当前位置:文档之家› 海上大气波导的统计分析

海上大气波导的统计分析

海上大气波导的统计分析
海上大气波导的统计分析

HFSS报告,波导腔体内场分析

实验11 波导腔体内场分析 建立一个T型波导模型,利用HFSS软件求解、分析,观察T型波导的场分布情况。 设计步骤: 一、创建工程和设计 第1步:打开HFSS并保存新工程 运行HFSS软件后,自动创建一个新工程:Project1的新工程和名称为HFSSDesign1的新设计。由主菜单选File/Save as,保存在USER(E:)盘自建文件夹内,命名为Ex11_Tee。在工程树中选择HFSS Design1,点击右键,选择Rename项,将设计命名为TeeModel。 第2步:选择求解类型 由主菜单选HFSS/Solution Type,在弹出对话窗选择Driven Modal项。 第3步:设置单位 由主菜单选3D Modeler/Units,在Set Model Units 对话窗中选择in项。 二、创建模型 第一步:创建长方体 绘制一个长方体:由主菜单选Draw/Box:按下Tab键切换到参数设置区(在工作区的右下角),设置长方体的基坐标(x,y,z)为(0,-0.45,0),数据输入时用Tab键左右移动,按下Enter键确认后,输入长方体的长和宽(dx,dy,dz)为(2,0.9,0)再按下Enter键确认,输入高度(0,0,0.4),按Enter键确认。注意:在设置未全部完成时不要在绘图区中点击鼠标! 定义长方体属性:设置完几何尺寸后,自动弹出该长方体的属性对话框。选择Attribute 标签页,讲Name项改为Tee,Material项保持为Vacuum不变,点击Transparent项的数值条,在弹出的窗口移动滑条使其值为0.4,提高透明度。设置完毕后,按下Ctrl+D键,将长方体适中显示,如图1a所示。 定义波形端口:按下F键切换到面选择状态,选中长方体平行于yz面、x=2的平面,再点右键,选择Assign Excitation/Wave Port项,弹出Wave Port界面,输入名称Port1,点Next;点击Integration Line项选择New Line,则提示绘制端口,在绘图区该面的下边缘中部即(2,0,0)处点左键,确定端口起始点,再选上边缘中部即(2,0,0.4)处,作为端口终点。此时,弹出Wave Port对话窗,默认设置,点Next,点Finish结束,在工程树中选Teemodel/Excitations/Port1项,可选中该端口,如图1 b所示。 图1a 图1b

大气波导效应对LTE网络的影响

大气波导效应与解决方案

1 前言 对于时分双工模式(TDD)系统,要求基站保持严格的时间同步。不同基站之间的时间同步包括帧头同步和上下行转换同步。传统的同频干扰可以通过优化频点配置、干扰白噪化、功率控制、干扰协调、波束赋型等方式来对抗。同时,由于TDD系统的上行和下行传输共享同样的频率,TDD系统中除存在传统的小区间的干扰外,还存在远端基站的下行信号干扰目标小区上行信号的情形。 TDD系统的远距离同频干扰发生在相距很远的基站间。随着传播距离的增加,远端发射源的信号经过传播延迟到达近端同频的目标基站后,可能会进入目标基站的其他传输时隙,从而影响近端目标系统的正常工作,如图1所示。由于基站的发射功率远大于终端的发射功率,因此远距离同频干扰主要表现为远端小区下行信号干扰近端目标基站的上行接收。 2 成因分析 产生远距离同频干扰,必然是发生了超过保护间隔以上的超远距离传输。商用的TDD系统,如SCDMA(大灵通)和TD-SCDMA均已证实远距离同频干扰的存在性。远距离同频干扰的发生与信号传输环境和基站高度等有关。 2.1 主要因素 在“低空大气波导”效应下,电磁波好像在波导中传播一样,传播损耗很小(近似于自由空间传播),可以绕过地平面,实现超视距传输。当远处基站达到一定的基站高度级别时,在存在“低空大气波导”现象的情况下,远处基站的大功率

下行信号可以产生远距离传输到达近处基站。由于远距离传输时间超过TDD系统的上下行保护间隔,远处基站的下行信号在近处基站的接收时隙被近处基站收到,从而干扰了近处基站的上行接收,产生TDD系统的远距离同频干扰。 大气波导是一种特殊天气下形成的大气对电磁波折射效应,各地分布不同:南海地区春秋冬季出现较多;东部沿海夏秋季出现较多;西北地区春秋冬季出现较多。我国东南部波导出现傍晚多于早上,西北地区则是早上多于晚上。 2.2 辅助因素 基站的发射天线与接收天线高度要求高于周围的建筑物,否则信号很容易被建筑物阻挡。当天线高度足够高时,远端基站下行信号在“抵抗大气波导”效应下可能会发生超远传输,干扰近端的上行信号。 由于基站发射功率高,终端发射功率低,因此只有基站发射的下行信号,才有可能经过远距离传输后,干扰近端上行。由于终端发射功率较低,经过远距离传输后,不会对近端基站上行信号产生干扰。经过远距离传输后,远处基站发射功率对近端基站的下行干扰也可以忽略。 3 TDD商用系统干扰实例及解决方案参考 商用的SCDMA系统和TD-SCDMA系统针对远距离同频干扰采取了相应的对抗措施,对TD-LTE系统对抗干扰具有参考意义。

实验11波导腔体内场分析

实验11 波导腔体内场分析 一、设计要求 建立一个T型波导模型,利用HFSS软件求解、分析,观察分布情 T 型波导的场况。 二、实验仪器 硬件:PC机 软件:HFSS软件 三、设计步骤 1. 创建工程 第 1 步:打开HFSS 软件并保存新工程。 第 2 步:插入HFSS 设计 第 3 步:选择求解类型 第 4 步:设置单位 2. 创建模型 第 1 步:创建长方体 第 2 步:复制长方体 第 3 步:组合长方体 第 4 步:创建间隔 从而得到如下所示的模型图:

O 1 2(H) 3.创建模型 第1步:添加求解设置 第2步:确认设计 第3步:分析,对设计的模型进行三维场分析求解第4步:移动间隔的位置 第5步:重新进行分析 重新进行3D场的分析求解 4.比较结果

第1步:创建一个S参数的矩形曲线图

在上面矩形图中显示不同间隔的S参数曲线。 第2步:创建一个场覆盖图 如下图显示,在T接头的上表面显示场的分布情况 F Ffeld(V 1.7Z I Ie 5,, 9 i r11∣≡ 釘77?Heι0aj Z. 37S3e +□BΞ: Z, IElBe+0EK 1. eω7β?ma 1. TBUMBan IL莊即亡"虚泊 JL 3E7≡e→00Ξ: i. Lfr?Gf +B3Ξ! 几沪帥的? S . g*?BΞe +□G3∑ 5. ?L55e÷a32 I-鸟H 吉7<≡1 IMi 2 .∣ ∏j 第3步:动态演示场覆盖图 分别定义场间隔位置为O和0.2时候动态演示场覆盖图。观察场分布情况, 重点比较2、3端口场的分布差异。具体的图形在第四步的数据记录以及分析里面有详细的演示记录 四、数据记录及分析 (1)在矩形框中间隔位置分别为0和0.2的时候,S11、S12、S13的参数

大气波导干扰问题分析

大气波导干扰问题分析 1、概述 在一定的气象条件下,在大气边界层尤其是在近地层中传播的电磁波,受大气折射的影响,其传播轨迹弯向地面,当曲率超过地球表面曲率时,电磁波会部分地被陷获在一定厚度的大气薄层内,就像电磁波在金属波导管中传播一样,这种现象称为电磁波的大气波导传播,形成的大气薄层称为大气波导层,目前天津大气波导主要影响郊县区域的F频段,一般出现凌晨和上午。 经验证,在F频段站点存在大气波导干扰时,“大气波导启动开关”可有效降低接通、掉线指标恶化程度,提升用户感知,要配合上行频选功能使用,开的话改为上行PRB随机化[6],开启三天MR的时候改为RB位置子带分配(频选)[1]。 2、大气波导干扰规律 1、干扰范围 远距离同频干扰影响范围较大,农村及城郊受影响小区明显多于市区,干扰扇区具有明显的方向性,干扰小区会随着时间的推移逐渐流动 2、时间规律 干扰发生在晚12点至次日上午9点之间,9点之后自动消失;一般在晴朗有风的时候容易出现 3、指标影响 在大面积干扰出现时段,无线接通率和切换成功率明显降低,无线掉线率明显升高 4、干扰频段 大气波导主要影响F频段,在大气波导较为严重的时候,D频段也会受轻微的影响

由以上两图看出, 当出现大气波导干扰时,对3大指标均有不同程度的恶化且严重降低了用户感知。 3、干扰小区分布情况 天津市内大气波导干扰小区主要分布在环外区域,例如武清、北辰、静海、宁河等区域下图为2017年1月4日大气波导干扰小区分布图,受干扰小区基本集中在郊县区域 4、大气波导特征 TDD无线通信系统中,在某种特定的气候、地形、环境条件下,远端基站下行时隙传输距离超过TDD系统上下行保护时隙(GP)的保护距离,干扰到了本地基站上行时隙。这就是

LTE大气波导干扰缓解之特殊子帧配比回退方法外场测试规范(一阶段) -

LTE大气波导干扰缓解之特殊子帧配比回退方案外场测试规范(一阶段) 版本号:

目录

前言 近期以江苏为代表的多个省份F频段LTE小区经常受到大范围上行强干扰,综合考虑基站检测得到的干扰信号时域频域特征、频谱仪扫频结果、干扰发生的时间规律以及和全球波导预警信息的匹配程度,认为所受干扰为远端基站下行信号经大气波导远距离低损耗传输后对近端基站上行产生的干扰,即大气波导干扰。 大气波导干扰可大幅抬升上行底噪,严重影响KPI和用户体验,甚至引发断服情况。为减轻大气波导干扰造成的影响,可将F频段LTE小区特殊子帧配比由9:3:2回退为3:9:2。由于增大了下行与上行间的保护间隔(GuardPeriod,GP),理论分析可避免对220公里(信号传播距离)范围内的基站造成干扰。 考虑现网急迫程度和产业支持情况,特殊子帧配比回退方案的测试验证分两阶段进行: 第一阶段,集团网络部统一组织相关省公司固定将LTE小区的特殊子帧配比由9:3:2修改为3:9:2。 第二阶段,LTE基站根据上行干扰检测和特征序列检测情况,自适应的进行特殊子帧配比调整,在大气波导干扰发生时回退为3:9:2,在大气波导干扰消失时恢复为9:3:2。

范围 本标准规定了LTE大气波导干扰缓解之特殊子帧配比回退方案外场一阶段测试的测试步骤与测试方法,规定了测试需要输出的数据及结果,用于评估验证特殊子帧配比回退方案的效果。 术语、定义和缩略语 下列术语、定义和缩略语适用于本标准: 表2-1术语、定义和缩略语列表

测试环境 测试环境 参与测试的江苏、安徽、河南三省所有LTEF频段小区。 每省至少选择一个易受大气波导干扰且干扰程度较严重的LTEF 频段楼面站。江苏因全网已改为3:9:2,应选择主要干扰源方向为省外的站点,安徽、河南应选择主要干扰源方向为省内的站点。 配合测试设备 每省至少一台便携式频谱仪,用于从时域信号查看GP、UpPTS和上行子帧各符号的受扰情况 测试用例 特殊子帧配比回退效果全网定性分析

实验二矩形波导TE10的仿真设计与电磁场分析解读

] 实验二、矩形波导TE10的仿真设计与电磁场分析 一、实验目的: 1、熟悉HFSS软件的使用; 2、掌握导波场分析和求解方法,矩形波导TE10基本设计方法; 3、利用HFSS 软件进行电磁场分析,掌握导模场结构和管壁电流结构规律和特点。 二、预习要求 1、《 2、导波原理。 3、矩形波导TE10模式基本结构,及其基本电磁场分析和理论。 4、HFSS软件基本使用方法。 三、实验原理与参考电路 导波原理 3.1.1. 规则金属管内电磁波 对由均匀填充介质的金属波导管建立如图1 所示坐标系, 设z轴与波导的轴线相重合。由于波导的边界和尺寸沿轴向不变, 故称为规则金属波导。为了简化起见, 我们作如下假设: \ ①波导管内填充的介质是均匀、线性、各向同性的; ②波导管内无自由电荷和传导电流的存在; ③波导管内的场是时谐场。 图1 矩形波导结构 本节采用直角坐标系来分析,并假设波导是无限长的,且波是沿着z方向无衰减地传输,由电磁场理论, 对无源自由空间电场E和磁场H满足以下矢量亥姆霍茨方程: ` 式中β为波导轴向的波数,E0(x,y)和H0(x,y)分别为电场和磁场的复振幅,它仅是坐标x和y的函数。 以电场为例子,将上式代入亥姆霍兹方程 ,并在直角坐标内展开,即有 (,) (,) j z j z E E x y e H H x y e β β - - ?= ? ? = ?? 式1 220 E k E ?+=

2222 2 2222222222220 T c E E E E k E k E x y z E E E k E x y E k E β????+=+++?????=+-+??=?+=式2 k c 表示电磁波在与传播方向相垂直的平面上的波数,如果导波沿z 方向传播,则 k 为自由空间中同频率的电磁波的波数。 由麦克斯韦方程组的两个旋度式,很易找到场的横向分量和纵向分量的关系式。具体过程从略,这里仅给出结果: 《 从以上分析可得以下结论: ^ (1)场的横向分量即可由纵向分量; (2) 既满足上述方程又满足边界条件的解有许多, 每一个解对应一个波型也称之为模式,不同的模式具有不同的传输特性; (3)k c 是在特定边界条件下的特征值, 它是一个与导波系统横截面形状、 尺寸及传输模式有关的参量。 由于当相移常数β=0时, 意味着波导系统不再传播, 亦称为截止, 此时k c =k, 故将k c 称为截止波数。 对于横电模(Ez=0)和横磁模(Hz=0)上式分别可以简化为 TE 模或H 模 ~ TM 模或E 模 3.1.2 矩形波导中传输模式及其场分布 由于矩形波导的四壁都是导体,根据边界条件波导中不可能传输TEM 模,只能传输TE 或TM 模。 % 这里只分析TE 模(Ez=0) 对于TE 模只要解Hz 的波动方程。即 2222()() 4 ()()z z x c z z y c z z x c z z y c H E j E k y x H E j E k x y H E j H k x y H E j H k y x ωμβωμββωεβωε???=-+???? ???=-? ???????=-+???? ???=-+????式2222,,z z x y c c z z x y c c H H E j E j k y k x H H H j H j k y k y ωμωμωμωμ???=-=????? ???=-=???? 式522222 222T c E E E x y k k β????=+???? ?=-?其中 式3 222 c x y k k k =+2222,,z z x y c c z z x y c c E E H j H j k y k x E E E j E j k y k y ωεωεβωμ??? ==-???? ????=-=-???? 式622200 0220z z c z H H k H x y ??++=??式7

大气波导对5G影响研究

大气波导对5G影响研究 1、导语 随着5G网络基站规模的逐渐扩大,以及5G终端渗透率的增加。5G网络下的干扰研究势必成为未来研究的热点话题。本文对5G网络2.6GHz 频段下的大气波导干扰成因进行了深入理论分析,并给出了切实可行的干扰解决办法,进而从根本上解决大气波导对5G网络的影响。 2、研究背景 在一定的气象条件下,比如当大气中某些区域的层结(温度与湿度随高度的分布状况)满足一定条件时,在大气边界层尤其是在近地层中传播的电磁波,受大气折射的影响其传播轨迹弯向地面,电磁波就会部分的传播在一定厚度的大气薄层内,这种现象称为电磁波的大气波导传播。低空大气波导的出现,可使电磁波以较小的损耗沿大气波导传播,所以会对通信系统和探测系统造成严重影响。大气波导对无线电波的影响主要表现在两个方面:一是增加传播的距离,二是增加电场强度。由于波导层使得无线电波来回不断反射,增加了其传播路径中的电场强度,从而使其能量衰减大大减缓,因此可使无线电波在波导层进行超长距离传播。大气波导传播示意图如图1所示。

图1 大气波导传播示意图 海南省海口市TD-LTE网络长期受大气波导干扰,主要受到来自广东湛江以及广西北海的TD-LTE网络F频段和D频段产生的时隙交叉干扰,大气波导干扰出现期间对用户业务感知严重恶化,具体情况如1所示。 表1 海口受干扰小区数量(红色字体表示受大气波导干扰小区数量) 3 、2.6GHz频段大气波导形成的条件 边界层大气中的电磁波若要形成波导传播必须满足4个基本条件。(1)近地层或边界层某一高度处必须存在大气波导。 (2)电磁波的波长必须小于最大陷获波长。

(3)电磁波发射源必须位于大气波导层内。对于抬升波导,有时电磁波发射源位于波导底下方时也可形成波导传播,但此时发射源必须距波导底不远,并且波导强度必须非常强。 (4)电磁波的发射仰角必须小于某一临界仰角。根据理论分析最容易受波导影响而形成波导传播的是分米波(电磁波长10~100cm,频率0.3~3GHz)和厘米波(电磁波长1~10cm,频率3~30GHz)。 如图2所示,目前中国移动使用5G网络的2.6GHz频段 2515~2615MHz正好和4G网络2.6GHz频段部分重叠,且属于易容易形成波导的频段。鉴于当前4G网络的2.6GHz频段受扰情况,未来大规模5G网络组网后不可避免的产生大气波导干扰。 图2 5G和LTE频段配置 4 、大气波导对5G网络干扰分析

矩形波导模式和场结构分析毕业设计论文

毕业设计(论文)题目:矩形波导模式和场结构分析

目录 第一章绪论 (1) 1.1 选题背景及意义 (3) 1.2 国内外研究概况及发展趋势 (3) 1.3 本课题研究目标及主要内容 (4) 1.4 本章小结 (6) 第二章矩形波导的基本原理 (7) 2.1 导波的一般分析 (7) 2.1.1规则矩形波导内的电磁波 (7) 2.1.2波导传输的一般特性 (8) 2.2 矩形波导的分析 (8) 2.2.1矩形波导电磁场解 (8) 2.2.2矩形波导中的波型及截止波长 (11) 2.3 本章小结 (12) 第三章矩形波导的设计 (13) 3.1 创建矩形波导模型 (13) 3.2 求解设置 (20) 3.3 设计检查和运行仿真 (22) 3.3.1设计检查 (22) 3.3.2运行仿真分析 (23) 3.4 本章小结 (24) 第四章HFSS仿真结果及其分析 (25) 4.1 HFSS软件仿真原理 .............................. 错误!未定义书签。 4.2 HFSS仿真实现 (26) 4.3 仿真结果分析 (32) 4.4 本章小结....................................... 错误!未定义书签。第五章小结与展望 .. (33) 5.1 工作总结 (33) 5.2 工作展望 (33) 参考文献 (33) 致谢 (35) 附录 A 常用贝塞尔函数公式错误!未定义书签。

矩形波导模式和场结构分析 第一章 绪论 1.1选题背景及意义 矩形波导(circular waveguide)简称为矩波导,是截面形状为矩形的长方形的金属管。若将同轴线的内导线抽走,则在一定条件下,由外导体所包围的矩形空间也能传输电磁能量,这就是矩形波导。矩波导加工方便,具有损耗小和双极化特性,常用于要求双极化模的天线的馈线中,也广泛用作各种谐振腔、波长计,是一种较常用的规则金属波导。 矩波导有两类传输模式,即TM 模和TE 模。其中主要有三种常用模式,分别是主模TE 11模、矩对称TM 01模、低损耗的TE 01模。在不同工作模式下,截止波长、传输特性以及场分布不尽相同,同时,各种工作模式的用途也不相同。导模的场描述了电磁波在波导中的传输状态,可以通过电力线的疏密来表示场得强与弱。 本毕业课题是分析矩形波导中存在的模式、各种模式的场结构和传播特性,着重讨论11TE 、01TE 和01TM 三个常用模式,并利用MATLAB 和三维高频电磁仿真软件HFSS 可视化波导中11TE 、01TE 和01TM 三种模式电场和磁场波结构。 1.2国内外研究概况及发展趋势 由于电磁场是以场的形态存在的物质,具有独特的研究方法,采取重叠的研究方法是其重要的特点,即只有理论分析、测量、计算机模拟的结果相互佐证,才可以认为是获得了正确可信的结论。时域有限差分法就是实现直接对电磁工程问题进行计算机模拟的基本方法。在近年的研究电磁问题中,许多学者对时域脉冲源的传播和响应进行了大量的研究,主要是描述物体在瞬态电磁源作用下的理论。另外,对于物体的电特性,理论上具有几乎所有的频率成分,但实际上,只有有限的频带内的频率成分在区主要作用。 英国物理学家汤姆逊(电子的发现者) 在1893 年发表了一本论述麦克斯韦电磁理论的书,肯定了矩金属壁管子(即矩波导) 传输电磁波的可实现性, 预言波长可与矩柱直径相比拟, 这就是微波。他预言的矩波导传输, 直到1936 年才实现。汤姆逊成为历史上第一位预言波导的科学家。这证明科学预言可以大大早于技术的发展, 同时也表明了应用数学的威力。英国物理学家瑞利在1897 年发表了论文, 讨论矩形截面和矩形截面“空柱”中的电磁振动, 它们对应后来的矩形波导和矩波导, 并引进了截止波长的概念。瑞利得到了矩形波导中主模的场方程组,这是雷达中最常用的模式,

实验二、 矩形波导TE10的仿真设计与电磁场分析

实验二、矩形波导TE 10的仿真设计与电磁场分析 一、实验目的: 1、 熟悉HFSS 软件的使用; 2、 掌握导波场分析和求解方法,矩形波导TE 10基本设计方法; 3、 利用HFSS 软件进行电磁场分析,掌握导模场结构和管壁电流结构规律和特点。 二、预习要求 1、 导波原理。 2、 矩形波导TE 10模式基本结构,及其基本电磁场分析和理论。 3、 HFSS 软件基本使用方法。 三、实验原理与参考电路 3.1导波原理 3.1.1. 规则金属管内电磁波 对由均匀填充介质的金属波导管建立如图1 所示坐标系, 设z 轴与波导的轴线相重合。由于波导的边界和尺寸沿轴向不变, 故称为规则金属波导。为了简化起见, 我们作如下假设: ① 波导管内填充的介质是均匀、 线性、 各向同性的; ② 波导管内无自由电荷和传导电流的存在; ③ 波导管内的场是时谐场。 图1 矩形波导结构 本节采用直角坐标系来分析,并假设波导是无限长的,且波是沿着z 方向无衰减地传输,由电磁场理论, 对无源自由空间电场E 和磁场H 满足以下矢量亥姆霍茨方程: 式中β为波导轴向的波数,E 0(x,y)和H 0(x,y)分别为电场和磁场的复振幅,它仅是坐标x 和y 的函数。 以电场为例子,将上式代入亥姆霍兹方程 ,并在直角坐标内展开,即有 2 2 2 2 2 2 2 2 2 2222 222 2 T c E E E E k E k E x y z E E E k E x y E k E β????+= + + +?????= + -+??=?+=式2 k c 表示电磁波在与传播方向相垂直的平面上的波数,如果导波沿z 方向传播,则 k 为自由空间中同频率的电磁波的波数。 由麦克斯韦方程组的两个旋度式,很易找到场的横向分量和纵向分量的关系式。具体过程从略,这里 00(,)(,)j z j z E E x y e H H x y e ββ--?=??=?? 式12 20E k E ?+=22 222 2 22T c E E E x y k k β ????=+???? ?=-?其中 式3 222 c x y k k k =+

大气波导与微波超视距雷达

以大气电离层为“反射镜”,工作于高频(High Frequency, HF) 波段的OTH-B 天波超视距雷达的典型探测半径可达1800 海里(e.g. MD 空军的AN/FPS-118),但天线阵体型过于庞大,尺度以千米计,无法安装于机动式武器-传感器平台(如水面战舰) 之上。

MD 海军AN/TPS-71 ROTHR (Relocatable Over-the-Horizon Radar) “可再部署型” 天波超视距雷达。 地波超视距雷达的典型探测半径为180 海里(绿色),庞大的HF 天线阵同样无法应用于水面战舰等空间紧的机动平台。由于工作波长达数十米,高频超视距雷达的分辨率相当糟糕,且很难捕捉到小尺寸目标(如反舰导弹)。

高频超视距雷达的性能缺陷十分明显,空中预警平台成本则高昂,数量有限,且要伴随舰队长时间远洋活动须获得大型CATOBAR 航母的支持,舰载微波超视距雷达的吸引力不言而喻。无线电波在大气中传播的速度接近,但不等于其在真空中的传播速度。随着大气温度,湿度,压强的变化,无线电波传播速度相应改变,大气对无线电波的折射率也就发生变化。接近地球表面的大气折射率为 1.000250 至 1.000400,变化幅度看似微小,却足以引起无线电传播路径的弯曲。通常情况下大气折射率随着海拔升高而逐渐降低,造成无线电传播路径向下方弯曲(见上图)。理想大气条件下这一折射作用的效果是使雷达地平线/水天线的距离比光学地平线/水天线高出约1/6,但如果某一高度区间大气的温度和/或湿度迅速变化,则可导致其无线电传播路径的弯曲度超过地球曲率,令雷达波束折向地面/水面方向,从而实现超视距探索。 n = 大气折射率,数值为光速/大气中的无线电传播速度 p = 干燥空气压强 T = 大气绝对温度 es = 大气中的水蒸气分压 通常所谓利用大气散射实现微波雷达超视距探测的说法实际上是错误的。由大气构成不均一导致的对流散射(下) 虽能够有效地扩展微波通讯的覆盖半径,却因反射信号强度大幅度下降且传播路径无法确定而难以用于雷达探测(被动电子侦察手段却可利用散射信号推算发射源方位,不过这也是十分耗时费力的工作)。真正的微波超视距雷达所依赖的,是由折射率迅速变化的气层提供的大气波导通道(上)。

LTE大气波导干扰缓解之特殊子帧配比回退方案外场测试规范 -

L T E大气波导干扰缓解之特殊子帧配比回退方案外场测试规范-V2(总7页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

LTE大气波导干扰缓解之特殊子帧配比回退方案外场测试规范(一阶段) 版本号:v1.0 44

目录 前言.............................................. 错误!未指定书签。 1. 范围............................................ 错误!未指定书签。 2.术语、定义和缩略语............................................................. 错误!未指定书签。 3.测试环境................................................................................. 错误!未指定书签。 3.1.测试环境................................................................... 错误!未指定书签。 3.2.配合测试设备........................................................... 错误!未指定书签。 4.测试用例................................................................................. 错误!未指定书签。 4.1.特殊子帧配比回退效果全网定性分析................... 错误!未指定书签。 4.2.特殊子帧配比回退效果局部定量分析................... 错误!未指定书签。 5.编制历史................................................................................. 错误!未指定书签。

47-5G中大气波导干扰

5G中大气波导干扰现象 本文有两个缩写名词,先熟悉下: RIM Remote Interference Management(远端干扰管理) IoT interference over thermal(热干扰) 什么是大气波导现象?英文是:atmospheric ducting phenomenon 在某些天气条件下,地球大气中较高高度的低密度会导致折射率降低,使信号向地球反射。在这种情况下,信号可以在高折射率层(即大气波导)中传播,因为反射和折射是在具有低折射率材料的边界处遇到的。在这种被称为大气管道的传播模型中,无线电信号的衰减较小,并且传播的距离远大于正常的辐射范围。这一现象通常发生在内陆地区的春夏过渡期、夏秋过渡期和沿海地区的冬季。大气波导现象通常影响的频率范围在0.3ghz-30ghz之间。 在上下行链路传输方向相同的TDD网络中,使用间隙(Gap)来避免交叉链路干扰。然而,当大气波导现象发生时,无线电信号可以传播较长的距离,传播延迟超过了间隙(Gap)。在这种情况下,如下图所示,攻击者基站的下行链路信号可以传播很长的距离并且干扰远离攻击者的受害者基站的上行链路信号。这种干扰在这里被称为“远程干扰”(Remote Interference)。攻击者(Aggressor)对受害者(Victim)的距离越远,受害者的上行链路符号将受到的影响越大。 图1: TDD-LTE远端干扰 在TDD-LTE网络中,特殊子帧中的GP只有3个OFDM符号,最大保护距离是64KM。超过这个距离,远端基站的下行就会落到本地基站的上行中,所以会导致远端干扰。 当发送大气波导现象时,受干扰基站的热噪声干扰呈“倾斜”现象,如下图:

大气波导对雷达的影响研究

C :国防科学 大气波导对雷达的影响研究 一、概述 海洋大气环境对舰载雷达、通信、电子侦察等设备有着显著的影响,其影响主要通过大气环境影响电磁波的传播而产生的,尤其是大气波导造成的电磁波异常传播对电子设备的影响尤为突出。自人类开始使用雷达时,电磁波的大气波导传播效应就已经被观测到了,早期一个著名的事例是在第二次世界大战中,位于印度孟买的一部频率为200 MHz 雷达能够发现1700英里外阿拉伯海域的目标回波(1951年6月)[1]。另一著名事例是2000年10月,俄罗斯苏-27飞机利用在美小鹰号航母上空出现的大气波导现象形成的电磁盲区孔,突防成功,对美小鹰号航母进行多次侦察拍照,而小鹰号航母编队中的警戒雷达由于大气折射作用产生的电磁盲区无法及时侦测到苏—27飞机[2]。所谓的大气波导现象是指:电磁波受大气折射的影响,传播轨迹发生弯曲,正常折射条件下电磁波在大气中是弯向地球的,当弯向地球的电磁波轨迹的曲率超过地球的曲率时,电磁波将部分陷获在地球和一定高度的大气层内传播,就如同电磁波在金属波导中传播一样。大气波导现象是普遍存在的自然现象,它的出现使部分电磁波被陷获在大气波导中,电磁波在波导内的传播衰减明显减小,从而使主动雷达探测范围和被动雷达截获范围明显增大,同时也造成了雷达测量误差的增加。研究大气波导对电子装备的影响及其在作战中的应用是非常必要的,尤其是在现代高技术条件下,各种杀伤破坏力极大的反舰导弹广泛装备舰艇,使得先敌发现、先机制敌、实施超视距作战成为各国海军争夺的焦点之一。而要实现舰载雷达的超视距探测,就需要充分研究和利用大气波导。 二、大气折射及大气波导 (一)大气折射 影响大气环境中的电磁波传播特性的主要大气因子是大气折射率。对频率在1—100GHz 范围内的电磁波,大气折射指数N 可表示为大气温度T (单位:K )、大气压力P (单位:hPa)和水汽压e (单位:hPa )的函数[3],其关系为: 25 1073.36.77T e T P N ?+= (1) 当电磁波传播距离很短时,可近似认为地球表面为平面,但若电磁波传播距离较长时,就必须考虑地球曲率的影响,此时,为了将地球表面处理成平面,通常使用进行了地球曲率订正大气修正折射指数M (单位:M ),其表达式如下: 610?+ =R Z N M (2) 式中R =6.371×106m 为平均地球半径,Z (单位:m)为地表以上的高度。对上式进行求导可 得 157.0+=dh dN dh dM (3)

干扰分析报告

干扰分析报告 一、干扰的种类 按照干扰产生的起因可以分为系统内干扰、系统间干扰和大气波导。 1、系统内干扰 LTE系统中无小区内干扰,只存在小区间干扰,主要原因有: (1)TD-LTE帧失步或者GPS失锁导致干扰; (2)越区覆盖、重叠覆盖造成的干扰; (3)数据配置错误造成的干扰等。 2、系统间干扰 系统间干扰可以分为阻塞干扰、杂散干扰、谐波干扰和互调干扰等类型,产生上述干扰的主要因素包括频率因素、设备因素和工程因素。系统间干扰产生的原因有: 3、大气波导 低空大气大气波导是一种特殊气候条件下形成的大气对电磁波折射的效应.远处基站的下行信号在近处基站的接收时隙被近处基站收到,干扰了近处基站上行接收,产生远距离同频干扰。 二、判断方法 1、干扰类型判断分析,一般以特殊子帧干扰电平差值并结合PRB干扰波形来判 断系统内干扰还是系统外干扰。特殊子帧位于子帧1和6上,包括DwPTS,GP,UpPTS三部分。

SF1及其前后子帧结构如下图所示: ◆若SF2-SF1差值>10dB,则判断为系统内干扰,疑似同步问题或 TDD干扰,再结合SF6和SF7差值分析,若两者规律一致,则为TD-LTE 系统内部干扰。 ◆若-1dB

矩形波导的设计讲解

矩形波导模式和场结构分析 第一章 绪论 1.1选题背景及意义 矩形波导(circular waveguide)简称为矩波导,是截面形状为矩形的长方形的金属管。若将同轴线的内导线抽走,则在一定条件下,由外导体所包围的矩形空间也能传输电磁能量,这就是矩形波导。矩波导加工方便,具有损耗小和双极化特性,常用于要求双极化模的天线的馈线中,也广泛用作各种谐振腔、波长计,是一种较常用的规则金属波导。 矩波导有两类传输模式,即TM 模和TE 模。其中主要有三种常用模式,分别是主模TE 11模、矩对称TM 01模、低损耗的TE 01模。在不同工作模式下,截止波长、传输特性以及场分布不尽相同,同时,各种工作模式的用途也不相同。导模的场描述了电磁波在波导中的传输状态,可以通过电力线的疏密来表示场得强与弱。 本毕业课题是分析矩形波导中存在的模式、各种模式的场结构和传播特性,着重讨论11TE 、01TE 和01TM 三个常用模式,并利用MATLAB 和三维高频电磁仿真软件HFSS 可视化波导中11TE 、01TE 和01TM 三种模式电场和磁场波结构。 1.2国内外研究概况及发展趋势 由于电磁场是以场的形态存在的物质,具有独特的研究方法,采取重叠的研究方法是其重要的特点,即只有理论分析、测量、计算机模拟的结果相互佐证,才可以认为是获得了正确可信的结论。时域有限差分法就是实现直接对电磁工程问题进行计算机模拟的基本方法。在近年的研究电磁问题中,许多学者对时域脉冲源的传播和响应进行了大量的研究,主要是描述物体在瞬态电磁源作用下的理论。另外,对于物体的电特性,理论上具有几乎所有的频率成分,但实际上,只有有限的频带内的频率成分在区主要作用。 英国物理学家汤姆逊(电子的发现者) 在1893 年发表了一本论述麦克斯韦电磁理论的书,肯定了矩金属壁管子(即矩波导) 传输电磁波的可实现性, 预言波长可与矩柱直径相比拟, 这就是微波。他预言的矩波导传输, 直到1936 年才实现。汤姆逊成为历史上第一位预言波导的科学家。这证明科学预言可以大大早于技术的发展, 同时也表明了应用数学的威力。英国物理学家瑞利在1897 年发表了论文, 讨论矩形截面和矩形截面“空柱”中的电磁振动, 它们对应后来的矩形波导和矩波导, 并引进了

大气波导新特性开通申请

大气波导特性开通验证 1.功能介绍 大气波导远端干扰抑制 低空大气波导效应下,电磁波如同在波导中传播一样,传播损耗很小,可以绕过地平面,实现超视距传输。当远处eNodeB达到一定的高度时,远处eNodeB的大功率下行信号可以产生远距离传输到达近处eNodeB。由于远距离传输时间超过上下行保护间隔,远处eNodeB的下行信号在近处eNodeB的接收时隙被近处eNodeB收到,从而干扰了近处eNodeB的上行接收,产生远端同频干扰,导致网络KPI下降。 eNodeB在一定周期内检测上行子帧每个PRB上的干扰噪声平均值,根据该平均值的大小,对上行功控策略、接入信令调度策略做相应调整,并对信道估计结果进行修正,以减小大气波导远端干扰对网络KPI的影响。 2.开通要求与影响 依赖特性 互斥特性

开通硬件要求 大气波导远端干扰抑制需要部署LBBPd或UBBPd,采用8T8R RRU L ICENSE要求 干扰检测与抑制开通影响 系统容量影响:同信道和邻信道干扰检测与识别需要在静默子帧上进行检测,5s静默1个上行子帧,上行业务吞吐率最大损失0.2%,对无线网络KPI无影响。 网络性能影响:大气波导远端干扰抑制可以减小大气波导远端干扰对网络KPI的影响。 3.开通背景 突发高干扰小区增多,高干扰小区占比指标考核变:(全天24小时PRB0-PRB99底噪平均值>-110dBm的小区数/180KHz的小区数。)。选取突发高干扰集中区域站点进行大气波导新特性的开通验证: 站点分布:(绿点代表出现突发干扰站点)

站点信息: 突发干扰.xl sx 4.开通流程 大气波导远端干扰抑制 1.执行MML命令MOD CELLALGOSWITCH,“规避干扰开关”选择 “UlInterfSuppressionSwitch(上行干扰抑制开关)”。 MOD CELLALGOSWITCH:LocalCellId=xxx,AvoidInterfSwitch=UlInterfSuppressionSwitch-1; 2.执行MML命令MOD ULINTERFSUPPRESSCFG,设置相关参数。 MOD ULINTERFSUPPRESSCFG:LocalCellId=xxx,StrongInfUserThdRatio=300, RemoteInfULEnhanceSw=RMT_INF_PUSCH_ENH_SW-1; 5.开通后评估 干扰指标:

大气波导传播模型及特性分析(精)

At mospheric Duct Propagation Model and Characteristic Anal ysis SUN Fang ZHAO Zhen-wei KANG Shi-feng WANG Hong-guang Abstract Key words n N h M d M u k k n a f F m g / ~i 一 /i 一 i + i+ 一 +i/+ +x 一 x i g i i + 装备环境工程 时延太大会引起比较明显的信号失真。分别选取 2 、 0O 、 20 3 km这个距离点计算时延和传播损耗随高度变化,结果如图、图 7所示

时延 /, 图 6 各距离点处时延随高度的变化 Fig.6 Time d lay di er nt p ints v rsus h ight 2种计算模型,可以有效地分析电磁波在不同的雷达系统参数、不同类型导中幅度特性和传播过程经过分析可知:大气导一方面可以使波在波导内实现超视距传播扩大位于波导内的探测、通信、电子对抗等电子系统的有效作用距离为远距离探测、预警和实现超视距作战提供条件另方面也产生了电磁盲区。电磁盲区限制了雷达系统对位于盲区内目标探测能力。对于防御者而言波导顶的盲区是其防御薄弱部位应积极采取措施进行补盲;对于进攻者而言,敌方电子系统盲区是隐蔽接敌、实施奇袭的最佳路径’ 另外波导在延伸了探测距离的同时其区域内的多径效应也有可能导致信号明显失真因此只有充分了解大气波导的各种传播特性才能更好地应用到实际不同的通信和探测系统中去,提高我军防卫体系的实战性能。 扳二玉东井轰垂鑫爵二 -,仲 20 km ---一 .1km 一一 100km 一一万们 km 图 7 各距离点处传播损耗随高度的变化 g 7 P pagat o s o d fe nt p0 s v r us e ght 从图中以看出在高度约 60-20 m 、距离约 50km 以外的盲区由于没有射线出现因此得不到时延的值,而这区域相同离处的传播损耗明显大于高度 60m 以下波导区域内的损耗另外波导内部多条射线的干涉也会引起信号的衰落从图中可以直观地看出于时延的不同导致传输损耗在波导内产生强烈的不规则起伏变化而且随着离的增加时延和损耗也呈增大趋势 4结论 抛物方程模型和射线追踪技术是目前国际上展得比较成熟的计算波导传播特性的方法。利用这参考文献

大气波导干扰定位与优化平台技术研究

72 2018年7月 第 7 期(第31卷 总第250期)月刊 2018年 第7期 电信工程技术与标准化 开发与研究 大气波导干扰定位与优化平台技术研究 陈涛,李行政,韩云波,张冬晨 (中国移动通信集团设计院有限公司,北京 100080) 摘 要 大气波导干扰为TDD系统特有的干扰类型,对网络性能造成非常恶劣的影响。本文研究开发了基于TD-LTE 系统特征序列定位的大气波导干扰定位与优化平台,可以快速定位大气波导干扰通路,确定网络中的重点干扰源基站,为精细化优化提供重要的支撑并介绍了平台原理、算法设计与软件结构,供相关工程技术人员参考。 关键词 大气波导;大气干扰定位与优化平台;TDD系统 中图分类号 TN918 文献标识码 A 文章编号 1008-5599(2018)07-0072-05 收稿日期:2017-11-30 1 大气波导对TD-LTE 系统的干扰 1.1 大气波导产生原理 大气波导效应是在一定的气象条件下,在大气边界层尤其是在近地层传播的电磁波,受大气折射的影响,其传播轨迹弯向地面,当折射曲率超过地球表面曲率时,电磁波部分会被陷获在一定厚度的大气薄层内,就像电磁波在金属波导管中传播一样,这种现象称为电磁波的大气波导传播。根据ITU-R P.452建议书中的描述,大气波导属异常(短期)干扰传播机理,在某些条件下信号传播损耗可近似等于自由空间损耗。 大气波导类型主要包括表面波导、蒸发波导与悬空波导。表面波导的一个显著特点是波导顶的大气修正折射指数小于地面的大气修正折射指数,一般发生在300 m 以下的边界层大气中,表面波导一般出现在大气较稳定的晴好天气里;蒸发波导是海洋大气环境中经常出现的一种特殊的表面波导,它是由于海面水汽蒸发使 得在海面上很小高度范围内的大气湿度随高度锐减而形成的;悬空波导是下边界悬空的大气波导,一般发生在3 000 m 高度以下的对流层低层大气中,它通常是由一个悬空陷获层叠加到一个悬空基础层之上而构成。移动通信系统受到的大气波导主要为表面波导或蒸发波导。1.2 TD-LTE 大气波导干扰问题与危害 TD-LTE 系统上下行同频,通过GP(保护间隔)来区分上下行信号,在存在大气波导效应时,远处基站下行信号在经历GP 的保护距离后仍有较强的功率(传播损耗较小),从而造成远距离同频干扰,如图1所示。 在TD-LTE 系统采用9:3:2的特殊子帧配置时,GP 占用3个OFDM 符号,对远端基站的信号传播保护距离为64 km ;在TD-LTE 系统采用3:9:2的特殊子帧配置时,GP 占用9个OFDM 符号,此时可以将信号传播保护距离为192 km,具体计算公式如(1)所示。 保护距离=光速×(GP 符号数/14)/1 000 000 (1)因此为了抑制TD-LTE 系统的大气波导干扰,最

相关主题
文本预览
相关文档 最新文档