当前位置:文档之家› 城市轨道交通制动系统

城市轨道交通制动系统

城市轨道交通制动系统
城市轨道交通制动系统

城市轨道交通制动系统

1、制动与缓解

(1)制动。

制动是指人为地通过制动装置使车辆减速或阻止其加速的过程。从能量变化角度分析,制动过程是一个能量转移的过程,即将列车运行的动能人为控制地转化成其他形式能量的过程。

而制动力则是指使车辆减速或阻止其加速的外力,制动机是产生并控制制动力的装置。

(2)缓解。

缓解是对已经施行制动的列车,解除或减弱其制动作用。对于运动的列车而言,列车在停车后启动加速前或列车在运行途中限速制动后加速前均要解除制动作用,即施行缓解作用。

2、制动装置与制动系统

(1)制动装置。

制动装置是在车辆中产生制动力,使列车减速、停车的一套机械、电气装置,一般将机械装置称为基础制动装置,而将电气控制的部分称为制动机。制动作用的性能对保证车辆安全和正点运行具有极其重要的作用,制动装置也是提高列车运行速度和线路输送能力的重要条件之一。

(2)制动系统。

①制动系统的组成。制动系统由动力制动系统、空气制动系统及指令和通信网络系统组成。

动力制动系统。动力制动系统一般与牵引系统连在一起形成主电路,包括再生反馈电路和制动电阻器,将动力制动产生的电能反馈给供电接触网或消耗在制动电阻器上。

空气制动系统。空气制动系统由供气部分、控制部分和执行部分组成。供气部分有空气压缩机组、空气干燥器的风缸等;控制部分有电-空转换阀、紧急阀、称重阀、中继阀等;执行部分主要是指基础制动装置,主要有闸瓦制动装置、盘形制动装置等。

指令和通信网络系统。指令和通信网络系统是传递司机指令的通道,也是制动系统内部数据传递交换及制动系统与列车控制系统进行数据通信的总线。

②制动系统的作用。制动系统的主要作用如下:

车辆在运行过程中,司机通过制动装置使列车减速、停车或停止加速。

防止车辆在长大下坡道运行时加速。

防止城轨车辆在停车线或检修线上自动溜放而实施停放作用等。

城市轨道交通列车制动系统的特点及发展趋势初探

城市轨道交通列车制动系统的特点及发展趋势初探 发表时间:2018-06-07T11:18:32.193Z 来源:《基层建设》2018年第11期作者:刘艳虎 [导读] 摘要:针对城市轨道交通车辆制动系统,对其空气压缩、制动盘和控制系统三个主要部分的特点和技术发展趋势进行深入分析,旨在为以后的技术研究和发展提供可靠参考依据。 苏州市轨道交通集团有限公司运营分公司江苏苏州 215000 摘要:针对城市轨道交通车辆制动系统,对其空气压缩、制动盘和控制系统三个主要部分的特点和技术发展趋势进行深入分析,旨在为以后的技术研究和发展提供可靠参考依据。 关键词:城市轨道交通;车辆制动系统;空气压塑;制动盘;控制系统 城市轨道交通站间距短,列车制动频繁,其制动系统的可靠性决定了车辆运行安全,是现阶段城市轨道交通研究的重要内容这一。在科技快速发展的背景下,轨道交通车辆制动系统技术也得到很大程度的改进,为轨道交通发展奠定了坚实基础。 1空气压缩 1.1技术背景 如今,铁路对用气质量提出越来越高的要求,压缩气体必须达到较高的无水和无油条件,这使无油空压机进入快速发展时期。尽管现阶段铁路领域的无油空压机实际应用仍有限,但依靠其无油这一显著特征,将很快在市场占据主导地位。 若按压缩方式,可对无油空压机做以下分类:回转形式的无油空压机以及循环往复形式的无油空压机。后者与活塞式空压机相对应,前者则与最常用的螺杆形式的空压机相对应。从活塞式空压机的角度讲,主要有两种不同的润滑形式,即干式润滑及水润滑。 活塞与螺杆空压机常用于铁路领域,螺杆适合低压和中小流量,而活塞适合高压与多种压力范围。采用水润滑形式的无油螺杆,不仅结构复杂,而且对环境有严格要求,在铁路这种复杂环境下并不适用;采用干式的无油螺杆,其排量超过3m3/min,但仍未能达到出口压力,同样在铁路中不适用。从目前的铁路行业发展看,其对空压机有下列几项特殊要求:经久耐用;耐冲击、污染和高温;振动与噪声较低;维护难度与成本较低。 1.2技术原理 活塞式空压机进入随曲轴联动旋转状态后,在连杆提供的传动作用下促使活塞进行往复运动,此时活塞的顶部表面、气缸的内部表面和气缸盖三者形成的容积必定产生具有周期性特点的变化。活塞由气缸盖做运动后,容积不断增加,此时气体在进气管中推开进气阀门到达气缸,到容积不再增加为止,阀门关闭;活塞进入反向运动状态后,上述容积开始减少,但压力持续增大,超出排气压力以后,阀门打开,气体开始向外部不断排出,当活塞运动到最大行程后,阀门将自动关闭。活塞再次进入反向运动状态后,重复以上过程。 1.3特殊结构 对全无油形似的活塞空压机,其原理和油润滑形式的活塞空压机大致相同,区别为将油润滑换成自润滑。其中,气缸采用铝合金加工而成,表面做特殊处理,减小摩擦以延长使用寿命;活塞也采用铝合金加工而成,各活塞上设置导向环与密封环,二者都采用自润滑材料,能使摩擦达到最小;连杆和活塞由特殊销进行连接,配有全封闭式轴承,无需维护,并在设计过程中考虑了防超温使用。曲轴和各连杆间同样使用这种轴承;气阀为长寿命阀,能满足特殊的实际使用要求。 1.4优缺点 1.4.1优点 压缩空气输出更为洁净,只有极少量水和污染物,下游净化单元能直接去除,无油蒸汽和油滴,能防止下游管路被污染;压力范围较广,任何一种流量情况下,都能提供所需压力;具有很高的热效率,耗电省;具有较强的适用性,表现为排气范围广,受压力影响小等方面;可大幅降低维护成本,减少工作量;无润滑油方面的输出,过滤部件可长时间使用,负担小;由于不使用润滑油,所以还能解决低温启动方面的问题,而且对运转率也没有太高的要求。 1.4.2缺点 排气的连续性较差,存在一定气流脉动;在运转过程中可能产生较大的振动。 2制动盘 在当前的轨道交通车辆中,铝合金制动盘得到广泛应用,其优点有: 第一,自重轻,密度比铸钢与铸铁都小,能减轻车辆自重,尤其是簧下质量,若能减轻簧下质量,则能减小振动和噪音。此外,车辆自重减轻其能耗必定有所降低,能提高节能减排指标。 第二,有良好的耐磨性及导热性,且摩擦系数保持稳定,将钢铁替换为铝合金,能在减轻质量的同时,延长寿命,降低成本,保证可靠性与安全性。此外,出色的导热性能还能使制动盘适应反复变化的热负荷,降低了热疲劳裂纹产生率。 我国从九十年代起有相关院校开始研究铝基复合材料在列车制动盘中的应用,提出很多方法,如喷溅法和粉末冶金法等。然而,因研制难度相对较大,加之制造工艺十分复杂,所以成果主要为样件,要实现批量化生产的目标,还需要进一步的研究。 近几年,我国很多企业在广泛调研这项技术的前提下,对该行业现有技术能力进行综合,提出一套制造工艺,并通过一段时间的摸索与总结,初步掌握批量生产办法。制动盘摩擦副现已完成各项分析实验,其所有性能指标都达到要求,且优于同类产品。 3基于模块化的新制动系统 3.1系统特点 采用以CAN总线为基础的分布式控制,各控制单元均能在CAN总线的支持下构成整个控制网络。EP09/S能提供防滑控制与电空制动两项功能,仅存在紧急制动对应的输入输出接口,需由总线提供常用指令;对EP09/G而言,不仅具有EP09/S全部功能,而且还有列车总线接口及扩展接口,能起到类似网关的作用,并对制动力进行管理。 3.2性能要求 控制单元可提供的防滑控制与电空制动等功能都相对固定,具有实现模块化与小型化目标的条件。实际应用要求对于系统提出了很高的要求,集中在接口能力方面,如各模拟量实际扩展和不同接口方式等,而且对系统测试、故障诊断与时间存储也有着越来越高的实际要求,因受到架控单元机箱等因素的限制和影响,当前的网关单元在扩展能力上还有待于进一步提高。

新城市轨道交通车辆制动系统习题库

绪论 一、判断: 1、使运动物体减速,停车或阻止其加速称为制动。(×) 2、列车制动系统也称为列车制动装置。(×) 3、地铁车辆的常用制动为电空混合制动,而紧急制动只有空气制动。(√) 4、拖车空气制动滞后补充控制是指优先采用电气制动,不足时再补拖车的气制动(×) 5、拖车动车空气制动均匀补充控制是指优先采用电气制动,不足时拖车和动车同时补充气 制动(√) 6、为了保证行车安全,实行紧急制动时必须由司机按下紧急按钮来执行。(×) 7、轨道涡流制动能把列车动能转化为热能,且不受黏着限制,轮轨间没有磨耗。(√) 8、旋转涡流制动能把列车动能转化为热能,且不受黏着限制,轮轨间没有磨耗。(×) 9、快速制动一般只采用空气制动,并且可以缓解。(×) 10、制动距离和制动减速度都可以反映列车制动装置性能和实际制动效果。(√) 11、从安全的目的出发,一般列车的制动功率要比驱动功率大。(√) 12、均匀制动方法就是各节车各自承担自己需要的制动力,动车不承担拖车的制动力。(√) 13、拖车空气制动优先补足控制是先动车混合制动,不足时再拖车空气制动补充。(×) 14、紧急制动经过EBCU的控制,使BCU的紧急电磁阀得电而实现。(×) 二、选择题: 1、现代城市轨道交通车辆制动系统不包括(C)。 A.动力制动系统 B.空气制动系统 C.气动门系统 D.指令和通信网络系统 2、不属于制动控制策略的是(A)。 A.再生制动 B.均匀制动方式 C.拖车空气制动滞后补足控制 D.拖车空

气制动优先补足控制 3、直通空气制动机作为一种制动控制系统( A )。 A.制动力大小靠司机操纵手柄在制动位放置时间长短决定,因此控制不太精确 B.由于制动缸风源和排气口离制动缸较近,其制动和缓解不再通过制动阀进行, 因此制动和缓解一致性较自动制动机好。 C.直通空气制动机在各车辆都设有制动、缓解电空阀,通过设置于驾驶室的制动 控制器使电空阀得、失电 D.直通空气制动机是依靠制动管中压缩空气的压力变化来传递制动信号,制动管 增压时缓解,减压则制动 4、三通阀由于它和制动管、副风缸及制动缸相通而得名( B ) A.充气缓解时,三通阀内只形成以下一条通路:①制动管→充气沟i→滑阀室→副 风缸; B.制动时,司机将制动阀操纵手柄放至制动位,制动管内的压力空气经制动阀排 气减压。三通阀活塞左侧压力下降。 C.在制动管减压到一定值后,司机将制动阀操纵手柄移至保压位,制动管停止减 压。三通阀活塞左侧压力继续下降。 D.当司机将制动阀操纵手柄在制动位和保压位来回扳动时,制动管压力反复地减 压——保压,三通阀则反复处于冲压位。 5、城市轨道交通在运行过程中,乘客负载发生较大变化时,一般要求制动系统( B ) A.制动功率不变 B.制动率不变 C.制动力不变 D.制动方式不变. 6、下列不属于直通式空气制动机特点的是:(B) A.列车分离时不能自动停车B.制动管增压缓解,减压制动 C.前后车辆的制动一致性不好D.制动力大小控制不精确 7、下列制动方式中,不属于黏着制动的是:(C) A.空气制动B.电阻制动C.轨道涡流制动D.旋转涡流制动 8、下列制动方式中,属于摩擦制动的是:(A ) A.磁轨制动B.电阻制动C.再生制动D.轨道涡流制动 三、填空题:

地铁车辆制动系统工作原理

地铁车辆制动系统工作原理 摘要:随着城市规模的快速发展和城市人口的不断增多,所面临的交通问题也越来越严重。本文对地铁车辆的制动功能设计进行了说明,并介绍了制动指令的相关设计,最后介绍了混合制动控制系统设计及相关控制策略,以供读者参考 关键词:地铁车辆;制动系统 随着我国经济建设的不断推进,近年来城市轨道交通快速发展,国内许多大型城市都已有了地铁或者轻轨,随着大量的轨道交通项目投入运营,人们的日常出行变得更加方便,可随之而来的担忧也困扰着人们:“我们经常乘坐的地铁会不会刹车失灵呢、会不会追尾呢?” 1.地铁车辆的制动功能设计 地铁车辆采用减速度控制模式,制动指令为电气指令,即制动系统根据电气减速度指令施加制动力。乘客通过站台固定区域上下车,因而地铁车辆每次停站位置要求准确无误,为满足此要求,ATO系统或司机根据停车距离给定列车减速度电气指令,地铁车辆制动过程中必须能够根据减速度指令快速施加相应制动力,即制动响应准确、迅速。 制动系统设有载荷补偿功能。由于城市轨道交通车辆载客量大,乘客上下频繁,因此要求制动过程中能够根据车辆载荷变化自动调整制动力,称之为载荷调整功能。 常用制动具有防冲动限制功能。制动指令是电气信号,制动指令变化瞬间可以完成,如果制动力跟随制动指令迅速变化,就可能造成冲动,引起乘客不适,而且常用制动需频繁施加,为减少制动时的冲动以避免制动力变化过快引起乘客不适,常用制动过程中需限制制动力的变化速率,称之为冲动限制功能。 2.制动系统功能 2.1常用制动 常用制动采用模拟电气指令方式,是由微处理器控制的直通式电空制动,它采用减速度控制模式,其制动力随输入指令大小无级控制,制动控制单元根据减速度指令和车辆实际载重来计算目标制动力,产生相应的减速度。常用制动具有冲击率限制功能,以改善乘坐的舒适性;常用制动采用空电混合制动并优先使用电制动,不足部分由空气制动补足,以尽可能减少空气制动的负荷。 2.2快速制动 当司机操作主控制器手柄使其处于快速制动位时快速制动被触发。快速制动是一种特殊的制动模式。快速制动与紧急制动的制动率相同。快速制动优先使用

城市轨道交通车辆制动技术题库

城市轨道交通车辆制动技术 题库 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

1. 防滑控制系统主要由、和防滑动作机械部件组成。 2. 上海地铁基础制动装置采用制动机厂生产的。 3. BCU和BECU分别是和系统的缩写。 4. 上海地铁和广州地铁使用的电气指令制动控制系统为式电气指令式制动控制系统。 5. 模拟转换阀是上海地铁车辆KNORR制动系统中使用的一个电磁阀,它由三部分组成:电磁进气阀、和组成。 6. EP阀又称阀,是SD数字式制动控制单元中的一个转换阀。 7. 空压机的驱动电机一般有电机和电机。 8. 经空气压缩机压缩输出的空气压力单位,一般用bar来表示,1bar等于MPa。 9. 空气干燥塔可以将从空气压缩机输出的高压压缩空气中的和分离出去,以达到各用气系统对压缩空气的要求。 10. 空气压缩机组一般由、、、等装置组成。 11. 上海地铁knorr公司的空气压缩机,在进行压缩空气时一般经过两级冷却,分别为冷却和冷却。 12. 除空气制动系统用气外,城市轨道列车还有以下部件需要用到压缩空气:、、、等。 13. 空气压缩机组一般采用方式进行润滑。 14. 空气干燥器一般做成塔式的,有和两种。 15. 电阻制动所采用的制动电阻,材料一般采用合金带钢条,这种合金带钢条不仅具有稳定的,而且具有相当大的。 16. 再生制动失败,列车主电路会自动切断反馈电路转入制动电路。 17. 直流斩波器按列车控制单元及制动控制单元的指令,不断调节斩波器的,无级、均匀地控制,使制动力和再生制动电压持续保持恒定。 18. 电动车组中既有动车又有拖车,拖车没有电动机,只能使用制动,动车带有电动机,可以进行制动。 19. 一般列车在高速时,常用制动都先从制动开始,最后在列车10km/h 以下低速时,由制动将车停止。 20. 动轮与钢轨间切向作用力的最大值与物理学上的最大静摩擦力相比要(大or小)一些,情况要更复杂一点,其主要原因是由于的存在所导致。 21. 伴随着蠕滑产生静摩擦力,轮轨之间才能传递。 22. 一般城市轨道车辆的制动方式主要有三类:、和电磁制动。 23. 电磁制动有两种形式:和。 24. 轮对在钢轨上运行,一般承受载荷、载荷和载荷。 25. 城市轨道交通系统都有明确的车辆运行规程,对于列车制动能力,上海地铁规定,列车在满载乘客的条件下,任何运行速度时,其紧急制动距离不得超过米。 26. 现代城市轨道车辆的制动系统一般都应该具有以下组成部分:、和。 27. 城市轨道车辆制动技术正朝着、、和的目标不断前进。 28. 最近几十年来,制动技术取得了很大进展,出现使电气再生制动成为可能,使制动防滑系统更加精确完善。

城市轨道车辆制动系统设计毕业设计(开题报告)

毕业设计(论文) 开题报告 题目跨座式城市单轨交通车辆 制动系统设计 专业城市轨道车辆工程 班级08级城轨1班 学生戴学宇 指导教师赵树恩 重庆交通大学 2012年

1. 选题的目的和意义 随着我国城市化进程的加快,城市交通拥堵、事故频繁、环境污染等交通问题日益成为城市发展的难题。城市轨道交通以其大运量、高速准时、节省空间及能源等特点,已逐渐成为我国城市交通发展的主流。在城市轨道交通系统中,跨坐式单轨交通制式因其路线占地少,可实现大坡度、小曲率线径运行,且线路构造简单、噪声小、乘坐舒适、安全性好等优点而逐渐受到关注。 在我国城市轨道交通迅速发展的同时,其运营安全保障已成为目前面临的重要问题。车辆作为城市轨道交通运输的载体,由于速度快、载客量大、环境复杂,其运行安全状况不容乐观——车辆故障不断出现、事故常有发生,这些故障不但严重的影响到正常运营,一旦引发事故将会带来巨大的人员伤亡和经济损失。制动系统是城市轨道交通车辆的关键系统,直接影响其安全运行,为提高车辆运行的安全性,对制动系统的设计便显得尤为关键。 2.国内外研究现状及分析 基础制动装置是确保城市轨道交通车辆行车安全的措施之一。在分析城市轨道车辆运输特点基础上, 李继山,李和平,严霄蕙(2011)《盘形制动是城市轨道车辆基础制动装置的发展趋势》[1]结合城市轨道车辆基础制动装置具体类型,分析了城市轨道车辆踏面制动与盘形制动的优缺点, 用有限元模拟城轨车辆车轮 踏面温度场及热应力, 表明速度100 km/ h 及以上的城轨列车基础制动不适宜采用踏面制动, 指出盘形制动是城市轨道交通车辆基础制动的发展的必然趋势。丁锋(2004)在《城市轨道交通车辆制动系统的特点及发展趋势》[2]一文中介绍并分析了我国城市轨道交通车辆制动系统的形式、构成、技术特点及发展趋势。吴萌岭,裴玉春,严凯军(2005)在《我国城市轨道车辆制动技术的现状与思考》[3]中较为详细地回顾了我国城市轨道车辆制动系统的发展历程,分析了目前我国新型城市轨道车辆制动系统的特点,并与我国自主研发适用于高速动车组的同类型制动系统作了技术比较。分析了我国自主研发城市轨道车辆制动系统的技术基础,指出国内技术与产品和国外相比存在着系统理念、设计经验和系统可靠性方面的差距,同时指出自主研发城市轨道车辆制动系统存在的问题,并提出了建议。邹金财(2010)《一种轨道车辆空气制动系统优化及仿真》[4]利用Simulationx 仿真软件对工矿窄轨土渣车的空气制动系统的改进前以及改进方案进行仿真,在与试验真实值对比后得到了正确的结论,通过对该空气制动系统优化中仿真手段应用过程的阐述,为机车车辆系统优化方法提供了参考。师蔚,方宇(2010)《城

城市轨道交通制动系统

城市轨道交通制动系统 1、制动与缓解 (1)制动。 制动是指人为地通过制动装置使车辆减速或阻止其加速的过程。从能量变化角度分析,制动过程是一个能量转移的过程,即将列车运行的动能人为控制地转化成其他形式能量的过程。 而制动力则是指使车辆减速或阻止其加速的外力,制动机是产生并控制制动力的装置。 (2)缓解。 缓解是对已经施行制动的列车,解除或减弱其制动作用。对于运动的列车而言,列车在停车后启动加速前或列车在运行途中限速制动后加速前均要解除制动作用,即施行缓解作用。 2、制动装置与制动系统 (1)制动装置。 制动装置是在车辆中产生制动力,使列车减速、停车的一套机械、电气装置,一般将机械装置称为基础制动装置,而将电气控制的部分称为制动机。制动作用的性能对保证车辆安全和正点运行具有极其重要的作用,制动装置也是提高列车运行速度和线路输送能力的重要条件之一。 (2)制动系统。 ①制动系统的组成。制动系统由动力制动系统、空气制动系统及指令和通信网络系统组成。

动力制动系统。动力制动系统一般与牵引系统连在一起形成主电路,包括再生反馈电路和制动电阻器,将动力制动产生的电能反馈给供电接触网或消耗在制动电阻器上。 空气制动系统。空气制动系统由供气部分、控制部分和执行部分组成。供气部分有空气压缩机组、空气干燥器的风缸等;控制部分有电-空转换阀、紧急阀、称重阀、中继阀等;执行部分主要是指基础制动装置,主要有闸瓦制动装置、盘形制动装置等。 指令和通信网络系统。指令和通信网络系统是传递司机指令的通道,也是制动系统内部数据传递交换及制动系统与列车控制系统进行数据通信的总线。 ②制动系统的作用。制动系统的主要作用如下: 车辆在运行过程中,司机通过制动装置使列车减速、停车或停止加速。 防止车辆在长大下坡道运行时加速。 防止城轨车辆在停车线或检修线上自动溜放而实施停放作用等。

轨道交通技术之--日本制动系统

1 日本铁路制动系统发展历程 在1872年,装配有蒸汽制动装置的蒸汽机车在日本的第一条铁路(东京到横滨)上开始运营。在当时,只有蒸汽机车才安装有蒸汽制动装置(如图1)。后来,日本又开发出真空闸(vacuum brake),由蒸汽喷射器(steam ejector)提供动力,从而通过利用机车之间气压和真空的差异性来进行制动。真空阀大约在1895年被运用到客运列车上面,从此列车运行变得更加安全。 1906年,日本铁路在国有化以后,全国轨道线路总里程达到7153公里。由于空气制动比真空制可以更加方便地维护,在1918年,日本铁路部规定所有车辆均须安装空气制动装置。为了达到这一标准,日本从1920年开始对所有列车的制动装置进行改装,改装历时大约10年左右的时间。到1931年,日本所有的列车均使用空气制动,采用的k三通阀(k triple valve)是在Westinghouse 设计的基础上进行改进而成(图2)。 如今,日本绝大多数客运列车是电气化列车,并且每年大约制造出2000节客车车厢,其中97%是电气化列车。在1955年,电气化列车开始安装拥有电磁阀(solenoid valve)的空气制动装置,从而使得制动效果得到显著改善。与此同时,动态制动(dynamic brake),也称之为再生制动,

开始得到推广。当1964年东海道新干线路段开通时,列车采用了两套制动系统,一个是空气制动,另一个是动力制动。1970年,制动效果更好的电力控制空气制动系统(electric command air brake system)开始推广,被运用于新干线和窄轨动车组。 2 空气制动基本原理 图3显示了自动空气制动系统的内部结构。每两节或者四节车厢就安装有一台空气压缩机,空气首先被压缩至700-900kpa,然后压缩空气被送入储气缸(air reservoir)。通过压力调节器可以将压缩空气的气压降低至490kpa,再依次通过制动阀、制动导管和控制阀,最后到达辅助储气缸。当制动导管和辅助储气缸的压缩空气压力在490kpa时,制动器不启动。然而,当制动阀切断来自压力调节器的空气时,控制阀就会监测到制动导管的气压降低情况,从而根据气压降低的幅度,调节从辅助储气缸到制动汽缸的压缩空气流量。制动汽缸会驱动制动系统使列车减速。控制阀会根据制动管道气压降低的幅度相应调节从辅助储气缸到制动汽缸的空气流量。图4显示了直通空气制动机(straight air brake)的运作流程。与自动空气制动系统不同的是,直通空气制动机没有控制阀或辅助储气缸。制动阀通过将压缩空气输送到制动汽缸,来完成列车制动。 然而,在正常运行状态下,直通空气管道不含有压缩空气,当列车处于解钩状态下,制动会失效。为了解决上述问题,需要将直通空气制动系统和自动控制系统结合起来。还可以增设一条管道,其功能类似于自动空气制动系统中的制动管道。当主要空气储气缸压缩空气的压力下降,或者空气管道漏气,就能够监测出压力下降变化,制动系统就会相应运转。例如在新干线,如果管道气压低于600kpa,制动系统就好自动发挥作用。 3 列车制动原理 为了确保机车安全运行,政府部门往往会制定相应的规范,对制动距离和减速率进行了限定。日本的规定是窄轨机车在最大时速运行时的减速距离不得超过600米。为了使机车在尽可能短的距

城市轨道交通车辆制动系统的特点及未来发展趋势探讨

城市轨道交通车辆制动系统的特点及未来发展趋势探讨 摘要本文重点研究了城市轨道交通车辆制动系统的特点,制动系统与轨道交通车辆的安全行驶、乘客的舒适度息息相关。并以制动系统的特点为基础,分析了未来城市轨道交通车辆制动系统的发展趋势,希望能够对相关的研究人员起到借鉴的作用,推动制动系统的不断完善和发展。 关键词城市轨道交通车辆;制动系统;发展趋势 引言 随着经济的发展,城市化的进程在不断地加快,城市轨道交通车的速度也越来越快,频繁的启动和制动,会对轨道车辆的制动系统带来很大的压力,因此这对軌道交通的制动系统提出了较高的要求。鉴于此,对我国轨道交通车辆制动技术有一个清晰的了解很有必要。 1 城市轨道交通车辆制动系统的特点 目前,城市轨道交通车辆的制动系统主要是两种,一种是通过微机控制的直通式电空制动系统,这种制动系统完美地弥补了传统直通制动系统的瑕疵和缺陷,解决了无法紧急刹车、缓解时间过长等问题。另一种是自动式空气制动系统,这两种系统各有各的优点,是我国轨道交通车辆制动系统中的顶梁柱。 1.1 制动控制 不同的轨道交通车具备着不同的制动特点。微机控制的直通式电空制动系统主要依靠电信号的传输来实现制动控制,而自动式空气制动系统是通过空气波来完成制动。微机控制的电空制动系统接收到的电信号指令要比空气制动系统接收空气波指令反应快速,间隔时间短;而空气波控制的制动系统,接收制动指令的间隔时间和反应速度都不如微机控制的制动系统。 1.2 制动指令的执行 微机控制的直通式电空制动系统可以通过微机进行搜集指令电信号,而自动式空气制动系统是通过制动管的压力变化来进行制动的,在制动的过程中,电空制动系统比空气制动系统的反映快速,接收到的信息不论是能力还是容量都要强于自动空气制动系统,对于制动指令执行,电空制动系统也要比空气制动系统更加准确[1]。 1.3 故障上的自我诊断 在故障的自我诊断上,微机除了能够做到系统的全面诊断之外,还可以即时的显示故障信息,做到对系统的实时维修;而空气制动系统只能依靠人力来进行

城市轨道车辆制动系统毕业设计(文献综述)

毕业设计(论文) 文献综述 题目跨座式城市单轨交通车辆 制动系统设计 专业城市轨道车辆工程 班级08级城轨1班 学生戴学宇 指导教师赵树恩 重庆交通大学 2012年

文献综述 1. 前言 随着我国城市化进程的加快,城市交通拥堵、事故频繁、环境污染等交通问题日益成为城市发展的难题。城市轨道交通以其大运量、高速准时、节省空间及能源等特点,已逐渐成为我国城市交通发展的主流。在城市轨道交通系统中,跨坐式单轨交通制式因其路线占地少,可实现大坡度、小曲率线径运行,且线路构造简单、噪声小、乘坐舒适、安全性好等优点而逐渐受到关注。 作为列车重要组成部分的制动装置,其作用是使列车减速,以致在规定的距离内使列车停车,保证列车行车安全和提高铁路通过能力。现代列车采用多种制动方式转移列车所积累的能量。 在轨道车辆编组组成的列车总体结构中,制动装置包括制动控制系统和基础制动装置两大部分。制动控制系统包含司机室内制动控制装置和制动信号发生装置、贯穿全列车制动信号传递电线路、网络或气管路、车辆内或车底部的制动控制单元或空气分配阀组成等;基础制动装置主要指安装在转向架上的制动执行部件。 本文作者通过查阅近些年来有关轨道车辆制动系统的期刊、书籍、学位论文等文献资料,了解掌握了关于车辆制动力和制动系统的分析研究方法,这些文献给了作者很大的参考价值。 2.国内外研究现状及分析 基础制动装置是确保城市轨道交通车辆行车安全的措施之一。在分析城市轨道车辆运输特点基础上, 李继山,李和平,严霄蕙(2011)《盘形制动是城市轨道车辆基础制动装置的发展趋势》[1]结合城市轨道车辆基础制动装置具体类型,分析了城市轨道车辆踏面制动与盘形制动的优缺点, 用有限元模拟城轨车辆车轮踏面温度场及热应力, 表明速度100 km/ h 及以上的城轨列车基础制动不适宜采用踏面制动, 指出盘形制动是城市轨道交通车辆基础制动的发展的必然趋势。丁锋(2004)在《城市轨道交通车辆制动系统的特点及发展趋势》[2]一文中介绍并分析了我国城市轨道交通车辆制动系统的形式、构成、技术特点及发展趋势。吴萌岭,裴玉春,严凯军(2005)在《我国城市轨道车辆制动技术的现状与思考》[3]中较为详细地回顾了我国城市轨道车辆制动系统的发展历程,分析了目前我国新型城市轨道车辆制动系统的特点,并与我国自主研发适用于高速动车组的同类

相关主题
文本预览
相关文档 最新文档