷季节使用,传感器常会出现虚粘现象,导致检测信号失真,影响判识。因此,用橡皮泥作黏合剂时,如果出现首波明显加宽、信号波浪式振荡等异常现象,应首先考虑传感器粘贴不牢,需重新粘结牢后再做检测。图1 为同一根桩传感器虚粘和粘合牢固时的对比检测曲线。 图1 传感器粘贴效果对比曲线 由图1 可以看出,传感器粘合牢固,波形规则,桩底反射信号清晰;传感器粘合不良,可导致首波变宽,信号震荡明显加大,桩底反射信号没出现或不明显,大大降低了检测信号的判断效果。

桩身浅部缺陷是桩基工程中最常见的缺陷。从桩身轴力传递特性可知,该类缺陷位置浅,在工作荷载下最易发生材料破坏,并且对工程质量危害最大。同时,浅部缺陷造成波形畸变,并且这种畸变很容易使桩身其他部位产生缺陷屏蔽。 桩顶至其以下2m 左右深度范围称为测试盲区。在测试盲区桩顶应力波传播复杂,信号干扰大。如果盲区内存在缺陷,由于激振脉冲有一定的宽度,则在脉冲宽度内,应力波遇到缺陷产生的上行反射波信号,将与能量较大的入射重叠在一起,从而给桩身浅部缺陷信号的判别增加难度。 尽管测试盲区的桩身缺陷判别难度较大,但并不是无法判断,因为该类缺陷发生频率高、位置浅,易于通过开挖方式予以验证,所以可以通过不断的对比测试和开挖验证,来找出该类缺陷在曲线上的特征和变化规律,以指导该类缺陷的识别。实践表明,根据以下特征对桩身浅部缺陷特别是严重缺陷进行判别效果较好。 完整桩波形,衰减规则,无缺陷反射波存在,桩底反射信号清晰(见图2(a))。如果波形特征表现为较宽的入射脉冲,或首波为非半正弦波或呈明显不对称半正弦波,波形在整体上呈现低频大振幅衰减振动,波形振荡延续时间长(见图2(a)),首波后反冲异常增大(见图2(c)),反冲后曲线明显在零线以上较长时间不归零或质点振动幅值异常增大(见图2(d)),则表明有浅部断桩或其他类型的严重浅

影响低应变法基桩检测准确性的因素分析

影响低应变法基桩检测准确性的因素分析 发表时间:2017-11-09T20:06:21.910Z 来源:《基层建设》2017年第22期作者:许冠惺 [导读] 摘要:低应变法是检测混凝土桩桩身结构完整性的一种间接检测方法,在工程实践中已得到广泛应用,但通过长期的现场检测总结,发现了复杂地质情况对低应变检测结果的影响巨大。 汕头市澄海区工程质量监督检测站广东汕头 515800 摘要:低应变法是检测混凝土桩桩身结构完整性的一种间接检测方法,在工程实践中已得到广泛应用,但通过长期的现场检测总结,发现了复杂地质情况对低应变检测结果的影响巨大。本文结合工程实例,综合分析了复杂地质情况下影响低应变法检测曲线的因素。 关键词:桩基础;硬土层;嵌岩桩 0 引言 随着国内建筑工程的蓬勃发展,建筑工程的质量控制也受到了更高程度的重视。为了适应现代建筑工程质量的控制,桩基检测技术已经被广泛应用到公路、铁路、房建、港口等工程质量控制体系。其中低应变法以其操作简单、携带方便、经济实用等优势,给桩基施工质量控制带来极大的方便。但是由于该方法在实际检测中受到判定依据以及地质因素的影响,存在着一定的局限性和判定误区。因此,分析地质条件对低应变法检测的影响具有重要意义。 1 桩周土阻力对波形影响 基桩周围土体,受桩土相互作用的影响,应力波在土体中向下传播的过程中不断衰减,其衰减程度与桩身周边土体性质有关,具体表现为: (1)导致应力波迅速衰减,使有效测试深度减小; (2)影响缺陷反射幅值,造成利用幅值进行缺陷定量分析误差加大; (3)在软硬土层交界面附近产生反射土阻力波,干扰桩身反射信号。例如,若桩周土某一段为软弱土层,其上下层土质均较硬,则会产生类似缩颈的假缺陷。因此,场地土层条件对应力波的影响很大,在软硬土的交界面处易出现波形振荡,与缺陷的反射混淆。 工程实例1:某工程冲孔灌注桩,桩径900mm,桩身混凝土强度等级C30,桩长14m。地层状况在0m~5m为细砂,5m~6m为淤泥质土(流塑),6m~10m为可塑粉质粘土,实测速度曲线如图1。 从图1中可以看出,除了入射波和桩底反射波外,在细砂和可塑粉质粘土范围内,速度曲线稍向下漂移为正常曲线,距桩顶5m~6m附近,即细砂与淤泥质土交界处,出现类似缩颈的曲线。但是经过现场土方开挖验证,桩身完好没有出现缩径。 经分析,出现这种现象的原因,是由于土阻力的变化造成的。在砂土层中,桩周土体阻抗大,应力波的衰减快;在淤泥土层中,桩周土体阻抗小,应力波的衰减慢,造成了类似缩颈的假缺陷。 工程实例2:某工程冲孔灌注桩,桩径1000mm,桩身混凝土强度等级C25,桩长14m。地层状况在0~5m为软塑淤泥质土,5m~6m为砂砾石层,下部为软塑淤泥质土,实测速度曲线如图2。 但考虑到场地实际土质条件,凭借经验,在淤泥质土和砂层的软硬交界面处,灌注桩易出现缺陷,故该桩的实际缺陷可能比曲线反映出的情况更为严重。于是对该桩进行取芯试验以验证,发现9m~12m附近桩身夹泥,为严重桩身缺陷。 经分析,8m~12m附近为淤泥土和砂层的交界处,由于硬土里拔管要克服较大的摩阻力,一旦导管拔出进入软土层,土体摩阻力会突然减小。施工时若控制不当,导管拔管速度突然加速,造成软、硬土层交界处桩身出现严重缩径,甚至断桩。所以,在检测人员对曲线进行判断时,在软、硬土层交界面附近反映出的缺陷需要格外重视。 3 嵌岩桩持力层对波形影响 分析嵌岩桩的检测信号,首先要积累检测经验,注重收集相关检测数据,明确所测桩的工艺、地质特性、桩身混凝土强度、桩身入岩深度,再根据嵌岩桩检测曲线的特征,正确辨认嵌岩桩的入岩程度,才能对嵌岩桩测试曲线做出正确的分析和判断。 对于嵌岩桩,普遍认为桩底持力层的基岩作为桩端的固定端,应力波在到达桩底后产生的反射波应符合n<1时在桩中传播的特征(n为波阻抗比)。在《建筑基桩检测技术规范》(JGJ106-2014)中也规定:当桩底时域反射信号为单一反射波且与锤击脉冲信号同向时,应采取其他方法核验桩端嵌岩情况。 但实际上,嵌岩桩的桩底反射信号对不同施工工艺的桩是不同的,一般来说,对于没用泥浆护壁或干作业的嵌岩桩,由于浇灌的混凝土从进入持力层开始就与岩石结合成一体,这样当应力波到达嵌岩面时就产生一个与锤击脉冲相反的反射信号(一般进入岩石是从强风化到中风化再到弱风化),真正的桩底信号很难测到。 对于采用机械成孔且有泥浆护壁的嵌岩桩,由于桩侧有泥浆的原因,混凝土很难与基岩结合成为一体,测得的桩底信号跟桩底形成的沉渣有直接的关系,对信号仔细分析可定性判断沉渣情况:

反射波法

三、地震反射波法 1、阐明有效波、干扰波的概念及其相对意义。 在数据采集中,埋置于地面的检波器可接收到来自于地下多种波的扰动,其中只有可用于解决所提出的地质任务的波才称为有效波,所有妨碍有效波识别和追踪的其他波称为干扰波。由此可见,在反射纵波法勘探中,一般只有反射纵波是有效波,其他波属于干扰范畴,而在瑞雷面波法勘探中,除瑞雷面波外,均为干扰波。 2、画图表示怎样用综合平面图表示观测系统。 它是目前生产中最常用的观测系统图示方法。它从分布在测线上的各激发点出发,向两侧作与测线成45角的直线坐标网,将测线上对应的接收排列投影到该45角的斜线上,并用颜色或加粗线标出对应线段。该线段在地面的投影对应覆盖的反射段。 用综合平面图表示观测系统 5、什么叫最佳接收地段?反射波的最佳接收地段应怎样选取? 在反射波法勘探中,为了有效地避开面波、声波、直达波、和折射波对有效反射波的干扰,可把接收地段选择在尽可能不受或少受各种干扰波影响的地段,这种最佳接收地段又称为最佳时窗。在反射波法勘探中,根据各种波在时空剖面上的视速度及到达时间差异选择尽可能避开面波、声波、直达波和折射波,而最大限度突出有效反射波的地段。 8、什么叫滤波?数字滤波处理的目的? 一个原始信号通过某一“装置”后变为一个新信号的过程称为滤波。目的是消除干扰波。 10、请画图说明理想滤波器在频率域的特点及其分类? 理想滤波器是有效波在其频率范围内完全无畸变地通过,干扰完全被压制掉。因此,要求其频率响应为: ???==01)()(f H f H 其它有效波频带内 这意味着其相位响应特性为零,故理想滤波器一定是零相位滤波器,一定是非物理可实现的。当然,它也隐含着在有效波频带内不要有干扰,否则无法滤掉。 理想滤波器的频率响应函数图形是一个矩形,像门一样,所以也称之为门式滤波器。 A 、理想低通滤波器 其频率响应如图(a)所示,其数学模型为: ? ??=01)(f H L c c f f f f >< 图24 理想低通滤波器的频率与脉冲响应 其中b 图横坐标应为t ,纵坐标应为)(t h L B 、理想带通滤波器 一般情况下,记录中既有高频干扰,又有低频干扰,则需要设计带通滤波器,其数学表达式为:

低应变反射波法

洋洋味道洋洋味道 号:学姓名:林必挺 业:地质资源与地质工程专院系:地球科学与工程学院 教授职称:袁宝远指导教师: 2016年6月 2016年4月 基于桩基检测的低应变反射波法一、引言其作用在于将上部结构是建、构筑物重要的组成部分,桩基础属于隐蔽性工程,其质量优劣直接影响到 整个结构的安全与稳定。荷载传递到桩周及下部较好地层中,因此桩基对工程质量起着不容忽视且不可替代的作用。然而在实际中由于现场地质常常会出现各种各样的工程,条件复杂、施工工艺以及施工中对施工质量控制不当等离析、缩径、夹泥、稍有不慎就容易造成诸如扩径、缺陷。尤其是对于混凝土灌注桩,空洞、断桩等影响桩基安全使用的各种质量问题。缺陷的存在必然不同程度地影响如果能事先较为准确地判断出桩身缺严 重者甚至使单桩丧失承载力。到桩基承载力,,排除事故隐患。因此,就可以及时采取补救措施,陷类型及严重程度、缺陷位置等 ,对单桩承载力检测以及桩身的完整性检测对桩基工程来说就具有极为重要的意义是任何情况下都决不可忽视的至关重要的隐蔽工程验收手段。

高应变用于桩身质量完整性检测的方法主要有静载荷试验、钻芯检测法、目前,动测法、低应变反射波法、超声波透射法等。低应变反射波法是在这种工程需要和具有操技术发展的背景下发展起来的一种对桩身结构完 整性进行评价的动测方法,是目前桩基质量检测,作简单、快速、经济而且能无破损检验桩身质量等多方面优点对于各检测方在桩基检测当中得到 了广泛的应用。规范首推的桩身完整性检测方法,所示。1法的对比如表 各检测方法的对比1表 无损检测检测类型有损检测 超声波透射低应变反射静载荷试钻芯检测高应变动测检测方法 法波法法验法 桩身结构完桩身结构完单桩承载力检测目的单桩承载桩身结构 和桩身结构整性完整性整性力 完整性 不能检测桩不能解决桩多解性不能区分检测局限易斜钻, 强度及沉降身外形畸变破坏模式性局部检测 问题 较高低较低一般高检测效率 较低低高较高较高检测费用

试验检测人员继续教育低应变检测技术自测答案

试验检测人员继续教育低应变检测技术自测答 案 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

试验检测人员继续教育低应变检测技术自测答案 第1题 空心桩的激振点与测量传感器安装位置宜在同一水平面上,且与桩中心连线形成的夹角宜为 答案:B 第2题 低应变反射波法检测中,用加速度计测得的原始信号是,实际分析的曲线是 A.加速度加速度 B.加速度速度 C.速度加速度 D.速度速度 答案:B 第3题 低应变反射波法检测时,每个检测点有效信号数不宜少于个,通过叠加平均提高信噪比 答案:C 第4题 当桩进入硬夹层时,在实测曲线上将产生一个与入射波的反射波 A.反向 B.奇数次反射反向,偶数次反射同向 C.同向 D.奇数次反射同向,偶数次反射反向 答案:A 第5题

低应变反射波法检测中,桩身完整性类别分为类 答案:D 第6题 低应变反射波法所针对的检测对象,下列哪个说法不正确 A.工程桩 B.桩基 C.基桩 D.试桩 答案:B 第7题 对某一工地确定桩身波速平均值时,应选取同条件下不少于几根Ⅰ类桩的桩身波速参于平均波速的计算 答案:D 第8题 低应变反射波法计算桩身平均波速的必要条件是 A.测点下桩长、桩径 B.测点下桩长、桩顶相应时间、桩底反射时间 C.测点下桩长、成桩时间 D.桩径、桩顶相应时间、桩底反射时间 答案:B 第9题 低应变反射波法在测试桩浅部缺陷时,激振的能量和频率要求 A.能量小,频率低 B.能量大,频率高 C.能量小,频率高 D.能量大,频率低答案:C 第10题 港口工程桩基动力检测规程中,“检测波波形有小畸变、波速基本正常、桩身有轻微缺陷、对桩的使用没有影响”描述,应判为桩

2017年建筑基桩低应变法检测理论考试试题

2017年建筑基桩低应变法检测理论考试试题 一、单选题 1.低应变检测的目的是 A. 通过桩身内力及变形测试,测定桩身弯矩 B. 通过桩身内力及变形测试、测定桩侧、桩端阻力 C. 检测桩身缺陷及其位置,判定桩身完整性类别 D. 检测灌注桩桩身缺陷及其位置,判定桩身完整性类别 答案:C(JGJ106-2003第3.1.2) 2. 当采用低应变法或声波透射法检测时,受检桩混凝土强度至少达到 A.设计强度的70%,且不小于15MPa B.设计强度的30%,且不小于12MPa C.设计强度的70%,且不小于12MPa D.设计强度的30%,且不小于15MPa 答案:A(JGJ106-2003第3.2.6) 3.反射波法的理论基础是一维线弹性杆件模型,受检基桩的长细比应满足 A.>10 B.≥10 C.≥5 D.>5 答案:D(非规范) 4. 稳态激振设备应包括激振力可调、扫频范围为的电磁式稳态激振器 A. 10~2000Hz B. 10~1500Hz C. 100~2000Hz D. 100~1500Hz 答案:A(JGJ106-2003第8.2.2) 5. 时域信号记录的时间段长度应在2L/c 时刻后延续;幅频信号分析的频

率范围上限。 A. 少于5ms,小于2000Hz B. 不少于5ms, 不应小于2000Hz C. 不少于10ms, 不应小于2000Hz D. 少于10ms,小于2000Hz 答案:B(JGJ106-2003第8.3.2) 6. 时域信号采样点数不宜点。 A. 大于512 B. 大于1024 C. 少于512 D. 少于1024 答案:D(JGJ106-2003第8.3.2) 7.加速度传感器的电荷灵敏度为 A.30-100PC/g B. 10-100PC/g C. 30-1000PC/g D. 10-1000PC/g 答案:A(非规范) 8实心桩的激振点位置应选择在,测量传感器安装位置宜为 A. 桩中心; 距桩中心2/3 半径处 B. 距桩中心1/3 半径处; 距桩中心2/3 半径处 C. 桩中心; 距桩中心1/3 半径处 D. 距桩中心2/3 半径处; 距桩中心1/3 半径处 答案:C(JGJ106-2003第8.3.3) 9. 空心桩的激振点与测量传感器安装位置宜在同一水平面上,且与桩中心连线形成的夹角宜为,激振点和测量传感器安装位置宜为桩壁厚的处。 A. 45°; 1/2 B. 90°; 1/3 C. 45°; 1/3

经典低应变反射波法的基本原理

一、低应变反射波法的基本原理 低应变反射波法是以一维弹性杆平面应力波波动理论为基础的。将桩身假定为一维弹性杆件(桩长>>直径),在桩顶锤击力作用下,产生一压缩波,沿桩身向下传播,当桩身存在明显的波阻抗Z变化界面时,将产生反射和透射波,反射的相位和幅值大小由波阻抗Z变化决定。 桩身波阻抗Z由桩的横截面积A、桩身材料密度ρ等决定:Z=ρCA 假设在基桩中某处存在一个波阻抗变化界面,界面上部波阻抗Z1=ρ1C1A1,上部波阻抗Z2=ρ2C2A2。 ①当Z1=Z2时,表示桩截面均匀,无缺陷。 ②当Z1>Z2时,表示在相应位置存在截面缩小或砼质量较差等缺陷,反射波速度信号与入射波速度信号相位一致。 ③当Z1

低应变反射波法

洋洋味道 洋洋味道 姓名:林必挺 院系:地球科学与工程学院指导教师:袁宝远 2016 年 4 月 基于桩基检测的低应变反射波法 学号: 专业:地质资源与地质工程职称:教授 2016年6月 一、引言 桩基础属于隐蔽性工程, 是建、构筑物重要的组成部分, 其作用在于将上部结构荷载传递到桩周及下部较好地层中, 其质量优劣直接影响到整个结构的安全与稳定。因此桩基对工程质量起着不容忽视且不可替代的作用。然而在实际中由于现场地质条件复杂、施工工艺以及施工中对施工质量控制不当等, 常常会出现各种各样的工程缺陷。尤其是对于混凝土灌注桩, 稍有不慎就容易造成诸如扩径、缩径、夹泥、离析、空洞、断桩等影响桩基安全使用的各种质量问题。缺陷的存在必然不同程度地影响到桩基承载力, 严重者甚至使单桩丧失承载力。如果能事先较为准确地判断出桩身缺陷类型及严重程度、缺陷位置等, 就可以及时采取补救措施, 排除事故隐患。因此

对单桩承载力检测以及桩身的完整性检测对桩基工程来说就具有极为重要的意义, 是任何情况下都决不可忽视的至关重要的隐蔽工程验收手段。 目前,用于桩身质量完整性检测的方法主要有静载荷试验、钻芯检测法、高应变动测法、低应变反射波法、超声波透射法等。低应变反射波法是在这种工程需要和技术发展的背景下发展起来的一种对桩身结构完整性进行评价的动测方法, 具有操作简单、快速、经济而且能无破损检验桩身质量等多方面优点, 是目前桩基质量检测规范首推的桩身完整性检测方法, 在桩基检测当中得到了广泛的应用。对于各检测方法的对比如表 1 所示。 表1 各检测方法的对比 检测类型有损检测无损检测 检测方法静载荷试钻芯检测高应变动测低应变反射超声波透射 验法法波法法 检测目的单桩承载桩身结构单桩承载力桩身结构完桩身结构完 力完整性和桩身结构整性整性 完整性 检测局限不能区分易斜钻,不能解决桩多解性不能检测桩 性破坏模式局部检测强度及沉降身外形畸变 问题

低应变检测题目及答案

第一部分客观题部分 一、单项选择题(每题2分,共40分) 1、《江苏省建设工程质量检测行业职业道德准则》第十五条:热情服务,维护权益。下列不属于该条规定的内容是。 A.维护委托方的合法权益; B.不做假试验,不出假报告; C.树立为社会服务意识;D.对委托方提供的样品按规定严格保密 2、透射波的速度或应力在缩颈或扩颈处均()。 A 不改变方向或符号; B 改变方向不改变符号; C 不改变方向改变符号 D 改变方向改变符号 3、低应变检测时,实测桩长小于施工记录桩长,按桩身完整性定义中连续性的涵义,应判为()类桩。 A Ⅰ; B Ⅱ; C Ⅲ; D Ⅳ 4、按JGJ106-2003规范,设计等级为甲级的钻孔混凝土桩,柱下三桩或三桩一下的承台为100个,施工总数量为330根,则桩身完整性检测的抽检数量至少应为()根。 A 100; B 99; C 20; D 165 5、某工程地基采用C30的钻孔灌注桩,当采用低应变检测时,受检桩混凝土强度至少达到设计强度的(),且不小于()。 A 75%、15MPa; B 70%、15 MPa; C 75%、 MPa ; D 70%、 MPa 6、当采用低应变法抽检桩身完整性所发现的Ⅲ、Ⅳ类桩之和大于抽检桩数的(),宜在未检测桩中继续扩大检测。 A 10%; B 20%; C 30%; D 50% 7、低应变检测时,时域信号出现周期性反射波,且无桩底反射波,则该桩应判为()类桩。 A Ⅰ; B Ⅱ; C Ⅲ; D Ⅳ 8、低应变法的理论基础以一维线弹性杆件模型为依据。据此请选择下列哪种桩型

不宜使用低应变法进行桩身完整性检测。 A 桩径800mm,桩长10m ; B 桩径420mm,桩长; C 桩径1000mm,桩长; D 桩径600mm,桩长6m。 9、当压电式加速度传感器的可用上限频率在其安装谐振频率的()以下时,可保证较高的冲击测量精度,且在此范围内,相位误差几乎可以忽略。 A 1/5; B 1/4; C 1/2; D 1/3 10、瞬态激桭通过改变锤的重量及锤头材料,可改变冲击入射波脉冲宽度及频率成分。当锤头质量较大或刚度较小时,下列说法正确的是()。 A 冲击入射波脉冲较宽,低频成分为主; B 冲击入射波脉冲较窄,低频成分为主; C 冲击入射波脉冲较窄,低频成分较少; D 冲击入射波脉冲较宽,低频成分较少 11、只考虑各地区地质条件差异时,桩的有效检测桩长受()大小的制约。 A 桩的长径比; B 桩周土刚度; C 桩土刚度比; D 桩周土阻尼 12、从理论上讲,缩颈引起的反射波波幅与入射波波幅的大小关系() A 大于; B 小于; C 等于; D 没关系 13、当A1>A2,则产生() A 只产生反射波; B 既产生反射波又产生透射波; C 只产生透射波; D 不产生任何波 14、测量传感器安装和激桭操作应符合的规定不包括( ) A 传感器安装应与桩顶面垂直;用耦合剂粘结时,应有足够的粘结强度; B 激振点与传感器安装应避开钢筋笼的主筋影响; C 检查判断实测信号是否反眏桩身完整性特征; D 激振方向应沿桩身轴线方向 15、当在桩顶检测出的反射波速度或入射波信号极性一致,则表明在相应在位置存在() A 截面缩小; B 截面不变; C 与截面无关; D 截面扩大 16、对于桩身截面多变,且变化幅度较大的混凝土灌注桩,低应变法不能确定其完整性类别,应采用()验证检测。 A 高应变法; B 静载法; C 钻芯法; D 声波透射法

低应变反射波法检测桩基完整性简介

桩基完整性检测 ----------低应变反射波法简介 一、前言 在桩基完整性动力检测诸方法中,由于低应变动力检测仪器设备轻便,成本低廉,现场检测速度快,覆盖面大,受到广大受检单位的欢迎。为了确保桩基工程的质量,我国相关部门先后编制了一系列规范规程,其中《基桩低应变动力检测规程》(JGJ/T93-95)以及《公路工程基桩动测技术规程》(JTG/T F81-01-2004)的发布实施,使基桩低应变动力检测工作更加严格规范,也为检测报告的统一编写起到规范化的作用。 二、低应变反射波法的原理 低应变反射波是基桩工程质量检测普遍使用的一种有效方法,它以检测原理清晰,测试方法简便,成果较可靠,成本低,便于对桩基工程进行普查等特点在成桩质量检测中充分发挥作用。 我国发布实施的现行动力检测规范中反射波法的适用范围中明确指出:该法可以检测桩身混凝土的结构完整性,推定缺陷类型及其桩身中的位置,也可对桩的混凝土强度等级作出估计。由此可见,它可为基桩工程的成桩质量的分类提供评判依据。 1、基本概念 将桩视为一维弹性杆件,用力锤(或力棒)在桩头施加一小冲击扰动力F(t),产生瞬时激振,激发一应力波沿桩身传播,然后利用速度检波器、速度或加速度传感器接收由初始信号和由桩身缺陷或桩底

产生的反射信号组合的时程曲线(或称为波形),最后分析者利用信号采集分析仪对所记录的带有桩身质量信息的波形进行处理和分析,并结合有关地质资料和施工记录作出对桩的完整性的判断。 2、应力波基本概念 应力波:当介质的某个地方突然受到一种扰动,这种扰动产生的变形会沿着介质由近及远传播开去,这种扰动传播的现象称为应力波。 波阻抗:将桩当作一维杆件,其直径远小于长度的杆件,当遇到桩身阻抗Z= ρ·AC(ρ:密度;C:应力波速;A:桩横截面积)。变化界面时,要产生反射和透射。弹性波在桩身内传播遇到桩身阻抗界面时是垂直入射和反射的。假定桩界面上段的阻抗为Z1,下段的阻抗为Z2,且不考虑桩周土阻力的影响。根据桩在界面上位移和速度的连续条件,力与应力和位移的关系,可推导出在桩身阻抗变化处的反射系数Rf 关系式: Rf=(Z1-Z2)/(Z1+Z2) 式中:Rf-反射系数; Z1、Z2-分别为桩身材料上、下界面的广义波阻抗; ρ、A、C-分别为桩身材料的质量密度、桩身截面积及应力波速。 根据反射系数R f 的正、负来确定桩身阻抗的变化情况:当RF>0 时,反射波与入射波同相位,表示桩身界面阻抗由大变小,如缩径、离析、断桩及桩底反射等;反之,Rf<0 时,反射波与入射波反相位,表示桩身界面阻抗由小变大,如扩径、端承桩桩底反射情况。桩截面

反射波法基本测试原理与波形分析

一. 反射波法基本测试原理与波形分析 1.广义波阻抗及波阻抗界面 设桩身某段为一分析单元,其桩身介质密度、弹性波波速、截面面积分别用ρ,C ,A 表示,则令 Z =ρCA (7-1) 称Z 为广义波阻抗。当桩身的几何尺寸或材料的物理性质发生变化时,则相应的ρ、C 、A 发生变化,其变化发生处称为波阻抗界面。界面上下的波阻抗比值为 2 2211121A C A C Z Z n ρρ== (7-2) 称n 为波阻抗比。 2.应力波在波阻抗界面处的反射与透射 设一维平面应力波沿桩身传播,当到达一与传播方向垂 直的某波阻抗界面(如图7-2所示)时。根据应力波理论,由连续性条件与牛顿第三定律有 V I +V R =V T (7-3) A 1(σI +σR )=A 2σT (7-4) 式中,V 、σ分别表示质点振动的速度与产生的应力,下标I 、R 、T 分别表示入射波、反射波与透射波。 由波阵面的动量守恒条件导得 σI =-ρ1C 1V I σR =ρ1C 1 V R σT =-ρ2C 2V T 代入式(7-4),得 ρ1C 1A 1(V I -V R )=ρ2C 2A 2V T (7-5) 联立式(7-3)与(7-5),求得 V R =-FV I (7-6a) V T =nTV I (7-6b) 式中 n n F +-= 11 称为反射系数 (7-7a) n T +=12 称为透射系数 (7-7b) 式(7-6)就是反射波法中利用反射波与入射波的速度量的相位关系进行分析的重要关系式。 3.桩身不同性况下应力波速度量的反射、透射与入射的关系 (1)桩身完好,桩底支承条件一般。此时,仅在桩底存在界面,速度波沿桩身的传播情况如图7-3所示。 因为ρ1C 1A 1>ρ2C 2A 2,所以n = Z 1/Z 2>1,代入式(7-7)得 F <0,(T 恒>0) 由式(7-6)可知,在桩底处,速度量的反射波与入射波同号,体现在V (t )时程曲线上,则为波峰相同(同向)。典型的完好桩的实测波形如图7-4。 由图7-3、图7-4分析可得激振信号从触发到返回桩顶所需的时间t 1、纵波波速C 、桩长L 三者之间的关系为 1 2t L C = (7-8) Z 1=ρ1C 1A 1 Z 2=ρ2C 2A 2 图7-2 应力波的反射与透射

低应变检测原理及方法

低应变检测原理及方法 1、检测原理 检测方法采用低应变法,混凝土桩的物理强度远大于桩周土的物理强度,在桩顶沿垂直方向激发的弹性应力波基本上是沿桩周传播的,由于桩底持力层及桩身质量缺陷位置上的波阻抗与正常混凝土波阻抗存在差异,因而: (1)通过分析缺陷反射波 a .相位变化、频率变化、多次反射性可判断桩基的缩颈、扩警、松散、夹泥、离析、断桩等质量缺陷现象。 b .振幅的大小可判断缺陷的程度。 c .桩身缺陷位置应按下式计算: 12000 x x t c =??? '/2x c f =? 其中:x ——桩身缺陷至传感器安装点的距离(m ); x t ?——速度波第一峰与缺陷反射波峰间的时间差(ms ) ; c ——受检桩的桩身波速(m/s ),无法确定时用c m 值替代; 'f ?——幅频信号曲线上缺陷相邻谐振峰间的频差(HZ ) 。 (2)当桩长已知、桩底反射信号明确时,在地质条件、设计桩型、成桩工艺相同的基桩中,选取不少于5根Ι类桩的桩身波速值按下式计算其平均值: 1 1n m i i c c n ==∑ 2000i L c T =? 2i c L f =?? 其中:m c ——桩身波速的平均值(m/s ); i c ——第i 根受检桩的桩身波速值(m/s ),且/5%i m m c c c -≤; L ——测点下桩身长(m ); T ?——速度波第一峰与桩底反射波峰间的时间差(ms ); f ?——幅频曲线上桩底相邻谐振峰间的频差(HZ ); n ——参加波速平均值计算的基桩数量(n ≥5)。 2、现场测试方法 ①把混凝土桩顶灌浆部分凿去凿平,使桩顶出露新鲜表面,为减少杂波干扰,此表面必须平整干净,出露的钢筋不应有较大晃动;

低应变反射波法

低应变反射波法 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

地基与基础工程质量检测课程报告题目:基于桩基检测的低应变反射波法 姓名:林必挺学号: 院系:地球科学与工程学院专业:地质资源与地质工程指导教师:袁宝远职称:教授 2016年6月 2016年4月 基于桩基检测的低应变反射波法 一、引言 桩基础属于隐蔽性工程,是建、构筑物重要的组成部分,其作用在于将上部结构荷载传递到桩周及下部较好地层中,其质量优劣直接影响到整个结构的安全与稳定。因此桩基对工程质量起着不容忽视且不可替代的作用。然而在实际中由于现场地质条件复杂、施工工艺以及施工中对施工质量控制不当等,常常会出现各种各样的工程缺陷。尤其是对于混凝土灌注桩,稍有不慎就容易造成诸如扩径、缩径、夹泥、离析、空洞、断桩等影响桩基安全使用的各种质量问题。缺陷的存在必然不同程度地影响到桩基承载力,严重者甚至使单桩丧失承载力。如果能事先较为准确地判断出桩身缺陷类型及严重程度、缺陷位置等,就可以及时采取补救措施,排除事故隐患。因此,对单桩承载力检测以及桩身的完整性检测对桩基工程来说就具有极为重要的意义,是任何情况下都决不可忽视的至关重要的隐蔽工程验收手段。

程需要和技术发展的背景下发展起来的一种对桩身结构完整性进行评价的动测方法,具有操作简单、快速、经济而且能无破损检验桩身质量等多方面优点,是目前桩基质量检测规范首推的桩身完整性检测方法,在桩基检测当中得到了广泛的应用。对于各检测方法的对比如表1所示。 表1各检测方法的对比 检测类型有损检测无损检测 检测方法静载荷试验钻芯检测法高应变动测法低应变反射波法超声波透射法 检测目的单桩承载力桩身结构完 整性单桩承载力和 桩身结构完整 性 桩身结构完整性桩身结构完整 性 检测局限性不能区分破 坏模式易斜钻,局 部检测 不能解决桩强 度及沉降问题 多解性不能检测桩身 外形畸变 检测效率低较低一般高较高 检测费用高较高较高低较低从上表可以看出,综合比较小低应变反射波法作为一种无损检测,可用于检测桩身结构的完整性。具有检测效率高,检测费用低的特点。 二、低应变反射波法检测基本原理 低应变反射波法又称锤击法,是以一维弹性杆应力波波动理论为理论基础的无损检测方法,适用于检测桩身完整性,判断桩身缺陷类型、位置及严重程度等,核对桩长,以及估计桩身混凝土强度等。反射波法基本原理可如下图表示在桩顶部位进行竖向激振,给桩一定的能量,产生一纵向弹性波,该波沿桩身向下传播,当传至桩身明显波阻抗有差异的界面,如扩缩径、严重离析、断桩、桩底等部位,将相应地产生反射波反射信号可通过桩顶的传感器拾取,并经放大、滤波、数据处理,我们可进而根据处理结果计算弹性波在桩身各部位的传播速度,据此可以达到检测的目的。 图1低应变反射波检测原理 根据应力波理论,有如下规律:

相关主题
文本预览
相关文档 最新文档