当前位置:文档之家› 表冷器传热系数K的数值分析与研究

表冷器传热系数K的数值分析与研究

表冷器传热系数K的数值分析与研究
表冷器传热系数K的数值分析与研究

传热系数与给热系数

传热系数K 和给热系数α的测定 一. 实验目的 1. 了解间壁式传热元件的研究和给热系数测定的实验组织方法; 2. 掌握借助于热电偶测量壁温的方法; 3. 学会给热系数测定的试验数据处理方法; 4. 了解影响给热系数的因素和强化传热的途径。 二. 基本原理 1.传热系数K 的理论研究 在工业生产和科学研究中经常采用间壁式换热装置 来达到物料的冷却和加热。这种传热过程系冷、热流 体通过固体壁面进行热量交换。它是由热流体对固体 壁面的 对流给热,固体壁面的热传导和固体对冷流体的对 流给热三个传热过程所组成。如图1所示。 由传热速率方程知,单位时间所传递的热量 Q=()t T KA - (1) 而对流给热所传递的热量,对于冷、热流体均可由牛顿冷却定律表示 Q=()1w h h t T A -α (2) 或 Q=()t t A w c c -2α (3) 对固体壁面由热传导所传递的热量,则由傅立叶定律表示为 Q ()21w w m t t A -?=δ λ (4) 由热量平衡和忽略热损失,可将(2)、(3)、(4)式写成如下等式 Q=KA t T A t t A t t A t T c c w m w w h h w 1 112211-=-=-=-αλδα (5)所以 c c m h h A A A K αλδα111 ++= (6) ()22222111111,,,,,,,,,,,,u c u c d f K p p λμρδλλμρ==()5,2,6f (7) 图1传热过程示意图

从上式可知,除固体的导热系数和壁厚对传热过程的传热性能有影响外,影响传热过程的参数还有12个,这不利于对传热过程作整体研究。根据因次分析方法和π定理,热量传递范畴基本因次有四个:[L],[M],[T],[t] ,壁面的导热热阻与对流给热热阻相比可以忽略 K ≈()21,ααf (8) 要研究上式的因果关系,尚有π=13-4=9个无因次数群,即由正交网络法每个水平变化10次,实验工作量将有108次实验,为了解决如此无法想象的实验工作量,过程分解和过程合成法由此诞生。该方法的基本处理过程是将(7)式研究的对象分解成两个子过程如(8)式所示,分别对21,αα进行研究,之后再将21,αα合并,总体分析对K 的影响,这有利于了解影响传热系数的因素和强化传热的途径。 当1α>>2α时,2α≈K ,反之当1α<<2α时,1α≈K 。欲提高K 设法强化给热系数小的一侧α,由于设备结构和流体已定,从(9)式可知,只要温度变化不大,1α只随1u 而变, ()1111111,,,,,λμραp c u d f = (9) 改变1u 的简单方法是改变阀门的开度,这就是实验研究的操作变量。同时它提示了欲提高K 只要强化α小的那侧流体的u 。而流体u 的提高有两种方法: (1)增加流体的流量; (2)在流体通道中设置绕流内构件,导致强化给热系数。 由(9)式,π定理告诉我们,π=7-4=3个无因次数群,即: ()1111111,,,,,λμραp c u d f = ? ???? ??=λμμ ρλαp c du f d , (10) 经无因次处理,得: c b o a Nu Pr Re = (11) 如果温度对流体特性影响不大的系统,并且温度变化范围不大,则式(11)可改写为:b a Nu Re = 式中:c o a a Pr =。 2.传热系数K 和α的实验测定

表冷器计算书

表冷器计算书 (一)前表冷器 a.已知: 风量:14000CMH 空气质量流量q mg=(14000×/3600≈s 空气体积流量q vg=14000/3600≈s 空气进、出口温度: 干球:35/17℃湿球:℃ 空气进、出口焓值:㎏ 进水温度:6℃,流量:110CMH(前、后冷却器) 阻力:水阻<70KPa,风阻700Pa(前后冷却器) 计算: 接触系数ε2: ε2= 1-(t g2-t s2)/(t g1-t s1) =1-/≈ 查《部分空气冷却器的接触系数ε2》表: 当Vy=~s时:GLⅡ六排的ε2=~ 从这我们可以看出:六排管即可满足要求。(可得出如下结论:在表冷器外型尺寸受到限制的情况下,我们从增大换热面积来提高换热总量总是不大理想,即使强行增加排数仍旧帮助不大。我近30遍的手工计算也证明了这一点。提高水流速和降低水温对提高换热总量有更为积极的贡献。通过计算我们可以发现钢管的水阻实在太大,稍微增加一点,水阻就大的吓人。于是我设计采用了两组双排供、双排回的表冷器,在两组总排数仅8排的表冷器里同时供回水达四排之多,水程就一个来回。这样就出现了大流量小温差的情况,水流速ω可以提高。在冷冻水里添加乙二醇,使冷冻水的冰点下降。很容易我们发现对数平均温差提高了很多。从而达到了提高换热总量的目的。) 选型分析: ⊙冷负荷Q= q mg ×(h1-h2) ×-≈(235760Kcal/h) ⊙由六排管的水阻△Pw=ω≤70Kpa 得:管内水流速ω≤s [水阻的大小和水程的长短也有密切的关系,经验公式没有对此给个说法。推论:八排管(即实际上的二排管)在流速一定时的水阻必为六排管的1/3。理论上可以使△Pw=ω≤70Kpa,有ω≤s,但常识告诉我们:不能如此取值,可以判定八排管(即实际上的二排管)的ω≤s为合理。] 安全起见,设令: ω=s ⊙要求Vy=~s,可初估迎面尺寸(计算表明风速和流速的增加,将带来K值的增加,但K值的增加,却导致迎面的减小,间接使整个换热面积A的减小,我对Vy=s进行的计算表明,K值的增加,A值减小,K×A之积增加并不明显。从这点来看牺牲K值换A值较为有利于整体换热效果,特别的要保6~8排的K值,换来的是将在以后用4~6排的增加面积来弥补,是很得不偿失的,况且那时K值还得再按倍计算。但按Vy=s计算表明:A值增加,K×A之积也反而减小,K=,考虑其它因数K=,β≈,γ≈;ε1≈,提出t w1=℃的不合理要求。由多次的计算看

综合传热系数的测定实验

实验1综合传热系数的测定实验 一、实验目的 1.了解间壁式传热元件的结构。 2.了解观察水蒸气在水平管外壁上的冷凝现象,并判断冷凝类型。 3.通过对内管是光滑管的空气—水蒸气简单套管换热器的实验研究,掌握空气在圆形光滑直管中强制对流传热系数的测定的实验方法,加深对其概念和影响因素的理解。确定关联式Nu=Are m Pr0.4中常数A、m的值。 4.掌握传热系数测定的实验数据处理方法。 5.掌握孔板流量计的使用。 6.掌握DC-3A微音气泵的使用。 二、实验内容及基本原理 (一)实验内容 1.观察水蒸气在换热管外壁上的冷凝现象,并判断冷凝类型。 2.测定不同流速下简单套管换热器的对流传热系数α。 3.对实验数据通过Excel进行处理,求关联式Nu=A·Re m Pr0.4中常数A、m的值;并绘制曲线。 4.实验原始记录 光滑管记录: 5.实验数据处理与分析 数据处理 光滑管:实验结果列表和作图:

(二)实验原理 1.准数方程 空气在圆形直管中作湍流流动的给热准数方程: ),,,d l Gr f Nu Pr (Re 1= (1-1) 式中 l —为管长,m ; d —为管径,m ; 强制对流时,G r 可忽略;对气体而言,原子数相同(如单原子、双原子…)的气体Pr 为一常数,当50>d l 其影响亦可忽略,故上式可写为: (Re)f N u = (1-2) 一般可写成 m u A N Re = (1-3) 其中A 为常数,λ αd Nu = , μρdu =Re 。 2.准数方程中各参数的测定和计算 (1)α值的计算:空气传热膜系数α可以通过测定总传热系数(K )进行测取。K 与α有下列关系: 2 1 11αλδα+ +=s K (1-4) 因管壁很薄,可将圆壁看成平壁。 这里因是空气,故不计污垢热阻,上式中s λδ为黄铜管壁热传导的热阻,壁厚0.001米, 黄铜导热系数λs =377(W/m·k), 故δ/λs =2.7×10-6 ;1/α2为蒸气冷凝膜的热阻,α2=2×104 ,故 1/α2=5×10-5,空气传热膜系数α在100上下,热阻1/α=1×10-2 ,对比之下,上述两项热阻均可忽略,即K ≈α。 其测定方法可用牛顿冷却定律进行: m t S K Q ???= (1-5) ()进出t t c V Q p s -ρ= (1-6) m p s t S t t c V K ??= ≈) -(进出ρα (1-7) 式中:V s —空气体积流量,m 3/s (由流量计测取) ρ—流经流量计处的空气密度,kg/m 3;

空气焓差法计算制冷量

组合式空调箱空气焓差法计算制冷能力 主题:空调箱制冷效能验证 主旨:于现场快速计算空调箱于当前工况下制冷(热)能力 关键字:表冷器、进风干球温度、进风湿球温度、出风干球温度、 出风湿球温度、空气焓值、空气绝对湿度、制冷能力 测试方法: 根据焓差法测量制冷能力原理,用焓差法测定时,就是在被测空调器的进、出口气流中设置干、湿球温度计,并在空调器出风口装设风量测量装置。待工况稳定后,即可对空调器的进、出口空气参数及通过空调器的风量进行测定。国家标准GB/T7725-1996给出的制冷量的计算公式为: 12()(1) L I I Q X υ?-=?+ (1) 式中:Q ——空调器制冷量,kW ; I 1——空调器室内侧回风空气焓值,kJ/kg (干空气); I 2——空调器室内侧送风空气焓值,kJ/kg (干空气); L ——空调器室内侧测点的风量,m 3/s ; υ——测点处湿空气比容,m 3/kg ; X ——测点处空气绝对湿度,kg/kg (干空气)。 江苏嘉禄嘉鋒制冷設備有限公司 附件一

上述5个参数均不是直接测量量,它们需要通过直接测量量:表冷器进风干球温度、表冷器进风相对湿度、表冷器出风干球温度、表冷器出风相对湿度、冷凝器进风干球温度以及大气压力计算得出(或者查空气参数表)。 ①水蒸气的饱和压力Ps (Pa ) 由经验公式可得温度t (℃)对应的水蒸气饱和压力Ps 为: 3816.44133.332exp 18.3036227.02S P t ??=?-??+? ? (2) 由式(2)可求出表冷器器进风温度TE1、表冷器出风温度TE2分别对应的水蒸气饱和压力P S 1、P S 2,单位为Pa 。 ②水蒸气的分压力P V (Pa ) 若已知相对湿度?,则水蒸气的分压力P V 为: V S P P ?=? (3) 由式(3)可求出表冷器进风相对湿度FE1、表冷器出风相对湿度FE2分别对应的水蒸气分压力P V 1、P V 2,单位为Pa 。 ③含湿量X (kg/kg (干空气)) 未饱和空气和饱和空气的含湿量均可由下式计算: 0.622V V P X P P =- (4) 由式(4)可求出表冷器进风含湿量X1、表冷器出风含湿量X2,单位为kg/kg (干空气)。 ④比焓I (kJ/kg (干空气)) 湿空气的比焓是相对于单位质量干空气而言的,是1kg 干空气的

换热器传热系数测定汇总

化 工 实 验 报 告 姓名: 学号: 报告成绩: 课程名称 化工原理实验 实验名称 换热器传热系数的测定实验 班级名称 组 长 同组者 指导教师 实验日期 教师对报告的校正意见 一、 实验目的 1、了解传气—汽对流热的基本理论,掌握套管换热器的操作方法。 2、掌握对流传热系数 α i 测定方法,加深对其概念和影响因素的理解。 3、应用线性回归分析方法,确定关联式 4 .0Pr Re i m A Nu = 中常数 A 、m 的值。 4、了解强化换热的基本方式,确定传热强化比 0/Nu Nu 。 二、 实验内容与要求 1、测定不同空气流速下普通套管换热器的对流传热系数 α i 。 2、不同空气流速下强化套管换热器的对流传热系数 α i 。 3、分别求普通管、强化管换热器准数关联式4 .0Pr Re i m A Nu =中常数 A 、m 的值。 4、根据准数关联式4 .0Pr Re i m A Nu =,计算同一流量下的传热强化比 0/Nu Nu 。 5、分别求取普通套管换热器、强化套管换热器的总传热系数 0K 。 三、 实验原理 1 、对流传热系数i α的测定: i m i i S t Q ?= α (5-1) 式中:i α—管内流体对流传热系数,w/(m 2·℃); Q i —管内传热速率,w ; 3600 t C V Q m p m i ????= ρ (5-2) 式中:V —空气流过测量段上平均体积,m 3/h ; m P —测量段上空气的平均密度,kg/m ; i S —管内传热面积, m ; 1 页

Re Pr 4 .0-Nu m Cp —测量段上空气的平均比热,J/(kg.g ); m t ?—管内流体空气与管内壁面的平均温度差,℃。 ()() 2 121m ln t t T t T t T t T S S w w -----= ? (5-3) 当 2>1t ? / 2t ? >0.5 时,可简化为 2 2 1t t T t W m +- =? (5-4) 式中:1t ,2t —冷流体(空气)的入口、出口温度,℃; Tw — 壁面平均温度,℃。 2、对流传热系数准数关联式的实验确定: 流体在管内作强制对流时,处于被加热状态,准数关联式的形式为: n i m i A Nu Pr Re = (5-5) 其中,传热准数:i i i i d Nu λ α= (5-6) 雷诺准数: i i i i i u d μ ρ= Re (5-7) 其中:u-测量段上空气的平均流速:3600?= F V u (5-8) 普朗特准数: i i pi i c λ μ= Pr (5-9) 对于管内被加热的空气,普朗特准数i Pr 变化不大,可认为是常数,关联式简化为: 4.0Pr Re i m i A Nu i = (5-10) 通过实验确定不同流量下的i Re 与i Nu 。 3、关联式4 .0Pr Re i m i A Nu i =中的常数A ,m 的确定: 以 4 .0Pr Nu 纵坐标,Re 为横坐标,在对数坐标上绘 关系,作图、回归得到准数关联式4 .0Pr Re i m i A Nu i =中的常数A ,m 。 同理得到强化管准数关联式4 .0Pr Re i m i A Nu i =中的常数A ,m 。 4、强化比的确定 2 页

总传热系数的测定 附最全思考题

聊城大学实验报告 课题名称:化工原理实验 实验名称:总传热系数的测定 姓名:元险成绩: 学号:1989 班级: 实验日期:2011-9-18 实验内容:测定套管换热器中水—水物系在常用流速范围内的总传热系数K,分析强化传热效果的途径。

总传热系数的测定 一、实验目的 1.了解换热器的结构,掌握换热器的操作方法。 2.掌握换热器总传热系数K 的测定方法。 3.了解流体的流量和流向不同对总传热系数的影响 二、基本原理 在工业生产中,要完成加热或冷却任务,一般是通过换热器来实现的,即换热器必须在单位时间内完成传送一定的热量以满足工艺要求。换热器性能指标之一是传热系数K 。通过对这一指标的实际测定,可对换热器操作、选用、及改进提供依据。 传热系数K 值的测定可根据热量恒算式及传热速率方程式联立求解。 传热速率方程式: Q =kS ?t m (1) 通过换热器所传递的热量可由热量恒算式计算,即 Q =W h C ph (T 1-T 2)=W c C pc (t 2-t 1)+Q 损 (2) 若实验设备保温良好,Q 损可忽略不计,所以 Q =W h C ph (T 1-T 2)=W c C pc (t 2-t 1) (3) 式中,Q 为单位时间的传热量,W ;K 为总传热系数,W/(m 2·℃);?t m 为传热对数平均温度差,℃;S 为传热面积(这里基于外表面积),m 2;W h ,W c 为热、冷流体的质量流量,kg/s ;C ph ,C pc 为热、冷流体的平均定压比热,J/(kg ·℃);T 1,T 2为热流体的进出口温度,℃;t 1,t 2为冷流体的进出口温度,℃。 ?tm 为换热器两端温度差的对数平均值,即 12 1 2ln t t t t t m ???-?=? (4) 当212≤??t t 时,可以用算术平均温度差(2 12t t ?+?)代替对数平均温度差。由上式所计算出口的传热系数K 为测量值K 测。 传热系数的计算值K 计可用下式进行计算: ∑+++=S i R K λδαα11 10计 (5) 式中,α0为换热器管外侧流体对流传热系数,W/(m 2·℃);αi 为换热器管内侧流体对流传热系数,W/(m 2·℃);δ为管壁厚度,m ;λ——管壁的导热系数,W/(m 2·℃);R S 为污垢热阻,m 2·℃/W 。 当管壁和垢层的热阻可以忽略不计时,上式可简化成:

总传热系数的测定实验报告

实验二:总传热系数的测定 一、实验目的 1、了解换热器的结构与用途; 2、学习换热器的操作方法; 3、掌握传热系数k计算方法; 4、测定所给换热器的逆流传热系数k。 二、实验原理 在工业生产过程中冷热流体通过固体壁面(传热元件)进行热量传递,称为间壁式换热。间壁式换热过程由热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热三部分组成。本实验热流体采用饱和蒸汽走壳程,冷流体为空气走管程。 当传热达到稳定时,总传热速率与冷流体的传热速率相等时, 而即为, 综上可得,其中。 T --- 热流体; t --- 冷流体; V --- 冷流体进口处流量计读数; ---冷流体平均温度下的对应的定压比热容; ρ --- 冷流体进出口平均温度下对应的密度. 三、实验设备及流程 1、实验设备

传热单元实验装置(换热器、风机、蒸汽发生器) ,整套实验装置的核心是一个套管式换热器,它的外管是一根不锈钢管,内管是一根紫铜管。根据紫铜管形状的不同,我们的实验装置配有两组换热器,一种是普通传热管换热器,另一种是强化传热管换热器,本实验以普通传热管换热器为例,介绍总传热系数的测定。 2、实验流程 来自蒸汽发生器的水蒸气从换热器的右侧进入换热器的不锈钢管。而来自风机的冷空气从换热器的左侧进入换热器的紫铜管,冷热流体通过紫铜管的壁面进行传热。冷空气温度升高而水蒸汽温度降低,不凝气体和冷凝水通过疏水阀排出系统,而冷空气通过风机的右侧排出装置。 四、实验步骤 需测量水蒸气进口温度,出口温度,冷空气进口温度,出口温度,冷空气的体积流量以及紫铜管的长度及管径。前四项通过仪表读数可获得,冷空气进口温度可以由另外一块仪表盘读数计算可获得。紫铜

石化空冷器

空气冷却器技术及设备 空气冷却器是以环境空气作为冷却介质,对管内高温流体进行冷却或冷凝的设备,它具有不需要水源,适用于高温、高压的工艺条件,使用寿命长,运转费用低等优点。随着水资源和能源的匮乏以及环保意识的增强,节水、节能、无污染的空气冷却器将会得到更广泛的应用。 一、空冷器的应用 与水作为冷却介质的传统工业冷却系统相比,空冷的优缺点如表1和表2所示。由表可见,在缺水地区(如沙漠地带)或水冷结垢和腐蚀严重的地区,适合采用空冷器。一般在下述条件下采用空冷比较有利。 (1) 热流体出口温度与空气进口温度之差>15℃。 (2) 热流体出口温度>60℃,其允许波动范围>5℃。 (3) 空气的设计气温<38℃。 (4) 有效对数平均温度差≥40℃。 (5) 管内热流体的给热系数<2300 W/(m2 *℃)。 (6) 热流体的凝固点<0℃。 (7) 管侧热流体的允许压降>10kPa,设计压力>100kPa。

二、空冷器的型式 空冷器由管束、风机、构架三个基本部分和百叶窗、风筒、喷淋装置、梯子、平台等辅助部分组成,每个管束有若干排三角形排列的管子,该管子一般是翅片管,也可以是光管。介质的流向通常是逆流,热流体从管束顶端流入,底部流出,空气由下向上流动,冷却热的工艺介质。另外还有风机、百叶窗、构架和风箱等部件,风机驱动空气流过管束,百叶窗通过调节进入空冷器的空气量来改善空冷器的调节和适应性能,构架是支撑管束、风机,百叶窗以及其它附属件的钢结构,风箱用于导流空气。空冷器按管束布置方式可分为水平式和斜顶式;按通风方式可分为鼓风式和引风式;按冷却方式可分为干式、湿式和干湿联合式。 2.1 管束 表3管束的型式与代号

总传热系数经验值

浸没在液体中的盘管总传热系数大致值.W/(m2 带有夹套的容器总传热系数大致值.W/(m2

空气冷却器总传热系数大致值.W/(m2

不同压力下水的汽化潜热 水在一个大气压(0.1MPa)100℃时的汽化潜热为2257.2kJ/kg 饱和水和饱和水蒸气热力性质表(按压力排列) 压力/MPa 温度/℃汽化潜热kJ/kg 0.001 6.9491 2484.1 0.002 17.5403 2459.1 0.003 24.1142 2443.6 0.004 28.9533 2432.2 0.005 32.8793 2422.8 0.006 36.1663 2415 0.007 38.9967 2408.3

0.008 41.5075 2402.3 0.009 43.7901 2396.8 0.01 45.7988 2392 0.015 53.9705 2372.3 0.02 60.065 2357.5 0.025 64.9726 2345.5 0.03 69.1041 2335.3 0.04 75.872 2318.5 0.05 81.3388 2304.8 0.06 85.9496 2293.1 0.07 89.9556 2282.8 0.08 93.5107 2273.6 0.09 96.7121 2265.3 0.1 99.634 2257.6 0.12 104.81 2243.9 0.14 109.318 2231.8 0.16 113.326 2220.9 0.18 116.941 2210.9 0.2 120.24 2201.7 0.25 127.444 2181.4 0.3 133.556 2163.7 0.35 138.891 2147.9 0.4 143.642 2133.6 0.5 151.867 2108.2 0.6 158.863 2086 0.7 164.983 2066 0.8 170.444 2047.7 0.9 175.389 2030.7 1 179.916 2014.8 1.1 184.1 1999.9 1. 2 187.995 1985.7 1. 3 191.64 4 1972.1 1.4 195.078 1959.1 1. 5 198.327 1946. 6 1.6 201.41 1934.6 1. 7 204.346 1923 1. 8 207.151 1911.7 1. 9 209.838 1900.7

总传热系数的测定.doc(实验)

总传热系数测定实验 一、实验目的 1. 观察水蒸气在换热管外壁上的冷凝现象,并判断冷凝类型; 2. 测定饱和水蒸气在圆形管外壁上的冷凝给热系数; 二、基本原理 在套管换热器中,环隙通以水蒸气,内管管内通以空气,水蒸气冷凝放热以加热空气,在传热过程达到稳定后,有如下公式: V ρC P (t 2-t 1)=K A m t ? 其中: V :空气体积流量,m 3/s A :内管的外壁的传热面积,m 2 ρ:空气密度,kg/m 3 C P :空气平均比热,J/(kg ℃) t 1、t 2:空气进、出口温度,℃ T 1、T 2:蒸汽进、出口温度,℃ m t ?:对数平均温差,℃ 1 2211221ln ) ()(t T t T t T t T t m -----= ? 若能测得被加热流体的V 、t 1、t 2,内管的换热面积A 以及水蒸气温度T 1、T 2,即可计算实测的水蒸气(平均)冷凝给热系数。 三、实验装置与流程 实验装置如下图

水蒸气~空气换热流程图 来自蒸汽发生器的水蒸气进入玻璃套管换热器,与来自风机的风进行热交换,冷凝水经疏水器排入地沟。冷空气经孔板(转子)流量计进入套管换热器内管(紫铜管),热交换后排出装置外。 2.设备与仪表规格 (1)紫铜管规格:直径φ21×2.8mm,长度L=1000mm (2)外套玻璃管规格:直径φ100×5mm,长度L=1000mm (3)压力表规格:0~0.1MPa 四、实验步骤与注意事项 1.打开总电源空气开关,打开仪表及巡检仪电源开关,给仪表上电。 2.打开仪表台上的风机电源开关,让风机工作,同时打开冷流体入口阀门,让套管换热器里冲有一定量的空气。 3.打开冷凝水出口阀,注意只开一定的开度,开的太大会让换热桶里的蒸汽跑掉,关的太小会使换热玻璃管里的蒸汽压力集聚而产生玻璃管炸裂。 4.在做实验前,应将蒸汽发生器到实验装置之间管道中的冷凝水排除,否则夹带冷凝水的蒸汽会损坏压力表及压力变送器。关闭蒸汽进口阀门,打开装置下面的排冷凝水阀门,让蒸汽压力把管道中的冷凝水带走,当听到蒸汽响时关闭冷凝水排除阀。 5.刚开始通入蒸汽时,要仔细调节蒸汽进口阀门的开度,让蒸汽徐徐通入换热器中,

多态气固相流传热系数测定

验一多态气固相流传热系数测定 实验目的 实验原理 自然界和工程上,热量传热的机理有传导、对流和辐射。传热时可能有几种机理同时存在,也可能以某种机理为主,不同的机理对应不同的传热方式或规律。本实验将一直经为20mm温度为T0的小钢球,置于温度为恒定Tf的周围环境中,由于Tf不等于T0,小球必要受到加热或冷却而温度变为T,在传热过程中,小球的温度显然随时间而变化,这是一个非定态导热过程。在实验中所用钢球体积非常小,而导热系数又比较大,课可以认为钢球不存在温度梯度,整个球体内温度是均匀一致的,于是根据热平衡原理,球体热量随时间变化应等于通过对流换热向周围环境的散热速率。 通过实验可测得钢球在不同环境和流动状态下的冷却曲线,有温度记录仪记下T-t的关系,可计算得出a 和Nu的值。 对于气体在20

表冷器面积的计算

稀贵系统表冷器面积的计算、 一、贵铅炉 1)烟气条件 烟气量 7422m3/h.台 烟气温度—600℃烟气烟尘—15g/m3 烟气成份(%): SO 2CO 2 N 2 O 2 H 2 O 0.033 4.153 76.604 14.810 4.400 2)主要设计参数 (1)收尘效率 99.55% (2)阻力 3500Pa (3)漏风率 20% 3)冷却烟道烟气从600℃降到150℃时所放出的热量为1.14×107KJ/h,考虑生产波动,选用600m2的冷却烟道4台,每台贵铅炉配置2台。 计算公式:F=Q/3.6×k×△t 其中,F为传热面积(m2);Q为烟气传给冷却介质的热量(kJ/h) k:传热系数(w/(m3.℃); △t烟气和冷却介质的温度差,通过计算取值为325℃ 因Q有两个数据,一个是1.14×107KJ/h;第二个是根据相关的资料提供的公式进行计算所得,所以,F有两个答案。 第一个答案: 把以上数据代入公式进行计算: F=1.14×107/(3.6×8.1×325)=1203(m2) 第二个答案: 先计算Q值,Q=V[c1-(1+k1) c2t2]+v k1 c k t k 其中:V=7422m3/h ;c1为烟气在高温(600℃)时的比热容,通过计算为1.38 ;t1为600℃;k1为漏风率20%;c2为烟气在低温(150℃)时的比热容,通过计算为1.338 ;t2为600℃;c k为外界温度(本地取30℃)时的比热容,取值为1.325 kJ/( m3.℃);t k为30℃。 代入公式进行计算: Q=7422[1.38×600-(1+0.2) ×1.338×150]+7422×0.2×1.325×30=4.42×106 kJ/h F=4.42×106/(3.6×8.1×325)=466(m2) 二、分银炉 1)烟气条件 烟气量 4000m3/h.台 烟气温度—600℃烟气烟尘—3g/m3 烟气成份(%): SO 2CO 2 N 2 O 2 H 2 O 0.087 4.100 76.603 14.810 4.400

空气 水蒸气对流给热系数测定实验报告

一.实验课程名称 化工原理 二.实验项目名称 空气-蒸汽对流给热系数测定 三、实验目的和要求 1、了解间壁式传热元件,掌握给热系数测定的实验方法。 2、掌握热电阻测温的方法,观察水蒸气在水平管外壁上的冷凝现象。 3、学会给热系数测定的实验数据处理方法,了解影响给热系数的因素和强化传热的途径。 四.实验内容和原理 实验内容:测定不同空气流量下进出口端的相关温度,计算?,关联出相关系数。 实验原理:在工业生产过程中,大量情况下,冷、热流体系通过固体壁面(传热元件)进行热量交换,称为间壁式换热。如图(4-1)所示,间壁式传热过程由热流体对固体壁面的对流传热, 固体壁面的热传导和固体壁面对冷流体的对流传热所组成。 达到传热稳定时,有 ()()()()m m W M W p p t KA t t A T T A t t c m T T c m Q ?=-=-=-=-=221112222111αα (4-1) 热流体与固体壁面的对数平均温差可由式(4—2)计算, ()()() 2 211 2211ln W W W W m W T T T T T T T T T T -----= - (4-2) 式中:T W 1 -热流体进口处热流体侧的壁面温度,℃;T W 2 -热流体出口处热流体侧的壁面温度,℃。 固体壁面与冷流体的对数平均温差可由式(4—3)计算,

()()() 2 21 12211ln t t t t t t t t t t W W W W m W -----= - (4-3) 式中:t W 1 - 冷流体进口处冷流体侧的壁面温度,℃;t W 2 - 冷流体出口处冷流体侧的壁面温度,℃。 热、冷流体间的对数平均温差可由式(4—4)计算, ()() 1 221 1221m t T t T ln t T t T t -----= ? (4-4) 当在套管式间壁换热器中,环隙通以水蒸气,内管管内通以冷空气或水进行对流传热系数测定实验时,则由式(4-1)得内管内壁面与冷空气或水的对流传热系数, ()()M W p t t A t t c m --= 212222α (4-5) 实验中测定紫铜管的壁温t w1、t w2;冷空气或水的进出口温度t 1、t 2;实验用紫铜管的长度l 、内径d 2,l d A 22π=;和冷流体的质量流量,即可计算?2。 然而,直接测量固体壁面的温度,尤其管内壁的温度,实验技术难度大,而且所测得的数据准确性差,带来较大的实验误差。因此,通过测量相对较易测定的冷热流体温度来间接推算流体与固体壁面间的对流给热系数就成为人们广泛采用的一种实验研究手段。 由式(4-1)得, ()m p t A t t c m K ?-= 1222 (4-6) 实验测定2m 、2121T T t t 、、、、并查取()212 1 t t t += 平均下冷流体对应的2p c 、换热面积

空冷器传热系数经验值

表5 la 空 ;令器传热系数经验值(以光皆外表面积为基准) 介贡代热系数U。,千卡/米一时.匕介册传热系数u“千卡/米-时?匕 液体冷却 油品2" API 亟池8?14°APl 931 (平均温度)50 ?80 1501 (平均温度)30 ?50 1501 (平均温度)65 ?110 2001 (平均温度)50 ?80 2001 (平均温度)150?200 225?275 油S:30a APf 煤油275?300 651 (平均澄度)60 ?115 重石脑油300?325 93C (平均温度)125?175 轻石脑油325?350 1501 (平均澈度)225?275 汽油353?375 2001 (平的温度)250?300 轻煙类375?400 油品4 ° API 醇及大多数冇机溶剂350?375 651 (平均温度)125?175 5J0?600 93r (平均温度)250?300 25%的盐水(水75%)450?550 1501《平均温哎)273?325 水600?700 200 V (平均温窿)300?350 50%乙烯乙二醇和水500?600 续漫 蒸汽7G0 ?8()0 汽油300?375 含E%不凝代的蒸汽5C0?550 汽油-蒸尺混合物350?375 含20%不凝气的蒸汽475?500 中等组分炷类225?250 含40%不凝代的憑汽350?375 中等组分烽类水■蒸汽275?300 纯的轻泾“0 ?425 纯有机溶剂375~400 混合的轻炷325 ?375 500?550 传热系数U“千卡/米2■时.匕 介赋压力,公斤力/厘米* 0.7 3.5 721 35 轻组分烧75 ?100 150 ?175 225 ?250 325?350 850?375 中尊纽分烧及有机溶剂75 ?100 】75?200 225?250 325?350 350?375 轻无机气体50 ?75 75 ?100 150?175 225?250 250?275 V空气40 ?50 75 ?100 125?150 200?225 225?250 50 ?75 75 ?100 150?175 225?250 250?275 蒸汽50 ?75 75 ?100 125?150 225?250 275?300 氮100%100?150 225?250 325?350 425?475 475?500 75%(体积)85 ?140 200?225 300?325 400?425 425?450 50% (体积)76 ?126 176?200 276?300 375?400 423?450 25% (体积〉60 ?115 150?175 225?250 325?350 400?425 介质传热系数U。,千卡/米“时.匸- 介wt 传热系数u。,千卡/米i-Bt r

传热实验实验报告

传热实验 一、实验目的 1、了解换热器的结结构及用途。 2、学习换热器的操作方法。 3、了解传热系数的测定方法。 4、测定所给换热器的传热系数K。 5、学习应用传热学的概念与原理去分析与强化传热过程,并实验之。 二、实验原理 根据传热方程Q=KA△tm,只要测得传热速率Q,冷热流体进出口温度与传热面积A,即可算出传热系数K。在该实验中,利用加热空气与自来水通过列管式换热器来测定K,只要测出空气的进出口温度、自来水进出口温度以及水与空气的流量即可。 在工作过程中,如不考虑热量损失,则加热空气释放出的热量Q1与自来水得到的热量Q2应相等,但实际上因热损失的存在,此两热量不等,实验中以Q2为准。 三、实验流程与设备 实验装置由列管换热器、风机、空气电加热器、管路、转子流量计、温度计等组成。空气走管程,水走壳程。列管式换热器的传热面积由管径、管数与管长进行计算。 实验流程图:

四、实验步骤及操作要领 1、熟悉设备流程,掌握各阀门、转子流量计与温度计的作用。 2、实验开始时,先开水路,再开气路,最后再开加热器。 3、控制所需的气体与水的流量。 4、待系统稳定后,记录水的流量、进出口温度,记录空气的流量与进出口温度,记录设备的有关参数。重复一次。 5、保持空气的流量不变,改变自来水的流量,重复第四步。 6、保持第4步水的流量,改变空气的流量,重复第四步。 7、实验结束后,关闭加热器、风机与自来水阀门。 五、实验数据记录与整理 1、设备参数与有关常数 换热流型错流 ; 换热面积 0、4㎡

六、实验结果及讨论 1、求出换热器在不同操作条件下的传热系数。 计算数据如上表,以第一次记录数据序号1为例计算说明: 度 水的算数平均温度:水流量:空气流量:水气4.2029 .219.182/0222.03600 1000 1080/0044.03600 16 213=+=+==??=== -t t T s kg W s m V s J t t C W Q K kg J C p p /867.278)9.189.21(41830222.0)() /(418312=-??=-??=?=传热速率比热容:查表得,此温度下水的 K =-----=-----= ?2479.369.182.299 .21110ln 9.182.29)9.21110(ln )()() (对数平均温度水进 气出水出气进水进气出水出气进逆T T T T T T T T t m 9333 .269 .189.212.291100329.09 .181109 .189.2112211112=--=--==--=--= t t T T R t T t t P K =?=??ψ=?∴=ψ??2479.362479.360.10 .1逆查图得校正系数m t m t t t ) /(1717.192 1101 .192333.19) /(2333.192479 .364.0867 .27822K m W K K K m W t S Q K m ?=+= ?=?=??= 的平均值:传热系数 2、对比不同操作条件下的传热系数,分析数值,您可得出什么结论? 答:比较一、二、三组可知当空气流量不变,水的流量改变时,传热系数变化不大,比较四、五组可知空气流量改变而水的流量不改变时,传热系数有很大变化,且空气流量越大,传热系数越大,传热效果越好;综上可知,K 值总就是接近热阻大的

水蒸汽给热系数测定实验

****化工原理实验报告学院:化学工程学院专业:****** 班级:****

2 0.276451 49.85 988.1 0.0005494 0.648 4174 4068 .858393 21.34236261 1.657855 12.8 7348 279 3977.590815 3 0.387031 49.65 988.1 0.0006814 0.648 4174 5603 .33671 24.33863957 1.80 6974 13.4 6928 282 4489.879294 4 0.829352 38.6 992. 2 0.0006814 0.634 4174 7838 .100863 45.08657579 1.82 2830 24.7 3438 558 9661.091782 5 1.216384 34.75 993.4 0.0007225 0.626 4174 1009 2.29164 59.17467243 1.87 5540 31.5 5073 474 13379.71432 6 1.769285 31.55 995.7 0.0007679 0.618 4174 1012 0.40257 77.0623575 1.931734583 39.89282905 18353.19476 水的密度、粘度、热导率以及比热容等可由附录五和附录七查得。 m s =ρV s =988.1 ()()()2 211 2211 ln t t t t t t t t t t W W W W m W -----= -得 (t w -t)m1℃ u t=(26.2+79.2)/2=52.7℃ 由公式 m w P t t A t t C V )()(2122 --= ρα (t 2-t 1)1=53℃ A=πdl=3.14*0.008*1=0.02512m 2 α1 n Nu Pr Re 023.08.0= =

空气压缩机后冷却器工艺计算中总传热系数

2、空气压缩机后冷却器工艺计算中总传热系数K的经验值取多少?换热管用碳钢和不锈钢时K分别取多少? 《化工装置实用工艺设计》中查得:管内走水,管外走和蒸汽,总传热系数U值范围为 20-35 Btu/hr*ft*F; 《化学工程师手册》中查得:壳程走水或盐水,管侧走压缩空气或氮气,总传热系为数U 值范围为 110-230 W/sqm*C;管侧走常压空气或氮气则为 30-110W/sqm*C 至于:换热管用碳钢和不锈钢时K分别取多少?这个其实影响不大,应该说还不如污垢热阻的取值影响大,本身以上的U值就是个范围,所以没有必要强求换热管用碳钢和不锈钢时K分别取多少,只能说碳钢的热导率比不锈钢大,在同等工况下,当然碳钢的总传热系数比不锈钢的好。。。 空气压缩机后冷却器工艺计算中总传热系数K值和空气侧操作压力影响很大(即给热系数控制侧的允许阻力降),低压空分空压机的后冷却器(空气压力约0.6MPA)和天然气氨厂空压机的后冷却器(空气压力约3.6MPA)允许的阻力降是不同的(体现为压缩功的功耗不同),换热 系数相差很大。 一般在相同条件下,允许阻力降大,特别是给热系数控制侧,总换热系数可能大很多. 4楼的数据可以作为一个参考,具体工况下的换热系数还和换热器形式(1-1或则2-1或则 1-2,和允许的阻力降也有关),空气放在管内还是管外等关系很大. 热侧为气体给热(控制侧),一般冷却水污垢也大,因此这类换热器的换热系数一般不大.因此碳钢还是不锈钢的管子对总换热系数影响不大.一般采用碳钢够了,不考虑采用不锈钢. 对于第二个问题,我看了4、5楼两位朋友的意见,感觉都不是很全面,5楼的陆总(早就听老汪说起过您,有机会再请教)考虑到压力及系统因素较全面;通常2、3公斤的压缩空气与循环水(26-30度入水)此时常规选择光管换热器还是管内走水,此时总传热系数在70-150左右,至于不锈钢和碳钢其实考虑到材料自身因素(毕竟不锈钢此时选用壁厚1mm,碳钢至少也要1.5mm),两者的总传热系数大体相同;当随着压力升高至5公斤时,大概在200左右;到10公斤左右时,约为270左右,压力再高至20公斤时总K值能达到330以上。我想楼主的这个问题不应该涉及到高压工况,应该是常规空压机后冷器方面的内容,所以我这里推荐100,对于光管最好适当加些余量。所以通常在我设计的上百台空冷器中我推荐业主选内展翅片换热器,按这个工况推过去,2-3公斤的K值在300左右,由于压力升高超过16公斤左右后,其自身物性决定了传热性能较低压有很大改善,所以即使采用内展翅片换热器K值较光管提高的也不是很大

换热器的传热系数K汇总

介质不同,传热系数各不相同我们公司的经验是: 1、汽水换热:过热部分为800~1000W/m2.℃ 饱和部分是按照公式K=2093+786V(V是管内流速)含污垢系数0.0003。 水水换热为:K=767(1+V1+V2)(V1是管内流速,V2水壳程流速)含污垢系数0.0003 实际运行还少有保守。有余量约10% 冷流体热流体总传热系数K,W/(m2.℃) 水水 850~1700 水气体 17~280 水有机溶剂 280~850 水轻油 340~910 水重油60~280 有机溶剂有机溶剂115~340 水水蒸气冷凝1420~4250 气体水蒸气冷凝30~300 水低沸点烃类冷凝 455~1140 水沸腾水蒸气冷凝2000~4250 轻油沸腾水蒸气冷凝455~1020 不同的流速、粘度和成垢物质会有不同的传热系数。K值通常在

800~2200W/m2·℃范围内。 列管换热器的传热系数不宜选太高,一般在800-1000 W/m2·℃。螺旋板式换热器的总传热系数(水—水)通常在1000~2000W/m2·℃范围内。 板式换热器的总传热系数(水(汽)—水)通常在3000~5000W/m2·℃范围内。 1.流体流径的选择 哪一种流体流经换热器的管程,哪一种流体流经壳程,下列各点可供选择时参考(以固定管板式换热器为例) (1) 不洁净和易结垢的流体宜走管内,以便于清洗管子。 (2) 腐蚀性的流体宜走管内,以免壳体和管子同时受腐蚀,而且管子也便于清洗和检修。 (3) 压强高的流体宜走管内,以免壳体受压。 (4) 饱和蒸气宜走管间,以便于及时排除冷凝液,且蒸气较洁净,冷凝传热系数与流速关系不大。 (5) 被冷却的流体宜走管间,可利用外壳向外的散热作用,以增强冷却效果。 (6) 需要提高流速以增大其对流传热系数的流体宜走管内,因管程流通面积常小于壳程,且可采用多管程以增大流速。 (7) 粘度大的液体或流量较小的流体,宜走管间,因流体在有折流挡板的壳程流动时,由于流速和流向的不断改变,在低Re(Re>100)

相关主题
文本预览
相关文档 最新文档