当前位置:文档之家› 单缸四冲程柴油机

单缸四冲程柴油机

单缸四冲程柴油机
单缸四冲程柴油机

课程设计说明书

课程名称 _______________________ 题目名称 _______________________ 专业 _______________________ 姓名 _______________________ 指导老师 _______________________

年月日

实习(训)报告评语

等级:

评阅人:职称:

年月日

河南工程学院

实习(训)报告

实训目的(内容):

实习时间:自月日至月日

共天

实习地点:

实习单位:

指导老师:系主任:

目录

一、机构简介与设计数据

1 机构简介 (1)

2 设计数据 (2)

二、设计内容及方案分析

1 曲柄滑块机构的运动分析(6)

2 曲柄滑块机构的动态静力分析(11)

3 齿轮机构的设计(12)

4 凸轮机构的设计(13)

附:齿轮啮合图的绘制(17)

三、心得体会(21)

四、主要参考文献(22)

一、机构简介与设计数据

1. 机构简介

柴油机(图1,a)是一种内燃机,它将燃料燃烧时所产生的热能转变为机械能。往复式内燃机的主体机构为曲柄滑块机构,以汽缸内的燃气压力推动活塞3经连杆2而使曲柄1旋转。

本设计是四冲程内燃机,即以活塞在气缸内往复移动四次(对应曲柄两转)完成一个工作循环。在一个工作循环中,汽缸内的压力变化可由示功图(用示功器从汽缸内测得,见图1,b)表出,它表示汽缸容积(与活塞位移s成正比)与压力的变化关系。现将四个冲程压力变化作一简单介绍:

进气冲程:活塞下行,对应曲柄转角θ=0?→180?。进气阀开,燃气开始进入汽缸,汽缸内指示压力略低于1大气压力,一般以1大气压力计算,如示功图上的a→b。

压缩冲程:活塞上行,曲柄转角θ=180?→360?。此时进气毕,进气阀关闭,已吸入的空气受到压缩,压力渐高,如示功图上的b→c。

膨胀(作功)冲程:在压缩冲程终了时,被压缩的空气温度已超过柴油自燃的温度,因此,在高压下射入的柴油立刻爆炸燃烧,气缸内压力突增至最高点,燃气压力推动活塞下行对外作功,曲柄转角θ=360?→540?,随着燃起的膨胀,汽缸容积增加,压力逐渐降低,如图上c→b。

排气冲程:活塞上行,曲柄转角θ=540?→720?.排气阀开,废气被驱出,气缸内压力略高于1大气压力,一般亦以1大气压力计算,如图上的b→a。

进排气阀的启闭是由凸轮机构控制的,图1,a中y-y剖面有进排气阀各一只(图中只画了进气凸轮)。凸轮机构是通过曲柄轴O上的齿轮z1和凸轮轴O1上

的齿轮z 2来传动的。由于一个工作循环中,曲柄轴转两转而进排气阀各启闭一次,所以齿轮的传动比 21

2

2112===

z z n n i 。

图1

由上可知,在组成一个工作循环的四个冲程中,活塞只有一个冲程是对外作

功的,其余的三个冲程则需依靠机械的惯性带动。因此,曲柄所受的驱动力不是均匀的,所以其速度波动也较大。为了减少速度波动,曲柄轴上装有飞轮(图上未画)。 2.设计数据 见表1,2,3。

1)曲柄滑块机构的运动分析

已知 活塞冲程H,连杆与曲柄长度之比λ,曲柄每分钟转数n 1

要求 设计曲柄滑块机构,绘制机构运动简图,作机构三个位置的加速度和加速度多边形,并作出滑块的运动线图。以上内容与后面动态静力分析一起画在1号图纸上(参考图例1)。

1

图2

曲柄位置图的作法如图2所示,以滑块在上止点时所对应的曲柄位置为起始位置(即θ=0?),将曲柄圆周按转向分成十二等分得12个位置1→12,12?(θ=375?)为汽缸指示压力达最大值时所对应的曲柄位置,13→24为曲柄第二转时对应各位置。

2)曲柄滑块机构的动态静力分析

已知 机构各构件的重量G ,绕重心轴的转动惯量J S ,活塞直径D A ,示功图数据(表2)以及运动分析所得的各运动参数。

要求 确定机构两个位置(同运动分析)的各运动副反力及曲柄上的平衡力矩M y 。以上内容作在运动分析的同一张图纸上(参考图例1)。

3)飞轮设计

已知 机器的速度不均匀系数δ,曲柄轴的转动惯量1

S J 、凸轮轴的转动惯

设计内容 曲柄滑块机构的运动分析

曲柄滑块机构的动态静力分析及飞轮转动惯量的确

符号 H l As2 l 04B n 1 D h D G 1 G 2 G 3 J s1 J s2 J 01

单位 mm mm r/min mm N kgm 2

数据 120 4 80 54

0 1500 100 200 21

20 10 0.1 0.05 0.2 1/100

齿轮机构设计

凸轮机构设计

Z 1 Z 1 m

h s ′ [] [a ′] mm ° mm ° 22

44 5

20

20 50 10 50 30 75

量1

O J 、连杆2绕其重心轴的转动惯量2

S J ,动态静力分析求得的平衡力矩M y ;阻

力矩M c 为常熟。

要求 用惯性力法确定安装在曲柄轴上的飞轮转动惯量J F 。以上内容,作在2号图纸上(参考图例2)。 注意:该部分内容为选作内容。

4)齿轮机构设计

已知 齿轮齿数、模数m 、分度圆压力角α;齿轮为正常齿制,在闭式的润滑油池中工作。

要求 选择两轮变位系数,计算齿轮各部分尺寸。用2号图纸绘制齿轮传动的啮合图。

表2

表3

位置编号 1 2 3 4 5 6 7 8 9 10 11 12

曲柄位置(°) 30

60 90 120 150 180 210 240 270 300 330 360 气缸指示压力

0.1MPa(105N/m

2) 1

1

1

1

1

1

1

1

1

6.5

19.

5

35

工作过程 进气

压缩 12′ 13 14 15 16 17 18 19

20

21

22

23

24

375 390 420 450 480 510 540 570 600 630 660 690 720 60

25.5

9.5

3 3

2.5

2

1.5

1

1

1

1

1

膨胀

排气

5.凸轮机构设计

已知从动件冲程h,推程和回程的许用压力角[]α和[]α?,推程运动角φ,远休止角sφ,回程运动角φ?,从动件的运动规律(图3)。

要求按照许用压力角确定凸轮机构的基本尺寸,选取滚子半径,画出凸轮实际廓线。以上内容,作在2号图纸上。

图3

设计计算及说明计算数据

二 设计内容

1、曲柄滑块机构的运动分析 1)根据已知数据,取mm

m

2

L μl (以大图为准,这里只是示意),画机构运动简图。

2)运动分析

设曲柄长为OA L ,连杆长为AB L ,由表1可得, λ=AB L /OA L =4,

H=(AB L +)-(AB L -OA L )=120mm.

解得 OA L =60mm ,AB L =240mm 。

OA L =60mm

AB L =240mm

设计计算及说明 计算数据

由图4可知 b

a

p

图5 11号点位速度分析图

由图5可知

设计计算及说明

计算数据

s

/18.3rad l v s m 9.2l v ab

BA 122

pb v 10B ===?=ω,μs /rad 53l v s m 5.7l v ab

BA

11

pb v 11

B

===?=AB

ω

,μs

m 9.2v 10

B

=s

m 5.7v 11B =

m

s

2

/s

2、曲柄滑块机构的动态静力分析 1) 受力分析 对10,11,12号点位进行受力分析,分别为图9(a )(b )(c ) (a )10号点 (b )11号点 (c )12号点

图9 受力分析

2)计算活塞上的气体压力

设计计算及说明

计算数据

N D p P N D p P N D p P i

i

i 274894

153154

510542

h

12'122

h 11'112h 10'10=?==?==?=π,

π,π33→

→+G p i 3

3→

→+G p i →

'

P →'P →'P 43→

R 43→

R 43→

R 2

i M →2i M →2i M →

2→

G 2→

G 2→G →t R 12→t R 12

→n R 12→n

R 12→12R N

P N P N P 27489153155105'12'11'

10===,

一台单缸四冲程柴油机的飞轮转速是1200r

一台单缸四冲程柴油机的飞轮转速是1200r/min,则柴油机每秒钟内(). A.完成20个冲程,做功20次 B.完成40个冲程,做功40次 C.完成40个冲程,做功10次 D.完成80个冲程,做功20次 汽油机工作过程由四个冲程组成,在这些冲程中,内能转化为机械能的是() A.吸气冲程B.压缩冲程C.做功冲程D.排气冲程 例题:热机是把______能转化______能的机器,汽油机和柴油机统称为______.因为它们都是让燃料在______内燃烧而工作的,生成______,利用这种______作为工作物质去推动______. 分析和答案:内,机械,内燃机,汽缸,高温高压燃气,燃气,活塞做功 1.关于四冲程汽油机和柴油机,下列说法正确的是(). A.在吸气冲程中,吸入气缸的都是空气 B.在压缩冲程末,柴油机气缸内气体温度比汽油低 C.在做功冲程初,都是火花塞点火 D.在排气冲程时,排气都依靠飞轮的惯性来完成 答案:D 2.柴油机工作过程由四个冲程组成,在这四个冲程中,机械能转化为内能的是().A.吸气冲程B.压缩冲程C.做功冲程D.排气冲程 答案:B 3.柴油机上安装了一个笨重的飞轮,是为了() A.提高热机效率 B.节省燃料 C.可以做更多的功 D.利用飞轮的惯性、完成吸气、压缩、排气三个辅助冲程 答案:D .汽油机在压缩冲程中工作物质被压缩,气缸中的[] A.压强增大,温度降低. B.压强减小,温度升高. C.压强增大,温度升高. D.压强减小,温度降低. 2.汽油机和柴油机相比较,下列叙述中正确的是[] A.柴油机吸入气缸的是柴油和空气的混合物,汽油机吸入的是空气. B.在压缩冲程中它们的压缩程度是一样的. C.柴油机里推动活塞做功的燃气的压强比汽油机里的高. D.在压缩冲程末,汽油机气缸内的温度比柴油机的高. 参考答案 1.C 2.C 1.热机甲的效率比热机动的效率高,这是指(). A.热机甲在单位时间内用掉的燃料比热机乙少 B.热机甲在单位时间内用掉的燃料比热机乙多 C.热机甲把燃气的内能转化为机械能的百分比比热机乙大 D.热机甲做的有用功比热机乙多

四冲程柴油机的工作原理

车辆维修试题 一、四冲程柴油机的工作原理 柴油机的工作是由进气、压缩、燃烧膨胀和排气这四个过程来完成的,这四个过程构成了一个工作循环。活塞走四个过程才能完成一个工作循环的柴油机称为四冲程柴油机。现对照上面的动画了说明它的工作理原。 1. 进气冲程 第一冲程——进气,它的任务是使气缸内充满新鲜空气。当进气冲程开始时,活塞位于上止点,气缸内的燃烧室中还留有一些废气。 2、压缩冲程 压缩时活塞从下止点间上止点运动,这个冲程的功用有二,一是提高空气的温度,为燃料自行发火作准备:二是为气体膨胀作功创造条件。当活塞上行,进气阀关闭以后,气缸内的空气受到压缩,随着容积的不断细小,空气的压力和温度也就不断升高,压缩终点的压力和湿度与空气的压缩程度有关,即与压缩比有关,一般压缩终点的压力和温度为:Pc =4~8MPa,Tc=750~950K。 3、燃烧膨胀冲程 。在这个冲程开始时,大部分喷入燃烧室内的燃料都燃烧了。燃烧时放出大量的热量,因此气体的压力和温度便急剧升高,活塞在高温高压气体作用下向下运动,并通过连秆使曲轴转动,对外作功。所以这一冲程又叫作功或工作冲程。 4、排气冲程

排气冲程的功用是把膨胀后的废气排出去,以便充填新鲜空气,为下一个循环的进气作准备。 二、柴油机和汽油机工作过程的主要区别是什么 汽油机和柴油机它们的区别主要在于压缩比、点火方式、所用燃料及用途。柴油机吸入洁净空气,在活塞快要到达上止点时,向气缸内喷入燃油,燃油被高压高温的空气点燃,膨胀,将活塞推向下至点,而传统汽油机是吸入汽油与空气的混合气体,在活塞快要到达上止点时,用火花塞发火点燃混合气。 如今的电喷汽油机在活塞快要到达上止点时,用电子控制的喷油泵将汽油喷入气缸,但是燃烧还是靠火花塞点燃。 三、什么叫压缩比? 压缩比=汽缸总容积/燃烧室容积压缩比是内燃机的重要指标,压缩比越大,其压强越大,温度越高。柴油机的压缩比为15~18。从理论上讲,压缩比越大,效率越高。但因为气缸受材料强度的限制,而且气缸内工质的温度不能超过燃料的燃点,所以压缩比不能太大。 四、柴油机的基本构造有哪些 柴油机由曲柄连杆机构、配气机构、冷却系、润滑系、起动系五大基本构造。 五、柴油机怎样对配气和油泵齿轮 1、,将一缸活塞摇至上止点,凸轮轴一缸俩凸轮朝下,即倒八字,装入.

单缸四冲程内燃机机构设计及其运动分析

机械原理课程设计说明书题目:单缸四冲程内燃机机构设计及其运动分析 二级学院机械工程学院 年级专业机械制造及其自动化 学号 学生姓名 指导教师 教师职称

目录 第一部分绪论 (1) 第二部分课题题目及主要技术参数说明 (2) 2.1 课题题目 (2) 2.2 机构简介 (2) 2.3设计数据 (3) 第三部分设计内容及方案分析 (5) 3.1曲柄滑块机构设计及其运动分析 (5) 3.1.1设计曲柄滑块机构 (5) 3.1.2曲柄滑块机构的运动分析 (6) 3.2 齿轮机构的设计 (11) 3.2.1 齿轮传动类型的选择 (11) 3.2.2 齿轮传动主要参数及几何尺寸的计算 (12) 3.3 凸轮机构的设计 (13) 3.3.1 从动件位移曲线的绘制 (13) 3.3.2 凸轮机构基本尺寸的确定 (14) 3.3.2 凸轮轮廓曲线的设计 (15) 第四部分设计总结 (16) 第五部分参考文献 (17)

第一部分绪论 内燃机具有体积小、质量小、便于移动、热效率高、起动性能好的特点。但是内燃机一般使用石油燃料,同时排出的废气中含有害气体的成分较高。广义上的内燃机不仅包括往复活塞式内燃机、旋转活塞式发动机和自由活塞式发动机,也包括旋转叶轮式的燃气轮机、喷气式发动机等,但通常所说的内燃机是指活塞式内燃机。塞式内燃机以往复活塞式最为普遍。活塞式内燃机将燃料和空气混合,在其汽缸内燃烧,释放出的热能使汽缸内产生高温高压的燃气。燃气膨胀推动活塞作功,再通过曲柄连杆机构或其他机构将机械功输出,驱动从动机械工作。内燃机是一种动力机械,它是通过使燃料在机器内部燃烧,并将其放出的热能直接转换为动力的热力发动机。它是将液体或气体燃料与空气混合后,直接输入汽缸内部的高压燃烧室燃烧爆发产生动力。这也是将热能转化为机械能的一种热机。

单缸四冲程柴油机设计及静力分析

题目二 单缸四冲程柴油机设计 一、机构简介及有关数据 1、机构简介 柴油机如图2-1所示,其中a)为机构简图,它将燃料(柴油)燃烧时所产生的热能转变为机械能。往复式内燃机的主体机构为曲柄滑块机构,借气缸内的燃气压力推动活塞3,再通过连杆2使曲柄1作旋转运动。 往复式内燃机有两冲程和四冲程两种,本课程设计的是四冲程内燃机,即以活塞在气缸内往复移动四次(对应曲柄转两转)完成一个工作循环。在一个工作循环中,气缸内的压力变化可通过示功图(或称容压曲线)如图2-1 b)看出,它表示气缸容积(与活塞位移s 成正比)与压力的变化关系。 a) 机构简图 b) 示功图 图1 单缸四冲程柴油机的机构简图和示功图 四冲程内燃机的工作原理如下: 进气冲程:活塞由上止点向下移动,对应曲柄转角000180?=→。进气阀开,空气开始进入气缸,此时气缸内指示压力略低于1大气压力,一般以1大气压力计算,如示功图上的a b →。 压缩冲程:活塞由下止点向上移动,对应曲柄转角00180360?=→。此时进气完毕,进气阀闭,已吸入的空气受到压缩,压力渐升高,如示功图上的b c →。 膨胀(工作)冲程:在压缩冲程终了时,被压缩的空气的温度已超过柴油自燃的温度,因此,在高压下射入的柴油立刻爆炸燃烧,气缸内压力突增至最高点,此时燃气压力推动活塞由上向下移动对外作功(故又可称工作冲程),曲柄转角00360540?=→,随着燃气的膨胀,活塞下行,气缸容积增加,压力逐渐降低,如示功图上的c b →。 排气冲程:活塞由下向上移动,曲柄转角00540720?=→。排气阀开,废气经排

气阀门被驱除,此时气缸内压力略高于1大气压力,一般亦以1大气压力计算,如示功图上的b a →。示功图中的a b c b a →→→→即表四个冲程气缸内的压力变化情况。进、排气阀的启闭是由凸轮机构来控制的,图2-1 a )中y y -剖面有进、排气阀各一只(图示只画了进气凸轮)。凸轮机构是通过曲柄轴O 上的齿轮Z 1和凸轮轴O 1的齿轮Z 2来传动的,由于一个工作循环中,曲柄转将转两转而进、排气阀则仅各启闭一次,所以齿轮的传动比1212212i n n Z Z ===。 由上可知,在组成一个工作循环的四个冲程中,活塞只有一个冲程(膨胀冲程)是对外作功的,而其余的三个冲程则需依靠机械的惯性来带动。因此,曲柄所受的驱动力是不均匀的,所以其速度波动也较大;为了减少速度波动,曲柄轴上装有飞轮(图2-1中未示出)。为了使驱动力较均匀和增加内燃机的功率,内燃机常做成多缸的,如两缸、四缸和六缸等。 2、题目数据 表1 原始数据 图2 凸轮机构从动件加速度图 表2 示功图数据表 a τ

单缸四冲程柴油机之令狐文艳创作

课程设计说明书 课程名称 _______________________ 题目名称 _______________________ 专业 _______________________ 姓名 _______________________ 指导老师 _______________________ 年月日 实习(训)报告评语 等级: 评阅人:职称: 年月日 河南工程学院 实习(训)报告 实训目的(内容): 实习时间:自月日至月日 共天 实习地点: 实习单位: 指导老师:系主任: 目录

一、机构简介与设计数据 1 机构简介 (1) 2 设计数据 (2) 二、设计内容及方案分析 1 曲柄滑块机构的运动分析(6) 2 曲柄滑块机构的动态静力分析(11) 3 齿轮机构的设计(12) 4 凸轮机构的设计(13) 附:齿轮啮合图的绘制(17) 三、心得体会(21) 四、主要参考文献(22) 一、机构简介与设计数据 1. 机构简介 柴油机(图1,a)是一种内燃机,它将燃料燃烧时所产生的热能转变为机械能。往复式内燃机的主体机构为曲柄滑块机构,以汽缸内的燃气压力推动活塞3经连杆2而使曲柄1旋转。 本设计是四冲程内燃机,即以活塞在气缸内往复移动四次(对应曲柄两转)完成一个工作循环。在一个工作循环中,汽缸内的压力变化可由示功图(用示功器从汽缸内测得,见图1,b)表出,它表示汽缸容积(与活塞位移s成正比)与压力

的变化关系。现将四个冲程压力变化作一简单介绍: 进气冲程:活塞下行,对应曲柄转角θ=0?→180?。进气阀开,燃气开始进入汽缸,汽缸内指示压力略低于1大气压力,一般以1大气压力计算,如示功图上的a →b 。 压缩冲程:活塞上行,曲柄转角θ=180?→360?。此时进气毕,进气阀关闭,已吸入的空气受到压缩,压力渐高,如示功图上的b →c 。 膨胀(作功)冲程:在压缩冲程终了时,被压缩的空气温度已超过柴油自燃的温度,因此,在高压下射入的柴油立刻爆炸燃烧,气缸内压力突增至最高点,燃气压力推动活塞下行对外作功,曲柄转角θ=360?→540?,随着燃起的膨胀,汽缸容积增加,压力逐渐降低,如图上c →b 。 排气冲程:活塞上行,曲柄转角θ=540?→720?.排气阀开,废气被驱出,气缸内压力略高于1大气压力,一般亦以1大气压力计算,如图上的b →a 。 进排气阀的启闭是由凸轮机构控制的,图1,a 中y-y 剖面有进排气阀各一只(图中只画了进气凸轮)。凸轮机构是通过曲柄轴O 上的齿轮z 1和凸轮轴O 1上的齿轮z 2来传动的。由于一个工作循环中,曲柄轴转两转而进排气阀各启闭一次,所以齿轮的传动比 21 2 2112=== z z n n i 。 图1 由上可知,在组成一个工作循环的四个冲程中,活塞只

单缸四冲程柴油机课程设计说明书

单缸四冲程柴油机课程设计说明书

目录 目录 1、机构简介与设计数据 (2) (1)机构简介 (2) (2)设计数据 (3) 2、设计内容及方案分析 (3) (1)曲柄滑块机构的运动分析 (4) (2)齿轮机构的设计 (6) (3)凸轮机构的设计 (8) 3、设计体会 (11) 4、主要参考文献 (11)

单缸四冲程柴油机 1、机构简介与设计数据 (1)机构简介 柴油机(如附图1(a))是一种内燃机,他将燃料燃烧时所产生的热能转变成机械能。往复式内燃机的主体机构为曲柄滑块机 构,以气缸内的燃气压力推动活塞3经连杆2而使曲柄1旋转。 本设计是四冲程内燃机,即以活塞在气缸内往复移动四次(对应曲柄两转)完成一个工作循环。在一个工作循环中,气缸内的压力变化可由示功图(用示功器从气缸内测得,如附图1(b)所示),它表示汽缸容积(与活塞位移s成正比)与压力的变化关系,现将四个冲程压力变化做一简单介绍。 进气冲程:活塞下行,对应曲柄转角θ=0°→180°。进气阀开,燃气开始进入汽缸,气缸内指示压力略低于1个大气压力,一般以1大气压力算,如示功图上的a → b。 压缩冲程:活塞上行,曲柄转角θ=180°→ 360°。此时进气完毕,进气阀关闭,已吸入的空气受到压缩,压力渐高,如示功图上的b→c。 做功冲程:在压缩冲程终了时,被压缩的空气温度已超过柴油的自燃的温度,因此,在高压下射入的柴油立刻爆燃,气缸内的压力突然增至最高点,燃气压力推动活塞下行对外做功,曲柄转角θ=360°→540°。随着燃气的膨胀,气缸容积增加,压力逐渐降低,如图上c→b。 排气冲程:活塞上行,曲柄转角θ=540°→720°。排气阀打开,废气被驱出,气缸内压力略高于1大气压,一般亦以1大气压计算,如图上的b→a。 进排气阀的启闭是由凸轮机构控制的。凸轮机构是通过曲柄轴O上的齿轮Z1和凸轮轴上的齿轮Z2来传动的。由于一个工作循环中,曲柄转两转而进排气阀各启闭一次,所以齿轮的传动比i12=n1/n2=Z1/Z2 =2。 由上可知,在组成一个工作循环的四个冲程中,活塞只有一个冲程是对外做功的,其余的三个冲程则需一次依靠机械的惯性带动。

单缸四冲程柴油机课程设计说明书

目录 第1章设计要求 (2) 设计任务 (2) 设计思路 (2) 机构简介 (3) 设计数据 (4) 第2章连杆机构设计和运动分析 (5) 连杆机构的设计要求 (5) 杆件尺寸确定 (5) 杆件运动的分析与计算 (5) 图解法作杆件的运动分析 (7) 第3章齿轮机构传动设计 (8) 齿轮机构的设计要求 (8) 齿轮参数的计算 (8) 第4章凸轮机构设计 (11) 凸轮机构的设计要求 (11) 运动规律的选择 (11) 基圆半径的计算 (12) 凸轮设计图 (13) 课程设计小结 (14) 参考文献 (14)

第1章 设计要求 1.1设计任务 设计一个四冲程内燃机。机器的功能与设计要求:该机器的功能是把化学能转化成机械能。须完成的动作为:活塞的吸气,压缩,做功,排气4个过程,进,排气门的开关与关闭、燃料喷射。 1.2设计思路 设计四冲程内燃机的关键点在于活塞的吸气,压缩,做功,排气以及气门的开闭几个动作的完成。而怎样将这个几个动作完成并按照运动循环图结合起来这是我们完成这次课程设计所需要解决的问题。所以,我将从这些方面入手,依据这些需要来选择机构。 1.3机构简介 柴油机(如附图1(a))是一种内燃机,它将燃料燃烧时所产生的热能转变成机械能。往复式内燃机的主体机构为曲柄滑块机构,以气缸内的燃气压力推动活塞3经连杆2而使曲柄1旋转。 本设计是四冲程内燃机,即以活塞在气缸内往复移动四次(对应曲柄两转)完成一个工作循环。在一个工作循环中,气缸内的压力变化可由示功图(用示功器从气缸内测得,如附图1(b)所示),它表示汽缸容积(与活塞位移s成正比)与压力的变化关系,现将四个冲程压力变化做一简单介绍。 进气冲程:活塞下行,对应曲柄转角θ=0°→180°。进气阀开,燃气开始进入汽缸,气缸内指示压力略低于1个大气压力,一般以1大气压力算,如示功图上的a →b。 压缩冲程:活塞上行,曲柄转角θ=180°→360°。此时进气完毕,进气阀关闭,已吸入的空气受到压缩,压力渐高,如示功图上的b→c。 做功冲程:在压缩冲程终了时,被压缩的空气温度已超过柴油的自燃的温度,因此,在高压下射入的柴油立刻爆燃,气缸内的压力突然增至最高点,燃气压力推动活塞下行对外做功,曲柄转角θ=360°→540°。随

单缸四冲程柴油机

课程设计说明书 课程名称_______________________ 题目名称_______________________ 专业_______________________ 姓名_______________________ 指导老师_______________________ 年月日 实习(训)报告评语

等级: 评阅人:职称: 年月日 河南工程学院 实习(训)报告

实训目的(内容): 实习时间:自月日至月日 共天 实习地点: 实习单位: 指导老师:系主任: 目录

一、机构简介与设计数据 1 机构简介(1) 2 设计数据(2) 二、设计内容及方案分析 1 曲柄滑块机构的运动分析(6) 2 曲柄滑块机构的动态静力分析(11) 3 齿轮机构的设计(12) 4 凸轮机构的设计(13) 附:齿轮啮合图的绘制(17) 三、心得体会(21) 四、主要参考文献(22) 一、机构简介与设计数据 1. 机构简介

柴油机(图1,a )是一种内燃机,它将燃料燃烧时所产生的热能转变为机械能。往复式内燃机的主体机构为曲柄滑块机构,以汽缸内的燃气压力推动活塞3经连杆2而使曲柄1旋转。 本设计是四冲程内燃机,即以活塞在气缸内往复移动四次(对应曲柄两转)完成一个工作循环。在一个工作循环中,汽缸内的压力变化可由示功图(用示功器从汽缸内测得,见图1,b)表出,它表示汽缸容积(与活塞位移s 成正比)与压力的变化关系。现将四个冲程压力变化作一简单介绍: 进气冲程:活塞下行,对应曲柄转角θ=0?→180?。进气阀开,燃气开始进入汽缸,汽缸内指示压力略低于1大气压力,一般以1大气压力计算,如示功图上的a →b 。 压缩冲程:活塞上行,曲柄转角θ=180?→360?。此时进气毕,进气阀关闭,已吸入的空气受到压缩,压力渐高,如示功图上的b →c 。 膨胀(作功)冲程:在压缩冲程终了时,被压缩的空气温度已超过柴油自燃的温度,因此,在高压下射入的柴油立刻爆炸燃烧,气缸内压力突增至最高点,燃气压力推动活塞下行对外作功,曲柄转角θ=360?→540?,随着燃起的膨胀,汽缸容积增加,压力逐渐降低,如图上c →b 。 排气冲程:活塞上行,曲柄转角θ=540?→720?.排气阀开,废气被驱出,气缸内压力略高于1大气压力,一般亦以1大气压力计算,如图上的b →a 。 进排气阀的启闭是由凸轮机构控制的,图1,a 中y-y 剖面有进排气阀各一只(图中只画了进气凸轮)。凸轮机构是通过曲柄轴O 上的齿轮z 1和凸轮轴O 1上的齿轮z 2来传动的。由于一个工作循环中,曲柄轴转两转而进排气阀各启闭一次,所以齿轮的传动比 21 2 2112=== z z n n i 。

船舶柴油机(轮机)柴油机的结构和主要零部件

& 船舶柴油机(轮机) --模块二柴油机的结构和主要零部件-- 黄步松主讲 福建交通职业技术学院船政学院

模块二柴油机的结构和主要零部件 重点:柴油机各主要部件的作用、工作条件、工作原理及结构特点,各部件的常见故障及原因,管理注意事项。难点:燃烧室部件承受的机械负荷、热负荷及分析,缸套、活塞、连杆、十字头、曲轴、活塞杆填料涵及活塞冷却机构的结构,曲柄排列与发火顺序。 缸盖 燃烧室部件缸套 活塞组件 主要零部件连杆 曲柄连杆机构曲轴 主轴承 主要固定件:机架、机座、贯穿螺栓 单元一燃烧室部件 一、燃烧室部件承受的负荷 1.机械负荷 机械负荷指受力部件承受气体力、安装预紧力、惯性力等的强烈程度。主要以气体力和惯性力为主。柴油机的机械负荷有两个特点:一是周期交变;二是具有冲击性。 1)安装应力: 安装应力与预紧力成正比。因此,安装气缸盖时不应过分紧固,否则会使气缸套、气缸盖发生损伤。另外,将缸套凸肩加高,可使缸套安装应力大大减小。 2)气体力: 气体力是周期变化的,其最大值为最高爆炸压力,变化频率与转速有关,因而由气体力产生的机械应力也称高频应力。由气体力产生的机械应力具有以下特点: 气缸盖、活塞:触火面为压应力,冷却面为拉应力。 缸套:径向:触火面为压应力最大,冷却面为零。 切向:触火面为拉应力最大,冷却面为拉应力最小。 机械应力与部件壁厚成反比,即壁厚δ愈大,机械应力愈小。 3)惯性力: 活塞组件在缸内作往复变速运动,产生往复惯性力;曲轴作回转运动产生离心惯性力。其大小与部件质量和曲轴转速的平方成正比。由惯性力产生机械应力也是一种高频应力。 2.热负荷 1)热负荷是指柴油机的燃烧室部件承受温度、热流量及热应力的强烈程度。 2)热负荷的表示方法 (1)热流密度(2)温度场(3)热应力 3)热负荷过高对柴油机的危害: (1)使材料的机械性能降低,承载能力下降; (2)使受热部件膨胀、变形,改变了原来正常工作间隙; (3)使润滑表面的滑油迅速变质、结焦、蒸发乃至被烧掉; (4)使受热部件(如活塞顶)受热面被烧蚀; (5)使受热部件承受的热应力过大,产生疲劳破坏等。 船舶上,轮机管理人员通常用排气温度来判断热负荷的高低。 4)热应力: 是指受热部件在内外表面温度不同并且有一定约束的条件下在金属内产生的一种内力。 气缸盖、活塞:触火面为热压应力,冷却面为热拉应力。 缸套:径向:为零。 切向:触火面为压热应力,冷却面为拉热应力。 热应力与部件壁厚成正比,即壁厚δ愈大,热应力愈大。

单缸四冲程柴油机凸轮机构设计

目录 1,设计任务及要求 (1) 2,设计思想及数学模型的建立 (2) 3,程序框图 (6) 4,程序清单及运行结果 (7) 5,总结 (18) 6,参考文献 (18)

一、设计任务及要求 机械原理课程设计任务书(六) 姓名XXX 专业机械电子工程班级机电XX-X 学号XX 一、设计题目:单缸四冲程柴油机凸轮机构设计 二、系统简图: 1)计算从动件位移和速度。绘制线图(坐标纸或计算机绘制)。 2)用计算机语言按照许用压力角确定凸轮机构的基本尺寸,选滚子半径,画凸轮的实际轮廓曲线,并按比例绘出机构运动简图(A2图纸)。 3)编写出计算说明书。 指导教师:YYY YY 开始日期:XX年XX月XX日 完成日期:XX年XX 月XX日。

二、设计过程及数学模型的建立 2.1、设计思想 1) 首先,任取一个基圆半径r0,计算出位移s 、速度v 、 加速度a,画出位移s 、速度v 、加速度a 随旋转角δ变化的曲线图;其次,把圆周分为72等份,算出静态时的凸轮理论和实际轮廓线各点坐标值,将其分别放入x[]、y[]、xx[]、yy[]数组中;然后,再利用坐标旋转(x=x*cos θ+y*sin θ;y=x*sin θ-y*cos θ),从而模拟出凸轮的运动。 2.2基圆半径选择 因为基圆半径r0≥35mm ,所以选基圆半径r0=40mm 。 2.3数学模型 推程时: 等加速:0≤δ≤5π/36 φ δ2 2 2h s = , φ ωδ 2 4h v = , φ ω 2 2 h 4= a 等减速:5π/36≤δ≤5π/18

() φ δφ2 2 2-- =h h s ,φ δφω2 ) (4-= h v ,φ ω2 2 4h a - = 远休止: s=h , v=0, a=0 回程时: 等加速:0≤δ≤5π/36 ′ 2 2 2- φδh h s =,' - =φωδ 2 4h v , ' - =φω 2 4h a 等减速:5π/36≤δ≤5π/18 () ' -'= φδφ2 22h s , () ' -'- =φδφω2 4h v ,' = φω2 24h a 近休止: s=0, v=0, a=0 如图所示,已知从动件运动规律为s=s (δ),基圆半径为r0,滚子半径为Rt , 偏

831第二章 柴油机的结构和主要部件 第十二节

第十二节柴油机固定部件34题 考点1:主要固定件的结构特点、功能和工作条件21题 1.机架的功能和结构特点 机架作为柴油机的固定件之一,起到支撑气缸体、与机座组成曲柄箱以及在十字头式柴油机中承受侧推力,为十字头导向(安装导板)等作用。 中小型柴油机主要采用箱形机架,箱形机架是一种呈箱形结构的整体式机架,一般为铸铁整体铸造或焊接结构。其主要优点是:刚性好、拆装维修方便。为提高刚性、简化加工手续、减少重量和外形尺寸,大多将气缸体与机架制成一体,常称为“机体”,甚至有些中型柴油机为进一步简化制造工艺、提高机架刚度,将机座、机架和气缸体三者制成一体。 2.机座的功能和结构特点 大中型柴油机,特别是大型柴油机,都有单独的机座。小型柴油机的机座常与机架制成一体。机座的作用有: (1)承担全机重量; (2)承受气体力、惯性力与安装预紧力; (3)集中与储存滑油并形成密闭空间; (4)安放曲轴,并留有曲柄回转空间。 机座除承重、气体力、惯性力与安装预紧力的作用外,当遇到风浪颠簸,还要受到额外的扭转、拉伸和弯曲变形等作用力。所以对机座的最基本的要求是要有足够的刚度。 一般中小型柴油机广泛采用铸铁浇铸成一长方形整体式的机座。 3.贯穿螺栓的功能和结构特点 贯穿螺栓是柴油机最长最重要的螺栓,主要用于大、中型柴油机,它的作用是将机座、机架和气缸体三者或其中二者连成一个刚性整体,使这些固定机件只承受压应力而不承受由气体力产生的拉应力。它并不起定位作用,在被连接的各固定件之间仍有定位销或紧固螺栓,以便装配时对中和防止柴油机运转时这些机件之间产生横向移动。 C1.对机架、机座要求不正确的是()。 A.足够的强度、刚度 B.尺寸小、重量轻 C.耐磨、耐高温 D.密封性好 C2.低速柴油机采用贯穿螺栓结构将下列部件连在一起()。 A.气缸盖、气缸体、机架和机座 B.气缸盖、气缸体和机架 C.气缸体、机架和机座 D.机架和机座 D3.低速柴油机采用贯穿螺栓结构承受气体拉力的部件是()。

柴油机特点

1.柴油机特点:(1)优点:经济性好,功率范围广,尺寸小重量轻,机动性好,可靠性高, 寿命长,维修方便。(2)缺点:存在机身振动、轴系扭转振动和噪声,某些部件的工作条件恶劣,承受高温高压并具有冲击性负荷。 2.发展趋势:(1)提高经济性(2)电子控制技术(3)降低排放(4)提高可靠性。 3.柴油机:使用挥发性较差的柴油或劣质燃料油做燃料,采用内部混合法形成可燃混合气 体,靠缸内空气压缩形成高温自行发火。 4.柴油机的类型:(1)四冲程和二冲程(2)增压和非增压(3)低速、中速和高速(4) 筒形活塞和十字头式(5)直列式和V型(6)右旋和左旋(7)可逆转和不可逆转。5.理论与实际循环的差异:(1)工质的影响:理论循环工质为理想气体,实际循环工质是 空气和燃烧产物,使实际循环热效率和做功能力下降。(2)气缸壁的传热损失。(3)燃烧损失:后燃和不完全燃烧。(4)漏泄损失:活塞环处的漏泄。(5)其他损失。 6.气阀重叠角意义:(1)依靠废气的流动惯性,利用新鲜空气将燃烧室内的废气扫出气缸, 实现燃烧室扫气,提高换气质量。(2)利用进气冷却燃烧室有关部件。 7.直流扫气特点:(1)换气质量好。(2)结构复杂,维修较困难。 8.上下止点:活塞在气缸中运动的最上下端的位置,也是活塞离曲轴中心线最远近的位置。 9.气缸工作容积Vs:活塞在气缸中从上止点移动到下止点时所扫过的容积。 10.平均指示压力:假定一个数值不变的压力作用在活塞上,在一个膨胀行程内所作的功与 一个工作循环的指示功Wi相等,这个假象的压力就称为平均指示压力。也就是一个工作循环中单位气缸工作容积的指示功。 11.柴油机的基本组成:(1)主要固定件:机架、机座、气缸和气缸盖。(2)主要运动件: 活塞、连杆组件、曲轴。(3)配气机构及换气系统。(4)燃油系统。(5)润滑系统。(6)冷却系统。(7)起动和控制系统。 12.机械负荷:(1)定义:柴油机部件承受最高燃烧压力、惯性力、振动冲击等的强烈程度。 (2)特点:周期交变,具有冲击性。(3)安装预紧力引起的负荷与气体力引起的机械应力均与最高爆发压力成正比。 13.热负荷:(1)热应力:由温差作用形成的应力。(2)热疲劳:燃烧室部件在交变的热应 力下出现的破坏现象。 14.活塞的作用:(1)保证密封的情况下完成压缩和膨胀过程。(2)将气体力经连杆传递给 曲轴。(3)在筒形活塞式柴油机中,活塞承受侧推力,起着滑块的作用。(4)在二冲程柴油机中活塞还启闭气口,控制换气。 15.压缩环:(1)作用:防止气缸中气体漏泄,保证活塞与气缸之间相对运动条件下的密封, 并将活塞上的部分热量传给气缸。(2)搭口形式:直搭口、斜搭口和重叠搭口。 16.活塞的冷却方式:自由喷射冷却、循环冷却、振荡冷却、喷射—振荡式冷却。 17.冷却液的输送方式:(1)筒形活塞:在曲轴连杆中钻孔。(2)十字头式活塞:需要专门 的机构,分为套管式和铰链式。 18.气缸盖的作用:(1)与气缸套、活塞共同组成燃烧室。(2)上面安装各种阀件。(3)在 设置进排气阀的气缸盖上还要布置进排气道和气阀摇臂机构。 19.气缸盖的类型及特点:(1)单体式:气缸盖和气缸套接合面处密封性好,制造、运输、 拆装检修均较方便,但汽缸的中心距加大,增加了柴油机的长度和重量。(2)整体式:中心距小,结构紧凑,柴油机的刚度提高重量减轻,但易变形,密封性差,结构复杂,加工不便。(3)分组式:特点介于上述两者之间。 20.连杆:(1)作用:将作用在活塞上的气体力和惯性力传给曲轴,把活塞或十字头与曲轴 连接起来,将活塞的往复运动变成曲轴的回转运动。(2)工作条件:运动复杂,受力复杂,连杆小、大端轴承还与活塞销或十字头销、曲柄销产生摩擦和磨损。(3)破坏形式:

二冲程与四冲程柴油机区别

1、二冲程柴油机的工作原理 通过活塞的两个冲程完成一个工作循环的柴油机称为二冲程柴油机,油机完成一个工作循环曲轴只转一圈,与四冲程柴油机相比,它提高了作功能力,在具体结构及工作原理方面也存在较大差异。 二冲程柴油机与四冲程柴油机基本结构相同,主要差异在配气机构方面。二冲 程柴油机没有进气阀,有的连排气阀也没有,而是在气缸下部开设扫气口及排气口; 或设扫气口与排气阀机构。并专门设置一个由运动件带动的扫气泵及贮存压力空气 的扫气箱,利用活塞与气口的配合完成配气,从而简化了柴油机结构。 图是二冲程柴油机工作原理图。扫气泵附设在柴油机的一侧,它的 转子由柴油机带动。空气从泵的吸入吸入,经压缩后排出,储存在具有较大容积的 扫气箱中,并在其中保持一定的压力。现以图说明二冲程柴油机的工作 原理。 燃烧膨胀及排气冲程: 燃油在燃烧室内着火燃烧,生成高温高压燃气。活塞在燃气的推动下,由上止点 向下运动,对外作功。活塞下行直至排气口打开(此时曲柄在点位置,此时燃气 膨胀作功结束,气缸内大量废气靠自身高压自由排气,从排气口排人到排气管。 当气缸内压力降至接近扫气压力时(一般扫气箱中的扫气压力为0 12,下行活塞把扫气口3打开(此时曲柄在点4的位置,扫气空气进入气缸, 同时把气缸内的废气经排气口赶出气缸。活塞运行到下止点,本冲程结束,但扫气 过程一直持续到下一个冲程排气口关闭(此时曲柄在点位置为止。 ·4· 342 第三篇船舶柴油机检修图二冲程柴油机工作原理示意图 扫气及压缩冲程: 活塞由下止点向上移动,活塞在遮住扫气口之前,由扫气泵供给储存在扫气箱 内的空气,通过扫气口进入气缸,气缸中的残存废气被进入气缸的空气通过排气口 扫出气缸。活塞继续上行,逐渐遮住扫气口,当扫气口完全关闭后(此时曲柄在点

四冲程柴油机工作原理

四冲程柴油机的工作原理 柴油机的工作过程,是按照一定规律将燃料和空气送人气缸,使之在气缸内不断着火燃烧放出热能。燃烧使气缸内气体的温度和压力升高,高温高压的燃气在气缸内膨胀便推动活塞做功,实现热能向机械能的转换,而膨胀后的废气又必须及时从气缸中排出。我们可用图1-1来表示在气缸中这种能量形式的转化进程。 图1-1柴油机工作过程框图 图1-1为四冲程柴油机的实际工作过程示意图,图中表示出每个过程中活塞、连杆、曲轴及气门的相对位置。 下面对照图1-2和图1-3来说明四冲程柴油机的工作过程。 图1-2 单缸四冲程柴油机工作过程示意图图1-3 单缸四冲程柴油机工作过程示功图 1、第一冲程——进气冲程 活塞从上止点移动到下止点。这时进气门打开,排气门关闭。当进气冲程开始时,气缸内残留着上一工作循环未排净的残余废气(图1-2(a)中以小十字符号表示)。它的压力久(图 1-3 中r点)稍高于大气压力户。(圈1-3中水平线),约为 105 kPa。 当曲轴沿图 1-2 (a)中箭头所示方向旋转时,通过连杆带动活塞向下运动。

随着活塞的下移,活塞顶上部的气缸容积逐渐增大,压力随之减小,当气缸内压力低于大气压力Pa。略低于大气压力值,大约为80-95kPa,另外,新鲜空气从高温的残余废气、燃烧室壁面和活塞顶等高温部件处吸收了热量,进气终了时气缸内气体的温度T。会略高于环境温度,可达300—340K。在示功图上:r-a线即表示进气冲程中气缸内气体压力随气缸容积变化的情况。由图中可以看出,进气冲程中气缸内气体压力.基本保持不变。 2、第二冲程——压缩冲程 活塞从下止点移动到上止点。这期间进排气门都关闭。压缩冲程中,曲轴在飞轮惯性作用下带动旋转,通过连杆带动活塞向上移动,气缸内气体容积逐渐减小气体被压缩,其压力和温度随之升高,为实现高温气体引燃柴油的目的,柴油机一般有较大的压缩比,使压缩终了时气缸内的气体温度T。比柴油的自然温度 =3-5Mpa(图1-2中c点)。(约650K)高出200-300K,即Tc=750~950K,而压力P C 示功图上a-c-c线表示了压缩冲程中气缸容积与压力的变化情况 为了充分利用燃料燃烧所产生的热能,燃烧过程能够在活塞移动到上止点略后位置迅速完成,以使燃烧后的气体充分膨胀作功。但是由于燃料喷入气缸内时必须经过一定的着火准备阶段才能着火燃烧,因此,实际柴油机工作时是在压缩冲程结束前(约在活塞到达上止点前10o-35o 曲轴转角)开始将燃料喷入气缸。图1-2中c点表示喷油开始时刻,它对应的至上止点的曲轴转角称为喷油提前角。 3、第三冲程——作功冲程(燃烧膨胀冲程)。 活塞从上止点移动到下址点,这期间进排气门仍处于关闭状态。 由于喷入气缸的燃料在高温空气中着火燃烧,产生大量热能使气缸内气体的温度和压力急剧升高。高温高压气体推动活塞向下移动,通过连杆带动曲轴旋转。因为只有在这一冲程才实现了热能转化为机械能。因此,通常把这一冲程称为作功冲程。 =1800-2200K,最高压力(最大爆发压作功冲程中,缸内气体的最高温度 T Z 力)PZ=6-9MPa(增压柴油机可达 lO MPa以上)。随着活塞的被推动下移,气缸容积逐渐增大,气体压力随之逐渐减小。示功图上。c-z-z-b线表示作功冲程中气缸容积与压力的变化情况。在这一曲线上,几乎垂直的c-z段表示出燃料急剧燃烧时压力升高的情况。此外,由于柴油的喷射,与空气的混合及燃烧等要持续一

四冲程柴油机工作原理

各位领导、老师大家下午好: 我今天的述课题目是四行程柴油机的工作原理。 我在本科阶段曾经学过的核心专业课有:机械原理、机械制造基础、工程机械构造、工程机械发动机与底盘理论、液压传动、机电一体化系统设计、工程机械运用技术、工程机械状态检测与故障诊断、机械设计、测试与传感技术等 硕士阶段的核心专业课有:工程机械作业质量控制工程机械理论工程车辆牵引动力学工程机械测试方法与性能评价工作装置与介质相互作用理论智能控制理论 发动机的功能是将燃料在气缸内燃烧使其热能转换成机械能,从而输出动力。能量的转换是通过不断地依次反复进行“进气—压缩—做功——排气”四个连续过程来实现的,每进行这样一个连续过程就叫做一个工作循环。为了更好的学习与理解此工作循环,我们应先熟悉一下发动机的基本术语: 上止点: 下止点: 活塞行程: 气缸工作容积: 排量: 压缩比 燃烧室容积: 1、进气行程—活塞由曲轴带动从上止点向下止点运动,此时排气门关闭,进气门开启。活塞移动的过程中,气缸内的容积逐渐增大,形成一定的真空度,于是经过虑芯的空气通过进气门进入气缸。直至活塞到达下止点时,进气门关闭,停止进气。 2、压缩行程—进气行程结束时,活塞在曲轴的带动下,从下止点向上止点运动,气缸容积逐渐减小,由于进排气门均关闭,气体被压缩,气缸内温度上升,直至活塞到达上止点时,压缩结束。压缩终了时气缸内的温度约为800~1000K,压力3~5MPa。 3、做功行程—在压缩行程结束时,进排气门均处于关闭状态,此时喷油泵将高压柴油经喷油器呈雾状喷入气缸内的高温空气中,雾状柴油迅速气化并与空气形成混合气,由于气缸内的温度远远高于柴油的自燃温度(约500K),柴油便在高温高压下立即自行燃烧。使气体的温度、压力迅速升高而膨胀,从而推动活塞由上止点向下止点运动,再通过连杆驱动曲轴转动做功,至活塞到下止点时,做功结束。在此行程中,瞬时压力可达5~10MPa,瞬时温度可达1800~2200 K,做功行程终了时,压力约为0.2~0.4 MPa,温度1200~1500 K。 4、排气行程—在做功行程结束时,进气门处于关闭状态,排气门被打开,曲轴通过连杆推动活塞由下止点向上止点运动,废气在自身剩余压力和活塞的推力作用下,被排出气缸,直至活塞到达上止点时,排气门关闭,排气结束。排气行程终了时由于燃烧室容积存在,气缸内还存少量废气,气体压力也因排气门和排气管的阻力而仍高于大气压。此时气缸内压力约为0.105~0.125 MPa,温度约为800~1000 K。

#831第二章 柴油机的结构和主要部件 第七节

第七节连杆55题 考点 1 连杆的作用及工作条件25题 1.作用 (1)连杆是活塞或十字头与曲轴之间的连接件。通过连杆,将活塞的往复直线运动转变为曲轴的回转运动。 (2)通过连杆,把作用在活塞上的气体力和惯性力传给曲轴,使曲轴对外输出功。 2.工作条件 (1)在工作时连杆承受由活塞传来的气体压力和活塞连杆组的往复惯性力的作用; (2)在连杆摆动平面内,受到连杆本身运动惯性力引起的附加弯矩(称连杆力偶); (3)连杆大、小端轴承与曲柄销、十字头销(或活塞销)会产生摩擦与磨损。 D1.关于柴油机连杆受力,论述不正确的是()。 A.增压二冲程柴油机连杆受压应力作用 B.四冲程柴油机连杆受拉压交变作用 C.二冲程和四冲程柴油机连杆螺栓都受拉伸作用 D.连杆不受弯矩作用 A2.容易引起连杆损坏的是()。 A.柴油机飞车 B.紧急制动 C.螺旋桨绞渔网 D.各缸负荷严重不均 A3.容易引起连杆损坏的是()。 Ⅰ.严重的拉缸Ⅱ.气缸内发生水击Ⅲ.柴油机飞车Ⅳ.加负荷过快Ⅴ.连杆轴承间隙过大Ⅵ.各缸负荷不均 A.Ⅰ+Ⅱ+Ⅲ+Ⅴ B.Ⅱ+Ⅲ+Ⅳ C.Ⅰ+Ⅱ+Ⅲ+Ⅴ+Ⅵ D.Ⅰ+Ⅱ+Ⅲ+Ⅳ+Ⅵ B4.在柴油机中把活塞往复运动变成曲轴回转运动的部件是()。 A.十字头与导板 B.连杆 C.活塞 D.曲轴 A5.在柴油机中连杆的运动规律是()。 A.小端往复、杆身晃动、大端回转 B.小端往复、杆身平稳、大端回转 C.小端晃动、杆身平稳、大端回转 D.小端晃动、杆身平稳、大端晃动 B6.在连杆杆身上任一点的运动轨迹是()。 A.圆形 B.椭圆形 C.直线 D.不确定 C7.四冲程柴油机的连杆在运转中受力状态是()。 A.始终受压

单缸四冲程柴油机课程设计说明书..

《机械原理》 课程设计说明书 设计题目:单缸四冲程柴油机 院(系、部):机械工程学院 专业:材料成型及控制工程 班级:01班 学号:1003040124 设计者:解志强 指导教师:王靖 2012年 12月 20日

目录 第1章设计要求 (2) 1.1 设计任务 (2) 1.2 设计思路 (2) 1.3 机构简介 (3) 1.4 设计数据 (4) 第2章连杆机构设计和运动分析 (5) 2.1 连杆机构的设计要求 (5) 2.2 杆件尺寸确定 (5) 2.2 杆件运动的分析与计算 (5) 2.3 图解法作杆件的运动分析 (7) 第3章齿轮机构传动设计 (8) 3.1 齿轮机构的设计要求 (8) 3.2 齿轮参数的计算 (8) 第4章凸轮机构设计 (11) 4.1 凸轮机构的设计要求 (11) 4.2 运动规律的选择 (11) 4.3 基圆半径的计算 (12) 4.4 凸轮设计图 (13) 课程设计小结 (14) 参考文献 (14)

第1章 设计要求 1.1设计任务 设计一个四冲程内燃机。机器的功能与设计要求:该机器的功能是把化学能转化成机械能。须完成的动作为:活塞的吸气,压缩,做功,排气4个过程,进,排气门的开关与关闭、燃料喷射。 1.2设计思路 设计四冲程内燃机的关键点在于活塞的吸气,压缩,做功,排气以及气门的开闭几个动作的完成。而怎样将这个几个动作完成并按照运动循环图结合起来这是我们完成这次课程设计所需要解决的问题。所以,我将从这些方面入手,依据这些需要来选择机构。 1.3机构简介 柴油机(如附图1(a))是一种内燃机,它将燃料燃烧时所产生的热能转变成机械能。往复式内燃机的主体机构为曲柄滑块机构,以气缸内的燃气压力推动活塞3经连杆2而使曲柄1旋转。 本设计是四冲程内燃机,即以活塞在气缸内往复移动四次(对应曲柄两转)完成一个工作循环。在一个工作循环中,气缸内的压力变化可由示功图(用示功器从气缸内测得,如附图1(b)所示),它表示汽缸容积(与活塞位移s成正比)与压力的变化关系,现将四个冲程压力变化做一简单介绍。 进气冲程:活塞下行,对应曲柄转角θ=0°→180°。进气阀开,燃气开始进入汽缸,气缸内指示压力略低于1个大气压力,一般以1大气压力算,如示功图上的a →b。 压缩冲程:活塞上行,曲柄转角θ=180°→360°。此时进气完毕,进气阀关闭,已吸入的空气受到压缩,压力渐高,如示功图上的b→c。 做功冲程:在压缩冲程终了时,被压缩的空气温度已超过柴油的自燃

单缸四冲程柴油机机构设计机械原理课程设计报告

机械原理课程设计 说明书 设计题目:单缸四冲程柴油机机构设计 学院:机电工程学院 专业:车辆工程 班级:S1 学号:2012126849

设计者:黄通尧 指导教师:王洪波 提交日期:二○一四年七月 1、机构简介 柴油机是内燃机的一种,如图1所示。它将柴油燃烧时所产生的热能转变为机械能。往复式内燃机的主运动机构是曲柄滑块机构,以气缸内的燃气压力推动活塞3经连杆2而使曲柄1旋转。 图1 柴油机机构简图及示功图 四冲程内燃机是以活塞在气缸内往复移动四次(对应于曲柄轴转两转)完成一个工作循环。在一个工作循环中气缸内的压力变化可用示功器或压力传感器从气缸内测得,然后将压力与活塞位移的关系绘成曲线图,称为示功图,见图1(b)。

现将四冲程柴油机的压力变化关系作一粗略介绍: 进气冲程:活塞下行,对应曲柄转角=0°—180°,进气阀开启,空气进入气缸。汽缸内 指示压力略低于1个大气压,一般可以1个大气压来计算。进气结束时,进气阀关闭。如示功 图上的a 一b 段。 压缩冲程:活塞上行,对应曲柄转角 =180°—360°,将进入气缸的空气压缩。随着活塞 的上移气缸内压力不断升高。如示功图上的b 一c 段。 膨胀冲程:在压缩冲程结束前,被压缩空气的温度已超过柴油的自燃温度。因此当高压油泵将柴油喷进燃烧室时,呈雾状细滴的柴油与高温空气相接触,立即爆炸燃烧,使气缸内的压力骤增至最高点。燃气产生的高压推动活塞下行,通过连杆带动曲柄旋转对外作功。对应曲柄转角 =360°—540°,随着燃气的膨胀活塞下行气缸容积增大,气缸内压力逐渐降低,如示功图上c —d 段。 排气冲程:排气阀开启,活塞上行将废气排出。气缸内压力略高于1个大气压,一般亦以一个大气压计算。对应曲柄转角 =540°—720°,如示功图上d —a 段。 进、排气阀的开启是通过凸轮机构控制的。凸轮机构是通过曲柄轴上的齿轮Z1和凸轮轴上的齿轮Z2来传动的。这一对齿轮称为正时齿轮,由于一个工作循环中,曲柄轴转动两周而进、排气阀各开启一次,所以正时齿轮的传动比为i 12=2。 由上可知,在一个工作循环的四个冲程中只有一个冲程是作功的,其余三个冲程都要依靠机械的惯性来带动、要消耗功的。因此曲柄会由于驱动力的不均匀而引起速度波动。为了减小速度波动,曲柄轴上应加装飞轮来进行调速。 2、 已知数据 已知数据表 设计内容 曲柄滑块机构的运动分析 曲柄滑块机构的动态静力分析及飞轮转动惯量的确定 符号 H l As2 l 04B n 1 D h D G 1 G 2 G 3 J s1 J s2 J 01 单位 mm m m r/mi n mm N kgm 2 数据 120 4 80 54 1500 100 200 210 20 10 0.1 0.05 0.2 1/100 齿轮机构设计 凸轮机构设计 Z 1 Z 1 m h s ′ [] [a ′] mm ° mm ° 22 44 5 20 20 50 10 50 30 75

相关主题
文本预览
相关文档 最新文档