当前位置:文档之家› 化学共沉淀法制备镍钴铝酸锂(NCA) 正极材料及其性能研究

化学共沉淀法制备镍钴铝酸锂(NCA) 正极材料及其性能研究

化学共沉淀法制备镍钴铝酸锂(NCA) 正极材料及其性能研究
化学共沉淀法制备镍钴铝酸锂(NCA) 正极材料及其性能研究

Advances in Material Chemistry 材料化学前沿, 2017, 5(2), 46-51

Published Online April 2017 in Hans. https://www.doczj.com/doc/592666346.html,/journal/amc

https://https://www.doczj.com/doc/592666346.html,/10.12677/amc.2017.52006

Preparation and Properties of NCA

Cathode Materials by Chemical

Co-Precipitation Method

Jian Li1,2,3, Zhongzhong Liu1, Hongming Zhou1,2,3, Baorong Chen1

1Institute of Materials Science and Engineering of Central South University, Changsha Hunan

2Key Laboratory of the Ministry of Education of Non-Ferrous Metal Science and Engineering at Central South University, Changsha Hunan

3Zhengyuan Institute of Energy Storage Materials and Devices of Hunan Province, Changsha Hunan

Received: Apr. 2nd, 2017; accepted: Apr. 14th, 2017; published: Apr. 24th, 2017

Abstract

In this article, Li2CO3, Ni(NO3)2, CO(NO3)2, Al(NO3)2 were used as the raw materials to synthesize the mixture of nickel cobalt aluminum carbonate and lithium carbonate via co-precipitation me-thod, then the mixture were presintered 4 hours at 550?C and sintered 15 hours at 750?C in the tube furnace to obtain cathode material NCA. XRD, SEM of this material were investigated as well as its electrochemical properties. The first discharge capacity of the material was about 180 mAh/g at 1C, and still kept at 165 mAh/g after 50 circulations, which showed good cycle perfor-mance and rate performance.

Keywords

NCA Cathode Material, Co-Precipitation Method, Lithium Battery

化学共沉淀法制备镍钴铝酸锂(NCA)

正极材料及其性能研究

李荐1.2.3,刘忠忠1,周宏明1.2.3,陈宝荣1

1中南大学材料科学与工程学院, 湖南长沙

2中南大学有色金属科学与工程教育部重点实验室, 湖南长沙

3湖南省正源储能材料与器件研究所, 湖南长沙

Email: ziliao2000@https://www.doczj.com/doc/592666346.html,

收稿日期:2017年4月2日;录用日期:2017年4月14日;发布日期:2017年4月24日

文章引用:李荐, 刘忠忠, 周宏明, 陈宝荣. 化学共沉淀法制备镍钴铝酸锂(NCA)正极材料及其性能研究[J]. 材料化学

李荐 等

摘 要

本文以碳酸锂、硝酸铝、硝酸镍、硝酸钴为主要原料,用共沉淀法制备碳酸镍钴铝与碳酸锂的混合物,然后将混合物在管式炉中550℃预烧4h ,750℃烧结15h 得到镍钴铝酸锂,并对镍钴铝酸锂进行SEM 、XRD 性能表征及电化学性能测试。1C 的首次放电比容量约为180 mAh/g ,循环50次后仍有165 mAh/g ,具有良好的循环性能和倍率性能。

关键词

NCA 正极材料,共沉淀法,锂离子电池

Copyright ? 2017 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.doczj.com/doc/592666346.html,/licenses/by/4.0/

1. 前言

锂离子电池作为新型能源的载体之一,广泛应用于手机、电脑等方面,并在电动汽车领域发展迅速。锂离子电池中正极材料是制约其性能的主要因素,在所有的正极材料中LiNiO 2材料因为其具有价格相对便宜、高容量等优点而成为替代钴酸锂的理想正极材料,但是LiNiO 2在实用方面也还存在许多缺陷,如制备条件苛刻,不易合成准确化学计量的LiNiO 2;充放电过程中结构不稳定,易发生相变,过充电时将严重影响其循环寿命,热稳定性差会带来安全隐患等等。许多研究者致力于对LiNiO 2进行掺杂改性研究,期望通过掺杂以改变或修饰LiNiO 2的结构[1] [2]。研究表明,掺入Co 元素可以改善材料结构的稳定性,从而改善其电化学性能[3] [4]。其中20%~30%的Ni 被Co 取代制得的正极材料,其综合性能良好。掺入Al 元素,可以抑制充放电过程中晶体结构的变化,改善其循环性能,并且有利于改善其热稳定性和耐过充性[4] [5] [6]。若同时在LiNiO 2正极材料中采用Co 、Al 共掺杂能够提高材料的结构稳定性和循环性能

[7]。对于镍钴铝酸锂的晶体结构,Madhavi [8] [9] [10]等人做了深入的报道。目前制备NCA 的主要工艺有高温固相法、化学共沉淀法和溶胶凝胶法,其中以化学共沉淀法制备的产品性能较好。本文主要通过共沉淀法制备了含有碳酸镍钴铝和碳酸锂的混合物,之后将混合物进行烧结得到镍钴铝酸锂,而大多数制备镍钴铝酸锂的方法中需要再将镍钴铝前驱体与锂源混合,相比之下本文的制备方法中镍钴铝前驱体与锂源混合更加均匀,制备出的镍钴铝酸锂材料阳离子混排程度更低,性能更好。

2. 实验

以硝酸镍(分析纯AR)、硝酸钴(分析纯AR)、硝酸铝(分析纯AR)、碳酸锂(分析纯AR)为主要原料。将Ni 、Co 、Al 以摩尔比为80:15:5的比例配成2 mol/L 的金属阳离子溶液,并计算金属盐沉淀要消耗的碳酸锂、溶解在水中的碳酸锂以及烧结时要消耗的碳酸锂的总质量,其中碳酸锂在50℃的溶解度为1.08 g/100 g 水,称取总质量的碳酸锂加入到2 L 烧杯中,之后缓慢加入金属阳离子溶液和稀释后的氨水,控制反应温度在50℃,并于反应过程中不断搅拌,其转速为400r/min ,反应12 h 后,陈化2 h ,洗涤干燥后获得碳酸镍钴铝和碳酸锂的混合物,之后在管式炉中通氧气中以550℃预烧4 h ,750℃烧结15 h 得到镍钴铝酸锂。取少量镍钴铝酸锂样品进行SEM 、XRD 测试,之后将镍钴铝酸锂与PVDF 、乙炔黑以8:1:1的质量比混合制作正极浆料,并以锂片为负极组装2032扣式电池进行电性能评测。

Open Access

李荐等

3. 结果及讨论

3.1. 形貌分析

图1是将碳酸镍钴铝和碳酸锂的混合物在氧气氛围中烧结得到镍钴铝酸锂正极材料LiNi0.8Co0.15Al0.05O2的SEM图,图1(a)和图1(b)分别是镍钴铝酸锂在10,000和20,000倍下的扫描结果,从图1(a)中可以看出样品团聚成的二次颗粒大小在8 μm左右,分布均匀且形状类似球形。从图1(b)可以看出样品的一次颗粒尺寸较小、晶粒度好且堆积致密,作为锂离子电池正极材料颗粒尺寸较为适中。

3.2. XRD分析

图2是采用共沉淀–高温固相烧结法得到的镍钴铝酸锂正极材料的XRD,从图中可以看出,所制备的镍钴铝酸锂正极材料没有杂质相,与标准卡片吻合,且图谱中(006)和(102)、(108)和(110)分峰明显[11],晶胞参数中c/a的比值[12]为4.931,且I(003)与I(104)的比值大于1.2,说明其阳离子混排程度低、晶体的有序度较好、六方结构完整且晶胞结构稳定。

3.3. 电化学性能分析

将获得的镍钴铝酸锂正极材料组装纽扣电池(2032),测试其电化学性能。图3为镍钴铝酸锂的首次充放电曲线图,从图中可以看出,材料的充放电电压范围为3.0~4.2 V,材料的1 C初始放电比容量约为180 mAh/g,显示了较高的放电比容量。

图4为共沉淀法制备的镍钴铝酸锂在1C的循环曲线图,从图中可以看出,材料的初始放电比容量约为180 mAh/g,循环50次后仍有160 mAh/g以上,体现了良好的循环性能和倍率性能。

图5为镍钴铝酸锂材料分别在0.1 C、0.5 C、和1 C下分别循环10圈后得到的倍率放电曲线,从图中可以看出,0.1 C、0.5 C和1 C下首次充放电容量容量分别达到了200 mAh/g、189 mAh/g和178 mAh/g,且容量衰减较慢,体现了镍钴铝酸锂材料良好的倍率性能。

图6为制备的镍钴铝酸锂正极材料在0.1 C下首次充放电前和充放电30次后的的交流阻抗谱,根据交流阻抗的原理可知,在电化学阻抗谱的半圆起点与Z’轴的交点为Li+在电解液内部迁移的阻抗;电化学阻抗谱的半圆部分为Li+在正极材料界面迁移的阻抗;电化学阻抗谱的斜线部分为Li+在正极材料内部迁移的阻抗。从图中可知,该材料循环30后界面迁移的阻抗相对减小,可能是材料结构充放电后趋于稳定,不过制备的镍钴铝酸锂在充放电前后内阻变化不大,且内阻较低,体现出良好的离子扩散能力。

(a) (b)

Figure 1. The scan result of NCA prepared by co-precipitati on under different magnification

图1. 共沉淀法制备的NCA在不同放大倍数下的扫描结果

李荐等

Figure 2. The powder diffraction diagram of the NCA prepared by co-precipitation

图2. 共沉淀法制备的NCA的粉末衍射图

Figure 3.First charge and discharge diagram of NCA prepared by co-precipitation

图3. 共沉淀法制备NCA的首次充放电图

Figure 4. The cyclic curve of NCA prepared by co-precipitation

图4. 共沉淀法制备的NCA的循环曲线

李荐等

Figure 5. The ratio discharge curve of NCA prepared by co-precipitation

图5. 共沉淀法制备的NCA倍率放电曲线

Figure 6. The ac impedance spectra of NCA prepared by co-precipitation

图6. 共沉淀法制备的NCA样品的交流阻抗谱

4. 结果与讨论

1) 采用共沉淀法合成碳酸镍钴铝和碳酸锂的混合物,于氧气氛围下二段烧结得到的镍钴铝酸锂正极

材料,该材料阳离子混排程度低、层状结构有序性好、颗粒尺寸均匀。其主要原因是在制备碳酸镍钴铝的过程中就加入了锂源,使得锂源与碳酸镍钴铝混合的更均匀。

2) 采用此法合成的镍钴铝酸锂正极材料在3.0~4.2 V的范围内以1C的倍率进行充放电,首次放电容

量约为180 mAh/g,且循环50次后仍有160 mAh/g以上,体现了良好的电化学性能。

3) 采用此法合成的镍钴铝酸锂正极材料在0.1 C下初始放电比容量达到了200 mAh/g,且具有不错

的离子扩散能力和良好的倍率性能。

参考文献(References)

[1]Liu, H., Yang, Y., Zhang, Z., et al. (2001) New Progress in Studies of Lithium Nickel Oxide as Positive Electrode Ma-

terials of Lithium Ion Batteries. Electrochemistry, 7, 145-154.

李荐等

[2]Tang, Z., Li, J., Xue, J., et al. (2001) On the Synthesis and Modification of LiNiO2. Battery Bi-Monthly, 31, 10-13.

[3]Cho, J. and Park, B. (2001) Preparation and Electrochemical/Thermal Properties of LiNi0. 74Co0. 26O2 Cathode Material.

Journal of Power Sources, 92, 35-39.https://https://www.doczj.com/doc/592666346.html,/10.1016/S0378-7753(00)00499-7

[4]Ohzuku, T., Nakura, K. and Aoki, T. (1999) Comparative Study of Solid-State Redox Reactions of LiCo1/4Ni3/4O2 and

LiAl1/4NiO2 for Lithium-Ion Batteries. Electrochimica Acta, 45, 151-160.

https://https://www.doczj.com/doc/592666346.html,/10.1016/S0013-4686(99)00200-5

[5]Ohzuku, T., Yanagawa, T., Kouguchi, M., et al. (1997) Innovative Insertion Material of LiAl1/4Ni3/4O2, (R-m) for Li-

thium-Ion (Shuttlecock) Batteries. Journal of Power Sources, 68, 131-134.

https://https://www.doczj.com/doc/592666346.html,/10.1016/S0378-7753(97)02516-0

[6]Li, X., Qiu, W., Lin, C., et al. (2000) Studies of the LiAlyNi1-yO2 as Cathode Materials. Electrochemistry, 6, 357-362.

[7]Madhavi, S., Subba Rao, G.V., Chowdari, B.V.R., et al. (2001) Effect of Aluminum Doping on Cathodic Behaviour of

LiNi0.7Co0.3O2. Journal of Power Sources, 93, 156-162. https://https://www.doczj.com/doc/592666346.html,/10.1016/S0378-7753(00)00559-0

[8]Madhavi, S., Rao, G.V.S., Chowdari, B.V.R., et al. (2002) Cathodic Properties of (Al, Mg) Co-Doped LiNi0.7Co0.3O2.

Solid State Ionics, 152-153, 199-205.

[9]Delmas, C., Prado, G., Rougier, A., et al. (2000) Effect of Iron on the Electrochemical Behaviour of Lithium Nickelate:

From LiNiO2 to 2D-LiFeO2. Solid State Ionics, 135, 71-79.https://https://www.doczj.com/doc/592666346.html,/10.1016/S0167-2738(00)00333-7

[10]Ven, A.V.D., Aydinol, M.K., Ceder, G., et al. (1998) First-Principles Investigation of Phase Stability in Li x CoO2.

Physical Review B, 58, 2975-2987.https://https://www.doczj.com/doc/592666346.html,/10.1103/PhysRevB.58.2975

[11]Ohzuku, T., Ueda, A. and Nagayama, M. (1993) Electrochemistry and Structural Chemistry of LiNiO2 (R3m) for 4

Volt Secondary Lithium Cells. Journal of The Electrochemical Society, 140, 1862-1870.

https://https://www.doczj.com/doc/592666346.html,/10.1149/1.2220730

[12]Reimers, J.N., Rossen, E., Jones, C.D., et al. (1993) Structure and Electrochemistry of Li x Fe y Ni1-y O2. Solid State Ionics,

61, 335-344.https://https://www.doczj.com/doc/592666346.html,/10.1016/0167-2738(93)90401-N

期刊投稿者将享受如下服务:

1. 投稿前咨询服务(QQ、微信、邮箱皆可)

2. 为您匹配最合适的期刊

3. 24小时以内解答您的所有疑问

4. 友好的在线投稿界面

5. 专业的同行评审

6. 知网检索

7. 全网络覆盖式推广您的研究

投稿请点击:https://www.doczj.com/doc/592666346.html,/Submission.aspx

期刊邮箱:amc@https://www.doczj.com/doc/592666346.html,

原材料标准-镍钴锰酸锂1

附页1: 金和镍钴锰酸锂S600检验标准 检测项目 规格 形貌XRD 比表面 (m2/g) 压实密度 (g/cm3) 克容量(mAh/g)粒径分布(um) 扣式 电池 成品电芯 D min D10D50D90D MAX 0.2C 1C 金和S600 图1.1图1.2 0.15~ 1.10 ≥3.40 ≥ 150.0 ≥ 151.0 ≥ 144.5 ≥ 3.500 7.000-13.000 ≤ 25.000 ≤ 40.000 图a 图b 图1.1金和镍钴锰酸锂SEM图,图a为×4000;图b为×1000 图1.2金和镍钴锰酸锂的XRD图 003 1 04 101 105 102 107 108 113 110 006

附页2: 天骄PLB-F5检验标准 检测项 目 规格 形 貌 XRD 比表面 (m2/g) 压实密 度 (g/cm3) 克容量(mAh/g)粒径分布(um) 扣式 电池 成品电芯 D min D10D50D90D MAX 0.2C 1C 天骄 PLB-F5 图 2.1 图 2.2 0.40~ 1.20 ≥3.00 ≥ 155.7 ≥ 145.0 ≥ 137.5 0.300-0.500 1.500-4.000 5.300-7.000 9.000~ 15.000 15.000~ 29.000 图a 图b 图2.1天骄镍钴锰酸锂(PLB-F5)SEM图,图a为×4000;图b为×1000 Position [°2Theta] 30405060708090 Counts 2000 4000 6000 8000 PLB 图2.2.天骄镍钴锰酸锂XRD图 003 1 04 101 105 102 107 108 113 110 006

锂离子电池正极材料镍钴铝酸锂研究进展

锂离子电池正极材料镍钴铝酸锂研究进展 1.材料研究背景 锂离子电池目前已经广泛应用于科技、军事、生活等各个领域。而正极材料在锂离子电池产品组成中占据着最重要的地位。正极材料的好坏,直接决定了电池的最终性能,而且正极材料在电池成本中所占比例高达40%左右。目前常用的锂离子正极材料有LiCoO2,LiNiO2,LiMn2O4,LiMPOx等。 LiCoO2的研究已经比较成熟,层状钴酸锂属六方晶系的α-NaFeO2层状结构,理论容量为274mAh/g,具有工作电压高、充放电电压平稳、比能量高、循环性能好的特点,是最早用于商品化锂离子电池的正极材料。但是在实际使用时,只有部分锂能够可逆的脱嵌,如果过充将导致容量衰减和极化增大,使其循环性能大大降低。因此目前实际容量为155mAh/g,平均工作电压3.7V。同时由于其价格高、容量低、毒性大的特点,极大地限制了其适用范围。层状LiNiO2理论容量为275mAh/g,实际容量为180-200mAh/g,平均工作电压3.6V左右,具有自放电率低、污染小、与多种电解液有良好相容性等优点。但是制备困难,材料一致性和重现性差,而且热稳定性和安全性差。尖晶石LiMn2O4成本低,安全性好,但循环性能尤其是高温循环性能差,在电解液中有一定的溶解性,储存性能差。而且在高温(50℃左右)下材料相结构极不稳定,导致其容量衰减迅速。LiMPOx型正极材料主要有LiFePO4,LiMnPO4,Li3V2(PO4)3和LiCoPO4等。其中研究最多的

是LiFePO4。其具有充放电平台平稳、比容量较高、循环性能优异、成本较低、环境友好等突出优势,但是充放电平台低,导电性差。[1,2,3,4] 对于镍钴二元复合材料,兼有LiNiO2和LiCoO2的优点,既有较高的理论放电比容量,又有较稳定的层状结构,增强了材料的循环稳定性。但这种材料也存在耐过充能力差、热稳定性差、首次放电不可逆容量高等缺陷。而铝的掺杂可以进一步稳定镍钴材料的结构,明显抑制充放电过程中的放热反应,使材料循环性能和耐过充性能明显提高。 [4] 2.材料简介 2.1制备方法 (1)高温固相法 高温固相法是一种制备锂离子电池正极材料的传统方法,一般是先将锂盐与过渡金属化合物按目标产物的比例称重,然后通过球磨等机械方式混合均匀,在高温下焙烧形成目标产物。朱先军等[5]将分析纯原料LiOH·H2O,Ni2O3,Co2O3和Al(OH)3按一定的计量比分别称量、混合、研磨,预烧后再研磨、压片,于氧气中725℃焙烧24h即得产物LiNi0.85Co0.10Al0.05O2。江卫军等[6]用固相反应法合成了锂离子二次电池正极材料LiAlyCo0.2Ni0.8-yO2(y=0,0.001,0.005,0.01,0.03)。结果表明所合成的产物均为α-NaFeO2型层状结构,大小均匀无杂质相。固相法虽然操作简单,易于工业化生产,但是,该法焙烧温度高时间长,浪费能源;混合均匀性差,粒度和形貌难以

化学共沉淀法制备镍钴铝酸锂(NCA) 正极材料及其性能研究

Advances in Material Chemistry 材料化学前沿, 2017, 5(2), 46-51 Published Online April 2017 in Hans. https://www.doczj.com/doc/592666346.html,/journal/amc https://https://www.doczj.com/doc/592666346.html,/10.12677/amc.2017.52006 Preparation and Properties of NCA Cathode Materials by Chemical Co-Precipitation Method Jian Li1,2,3, Zhongzhong Liu1, Hongming Zhou1,2,3, Baorong Chen1 1Institute of Materials Science and Engineering of Central South University, Changsha Hunan 2Key Laboratory of the Ministry of Education of Non-Ferrous Metal Science and Engineering at Central South University, Changsha Hunan 3Zhengyuan Institute of Energy Storage Materials and Devices of Hunan Province, Changsha Hunan Received: Apr. 2nd, 2017; accepted: Apr. 14th, 2017; published: Apr. 24th, 2017 Abstract In this article, Li2CO3, Ni(NO3)2, CO(NO3)2, Al(NO3)2 were used as the raw materials to synthesize the mixture of nickel cobalt aluminum carbonate and lithium carbonate via co-precipitation me-thod, then the mixture were presintered 4 hours at 550?C and sintered 15 hours at 750?C in the tube furnace to obtain cathode material NCA. XRD, SEM of this material were investigated as well as its electrochemical properties. The first discharge capacity of the material was about 180 mAh/g at 1C, and still kept at 165 mAh/g after 50 circulations, which showed good cycle perfor-mance and rate performance. Keywords NCA Cathode Material, Co-Precipitation Method, Lithium Battery 化学共沉淀法制备镍钴铝酸锂(NCA) 正极材料及其性能研究 李荐1.2.3,刘忠忠1,周宏明1.2.3,陈宝荣1 1中南大学材料科学与工程学院, 湖南长沙 2中南大学有色金属科学与工程教育部重点实验室, 湖南长沙 3湖南省正源储能材料与器件研究所, 湖南长沙 Email: ziliao2000@https://www.doczj.com/doc/592666346.html, 收稿日期:2017年4月2日;录用日期:2017年4月14日;发布日期:2017年4月24日 文章引用:李荐, 刘忠忠, 周宏明, 陈宝荣. 化学共沉淀法制备镍钴铝酸锂(NCA)正极材料及其性能研究[J]. 材料化学

锂离子电池三元镍钴锰正极材料研究现状综述

三元系锂电池正极材料研究现状 摘要:综述了近年来锂离子电池层状Li-Ni-Co-Mn-O正极材料的研究进展,重点介绍了正极材料LiNi l/3Co l/3Mn l/3O其合成方法电化学性能以及掺杂、包覆改性等方面的研究结果。 三元系正极材料的结果: LiMn x Co y Ni1-x-y O2具有α-2NaFeO2层状结构。Li原子占据3a位置,Ni、Mn、Co随机占据3b位置,氧原子占据6c位置。其过渡金属层由Ni、Mn、Co 组成,每个过渡金属原子由6 个氧原子包围形成MO6 八面体结构,而锂离子嵌入过渡金属原子与氧形成的(MnxCo yNi1-x-y) O2层之间。在层状锂离子电池正极材料中均有Li+与过渡金属离子发生位错的趋势,特别是以结构组成中有Ni2+存在时这种位错更为突出。抑制或消除过渡金属离子在锂层中的位错现象是制备理想α-2NaFeO2结构层状正极材料的关键,在LiMn x Co y Ni1-x-y O2结构中, Ni2+的半径( rNi2+=0.069nm)与Li+的( rLi+=0.076nm)半径接近,因此晶体结构会发生位错,即过渡金属层中的镍原子占据锂原3a的位置,锂原子则进驻3b位置。在Li+层中,Ni2+的浓度越大,则Li+在层状结构中脱嵌越困难,电化学性能越差。而相对于LiNiO2及LiNi x Co1-x-y O2 ,LiMn x Co y Ni1-x-y O2中这种位错由于Ni 含量的降低而显著减少。同时由于Ni2 + 的半径( rNi2 + =0. 069nm) 大于Co3+ ( rCo3+ = 0. 0545nm) 和Mn4 + ( rMn4 + =0. 053nm) ,LiMnxCo yNi1 - x - yO2 的晶格常数有所增加。 由于充分综合镍酸锂的高比容量、钴酸锂良好的循环性能和锰酸

三元镍钴锰正极材料的制备及改性

三元镍钴锰正极材料的制备及改性 摘要:三元镍钴锰正极材料作为锂电池正极材料,具有较高的可逆容量、结构 稳定性、热稳定性,它是当下电动汽车领域最具前景的锂离子电池正极材料之一。基于此,作者总结国内外与三元镍钴锰正极材料的制备及改性相关的知识,并结 合自己的理解,从材料制备方法和掺杂改性方面,介绍了三元镍钴锰正极材料制 备技术及改性技术的研究进展。 关键词:三元镍钴锰;正极材料;制备;改性 1三元镍钴锰正极材料的制备工艺 目前合成富镍三元材料的主流方法是首先采用共沉淀方法合成三元前驱体, 然后加入锂盐采用高温固相法合成最终产品。也有其他合成方法,如溶胶-凝胶、 共沉淀法等,但是不同的制备技术,最终所得材料的粒子尺寸和孔结构千差万别,对材料结晶程度、结构稳定性和锂离子传输过程产生巨大影响,进而影响材料电 化学性能。图1为 Li[Ni x Co y Mn z ]O 2晶体结构示意图。 图1 Li[Ni x Co y Mn z ]O 2晶体结构示意图 1.1高温固相法 高温固相法合成工艺简单,产量大,易于实现工业化,但产物粒径相对较大,粒径分布一致性差等缺陷,影响了其性能。Jiang[3]等在固相法制备三元111的过 程中发现,采用特殊的煅烧技术—等离子体辅助煅烧技术,不仅可以极大地降低 煅烧温度、缩减煅烧时间,同时也可以显著提升材料的电化学性能。与普通气体 不同,等离子体实质上是一种电离的气体,具有超高的电导率,且存在一定磁场 效应。在等离子体氛围煅烧过程中,由于等离子体的特殊物理特性,可以提高机 械混合后金属离子之间的化学反应活性,加快煅烧过程中元素的扩散速率,从而 实现三元镍钴锰正极材料的低温快速制备。他们以NiO、MnO2、Co3O4和 Li2CO3为原料经过机械混合后,置入配有等离子体发生装置煅烧炉中,在通入氧 气的条件下,经过600℃低温煅烧40min即可得到高性能Li(Ni1/3Co1/3Mn1/3)O2。与非等离子体氛围1100℃煅烧24h的三元正极材料相比,材料在0.1C(2.8~4.3V) 的初始容量从129.5mAh/g显著增加到218.9mAh/g,循环60圈后稳定性也从 71.89%提高至91.27%。Jiang等[3]的研究中,从提高煅烧过程中反应物活性的角 度入手,采用等离子体辅助煅烧技术,不仅极大地提高了材料的电化学性能,而 且弥补了固相法能耗过大的缺陷,为三元镍钴锰正极材料固相制备方法提供了新 方向。同时,在高温固相合成中,由于阳离子混排现象在高温时更加明显,所以 在煅烧结束时减慢降温的速率并且持续通氧气,控制氧分压,可以有效抑制阳离 子的混排。 1.2共沉淀法 化学共沉淀法一般是向原料中添加适当的沉淀剂与络合剂,使溶液中已经混 合均匀的各组分按化学计量比共同沉淀下来,再把它煅烧分解制备出目标产品。 通过改进传统的共沉淀方法,采用超声共沉淀技术制备LiNi0.6Co0.2Mn0.2O2,成 品有很好的层状结构和低的阳离子混排程度。采用改进的共沉淀法制备出浓度梯 度Li(Ni0.86Co0.10Mn0.04)O2正极材料,材料颗粒从核心到表层,Ni的含量逐渐 下降而Mn、Co的含量逐渐上升,该材料在3~4.4V电压平台下,首次放电比容量 达209mAh?g-1,在55℃、0.2C循环100次后容量保持率为86%,效果显著。 1.3溶胶-凝胶法

关于编制镍钴酸锂项目可行性研究报告

镍钴酸锂项目 可行性研究报告 编制单位:北京中投信德国际信息咨询有限公司编制时间:https://www.doczj.com/doc/592666346.html, 高级工程师:高建

关于编制镍钴酸锂项目可行性研究报告编 制说明 (模版型) 【立项 批地 融资 招商】 核心提示: 1、本报告为模板形式,客户下载后,可根据报告内容说明,自行修改,补充上自己项目的数据内容,即可完成属于自己,高水准的一份可研报告,从此写报告不在求人。 2、客户可联系我公司,协助编写完成可研报告,可行性研究报告大纲(具体可跟据客户要求进行调整) 编制单位:北京中投信德国际信息咨询有限公司 专 业 撰写节能评估报告资金申请报告项目建议书 商业计划书可行性研究报告

目录 第一章总论 (1) 1.1项目概要 (1) 1.1.1项目名称 (1) 1.1.2项目建设单位 (1) 1.1.3项目建设性质 (1) 1.1.4项目建设地点 (1) 1.1.5项目主管部门 (1) 1.1.6项目投资规模 (2) 1.1.7项目建设规模 (2) 1.1.8项目资金来源 (3) 1.1.9项目建设期限 (3) 1.2项目建设单位介绍 (3) 1.3编制依据 (3) 1.4编制原则 (4) 1.5研究范围 (5) 1.6主要经济技术指标 (5) 1.7综合评价 (6) 第二章项目背景及必要性可行性分析 (7) 2.1项目提出背景 (7) 2.2本次建设项目发起缘由 (7) 2.3项目建设必要性分析 (7) 2.3.1促进我国镍钴酸锂产业快速发展的需要 (8) 2.3.2加快当地高新技术产业发展的重要举措 (8) 2.3.3满足我国的工业发展需求的需要 (8) 2.3.4符合现行产业政策及清洁生产要求 (8) 2.3.5提升企业竞争力水平,有助于企业长远战略发展的需要 (9) 2.3.6增加就业带动相关产业链发展的需要 (9) 2.3.7促进项目建设地经济发展进程的的需要 (10) 2.4项目可行性分析 (10) 2.4.1政策可行性 (10) 2.4.2市场可行性 (10) 2.4.3技术可行性 (11) 2.4.4管理可行性 (11) 2.4.5财务可行性 (11) 2.5镍钴酸锂项目发展概况 (12)

镍钴锰三元技术资料

正极材料微观结构的改善和宏观性能的提高与制备方法密不可分,不同的制备方法导致所制备的材料在结构、粒子的形貌、比表面积和电化学性质等方面有很大的差别。 目前LiNi1/3Co1/3Mn1/3O2的制备技术主要有固相合成法、化学沉淀法、溶胶凝胶法、水热合成法、喷雾降解法等。 溶胶-凝胶法:先将原料溶液混合均匀,制成均匀的溶胶,并使之凝胶,在凝胶过程中或在凝胶后成型、干燥,然后煅烧或烧结得所需粉体材料。溶胶凝胶技术需要的设备简单,过程易于控制,与传统固相反应法相比,具有较低的合成及烧结温度,可以制得高化学均匀性、高化学纯度的材料,但是合成周期比较长,合成工艺相对复杂,成本高,工业化生成的难度较大 化学共沉淀法:一般是把化学原料以溶液状态混合,并向溶液中加入适当的沉淀剂,使溶液中已经混合均匀的各个组分按化学计量比共沉淀出来,或者在溶液中先反应沉淀出一种中间产物,再把它煅烧分解制备出微细粉料。化学共沉淀法分为直接化学共沉淀法和间接化学共沉淀法。直接化学共沉淀法是将Li、Ni、Co、Mn的盐同时共沉淀,过滤洗涤干燥后再进行高温焙烧。间接化学共沉淀法是先合成Ni、Co、Mn三元混合共沉淀,然后再过滤洗涤干燥后,与锂盐混合烧结;或者在生成Ni、Co、Mn三元混合共沉淀后不经过过滤而是将包含锂盐和混合共沉淀的溶液蒸发或冷冻干燥,然后再对干燥物进行高温焙烧。与传统的固相合成技术相比,采用共沉淀方法可以使材料达到分子或原子线度化学计量比混合,易得到粒径小、混合均匀的前驱体,且煅烧温度较低,合成产物组分均匀,重现性好,条件容易控制,操作简单,目前工业上已有规模生产 水热合成法:水热合成技术是指在高温高压的过饱和水溶液中进行化学合成的方法,属于湿化学法合成的一种。利用水热法合成的粉末一般结晶度高,并且通过优化合成条件可以不含有任何结晶水,且粉末的大小、均匀性、形状、成份可以得到严格的控制。水热合成省略了锻烧步骤和研磨的步骤,因此粉末的纯度高,晶体缺陷的密度降低。但是对于锂离子电池来说水热法并不是很好,当用水热法以CoOOH为前驱体合成LiCoO2时,研究表明在160℃的高压釜中反应48h,可以从混合物得到单相的Li CoO2,但其循环性能并不好,需要在高温下热处理,提高其结晶度后,LiCoO2的循环性能得以改善 其他方法:将镍、钴、锰、硝酸锂在氨基乙酸中于400℃点燃,燃烧产物碾碎后在空气中800℃加热4h,冷却后得到正极材料;将蒸馏水溶解的硝酸锂、镍钴锰盐通过喷雾干燥法制备得到正极材料;以镍钴锰盐为原料,柠檬酸为络合剂,配成溶液送入超声喷雾热分解装置,得到[Ni1/3Co1/3Mn1/3]O2前驱体,再将前驱体与锂盐混合高温烧结得到正极材料 评定三元材料好坏的方法因素(各种检测方法总结) 1、性能测试 循环性能测试:测试循环一定次数后容量保持率的大小;容量大小;容量衰减程度; 倍率性能测试:以一定倍率放电,看平均电压及容量保持率。平均电压越高越好。 高低温性能测试:在低温、常温、高温下电压降的多少,容量保持率多少无杂质峰;(006)/(102)及(108)/(110)峰明显分开说明层状结构明显;I(003)/I(104)比值越大,大于1.2,阳离子有序程度越高;R值(I(006)+I(102)/I(101))越小,晶体结构越有序; 2、SEM分析:产物形貌是否粘结,是否为球形,是否团聚,颗粒大小是否均匀,是否均匀分散,颗粒大小适中,表面是否粗糙,排列是否紧密, 3、成分分析:采用ICP-AES元素分析方法测定合成样品中各金属元素的 含量是否与理论值一致。 4、热重差热分析:即TG-DTA分析。在升温过程中测试样品晶型结构的转变、 材料自身熔融、吸附等物理变化;脱去结晶水、材料受热分解、在空气气氛中氧化还原等化

行业标准《镍钴酸锂》-编制说明(送审稿)

有色金属行业标准 《镍钴酸锂》 编 制 说 明 (送审稿) 广东邦普循环科技有限公司2021年3月1日

一、工作简况 1.1任务来源与计划要求 1.1.1任务下达 根据工业和信息化部办公厅关于印发“2019年第一批行业标准制修订和外文版项目计划的通知”(工信厅科函〔2019〕126号)的文件精神,行业标准《镍钴酸锂》由全国有色金属标准化技术委员会(SAC/TC 243)提出并归口,项目计划编号:2019-0184T-YS,由广东邦普循环科技有限公司牵头起草,该标准计划完成年限2021年。 1.1.2项目编制组单位变化情况 技术审查前,根据标准编制工作任务量,重新调整了编制组构成,具体为:广东邦普循环科技有限公司、格林美股份有限公司、北京当升材料科技股份有限公司、湖南长远锂科股份有限公司、天津国安盟固利新材料科技股份有限公司、清远佳致新材料研究院有限公司、杉杉能源(宁夏)有限公司、广东佳纳能源科技有限公司、深圳清华大学研究院、江西理工大学、赣州源滙通锂业股份有限公司、江西省锂电产品质量监督检验中心、乳源东阳光磁性材料有限公司、浙江华友钴业股份有限公司、蜂巢能源科技有限公司、湖南邦普循环科技有限公司等单位。 1.2 主要参加单位和工作成员及其所做工作 1.2.1 起草单位简介 邦普循环,创立于2005年,公司现有6大生产基地。广东邦普循环科技有限公司作为邦普循环总部,位于广东佛山三水工业园区,总注册资本13274.06892万元人民币。具有多个国家级和省级科研平台,如国家和省级的企业技术中心、广东省院士工作站和工程技术研究开发中心、国家地方联合工程研究中心(广东)、省级企业技术中心等,还有2个国家标准研制平台。 通过几年的快速发展,邦普已形成“电池循环、载体循环和循环服务”三大产业板块,专业从事数码电池(手机和笔记本电脑等数码电子产品用充电电池)和动力电池(电动汽车用动力电池)回收处理、梯度储能利用;传统报废汽车回收拆解、关键零部件再制造;以及高端电池材料和汽车功能瓶颈材料的工业生产、商业化循环服务解决方案的提供。 2019年,邦普销售锂离子电池正极材料2.32万吨、前驱体5.4万吨。邦普具有年处理废旧电池总量超过150 000吨、年生产镍钴锰氢氧化物100 000吨的产能。总收率超过98.58%,回收处理规模和资源循环产能已跃居亚洲首位。邦普通过独创的逆向产品定位设计技术,在全球废旧电池回收领域率先破解废料还原的行业性难题,并成功开发和掌握了废料与原料对接的定向循环核心技术,一举成为回收行业为数不多的新材料企业。 邦普是国内同时拥有电池回收和汽车回收双料资质的资源综合利用企业。邦普围绕电池和汽车回收产业,邦普作为广东省创新型试点企业和战略性新兴产业骨干培育企业,已全面投入电动汽车全产业链循环服务解决方案的研究,以静脉回收推动动脉制造产业升级,为国家循环经济和低碳经济多做贡献。 1.2.2主要参加单位情况 标准编制单位广东邦普循环科技有限公司在标准的编制过程中,积极查询行业内镍钴酸锂正极材料的行业情况,积极收集国内镍钴酸锂产品的生产和使用企业实测数据,根据了解的实际情况编写标准文本和标准编制说明,同时将标准在行业内广泛征求意见,并对收集的意见进行汇总处理,带领编制组完成标准的编制工作。 格林美股份有限公司、北京当升材料科技股份有限公司、湖南长远锂科股份有限公司、天津

锂电池镍钴锰三元材料最新研究进展

锂电池镍钴锰三元材料最新研究进展 镍钴锰三元材料是近年来开发的一类新型锂离子电池正极材料,具有容量高、循环稳定性好、成本适中等重要优点,由于这类材料可以同时有效克服钴酸锂材料成本过高、锰酸锂材料稳定性不高、磷酸铁锂容量低等问题,在电池中已实现了成功的应用,并且应用规模得到了迅速的发展。 据披露,2014年中国锂离子电池正极材料产值达95.75亿元,其中三元材料为27.4 亿元,占有率为28.6%;在动力电池领域,三元材料正强势崛起,2014年上市的北汽EV200、奇瑞eQ、江淮iEV4、众泰云100等均采用三元动力电池。 2015年上海国际车展,在新能源汽车中,三元锂电池的占有率超过了磷酸铁锂电池成为一大亮点,包括吉利、奇瑞、长安、众泰、中华等大部分国内主流车企都纷纷推出采用三元动力电池的新能源车型。许多专家预言:三元材料凭借其优异的性能和合理的制造成本有望在不久的将来取代价格高昂的钴酸锂材料。 人们发现:镍钴锰三元正极材料中镍钴锰比例可在一定范围内调整,并且其性能随着镍钴锰的比例的不同而变化,因此,出于进一步降低钴镍等高成本过渡金属的含量,以及进一步提高正极材料的性能的目的;世界各国在具有不同镍钴锰组成的三元材料的研究和开发方面做了大量的工作,已经提出了多个具有不同镍钴锰比例组成的三元材料体系。包括333,523,811体系等。一些体系已经成功地实现了工业化生产和应用。 本文将较为系统地介绍近年来几种主要的镍钴锰三元材料的最新研究进展及其成果,以及人们为了改进这些材料的性能而开展的掺杂、包覆等方面的一些研究进展。 1镍钴锰三元正极材料结构特征 镍钴锰三元材料通常可以表示为:LiNixCoyMnzO2,其中x+y+z=1;依据3种元素的摩尔比(x∶y∶z比值)的不同,分别将其称为不同的体系,如组成中镍钴锰摩尔比(x∶y∶z)为1∶1∶1的三元材料,简称为333型。摩尔比为5∶2∶3的体系,称之为523体系等。 333型、523型和811型等三元材料均属于六方晶系的α-NaFeO2型层状岩盐结构,如图1。

文献综述报告锂离子电池锂镍钴铝NCA材料..

材料科学与化学工程学院 文献综述报告 学号:S313100110 专业:化学工程与技术 学生姓名:王红领 指导教师:陈猛教授 指导教师评语: 导师签字: 年月日成绩

锂离子电池正极材料镍钴铝酸锂研究进展 1. 材料研究背景 锂离子电池目前已经广泛应用于科技、军事、生活等各个领域。而正极材料在锂离子电池产品组成中占据着最重要的地位。正极材料的好坏,直接决定了电池的最终性能,而且正极材料在电池成本中所占比例高达40%左右。目前常用的锂离子正极材料有LiCoO2,LiNiO2,LiMn2O4,LiMPO x等。 LiCoO2的研究已经比较成熟,层状钴酸锂属六方晶系的α-NaFeO2层状结构,理论容量为274mAh/g,具有工作电压高、充放电电压平稳、比能量高、循环性能好的特点,是最早用于商品化锂离子电池的正极材料。但是在实际使用时,只有部分锂能够可逆的脱嵌,如果过充将导致容量衰减和极化增大,使其循环性能大大降低。因此目前实际容量为155mAh/g,平均工作电压3.7V。同时由于其价格高、容量低、毒性大的特点,极大地限制了其适用范围。层状LiNiO2理论容量为275mAh/g,实际容量为180-200mAh/g,平均工作电压3.6V左右,具有自放电率低、污染小、与多种电解液有良好相容性等优点。但是制备困难,材料一致性和重现性差,而且热稳定性和安全性差。尖晶石LiMn2O4成本低,安全性好,但循环性能尤其是高温循环性能差,在电解液中有一定的溶解性,储存性能差。而且在高温(50℃左右)下材料相结构极不稳定,导致其容量衰减迅速。LiMPO x 型正极材料主要有LiFePO4,LiMnPO4,Li3V2(PO4)3和LiCoPO4等。其中研究最多的是LiFePO4。其具有充放电平台平稳、比容量较高、循环性能优异、成本较低、环境友好等突出优势,但是充放电平台低,导电性差。[1,2,3,4] 对于镍钴二元复合材料,兼有LiNiO2和LiCoO2的优点,既有较高的理论放电比容量,又有较稳定的层状结构,增强了材料的循环稳定性。但这种材料也存在耐过充能力差、热稳定性差、首次放电不可逆容量高等缺陷。而铝的掺杂可以进一步稳定镍钴材料的结构,明显抑制充放电过程中的放热反应,使材料循环性能和耐过充性能明显提高。[4] 2. 材料简介 2.1 制备方法

镍钴锰三元正极制备方法

1镍钴锰三元正极材料结构特征 镍钴锰三元材料通常可以表示为:LiNixCoyMnzO2,其中x+y+z=1;依据3种元素的摩尔比(x∶y∶z比值)的不同,分别将其称为不同的体系,如组成中镍钴锰摩尔比(x∶y∶z)为1∶1∶1的三元材料,简称为333型。摩尔比为5∶2∶3的体系,称之为523体系等。 333型、523型和811型等三元材料均属于六方晶系的α-NaFeO2型层状岩盐结构,如图1。 镍钴锰三元材料中,3种元素的的主要价态分别是+2价、+3价和+4价,Ni为主要活性元素。其充电时的反应及电荷转移如图2所示。 一般来说,活性金属成分含量越高,材料容量就越大,但当镍的含量过高时,会引起Ni2+占据Li+位置,加剧了阳离子混排,从而导致容量降低。Co正好可以抑制阳离子混排,而且稳定材料层状结构;Mn4+不参与电化学反应,可提供安全性和稳定性,同时降低成本。 2镍钴锰三元正极材料制备技术的最新研究进展 固相法和共沉淀法是传统制备三元材料的主要方法,为了进一步改善三元材料电化学性能,在改进固相法和共沉法的同时,新的方法诸如溶胶凝胶、喷雾干燥、喷雾热解、流变相、燃烧、热聚合、模板、静电纺丝、熔融盐、离子交换、微波辅助、红外线辅助、超声波辅助等被提出。 2.1固相法

三元材料创始人OHZUKU最初就是采用固相法合成333材料,传统固相法由于仅简单采用机械混合,因此很难制备粒径均一电化学性能稳定的三元材料。为此,HE等、LIU等采用低熔点的乙酸镍钴锰,在高于熔点温度下焙烧,金属乙酸盐成流体态,原料可以很好混合,并且原料中混入一定草酸以缓解团聚,制备出来的333,扫描电镜图(SEM)显示其粒径均匀分布在0.2~0.5μm左右,0.1C(3~4.3V)首圈放电比容量可达161mAh/g。TAN等采用采用纳米棒作为锰源制备得到的333粒子粒径均匀分布在150~200nm。 固相法制得的材料的一次粒子粒径大小在100~500nm,但由于高温焙烧,一次纳米粒子极易团聚成大小不一的二次粒子,因此,方法本身尚待进一步的改进。 2.2共沉淀法 共沉淀法是基于固相法而诞生的方法,它可以解决传统固相法混料不均和粒径分布过宽等问题,通过控制原料浓度、滴加速度、搅拌速度、pH值以及反应温度可制备核壳结构、球形、纳米花等各种形貌且粒径分布比较均一的三元材料。 原料浓度、滴加速度、搅拌速度、pH值以及反应温度是制备高振实密度、粒径分布均一三元材料的关键因素,LIANG等通过控制pH=11.2,络合剂氨水浓度0.6mol/L,搅拌速度800r/min,T=50℃,制备得到振实密度达2.59g/cm3,粒径均匀分布的622材料(图3),0.1C(2.8~4.3V)循环100圈,容量保持率高达94.7%。 鉴于811三元材料具有高比容量(可达200mAh/g,2.8~4.3V),424三元材料则可提供优异的结构和热稳定性的特点。有研究者试图合成具有核壳结构的(核为811,壳层l为424)三元材料,HOU等采用分布沉淀,先往连续搅拌反应釜(CSTR)中泵入8∶1∶1(镍钴锰比例)的原料,待811核形成后在泵入镍钴锰比例为1∶1∶1的原料溶液,形成第一层壳层,然后再泵入组成为4∶2∶2的原溶液,最终制备得到核组成为811,具有壳组成为333、424的双层壳层的循环性能优异的523材料。4C倍率下,这种材料循环300圈容量保持率达90.9%,而采用传统沉淀法制备的523仅为72.4%。 HUA等采用共沉淀法制备了线性梯度的811型,从颗粒内核至表面,镍含量依次递减,锰含量依次递增,从表1可明显看到线性梯度分布的811三元材料大倍率下放电容量和循环性明显优于元素均匀分布的811型。

高压镍钴锰三元正极材料研究进展及应用前景展望

龙源期刊网 https://www.doczj.com/doc/592666346.html, 高压镍钴锰三元正极材料研究进展及应用前景展望 作者:吴英强倪欢孟德超王莉何向明 来源:《新材料产业》2015年第09期 锂离子电池具有电压高、比能量高、质量轻、体积小、自放电小、寿命长等众多优点,是目前综合性能最好的电池体系之一,广泛应用于高能便携电子设备。在民用领域,锂离子电池正从3C领域(移动电子设备、智能手机、笔记本电脑等)迅速拓展到能源交通领域,包括电动汽车、电网调峰、太阳能、风能电站蓄电等。在国防军事方面,锂离子电池的应用则覆盖了陆(军用通信设备、单兵系统、陆军战车等)、海(潜艇、水下机器人)、空(无人侦察机)等诸多兵种。随着应用范围的迅速扩展,锂离子电池正朝着更高的能量密度(250~ 300Wh/kg)方向发展,同时对电池的安全性及循环寿命提出更高要求。基于当前的嵌入式电 极反应机制及锂离子电池的工艺技术,正极材料的性能是决定锂离子电池的能量密度、安全性及循环寿命等指标的关键因素。 目前研究和应用最多的正极材料主要有:①聚阴离子类型正极材料[1],如磷酸铁锂(LiFePO4)、 LiFe1-xMnxPO4、硅酸盐如硅酸亚铁锂(Li2FeSiO4)等;②尖晶石结构的正 极材料[2],如次锰酸锂(LiMn2O4)、LiMn1.5Ni0.5O4等;③六方层状结构材料LiNi1-x-yCoxMnyO2,如钴酸锂(LiCoO2)、LiNi0.5Mn0.5O2、LiNi1/3Co1/3Mn1/3O2等[3];④富锂层状材料xLi2MnO3·(1-x)LiMO2〔M=锰(Mn),镍(Ni),钴(Co)〕等[4]。其中,LiFePO4广泛应用于动力锂离子电池的正极材料,但受限于理论比容量及电压平台,LiFePO4电池能量密度的提升空间很小。LiMn2O4具有三维的锂离子扩散通道,电压平台高、倍率性 能优越,加上价格上优势,被认为是极具潜力的动力锂离子电池正极材料。然而,LiMn2O4 的理论比容量较低,且高温性能欠佳。通过改性(掺杂)能有效提高其高温性能,但受到理论比容量的限制,LiMn2O4单独使用作为正极在高比能电池领域的应用没有优势。与LiMn2O4处于同一家族的LiMn1.5Ni0.5O4尖晶石正极材料,由于锰离子全部处于正4价,不受Jahn- Teller效应的影响,其高温性能明显改善。在充放电过程中,镍离子为电化学活性过渡金属,其Ni4+/3+,Ni3+/2+氧化还原电位表现出4.7V左右的电压平台,其电池的能量密度比 LiMn2O4的高14.6%,因此受到研究人员的广泛关注及研究兴趣。然而高压(5.0V)电解液的短板限制了LiMn1.5Ni0.5O4材料的应用,虽然和钛酸锂负极搭配使用能取得很好的效果,但造成的能量密度下降将得不偿失。相比之下,富锂层状材料xLi2MnO3·(1-x)LiMO2无论在电压平台还是比容量上都表现出极大的优势。当充电截止电压(vs.Li)达到4.8V时,富锂层状材料可发挥出超过250mAh/g的可逆比容量,在目前所有的嵌入式正极材料中是最高的。正因为如此,富锂层状材料在学术界及工业界都引起极大的研究兴趣,被认为值下一代高比能电池的首选正极材料。然而这类正极材料的劣势也非常明显,例如循环过程的电压衰减[5]、充 放电过程中的电压滞后问题[6]、首次库伦效率低、倍率性能及循环稳定性差、电解液匹配问题、批量制备过程中的批次性问题,以上每一个问题都会严重影响富锂层状材料的产业化进

国家标准镍钴锰氢氧化物

国家标准《镍钴锰氢氧化物》 编制说明 (讨论稿) 《镍钴锰氢氧化物》编制组 编写单位:金川集团股份有限公司 2018年6月11日

国家标准《镍钴锰氢氧化物》编制说明 一、工作简况 1. 任务来源及计划要求 根据国家标准化管理委员会于2017年12月28日下达的2017年第四批国家标准制修订计划(见国标委综合〔2017〕128号),国家标准《镍钴锰三元素复合氢氧化物》(GB/T 26300-2010)的修订工作由金川集团股份有限公司主持修订,项目计划编号为20173793-T-610,项目完成时间为2019年12月。 2. 标准修订的目的及意义 受益于新能源汽车产业政策的推动,中国已是全球最大的电动汽车市场。三元材料因为其优异的综合性能,已成为车载锂离子动力电池的主流产品。作为三元正极材料最关键的原材料,镍钴锰氢氧化物在过去十年里也得到了快速发展。为了满足下游客户的各种不同需求,镍钴锰氢氧化物呈现多元化发展的趋势,相应的指标要求也发生了变化。2010年发布的国家标准《镍钴锰三元素复合氢氧化物》(GB/T 26300-2010)中的部分内容已经无法适用于现在的产品。为了跟上产业发展的步伐,提高镍钴锰氢氧化物生产企业的开发和生产能力,敦促各企业按更先进的标准进行生产,需要及时对国家标准进行修订。 3. 产品简介 3.1 性质 镍钴锰氢氧化物是深棕色或黑色粉末,流动性好,不溶于水,能溶于酸。 3.2 用途 车载锂离子动力电池市场正在走出导入期,开始跨入快速成长期。未来几年,锂离子电池市场规模增长的最大动力确定无疑将来自电动汽车市场。全球锂离子动力电池及其材料的生产主要集中在中国、日本和韩国,主要正极材料包括改性锰酸锂、镍钴锰酸锂或镍钴铝酸锂。高能量密度锂离子动力电池的需求带动了高比容量的高镍三元材料的应用和发展。三元材料单体能量可达到180Wh/kg,高镍三元材料极限密度可达250-260 Wh/kg。三元材料因具有综合性能和成本的双重优势日益被行业所关注和认同,已经超越磷酸铁锂和锰酸锂,成为车载动力电池主流的技术路线。 镍钴锰氢氧化物又被称为三元前驱体,主要用于合成锂离子电池正极材料镍钴锰酸锂(三元正极材料),是三元正极材料最为关键的原材料。

镍钴锰酸锂标准.doc

1.0 目的 规范电池有限公司镍钴锰酸锂的技术要求、检验方法。 2.0 适用范围 本标准仅针对电池有限公司范围内使用的镍钴锰酸锂。 3.0 定义 N.A. 4.0 检测技术要求及检测方法 4.1 环境要求 除非另有规定,本标准中各项实验应在如下条件下进行: 温度: 25℃ ±5℃;相对湿度: 45%~ 75%;大气压力:86KPa~ 106KPa。 4.2 检验内容 序 检验项目 号 1包装 2外观 △ 3形貌 4pH 值 * △ 5XRD ▲6粒径分布比 表面积△ 7 (m2·g-1 ) 杂质含量8 分析 检验标准 a.标识清楚,内容正确可识别; b.外包装无破损、受潮、未有严重撞击痕迹。 c.有符合 RoHS 环境有害物质标识。 固体粉末无结块 各厂家具体标准见附页 9~ 12 各厂家具体标准见附页 各厂家具体标准见附页 各厂家具体标准见附页 Fe 小于等于300PPM Cu 小于等于300PPM 检验方法 目检 目检 随机取 1g 样品做 SEM 测试 随机取1g 样品加入10ml 水搅拌30min 后,用pH 计测量 随机取 1.5g 样品做 XRD 测试 随机取样 2g 用激光粒度 分析仪测试。随机取样 5g 用比表面分析仪测 试。 随机取 10g 样品做 AAS 或ICP 测试 检验设备 - - JSM6380LV PSH-3C X’ PERT PRO PD MASTERSI ZER2000 NOVA1000e 361MC - AAS Varian710-E S-ICP 9使用特性 * 压实密度 10 -3 ) (g cm· 克容量 11 ( mAh·g-1)配好的浆料流动性好,可通过150 目筛;极片表 面细腻,无划痕色泽均匀,无明显颗粒和掉 料。各厂家具体标准见附页 扣式电池 * ,各厂家具体标准见附页 成品电芯 * ,各厂家具体标准见附页 按正常工艺配料,后进行观察。 具体方法见附页Ⅰ 随机抽取一定量的正极材料做成成品电 芯测试。扣式电池制作及测试方法见 附页Ⅱ。 注:加“ *号”的项目为选测项目,仅在试产阶段、原材料情况异常或客户有特殊要求时进行选测。 ▲△ 加“ ”号的项目为关键参数,加“”号的项目为抽测项目,在试产阶段必测,在正常进料阶段抽测。 5.0 参考文件 N.A. 6.0 记录文件 《进货检验报告》 7.0 附件 附页Ⅰ :

锂电池的几种主要正极材料对比分析

锂电池的几种主要正极材料对比分析 锂电池的性能主要取决于所用电池内部材料的结构和性能。介绍一下锂电池主要正极钴酸锂,镍酸锂,锰酸锂,磷酸铁锂和钒的氧化物等。 锂电池的性能主要取决于所用电池内部材料的结构和性能。这些电池内部材料包括正极材料、负极材料、电解液、隔膜和导电材料等。其中正、负极材料的选择和质量直接决定锂电池的性能与价格。因此廉价、高性能的正、负极材料的研究一直是锂电池行业发展的重点。负极材料一般选用碳材料,目前的发展比较成熟。而正极材料的开发已经成为制约锂电池性能进一步提高、价格进一步降低的重要因素。 在目前的商业化生产的锂电池中,正极材料的成本大约占整个电池成本的40%左右,正极材料价格的降低直接决定着锂电池价格的降低。对锂动力电池尤其如此。比如一块手机用的小型锂电池大约只需要5克左右的正极材料,而驱动一辆电动汽车用的锂动力电池可能需要高达500千克的正极材料。 衡量锂电池正极材料的好坏,大致可以从以下几个方面进行评估: (1)正极材料应有较高的氧化还原电位,从而使电池有较高的输出电压;

(2)锂离子能够在正极材料中大量的可逆地嵌入和脱嵌,以使电池有高的容量; (3)在锂离子嵌入/脱嵌过程中,正极材料的结构应尽可能不发生变化或小发生变化,以保证电池良好的循环性能; (4)正极的氧化还原电位在锂离子的嵌入/脱嵌过程中变化应尽可能小,使电池的电压不会发生显著变化,以保证电池平稳地充电和放电; (5)正极材料应有较高的电导率,能使电池大电流地充电和放电; (6)正极不与电解质等发生化学反应; (7)锂离子在电极材料中应有较大的扩散系数,便于电池快速充电和放电; (8)价格便宜,对环境无污染。 锂电池正极材料一般都是锂的氧化物。研究得比较多的有钴酸锂,镍酸锂,锰酸锂,磷酸铁锂和钒的氧化物等。导电聚合物正极材料也引起了人们的极大兴趣。 1、钴酸锂 在目前商业化的锂电池中基本上选用层状结构的钴酸锂作为正极材料。其理论容量为274mAh/g,实际容量为140mAh/g左右,也有报道实际容量已达 155mAh/g。该正极材料的主要优点为:工作电压较高(平均工作电压为3.7V)、充放电电压平稳,适合大电流充放电,比能量高、循环性能好,电导率高,生产工艺简单、容易制备等。

锂离子电池正极材料镍钴锰酸锂的研究进展

锂离子电池正极材料镍钴锰酸锂的研究进展 杨杰10070134 摘要:对镍钴锰酸锂的制备方法(如高温固相合成法、溶胶一凝胶法、共沉淀法)进行了重点论述,并讨论了相应的电化学性能、结构特征和目前存在的问题。并对层状镍钴锰酸锂正极材料的发展进行了展望。关键词:锂离子电池;正极材料;理论容量;层状镍钴锰酸锂Progress in Research of Layered LiNi1/3 Co1/3 Mn1/3 O2 Cathode Material fjDr Lithium—ion Batteries Abstract:The preparation methods of layered LiNi1/3Co1/3Mn1/3 O2 calhode, such as high一tempemture solidrection method,sol-gel method,co—precipitation metllod and etc,was reviewed in this paper.The related electmchemical properties,stmcturecharacteristics and existing problems were discussed as well.The development of the layered“Ni1/3 Co1/3 Mn1/3 O2 cathode material was forecasted. Key words:lithium-ion battery;cathode material;theoretical capacity; layeredNi1/3 Co1/3 Mn1/3 O2 层状LiNi1/3Co1/3Mn1/3O2作为一种新型的锂离子电池正极材料,其理论容量高达278 mAh/g。LiNi1/3Co1/3Mn1/3O2具有a-NaFeO2型层状结构,Ni为+2价,co为+3价,Mn为+4价,少量的Ni3+和Mn3+。充电时,Mn4+不变价,Ni2+变为Ni4+,C03+变为c04+。LiNi1/3Co1/3Mn1/3O2集中了LiCoO2,LiNiO2,LiMnO2三种材料各自的优点,成本比LiNi0.8Co0.2O2稍低,电性能比LiNi1/2Mn1/2O2好。 由于存在三元协同效应,其综合性能优于任何一单组合化合物。本文着重对最近层状LiNi1/3Co1/3Mn1/3O2的制备方法以及电化学性能进行了综述。

相关主题
文本预览
相关文档 最新文档