当前位置:文档之家› 知识讲解_指数函数及其性质_基础

知识讲解_指数函数及其性质_基础

知识讲解_指数函数及其性质_基础
知识讲解_指数函数及其性质_基础

指数函数及其性质

要点一、指数函数的概念:

函数y=a x

(a>0且a ≠1)叫做指数函数,其中x 是自变量,a 为常数,函数定义域为R. 要点诠释:

(1)形式上的严格性:只有形如y=a x

(a>0且a ≠1)的函数才是指数函数.像23x

y =?,12x

y =,

31x y =+等函数都不是指数函数.

(2)为什么规定底数a 大于零且不等于1:

①如果0a =,则000x x ?>?

?≤??x x

时,a 恒等于,时,a 无意义.

②如果0a <,则对于一些函数,比如(4)x

y =-,当11

,,24

x x =

=???时,在实数范围内函数值不存在.

③如果1a =,则11x

y ==是个常量,就没研究的必要了.

要点诠释:

(1)当底数大小不定时,必须分“1a >”和“01a <<”两种情形讨论。 (2)当01a <<时,,0x y →+∞→;当1a >时,0x y →-∞→。 当1a >时,a 的值越大,图象越靠近y 轴,递增速度越快。

当01a <<时,a 的值越小,图象越靠近y 轴,递减的速度越快。

(3)指数函数x

y a =与1x

y a ??

= ???

的图象关于y 轴对称。

要点三、指数函数底数变化与图像分布规律 (1)

① x

y a = ②x

y b = ③x y c = ④x y d =

则:0<b <a <1<d <c

又即:x ∈(0,+∞)时,x x x x b a d c <<< (底大幂大) x ∈(-∞,0)时,x x x x b a d c >>> (2)特殊函数

11

2,3,

(),

()23

x x x x y y y y ====的图像:

要点四、指数式大小比较方法

(1)单调性法:化为同底数指数式,利用指数函数的单调性进行比较. (2)中间量法 (3)分类讨论法 (4)比较法

比较法有作差比较与作商比较两种,其原理分别为:

①若0A B A B ->?>;0A B A B -,或1A

B

<即可. 【典型例题】

类型一、指数函数的概念

例1.函数2

(33)x

y a a a =-+是指数函数,求a 的值. 【答案】2

【解析】由2

(33)x

y a a a =-+是指数函数,

可得2331,0,1,a a a a ?-+=?>≠?

且解得12,

01,a a a a ==??>≠?或且,所以2a =.

【总结升华】判断一个函数是否为指数函数:

(1)切入点:利用指数函数的定义来判断;

(2)关键点:一个函数是指数函数要求系数为1,底数是大于0且不等于1的常数,指数必须是自变量x .

举一反三:

【变式1】指出下列函数哪些是指数函数?

(1)4x

y =;(2)4

y x =;(3)4x

y =-;(4)(4)x

y =-;

(5)1

(21)(1)2

x

y a a a =->

≠且;(6)4x y -=.

【答案】(1)(5)(6)

【解析】(1)(5)(6)为指数函数.其中(6)4x y -==14x

?? ???

,符合指数函数的定义,而(2)中底

数x 不是常数,而4不是变数;(3)是-1与指数函数4x 的乘积;(4)中底数40-<,所以不是指数函数.

类型二、函数的定义域、值域

例2.求下列函数的定义域、值域.

(1)313x x

y =+;(2)y=4x -2x

+1;(4)y =为大于1的常数)

【答案】(1)R ,(0,1);(2)R [

+∞,43);

(3)1,2??

-+∞????

[)0,+∞;(4)(-∞,-1)∪[1,+∞) [1,a)∪(a ,+∞)

【解析】(1)函数的定义域为R (∵对一切x ∈R ,3x

≠-1).

∵ (13)1111313

x x x

y +-==-++,又∵ 3x >0, 1+3x

>1, ∴ 10113x <

<+, ∴ 1

1013x

-<-<+,

∴ 1

01113

x

<-<+, ∴值域为(0,1). (2)定义域为R ,43)212(12)2(22+-=+-=x x x y ,∵ 2x >0, ∴ 2

12=x

即 x=-1时,y 取最小

值43,同时y 可以取一切大于43的实数,∴ 值域为[+∞,4

3

). (3)要使函数有意义可得到不等式21

1309

x --≥,即21233x --≥,又函数3x y =是增函数,所以

212x -≥-,即12x ≥-,即1,2??

-+∞????

,值域是[)0,+∞.

(4)∵

01

1112≥+-=-+x x x x ∴ 定义域为(-∞,-1)∪[1,+∞), 又∵

11

1

011≠+-≥+-x x x x 且,∴ a a

y a y x x

x x

≠=≥=-+-+11

211

21且, ∴值域为[1,a)∪(a ,+∞).

【总结升华】求值域时有时要用到函数单调性;第(3)小题中值域切记不要漏掉y>0的条件,第(4)小题中

11

2

111≠+-=+-x x x 不能遗漏. 举一反三:

【变式1】求下列函数的定义域:

(1)2

-1

2x y =

(2)y =

(3)y =

0,1)y a a =>≠

【答案】(1)R ;(2)(]-3∞,;(3)[)0,+∞;(4)a>1时,(]-0∞,;0

【解析】(1)R

(2)要使原式有意义,需满足3-x ≥0,即3x ≤,即(]-3∞,.

(3) 为使得原函数有意义,需满足2x

-1≥0,即2x

≥1,故x ≥0,即[)0,+∞

(4) 为使得原函数有意义,需满足10x

a -≥,即1x

a ≤,所以a>1时,(]-0∞,;0

【总结升华】本题中解不等式的依据主要是指数函数的单调性,根据所给的同底指数幂的大小关系,结合单调性来判断指数的大小关系.

类型三、指数函数的单调性及其应用

例3.讨论函数221()3x x

f x -??= ?

??

的单调性,并求其值域.

【思路点拨】对于x ∈R ,22103x x

-??> ?

??

恒成立,因此可以通过作商讨论函数()f x 的单调区间.此函数

是由指数函数及二次函数复合而成的函数,因此可以逐层讨论它的单调性,综合得到结果.

【答案】函数()f x 在区间(-∞,1)上是增函数,在区间[1,+∞)上是减函数 (0,3] 【解析】

解法一:∵函数()f x 的定义域为(-∞,+∞),设x 1、x 2∈(-∞,+∞)且有x 1<x 2,

∴222

221()3x x f x -??= ?

??

,211

211()3x x f x -??

= ?

??

2

22

22

212121212

1122()()(2)2211()113()3313x x x x x x x x x x x x f x f x -----+--?? ?????

??=== ? ?????

?? ???

. (1)当x 1<x 2<1时,x 1+x 2<2,即有x 1+x 2-2<0.

又∵x 2-x 1>0,∴(x 2―x 1)(x 2+x 1―2)<0,则知2121()(2)

113x x x x -+-??

> ?

??

又对于x ∈R ,()0f x >恒成立,∴21()()f x f x >. ∴函数()f x 在(-∞,1)上单调递增.

(2)当1≤x 1<x 2时,x 1+x 2>2,即有x 1+x 2-2>0. 又∵x 2-x 1>0,∴(x 2―x 1)(x 2+x 1―2)>0,则知

2121()(2)

1013x x x x -+-??<< ???

.∴21()()f x f x <.

∴函数()f x 在[1,+∞)上单调递减.

综上,函数()f x 在区间(-∞,1)上是增函数,在区间[1,+∞)上是减函数.

∵x 2―2x=(x ―1)2―1≥-1,1013<<,221

110333x x

--??

??

<≤= ?

???

??

. ∴函数()f x 的值域为(0,3].

解法二:∵函数()f x 的下义域为R ,令u=x 2-2x ,则1()3u

f u ??

= ???

∵u=x 2―2x=(x ―1)2―1,在(―∞,1]上是减函数,1()3u

f u ??

= ???

在其定义域内是减函数,∴函数()

f x 在(-∞,1]内为增函数.

又1()3u

f u ??

= ???

在其定义域内为减函数,而u=x 2―2x=(x ―1)2―1在[1,+∞)上是增函数,∴函数()

f x 在[1,+∞)上是减函数.

值域的求法同解法一.

【总结升华】由本例可知,研究()

f x y a =型的复合函数的单调性用复合法,比用定义法要简便些,一

般地有:即当a >1时,()

f x y a

=的单调性与()y f x =的单调性相同;当0<a <1时,()

f x y a

=的单调与

()y f x =的单调性相反.

举一反三:

【变式1】求函数2

32

3x

x y -+-=的单调区间及值域.

【答案】3(,]2x ∈-∞上单增,在3

[,)2

x ∈+∞上单减. 1

4(0,3]

【解析】[1]复合函数——分解为:u=-x 2

+3x-2, y=3u

[2]利用复合函数单调性判断方法求单调区间; [3]求值域.

设u=-x 2+3x-2, y=3u

其中y=3u

为R 上的单调增函数,u=-x 2

+3x-2在3(,]2

x ∈-∞上单增,

u=-x 2

+3x-2在3[,)2

x ∈+∞上单减,

则2

32

3x

x y -+-=在3(,]2x ∈-∞上单增,在3[,)2

x ∈+∞上单减.

又u=-x 2

+3x-22311

()244

x =--+≤, 2323x x y -+-=的值域为1

4(0,3].

【变式2】求函数2

-2()(01)x x f x a a a =>≠其中,且的单调区间.

【解析】当a>1时,外层函数y=a u

在()-∞+∞,

上为增函数,内函数u=x 2-2x 在区间(1)-∞,上为减函

数,在区间[)1+∞,上为增函数,故函数2

-2()(-1)x

x

f x a =∞在区间,上为减函数,在区间[)1+∞,

上为增函数;

当0

在()-∞+∞,上为减函数,内函数u=x 2-2x 在区间(1)-∞,上为减函数,在区间[)1+∞,上为增函数,故函数2

-2()x

x

f x a =在区间(1)-∞,上为增函数,在区间[)1,+∞上为减函数.

例4.证明函数1

()(1)1

x x

a f x a a -=>+在定义域上为增函数. 【思路点拨】利用函数的单调性定义去证明。 【解析】定义域为x ∈R ,任取x 1

12121212121211(1)(1)(1)(1)

()()11(1)(1)x x x x x x x x x x a a a a a a f x f x a a a a ---+-+--=-=

++++ 121

22()

(1)(1)

x x x x a a a a -=++. ∵1210,10x x a a +>+>, ∴12(1)(1)0x x

a a ++>,

又a>1, x 1

a a <, ∴ 120x x a a -<, ∴ f(x 1)

则 1

()(1)1x x

a f x a a -=>+在定义域上为增函数. 另:12121(1)x x x x x a a a a --=-, ∵10x

a >, a>1且x 2-x 1>0,

∴211x x a ->, ∴ 2110x x

a --<.

【总结升华】指数函数是学习了函数的一般性质后,所学的第一个具体函数.因此,在学习中,尽量体会从一般到特殊的过程.

例5.判断下列各数的大小关系:

(1)1.8a

与1.8a+1

; (2)2

4

-231(),3,()33

1

(3)22.5,(2.5)0

, 2.51()2

(4)0,1)a a >≠

【思路点拨】利用指数函数的性质去比较大小。

【答案】(1)1.8a

<1.8a+1

(2)2-24311()<()<333 (3) 2.50 2.5

1()<(2.5)<22

(4)当a>1时,<0

【解析】

(1)因为底数1.8>1,所以函数y=1.8x

为单调增函数,

又因为a

.

(2)因为44133-??= ???,又13x y ??

= ???

是减函数,所以-4

2

-23111()<()<333?? ???,即2-24311()<()<333.

(3)因为 2.5

21>, 2.5

112??< ???

,所以 2.50 2.5

1()<(2.5)<22

(4)当a>1时,<0

【总结升华】

(1)注意利用单调性解题的规范书写;

(2)不是同底的尽量化为同底数幂进行比较(因为同底才能用单调性);

(3)不能化为同底的,借助一个中间量来比较大小(常用的中间量是“0”和“1”). 举一反三:

【变式1】比较大小:

(1)22.1与22.3 (2)3.53与3.23 (3)0.9-0.3与1.1-0.1

(4)0.90.3

与0.7

0.4

(5)11

0.2

33241.5

,(),()33

-. 【解析】

(1)22.1<22.3

(2)3.53>3.23.观察两函数值,底数不同,而指数不变——不是指数函数,而是y=x 3

,它为增函数.

(3)由0.9-0.3,0<0.9<1, -0.3<0?0.9-0.3

>1,

1.1>1, -0.1<0?0<1.1-0.1<1, 则0.9-0.3>1.1-0.1

(4)由指数函数图象相对位置关系——数形结合,0.90.3>0.70.4

.

(5)∵0.2

0.221.5

()3-=,又函数2

()3

x y =为减函数, 001x y >?<<, ∴ 1

0.23

221()()033

>>>,

∵4()3x y =为增函数,1

03

x =>时,y>1,110.233422()()()333>>.

另解:幂函数13y x =为增函数,则有11

3342

()1()33

>>,(下略).

【高清课堂:指数函数 369066 例1】 【变式2】利用函数的性质比较122,133,16

6

【答案】133>122>16

6 【解析】122=3113666

2(2)8== 121123666

33(3)9=== 作出8,9,6x

x

x

y y y ===的图象知 986x

x

x

y y y =>=>=

所以1

33>122>16

6

【变式3】 比较1.5-0.2

, 1.30.7

, 1

32

()3

的大小.

【答案】7.02

.031

3.15

.1)3

2(<<- 【解析】先比较31

512.02

.0)32()32()23(5

.1与==--的大小.由于底数32∈(0,1), ∴ x y )3

2

(=在R 上是减函数,∵ 05

131>>, ∴ 1)32()32()32(0051

31

=<<<,再考虑指数函数y=1.3x

, 由于1.3>1, 所以

y=1.3x

在R 上为增函数1.30.7

>1.30

=1, ∴ 7.02

.031

3.15

.1)3

2(<<-. 【总结升华】在进行数的大小比较时,若底数相同,则可根据指数函数的性质得出结果,若底数不相同,则首先考虑能否化成同底数,然后根据指数函数的性质得出结果;不能化成同底数的,要考虑引进第三个数(如0,1等)分别与之比较,从而得出结果.总之比较时要尽量转化成底的形式,根据指数函数单调性进行判断.

例6. (分类讨论指数函数的单调性)

【思路点拨】先把被开方数变形成完全平方式的形式,然后对a 进行分类讨论,去掉绝对值。

2121

3333

12

33-,1--,01

a a a a a a a a ?>?===??<

举一反三: 【变式1】如果21

5x x a

a +-≤(0a >,且1a ≠),求x 的取值范围.

【答案】当01a <<时,6x ≥-;当1a >时,6x ≤- 【解析】(1)当01a <<时,由于21

5x x a

a +-≤,

215x x ∴+≥-,解得6x ≥-.

(2)当1a >时,由于21

5x x a

a +-≤,

215x x ∴+≤-,解得6x ≤-.

综上所述,x 的取值范围是:当01a <<时,6x ≥-;当1a >时,6x ≤-.

类型四、判断函数的奇偶性

例7.判断下列函数的奇偶性:)()21

1

21()(x x f x

?+-= (()x ?为奇函数) 【答案】偶函数

【解析】f(x)定义域关于原点对称(∵()x ?定义域关于原点对称,且f(x)的定义域是()x ?定义域除掉

0这个元素),令2

1

121)(+-=x x g ,则211222*********)(+--=+-=+-=--x

x x x x

x g )()21

1

21(21121121121)12(x g x

x x x -=+--=+---=+----= ∴ g(x)为奇函数, 又 ∵()x ?为奇函数,∴ f(x)为偶函数.

【总结升华】求()()()f x g x x ?=?的奇偶性,可以先判断()g x 与()x ?的奇偶性,然后在根据奇·奇=偶,偶·偶=偶,奇·偶=奇,得出()f x 的奇偶性.

举一反三:

【变式1】判断函数的奇偶性:()2

21x x x

f x =+

-. 【答案】偶函数

【解析】定义域{x|x ∈R 且x ≠0},

又112121

()()()()222

211221x x x

x x

f x x x x --=-+=-+=---- 21111111

()(1)()()222

212121x x

x x x x x f x -+=-=+-=+=---, ∴ f(-x)=f(x),则f(x)偶函数.

类型五、指数函数的图象问题

例8.如图的曲线C 1、C 2、C 3、C 4是指数函数x

y a =的图象,而1,

22a π????

∈??????

则图象C 1、C 2、C 3、C 4对应的函数的底数依次是________、________、________、________.

【答案】

2 1

2

π 【解析】由底数变化引起指数函数图象的变化规律可知,C 2的底数<C 1的底数<

C 4的底数<C 3的底数.

【总结升华】利用底数与指数函数图象之间的关系可以快速地解答像本题这样的有关问题,同时还可以解决有关不同底的幂的大小比较的问题,因此我们必须熟练掌握这一性质,这一性质可简单地记作:在y 轴的右边“底大图高”,在y 轴的左边“底大图低”.

举一反三:

【变式1】 设()|31|x

f x =-,c <b <a 且()()()f c f a f b >>,则下列关系式中一定成立的是( ) A .33c b < B .33c b > C .332c a +> D .332c a

+< 【答案】D

【变式2】为了得到函数935x

y =?+的图象,可以把函数3x

y =的图象( ) A .向左平移9个单位长度,再向上平移5个单位长度 B .向右平移9个单位长度,再向下平移5个单位长度 C .向左平移2个单位长度,再向上平移5个单位长度 D .向右平移2个单位长度,再向下平移5个单位长度 【答案】C

【解析】注意先将函数935x

y =?+转化为2

35x y +=+,再利用图象的平移规律进行判断.

∵2

9353

5x

x y +=?+=+,∴把函数3x

y =的图象向左平移2个单位长度,再向上平移5个单位长度,

可得到函数935x

y =?+的图象,故选C .

【总结升华】用函数图象解决问题是中学数学的重要方法,利用其直观性实现数形结合解题,所以要熟

悉基本函数的图象,并掌握图象的变化规律,比如:平移、伸缩、对称等.

高中数学函数相关知识点整理.doc

高中数学函数相关知识点整理 函数在高中数学中的地位不可动摇,考生必须掌握函数相关知识点,下面是我给大家带来的,希望对你有帮助。 高中数学反比例函数知识点 形如 y=k/x(k为常数且k0) 的函数,叫做反比例函数。 自变量x的取值范围是不等于0的一切实数。 反比例函数图像性质:反比例函数的图像为双曲线。 由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。 另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为|k|。 知识点: 1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。 2.对于双曲线y=k/x ,若在分母上加减任意一个实数 (即 y=k/(xm)m 为常数),就相当于将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移) 高中数学对数函数知识点 对数函数的一般形式为,它实际上就是指数函数的反函数。因此指数函数里对于a的规定,同样适用于对数函数。 对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,

因为它们互为反函数。 (1)对数函数的定义域为大于0的实数集合。 (2)对数函数的值域为全部实数集合。 (3)函数总是通过(1,0)这点。 (4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。 (5)显然对数函数无界。 高中数学指数函数知识点 指数函数的一般形式为,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得 可以得到: (1) 指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。 (2) 指数函数的值域为大于0的实数集合。 (3) 函数图形都是下凹的。 (4) a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。 (5) 可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。 (6) 函数总是在某一个方向上无限趋向于X轴,永不相交。

指数函数基础练习.docx

练习题 一,选择题 1.下列函数是指数函数的是() A.y = -2x B. y = 2x+, C. y = 2_x D. y=l x 2.函数y =@—2尸在R上为增函数,则a的取值范围是() A. a>0 且a7^1 B. a>3 C. a<3 D. 2

8. 设a,b,c,d 都是不等于1的正数,y = a\y = h\y = c\y = d x 在同一?处标系中的图像如图所示,则a,b,c,d 的 10. y= 0.3戶的值域是( ) 4. (-oo,0) B.[l,+x) C.(0,l] 0.(- oo,l] 11. 当xe[-l,l]时函数/(x) = 3v -2的值域是() A. --,1 B\-1,1] C. 1,- D.[0,l 3 3 2 2 1 1 | £ 5 12. 化简(/沪)(—3决质)十(丄,沪 )的结果 ( ) A . 6a B ? -a C . -9a D . 9a 2 设指数函数/(x) = a x (a > 0卫主1),则下列等式中不正确的是 (0,1] B ? (04) C ? (0,+o>) 13. 14. f(nx) = [f(x)]n (n e Q) f(xyy=[f(x)]n {f(y)Y (n G N") 函数 y = (x-5)°4-(x-2p {x \ x 5,x 工 2} B . {x\x > 2} {x\x>5} D . {x\2< x < 5^x > 5} 15. 函数/(x) = 2-,A 1的值域是 16. 若指数函数y = (a + \)x 在(—oo, + 00)上是减函数,那么( A 、 0 < a < I B 、 -l

高一数学指数函数知识点及练习题

2.1.1指数与指数幂的运算 (1)根式的概念 ①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次 当n 是偶数时,正数a 的正的n 负的n 次方根用符号表示;0的n 次方根是0;负数a 没有n 次方根. n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数 时,0a ≥. n a =;当n a =;当n (0)|| (0) a a a a a ≥?==?-∈且1)n >.0的正分数指数幂等于0.② 正数的负分数指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0 的负分数指 数幂没有意义. 注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质 ① (0,,) r s r s a a a a r s R +?=>∈ ② ()(0,,) r s rs a a a r s R =>∈ ③ ()(0,0,)r r r ab a b a b r R =>>∈ 2.1.2指数函数及其性质 指数函数练习

1.下列各式中成立的一项 ( ) A .71 7 7)(m n m n = B .31243)3(-=- C .4 343 3)(y x y x +=+ D . 33 39= 2.化简)3 1 ()3)((65 61 3 12 12 13 2b a b a b a ÷-的结果 ( ) A .a 6 B .a - C .a 9- D .2 9a 3.设指数函数)1,0()(≠>=a a a x f x ,则下列等式中不正确的是 ( ) A .f (x +y )=f(x )·f (y ) B .) () (y f x f y x f =-) ( C .)()] ([)(Q n x f nx f n ∈= D .)()]([· )]([)(+∈=N n y f x f xy f n n n 4.函数2 10 ) 2()5(--+-=x x y ( ) A .}2,5|{≠≠x x x B .}2|{>x x C .}5|{>x x D .}552|{><≤-=-0 ,0,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围 ( ) A .)1,1(- B . ),1(+∞- C .}20|{-<>x x x 或 D .}11|{-<>x x x 或 9.函数2 2)2 1(++-=x x y 得单调递增区间是 ( ) A .]2 1,1[- B .]1,(--∞ C .),2[+∞ D .]2,2 1 [ 10.已知2 )(x x e e x f --=,则下列正确的是 ( ) A .奇函数,在R 上为增函数 B .偶函数,在R 上为增函数

高中数学_指数函数的图象和性质教学设计学情分析教材分析课后反思

教学设计 1、抛出生活中的实例,需要建立一个关于指数函数的数学模型,为学生提出问题;提高学生学习新知识的积极性以及体会数学与生活密切相关。 2、用简单易懂的实例引入指数函数概念,体会由特殊到一般的思想。 3、探究指数函数的性质从“数”的角度用解析式不易解决,转而由“形”——图象突破,体会数形结合的思想。通过研究几个具体的指数函数引导学生通过观察图象发现指数函数的图象规律,从而归纳指数函数的一般性质,经历一个由特殊到一般的探究过程。让学生在研究出指数函数的一般性质后进行总结归纳函数的其他性质,从而对函数进行较为系统的研究。 4、进行一些巩固练习从而能对函数进行较为基本的应用。 学情分析 指数函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,是学生对函数概念及性质的第一次应用。教材在之前的学习中给出了两个实际例子(GDP的增长问题和炭14的衰减问题),已经让学生感受到指数函数的实际背景,但这两个例子背景对于学生来说有些陌生。本节课先设计一个看似简单的问题,通过超出想象的结果来激发学生学习新知的兴趣和欲望。 效果分析 在整个的教学过程中,始终体现以学生为本的教育理念。在学生已有的认知基础上进行设问和引导,关注学生的认知过程,强调学生的品德、思维和心理等方面的发展。重视讨论、交流和合作,重视探究问题的习惯的培养和养成。同时,考虑不同学生的个性差异和发展层次,使不同的学生都有发展,体现因材施教的原则。在教学的过程中,考虑到学生的实际,有意地设计了一些铺垫和引导,既巩固旧有知识,又为新知识提供了附着点,充分体现学生的主体地位 教材分析 本节课是《普通高中课程标准实验教科书·数学(1)》(人教A版)第二章第一节第二课(2.1.2)《指数函数及其性质》。根据我所任教的学生的实际情况,我将《指数函数及其性质》划分为两节课(探究图象及其性质,指数函数及其性质的应用),这是第一节课“探究图象及其性质”。本课时主要学习指数函数的概念,通过图像的研究归纳其性质。“指数函数”是函数中的一个重要基本初等函数,是后续知识——对数函数(指数函数的反函数)的准备知识。通过这部分知识的学习进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识并体会研究函数较为完整的思维方法,此外还可类比学习后面的其它函数。 指数函数的图像及性质

指数函数基础练习

指数函数·基础练习 (一)选择题 1.函数y =a |x|(0<a <1)的图像是 [ ] 2a 0a 1f(x)g(x)f(x)[ 1a +1 2 ]x .若>,且≠,是奇函数,则=-1 [ ] A .是奇函数 B .不是奇函数也不是偶函数 C .是偶函数 D .不确定 3y .函数=的单调减区间是()12 2 32x x -+ [ ] A .(-∞,1] B .[1, 2] C [3 2 D 3 2 ].,+∞.-∞,) ( 4.c <0,下列不等式中正确的是 [ ]

A c 2 B c C 2 D 2c c c c c c .≥.>.<.>()()()1 2 1 2 1 2 5.x ∈(1,+∞)时,x α>x β,则α、β间的大小关系是 [ ] A .|α|>|β| B .α>β C .α≥0≥β D .β >0>α 6.下列各式中正确的是 [ ] A B C D .<<.<<.<<.<<()()()()()()()()()()()()121512 121215 151212 151212 23231 3 13232 3 23132 3 23231 3 7.函数y =2-x 的图像可以看成是由函数y =2-x+1+3的图像平移后得到的,平移过程是 [ ] A .向左平移1个单位,向上平移3个单位 B .向左平移1个单位,向下平移3个单位 C .向右平移1个单位,向上平移3个单位 D .向右平移1个单位,向下平移3个单位 8y .已知函数=,下列结论正确的是31 31 x x -+ [ ] A .是奇函数,且在R 上是增函数 B .是偶函数,且在R 上是增函数 C .是奇函数,且在R 上是减函数 D .是偶函数,且在R 上是减函数 9y =a y =a y y a 12x 2x 2+1 21.函数,,若恒有≤,那么底数的取值范 围是 [ ] A .a >1 B .0<a <1 C .0<a <1或a >1; D .无法确 定

《 指数函数及其性质》测试题大全

《指数函数及其性质》测试题大全 一、选择题 1.(2012广东文改编)函数的定义域为( ). A. B. C. D. 考查目的:考查函数的定义域和指数函数的性质. 答案:B. 解析:要使函数有意义,必须且,解得函数的定义域为. 2.函数的值域是( ). A. B. C. D. 考查目的:考查函数的值域和指数函数的性质. 答案:D. 解析:要使函数有意义,必须,即.又∵,∴,∴的值域为. 3.(2012北京文改编)函数与函数图像的交点个数为( ). A.0 B.1 C. 2 D.3 考查目的:考查指数函数、一次函数的图像和性质. 答案:B. 解析:在同一个直角坐标系中,分别画出函数与函数的图像,观察这两个函数的图像可得,它们的交点个数只有1个. 二、填空题 4.当且时,函数的图象一定经过点 .

考查目的:指数函数的图像及平移后过定点的性质. 答案:(1,4). 解析:∵指数函数经过点(0,1),函数的图像由的图像向右平移1个单位所得,∴函数的图像经过点(1,1),再把函数的图像向上平移3个单位得到函数的图像,∴函数的图像一定经过点(1,4). 5.已知集合,,则 . 考查目的:指数函数的单调性及集合的基本运算. 答案:. 解析:∵,∴,∴,∴. 6.设在R上为减函数,则实数的取值范围是 . 考查目的:考查指数函数、分段函数的单调性和数形结合思想. 答案: 解析:在时为减函数,则,在时为减函数,则,此时显然恒成立.综上所述,实数的取值范围为. 三、解答题 7.已知指数函数(且)的图象经过点(3,),求,,的值. 考查目的:考查指数函数的定义与性质. 答案:. 解析:由函数(且)的图象经过点(3,)得,即,∴.再把0,1,3分别代入得,.

指数函数及其性质教案

指数函数及其性质教案 课题:指数函数及其性质(第1课时) 教材:普通高中课程标准试验教科书人教社A版,数学必修1 教学内容:第二章,基本初等函数(I),指数函数及其性质 教学目标 知识目标:理解指数函数的概念,初步掌握指数函数的图像和性质 能力目标:通过定义的引入,图像特征的观察,培养学生的探索发现能力,在学习过程中体会从具体到一般及数形结合的方法 情感目标:通过学生的参与过程,培养他们手脑并用、多思勤练的良好学习习惯和勇于探索、锲而不舍的治学精神。 | 教学重点﹑难点 重点:指数函数的概念和图像 难点:用数形结合的方法从具体到一般地探索﹑概括指数函数的性质 教学流程设计 (一)指数函数概念的构建 1.探究:本节问题2中函数的解析式与问题1中函数的解析式有什么共同特征 师生活动:教师提出问题引导学生把对应关系概括到的形式,学生思考归纳概括共同特征 2.给出指数函数的概念 一般地,函数叫做指数函数,其中是自变量,函数的定义域是 & 3.剖析概念 (1)规定底数大于零且不等于1的理由: 如果=0, 如果等等时,在实数范围内实数值不存在 如果是一个常量,对它就没有研究的必要 (2)形式上的严格性 指数函数是形式定义的函数,就像初中所学的一次函数﹑反比例函数都是形式定义的概念,因此把握指数函数的形式非常重要。在指数函数的定义表达式中,前的系数必须是1,自变量在指数的位置上,否则,不是指数函数,比如等,都不是指数函数 (二)指数函数的图像及性质 ) 1.提出问题:同学们能类比前面讨论函数性质时的思路,提出研究指数函数性质的方法吗 师生活动:教师引导学生回顾需要研究函数的那些性质,讨论研究指数函数性质的方法,强调数形结合,强调函数图像在研究性质中的作用,注意从具体到一般的思想方法的应用,渗透概括能力的培养,学生独立思考,提出研究指数函数性质的基本思路 2.画出函数的图像 师生活动:学生用描点法独立画图,教师课堂巡视,个别辅导,展示画的较好的学生的图像

(完整版)指数函数经典习题大全

指数函数习题 新泰一中闫辉 一、选择题 1.下列函数中指数函数的个数是 ( ). ①②③④ A.0个 B.1个 C.2个 D.3个 2.若,,则函数的图象一定在() A.第一、二、三象限 B.第一、三、四象限 C.第二、三、四象限 D.第一、二、四象限 3.已知,当其值域为时,的取值范围是()A. B. C. D. 4.若,,下列不等式成立的是() A. B. C. D. 5.已知且,,则是() A.奇函数 B.偶函数 C.非奇非偶函数 D.奇偶性与有关 6.函数()的图象是() 7.函数与的图象大致是( ).

8.当时,函数与的图象只可能是() 9.在下列图象中,二次函数与指数函数的图象只可能是() 10.计算机成本不断降低,若每隔3年计算机价格降低 ,现在价格为8100元的计算机,则9年后的价格为( ). A.2400元 B.900元 C.300元 D.3600元 二、填空题 1.比较大小: (1);(2) ______ 1;(3) ______ 2.若,则的取值范围为_________. 3.求函数的单调减区间为__________.

4.的反函数的定义域是__________. 5.函数的值域是__________ . 6.已知的定义域为 ,则的定义域为__________. 7.当时, ,则的取值范围是__________. 8.时,的图象过定点________ . 9.若 ,则函数的图象一定不在第_____象限. 10.已知函数的图象过点 ,又其反函数的图象过点(2,0),则函数的解析式为____________. 11.函数的最小值为____________. 12.函数的单调递增区间是____________. 13.已知关于的方程有两个实数解,则实数的取值范围是_________. 14.若函数(且)在区间上的最大值是14,那么等于 _________. 三、解答题 1.按从小到大排列下列各数: ,,,,,,, 2.设有两个函数与,要使(1);(2),求、的取值范围. 3.已知 ,试比较的大小. 4.若函数是奇函数,求的值. 5.已知,求函数的值域. 6.解方程:

指数函数及其性质(一)练习题

2.2.1指数函数及其性质(一) 一、选择题 1.函数f (x )=)1(log 2 1-x 的定义域是( ) A .(1,+∞) B .(2,+∞) C .(-∞,2) D .]21(, 解析:要保证真数大于0,还要保证偶次根式下的式子大于等于0, 所以??? ??≥0)1(log 0 12 1 ->-x x 解得1<x ≤2. 答案:D 2.函数y =2 1log (x 2-3x +2)的单调递减区间是( ) A .(-∞,1) B .(2,+∞) C .(-∞, 23 ) D .( 2 3 ,+∞) 解析:先求函数定义域为(-o ,1)∪(2,+∞),令t (x )=x 2+3x +2,函数t (x )在(-∞,1)上单调递减,在(2,+∞)上单调递增,根据复合函数同增异减的原则,函数y =2 1log (x 2-3x +2)在(2,+∞)上单调递减. 答案:B 3.若2lg (x -2y )=lg x +lg y ,则x y 的值为( ) A .4 B .1或41 C .1或4 D .4 1 错解:由2lg (x -2y )=lg x +lg y ,得(x -2y )2=xy ,解得x =4y 或x =y ,则有 x y = 4 1 或y x =1. 答案:选B 正解:上述解法忽略了真数大于0这个条件,即x -2y >0,所以x >2y .所以x =y 舍掉.只有x =4y .

答案:D 4.若定义在区间(-1,0)内的函数f (x )=a 2log (x +1)满足f (x )>0,则a 的取值范围为( ) A .(0,2 1 ) B .(0, 2 1 ) C .( 2 1 ,+∞) D .(0,+∞) 解析:因为x ∈(-1,0),所以x +1∈(0,1).当f (x )>0时,根据图象只有0<2a <l ,解得0<a <2 1 (根据本节思维过程中第四条提到的性质). 答案:A 5.函数y =lg (x -12 -1)的图象关于( ) A .y 轴对称 B .x 轴对称 C .原点对称 D .直线y =x 对称 解析:y =lg ( x -12-1)=x x -+11lg ,所以为奇函数.形如y =x x -+11lg 或y =x x -+11lg 的函数都为奇函数. 答案:C 二、填空题 已知y =a log (2-ax )在[0,1]上是x 的减函数,则a 的取值范围是__________. 解析:a >0且a ≠1?μ(x )=2-ax 是减函数,要使y =a log (2-ax )是减函数,则a >1,又2-ax >0?a <3 2 (0<x <1)?a <2,所以a ∈(1,2). 答案:a ∈(1,2) 7.函数f (x )的图象与g (x )=(3 1)x 的图象关于直线y =x 对称,则f (2x -x 2)的单调递减区间为______. 解析:因为f (x )与g (x )互为反函数,所以f (x )=3 1log x 则f (2x -x 2)=3 1log (2x -x 2),令μ(x )=2x -x 2>0,解得0<x <2. μ(x )=2x -x 2在(0,1)上单调递增,则f [μ(x ) ]在(0,1)上单调递减; μ(x )=2x -x 2在(1,2)上单调递减,则f [μ(x ) ]在[1,2)上单调递增.

知识讲解_指数函数及其性质_基础

指数函数及其性质 编稿:丁会敏 审稿:王静伟 【学习目标】 1.掌握指数函数的概念,了解对底数的限制条件的合理性,明确指数函数的定义域; 2.掌握指数函数图象: (1)能在基本性质的指导下,用列表描点法画出指数函数的图象,能从数形两方面认识指数函数的性质; (2)掌握底数对指数函数图象的影响; (3)从图象上体会指数增长与直线上升的区别. 3.学会利用指数函数单调性来比较大小,包括较为复杂的含字母讨论的类型; 4.通过对指数函数的概念、图象、性质的学习,培养观察、分析归纳的能力,进一步体会数形结合的思想方法; 5.通过对指数函数的研究,要认识到数学的应用价值,更善于从现实生活中发现问题,解决问题. 【要点梳理】 要点一、指数函数的概念: 函数y=a x (a>0且a ≠1)叫做指数函数,其中x 是自变量,a 为常数,函数定义域为R. 要点诠释: (1)形式上的严格性:只有形如y=a x (a>0且a ≠1)的函数才是指数函数.像23x y =?,12x y =, 31x y =+等函数都不是指数函数. (2)为什么规定底数a 大于零且不等于1: ①如果0a =,则000x x ?>??≤??x x 时,a 恒等于, 时,a 无意义. ②如果0a <,则对于一些函数,比如(4)x y =-,当11 ,,24 x x = =???时,在实数范围内函数值不存在. ③如果1a =,则11x y ==是个常量,就没研究的必要了. 要点诠释:

(1)当底数大小不定时,必须分“1a >”和“01a <<”两种情形讨论。 (2)当01a <<时,,0x y →+∞→;当1a >时,0x y →-∞→。 当1a >时,a 的值越大,图象越靠近y 轴,递增速度越快。 当01a <<时,a 的值越小,图象越靠近y 轴,递减的速度越快。 (3)指数函数x y a =与1 x y a ?? = ??? 的图象关于y 轴对称。 要点三、指数函数底数变化与图像分布规律 (1) ① x y a = ②x y b = ③x y c = ④x y d = 则:0<b <a <1<d <c 又即:x ∈(0,+∞)时,x x x x b a d c <<< (底大幂大) x ∈(-∞,0)时,x x x x b a d c >>> (2)特殊函数 11 2,3, (), ()23 x x x x y y y y ====的图像: 要点四、指数式大小比较方法 (1)单调性法:化为同底数指数式,利用指数函数的单调性进行比较. (2)中间量法 (3)分类讨论法 (4)比较法 比较法有作差比较与作商比较两种,其原理分别为: ①若0A B A B ->?>;0A B A B -,或1A B <即可. 【典型例题】 类型一、指数函数的概念 例1.函数2 (33)x y a a a =-+是指数函数,求a 的值. 【答案】2 【解析】由2 (33)x y a a a =-+是指数函数, 可得2331,0,1, a a a a ?-+=?>≠?且解得12, 01,a a a a ==??>≠?或且,所以2a =. 【总结升华】判断一个函数是否为指数函数: (1)切入点:利用指数函数的定义来判断;

指数函数基础练习及答案

指数函数练习 1. 函数(1)x y 4=; (2) 4x y =; (3) x y 4-=; (4) x y )4(-=; (5) x y π=; (6) 24x y =; (7) x x y =; (8) 1()1(>-=a a y x , 且a 1≠)中,是指数函数的是 2. 函数33(0,1)x y a a a -=+>≠恒过的定点是 3. 若1()21x f x a = +-是奇函数,则a = 【答案】【解析】12(),()()2112x x x f x a a f x f x --=+=+-=--- 4. 若指数函数y a x =+()1在()-∞+∞,上是减函数,那么( ) A 、 01<,且1x x a b <<(0a >,0b >),则a 与b 的大小关系是( B ) A 1b a << B 1b << C 1b a << D 1a b << 8. 如图,指出函数①y=a x ;②y=b x ;③y=c x ;④y=d x 的图象,则a,b,c,d 的大小关系是B A a≠()01且,与函数 y a x =-()1的图象只能是( C ) 10. 函 数 x x x x e e y e e --+=-的 图像大致 为( A ). 【解析】:函数有意义,需使0x x e e --≠,其定义域为{}0|≠x x ,排除C,D,又因 为 D

指数函数及其性质练习题[1]

2.1.2 指数函数及其性质 练习一 一、选择题 1、 若指数函数y a x =+()1在()-∞+∞,上是减函数,那么( ) A 、 01<≠()01且,与函数y a x =-()1的图象只能是( ) y y y y O x O x O x O x A B C D 1 1 1 1 5、函数f x x ()=-2 1,使f x ()≤0成立的的值的集合是( ) A 、 {}x x <0 B 、 {}x x <1 C 、 {}x x =0 D 、 {}x x =1 6、函数f x g x x x ()()==+22,,使f x g x ()()=成立的的值的集合( ) A 、 是φ B 、 有且只有一个元素 C 、 有两个元素 D 、 有无数个元素 7、若函数(1)x y a b =+-(0a >且1a ≠)的图象不经过第二象限,则有 ( ) A 、1a >且1b < B 、01a <<且1b ≤ C 、01a <<且0b > D 、1a >且0b ≤ 8、F(x)=(1+ )0)(()1 22≠?-x x f x 是偶函数,且f(x)不恒等于零,则f(x)( ) A 、是奇函数 B 、可能是奇函数,也可能是偶函数 C 、是偶函数 D 、不是奇函数,也不是偶函数 二、填空题 9、 函数y x =-322的定义域是_________。 10、 指数函数f x a x ()=的图象经过点()2116 , ,则底数的值是_________。

指数函数的基础知识

指数函数基础知识 指数函数施我们学习的基本函数之一,对于指数函数的学习,概念非常重要,因此一定要弄懂指数函数的定义。 一、指数函数的定义: 函数 )10(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数定义域是R 。 注意点1:为什么要规定01a a >≠且呢? ①若0a =,则当0x >时,0x a =;当0x <时,x a 无意义. ②若0a <,则对于x 的某些数值,可使x a 无意义. 如x )2(-,这时对于 14x = ,1 2x =,…等等,在 实数范围内函数值不存在. ③若1a =,则对于任何x R ∈,1x a =,是一个常量,没有研究的必要性. 为了避免上述各种情况,所以规定01a a >≠且。在规定以后,对于任何x R ∈,x a 都有意义,且0x a >. 因此指数函数的定义域是R ,值域是(0,)+∞ 。 注意点2: 上述指数函数的定义是形式上的定义,它实质上是一种指数的对应关系,以a 为底数 作为指数对应过去。从对应的角度看指数函数的话,就能很容易理解为什么函数1 3+=x y 不 是指数函数,也能理解指数函数的解析式x y a =中,x a 的系数为什么是1. 有些函数貌似指数函数,实际上却不是,如 x y a k =+ (01a a >≠且,k Z ∈);有些函数看起来不像指数函数,实际上却是,如x y a -= (01a a >≠且),因为它可以化为 1x y a ?? = ???,其中10a >,且1 1 a ≠。 二、函数的图象 (1)①特征点:指数函数y =a x (a >0且a ≠1)的图象经过两点(0,1)和(1,a),我们称这两点为指数函数的两个特征点. ②指数函数y =a x (a >0且a ≠1)的图象中,y =1反映了它的分布特征;而直线x =1与指数函数图象的交点(1,a)的纵坐标则直观反映了指数函数的底数特征,我们称直线x =1和y =1为指数函数的两条特征线(如右图所示). (2)、函数的图象单调性 当a >1时,函数在定义域范围内呈单调递增; 当0<a <1时,函数在定义域范围内呈单调递减;

指数函数及其性质

§2.1.2指数函数及其性质(2个课时) 班级 姓名 教学目标 :1、理解指数函数的概念、图象和性质。 2、利用图象来探索、掌握函数的性质,增强分析问题,解 决问题的能力。 教学重点: 指数函数的概念、图象和性质 教学难点:利用指数函数的图象概括出指数函数的性质。 学习过程 一、复习 1. 根式的概念;n = ; 当n = ; 当n = ={ 。 分数指数幂的意义:m n a = ,m n a - = 。 2.0的正分数指数幂 ,0的负分数指数幂 。 3.整数指数幂的运算性质对于有理数指数幂 。 二、新课导学 1:归纳:指数函数的定义 阅读教材48P 问题1,问题2,观察这两个函数解析式有何共同特征? 一般地,函数y = x a (a 0,且a 1)叫做指数函数, 其中x 是 .函数的定义域是 。 讨论: 下列函数中,哪些是指数函数? (1) (2) (3) (4) (5) (6) (7) (8) 2、探索:指数函数的图象 请同学们完成函数y=x 2 、y=x ? ? ? ??21的表格中空白处并用描点法画出图象: x y 4=4x y =x y 4-=x y )4(-=x y π =2 4x y =x x y =x a y )12(-= )12 1 (≠>a a 且

观察、思考:(1)这两个函数的图象有什么关系?能否由函数2x y=的图 象得到函数1 2x y ?? = ? ?? 的图象? (2)观察函数y=x2、y= x ? ? ? ? ? 2 1的图象,它们有哪些共同特征? 尝试:①图象都分布在象限,与轴相交,位于x轴 的; ②(底数2大于1)当1 a>时,第一象限的点的纵坐标都大于;第二象限的点的纵坐标都大于且小于;从左向右图象逐渐。 ③(底数1 2大于0又小于1)当01 a <<时,第一象限的点的纵坐标都大 于且小于; 第二象限的点的纵坐标都大于;从左向右图象逐渐。3、概括:指数函数y = x a(01) a a >≠ 且的性质 考察:指数函数y = x a(01) a a >≠ 且的奇偶性 4、学习课本 56 P例6 、57P例7 例8 三、练习:教材 58 P2、3

指数函数及其性质练习题及答案

2.1.2指数函数及其性质练习题 一、选择题: 1、数3x y =-的图象( ) A 与3x y =的图象关于y 轴对称 B 与3x y =的图象关于坐标原点对称 C 与3 x y -=的图象关于y 轴对称 D 与3 x y -=的图象关于坐标原点对称 2、 下列函数能使等式()()()f a b f a f b +=?恒成立的是( ) A y kx b =+ B x y a = C 2 y ax bx c =++ D k y x = 3、 已知函数1x y a -=的图象恒过定点P ,则定点P 的坐标是( ) A (1,1) B (1,4) C (1,5) D (0,1) 4、函数x a y )2(-=在),(+∞-∞上是减函数,则a 的取值范围( )。 A.3a D.32<的,x 的取值范围( ) 。 A.(0,)(,0)+∞?-∞ B.{}0 C.()0,+∞ D. ,0-∞ 6. 某企业近几年的年产值如图,则年增长 率最高的是( ) A .03-04年 B. 04-05年 C. 05-06年 D. 06-07年 7.某计算机销售价为a 元,一月份提价10%,二月份比一月份降价10%,设二月份销售价 为b 元,则( ) A .b a = B. b a > C. b a < D. a 、b 的大小无法确定 二、填空题: 1、指数函数()y f x =的图象过点()1,3,则()1f f ????= 。 2、函数y = 的定义域为 。 3、函数21x y =-的图象一定不过 象限。 4、设c b a ,,分别是方程1)2 1(=-x x ,2)2 1(=-x x ,2)3 1(=-x x 的根,则c b a ,,的大小 1000 800 600

指数函数及其性质 优秀教案

指数函数及其性质 【教学目标】 1.知识与技能通过实际问题了解指数函数的实际背景;理解指数函数的概念和意义,根据图象理解和掌握指数函数的性质。体会具体到一般数学讨论方式及数形结合的思想; 2.情感、态度、价值观:让学生了解数学来自生活,数学又服务于生活的哲理。培养学 生观察问题,分析问题的能力。 3.过程与方法:展示函数图象,让学生通过观察,进而研究指数函数的性质。 【教学重难点】 重点:指数函数的概念和性质及其应用。 难点:指数函数性质的归纳,概括及其应用。 【学法与教具】 1.学法:观察法、讲授法及讨论法。 2.教具:多媒体。 【教学过程】 【第一课时】 一、情境设置 ①在本章的开头,问题(1)中时间x 与GDP 值中的 1.073(20)x y x x =∈≤与问题(2) t 1中时间t和C-14含量P的对应关系P=[(2 ,请问这两个函数有什么共同特征。 ②这两个函数有什么共同特征 15730 1][()]2 t P =t 57301把P=[()变成2,从而得出这两个关系式中的底数是一个正数,自变量为指数, 即都可以用x y a =(a >0且a ≠1来表示)。 二、讲授新课 指数函数的定义 一般地,函数x y a =(a >0且a ≠1)叫做指数函数,其中x 是自变量,函数的定义域为R 。 提问:在下列的关系式中,哪些不是指数函数,为什么? (1)22x y += (2)(2)x y =- (3)2x y =-

(4)x y π= (5)2y x = (6)24y x = (7)x y x = (8)(1)x y a =- (a >1,且2a ≠) 小结:根据指数函数的定义来判断说明:因为a >0,x 是任意一个实数时,x a 是一个确定的实数,所以函数的定义域为实数集R 。 00 0,0x x a a x a ?>?=?≤?? x 当时,等于若当时,无意义 若a <0,如 1(2),,8 x y x x =-=1先时,对于=等等,6在实数范围内的函数值不存在。 若a =1,11,x y == 是一个常量,没有研究的意义,只有满足(0,1)x y a a a =>≠且的形式才能称为指数函数,5,,3,31x x x a y x y y +===+1 x x 为常数,象y=2-3,y=2等等,不符合 ( 1)x y a a a =>≠且的形式,所以不是指数函数。 我们在学习函数的单调性的时候,主要是根据函数的图象,即用数形结合的方法来研究。 下面我们通过 先来研究a >1的情况 用计算机完成以下表格,并且用计算机画出函数2x y =的图象 研究,0<a <1的情况,用计算机完成以下表格并绘出函数1()2 x y =的图象。

4指数函数与对数函数基础知识点及练习题

指数函数与对数函数 1、指数及其运算性质:(1)、如果一个数的n 次方根等于a (* ,1N n n ∈>),那么这个数叫a 的n 次方根; n a 叫根式,当n 为奇数时,a a n n =;当n 为偶数时,? ??<-≥==)0()0(||a a a a a a n n (2)、分数指数幂:正分数指数幂:n m n m a a =;负分数指数幂:n m n m a a 1= - 0的正分数指数幂等于1,0的负分数指数幂没有意义(0的负数指数幂没有意义); (3)、运算性质:当Q s r b a ∈>>,,0,0时:r r r rs s r s r s r b a ab a a a a a ===?+)(,)(,, r r a a 1 =; 2、对数及其运算性质:(1)、定义:如果)1,0(≠>=a a N a b ,数b 叫以a 为底N 的对数,记作b N a =log ,其中a 叫底数,N 叫真数,以10为底叫常用对数:记为lgN ,以e=2.7182828…为底叫自然对数:记为lnN (2)、性质:①:负数和零没有对数,②、1的对数等于0:01log =a ,③、底的对数等于1:1log =a a ,④、积的对数:N M MN a a a log log )(log +=, 商的对数: N M N M a a a log log log -=, 幂的对数:M n M a n a log log =, 方根的对数:M n M a n a log 1 log = ,

1 <

指数函数与对数函数练习题 1、 函数y =)1lg(2-x 的定义域是__________________. 2、已知函数f (x )=log 3(8x +7),那么f ( 2 1 )等于_______________. 3、 与函数y = x 有相同图象的一个函数是( ). A .y =x 2 B. y =x 2x C. y =a log a x (a >0, a ≠1) D. y = log a a x (a>0, a≠1) 4、在同一坐标系中,函数y =x 5.0log 与y =x 2log 的图象之间的关系是( ). A.关于原点对称 B.关于x 轴对称 C.关于直线y =1对称. D.关于y 轴对称 5、下列函数中,在区间(0,+∞)上是增函数的是( ). A.y =-x 2 B.y = x 2-x +2 C.y =(21 )x D.y =x 1log 3.0 6、函数y =)(log 2x -是( ). A. 在区间(-∞,0)上的增函数 B. 在区间(-∞,0)上的减函数 C. 在区间(0,+∞)上的增函数 D. 在区间(0,+∞)上的减函数 7、已知函数f (x )=||2x ,那么函数f (x )( ). A. 是奇函数,且在(-∞,0)上是增函数 B. 是偶函数,且在(-∞,0)上是减函数 C. 是奇函数,且在(0,+∞)上是增函数 D. 是偶函数,且在(0,+∞)上是减函数 8、函数y =||log 3x (x ∈R 且x ≠0)( ) . A. 为奇函数且在(-∞,0)上是减函数 B. 为奇函数且在(-∞,0)上是增函数 C. 是偶函数且在(0,+∞)上是减函数 D. 是偶函数且在(0,+∞)上是增函数 9、如果函数y =x a log 的图象过点(9 1 ,2),则a =___________. 10、 实数2732–3log 22·log 21 8 +lg4+2lg5的值为_____________. 11、若1log 2 1>x ,则x 的取值范围是( ). A. 21< x B.2 10<x D.0

人教A版数学必修一《指数函数、对数函数、幂函数》综合基础知识讲解

指数函数、对数函数、幂函数综合 【学习目标】 1.理解有理指数幂的含义,掌握幂的运算. 2.理解指数函数的概念和意义,理解指数函数的单调性与特殊点. 3.理解对数的概念及其运算性质. 4.重点理解指数函数、对数函数、幂函数的性质,熟练掌握指数、对数运算法则,明确算理,能对常见的指数型函数、对数型函数进行变形处理. 5.会求以指数函数、对数函数、幂函数为载体的复合函数的定义域、单调性及值域等性质. 6.知道指数函数x a y =与对数函数x y a log =互为反函数(a >0,a ≠1). 【知识框图】 【要点梳理】 要点一、指数及指数幂的运算 1.根式的概念 a 的n 次方根的定义:一般地,如果n x a =,那么x 叫做a 的n 次方根,其中*1,n n N >∈ 当n 为奇数时,正数的n 次方根为正数,负数的n n a n 为偶数时,正数的n 次方根有两个,这两个数互为相反数可以表示为n a 负数没有偶次方根,0的任何次方根都是0. n a n 叫做根指数,a 叫做被开方数. 2.n 次方根的性质: (1)当n n n a a =;当n ,0, ,0; n n a a a a a a ≥?==? -∈>;()10,,,1m n m n a a m n N n a - = >∈> 要点诠释: 0的正分数指数幂等于0,负分数指数幂没有意义.

4.有理数指数幂的运算性质: ()0,0,,a b r s Q >>∈ (1)r s r s a a a += (2)()r s rs a a = (3)()r r r ab a b = 要点二、指数函数及其性质 1.指数函数概念 一般地,函数()0,1x y a a a =>≠且叫做指数函数,其中x 是自变量,函数的定义域为 R . 2.指数函数函数性质: 要点三、对数与对数运算 1.对数的定义

相关主题
文本预览
相关文档 最新文档