当前位置:文档之家› 通信原理脉冲编码调制与PCM时分复用实验

通信原理脉冲编码调制与PCM时分复用实验

通信原理脉冲编码调制与PCM时分复用实验
通信原理脉冲编码调制与PCM时分复用实验

《通信原理》实验报告

实验四:脉冲编码调制解调实验实验五:两路PCM时分复用实验

系别:信息科学与技术系

专业班级:通信工程0901

学生姓名:郑洋

同组学生:马超

成绩:

指导教师:惠龙飞

(实验时间:2011年11 月25日)

华中科技大学武昌分校

一、实验目的

1、掌握脉冲编码调制与解调的原理。

2、掌握脉冲编码调制与解调系统的动态范围和频率特性的定义及测量方法。

3、了解脉冲编码调制信号的频谱特性。

4、了解大规模集成电路W681512的使用方法。

二、实验内容

1、观察脉冲编码调制与解调的结果,分析调制信号与基带信号之间的关系。

2、改变基带信号的幅度,观察脉冲编码调制与解调信号的信噪比的变化情况。

3、改变基带信号的频率,观察脉冲编码调制与解调信号幅度的变化情况。

4、改变位同步时钟,观测脉冲编码调制波形。

三、实验器材

1、信号源模块一块

2、②号模块一块

3、60M双踪示波器一台

4、连接线若干

四、实验原理

(一)基本原理

模拟信号进行抽样后,其抽样值还是随信号幅度连续变化的,当这些连续变化的抽样值通过有噪声的信道传输时,接收端就不能对所发送的抽样准确地估值。如果发送端用预先规定的有限个电平来表示抽样值,且电平间隔比干扰噪声大,则接收端将有可能对所发送的抽样准确地估值,从而有可能消除随机噪声的影响。

脉冲编码调制(PCM)简称为脉码调制,它是一种将模拟语音信号变换成数字信号的编码方式。脉码调制的过程如图5-1所示。

PCM主要包括抽样、量化与编码三个过程。抽样是把时间连续的模拟信号转换成时间离散、幅度连续的抽样信号;量化是把时间离散、幅度连续的抽样信号转换成时间离散、幅度离散的数字信号;编码是将量化后的信号编码形成一个二进制码组输出。国际标准化的PCM 码组(电话语音)是用八位码组代表一个抽样值。编码后的PCM码组,经数字信道传输,在接收端,用二进制码组重建模拟信号,在解调过程中,一般采用抽样保持电路。预滤波是为了把原始语音信号的频带限制在300Hz~3400Hz左右,所以预滤波会引入一定的频带失真。

在整个PCM系统中,重建信号的失真主要来源于量化以及信道传输误码。通常,用信号

与量化噪声的功率比,即信噪比S/N 来表示。国际电报电话咨询委员会(ITU-T )详细规定了它的指标,还规定比特率为64kbps ,使用A 律或μ律编码律。下面将详细介绍PCM 编码的整个过程,由于抽样原理已在前面实验中详细讨论过,故在此只讲述量化及编码的原理。

图5-1 PCM 调制原理框图

1、 量化

从数学上来看,量化就是把一个连续幅度值的无限数集合映射成一个离散幅度值的有限数集合。如图5-2所示,量化器Q 输出L 个量化值k y ,k=1,2,3,…,L 。k y 常称为重建电平或量化电平。当量化器输入信号幅度x 落在k x 与1+k x 之间时,量化器输出电平为k y 。这个量化过程可以表达为:

{}1(),1,2,3,,k k k y Q x Q x x x y k L +==<≤==

这里k x 称为分层电平或判决阈值。通常k k k x x -=?+1称为量化间隔。

图5-2 模拟信号的量化

2、 编码

所谓编码就是把量化后的信号变换成二进制码,其相反的过程称为译码。当然,这里的编码和译码与差错控制编码和译码是完全不同的,前者是属于信源编码的范畴。

在现有的编码方法中,若按编码的速度来分,大致可分为两大类:低速编码和高速编码。

通信中一般都采用第二类。编码器的种类大体上可以归结为三类:逐次比较型、折叠级联型、混合型。本实验模块中的编码芯片W681512采用的是逐次比较型。在逐次比较型编码方式中,无论采用几位码,一般均按极性码、段落码、段内码的顺序排列。

(二)实验电路说明

本实验采用大规模集成电路W681512对语音信号进行PCM编、解码。W681512是应用于语音、模拟转数字、数字转模拟的单通道CODEC。此语音CODEC以全差动输出功能来将噪音最小化。W681512可工作在256KHz、512kHz、1536kHz、1544kHz、2048kHz、2560kHz 和4096kHz。这里选择编码速率为2.048MHz,每一时隙数据为8位,帧同步信号为8KHz。模拟信号在编码电路中,经过抽样、量化、编码,最后得到PCM编码信号。在单路编译码器中,经变换后的PCM码是在一个时隙中被发送出去的,在其他的时隙中编译码器是没有输出的,即对一个单路编译码器来说,它在一个PCM帧(32个时隙)里,只在一个特定的时隙中发送编码信号。同样,译码电路也只是在一个特定的时隙(此时隙应与发送时隙相同,否则接收不到PCM编码信号)里才从外部接收PCM编码信号,然后进行译码,经过带通滤波器、放大器后输出。

五、实验步骤

1、将信号源模块和模块2固定在主机箱上,将黑色塑封螺钉拧紧,确保电源接触良好。

2、插上电源线,打开主机箱右侧的交流开关,将信号源模块和模块2的电源开关拨下,

观察指示灯是否点亮,红灯为+5V电源指示灯,绿灯为-12V电源指示灯,黄色为+12V 电源指示灯。(注意,此处只是验证通电是否成功,在实验中均是先连线,再打开电源做实验,不要带电连线)。

3、观测PCM编码波形。

1)用示波器测量信号源板上“2K同步正弦波”点,调节信号源板上手调电位器W1使

输出信号峰-峰值在1V左右。

2)将信号源板上S4设CLK1为0111(时钟速率为256K),S5设CLK2为0100(时钟速

率为2.048M)。K1、K2设为A律。

3)关闭系统电源,进行如下连接:

检查连线是否正确,检查无误后打开电源

4)用示波器观测并记录编码各测试点SIN IN-A、CLK1/BSK、CLK2/MCLK、FS/FSXA

图4-1 2K同步正弦波(SIN IN-A)

图4-2 256K位同步信号(CLK1)

图4-3 2.048M主时钟(CLK2)

5)观察帧同步信号与编码信号的关系。CH1接FS信号做示波器的触发源,CH2接PCMOUT-A波形。

图4-4 8KHZ帧同步信号

(CH1是8KHZ帧同步信号,CH2是PCM编码信号)

波形分析:CH1是8KHZ帧同步信号,CH2是PCM编码信号,由图知,编码信号在帧同步信号之后,这是因为单路编译码器在一个PCM帧(32个时隙)里,只在一

个特定的时隙发送编码信号,而每一个时隙数据为8位,每一位即为1bit,这

1bit的宽度由时钟来定义,这8位(8bit)即为编码信号。在编码信号的波形

中,可以看出编码的最后一位不是完整的矩形波,是因为实际规定编码位数为

7位半,还有半个位是用来信号的抖动容差。编码就是把量化后的信号变成二

进制码。本实验的编码规则采用的是逐次比较型,它按极性码、段落码、段内

码的顺序排列。用8位码表示输入信号的抽样量化值,则第一位表示量化值,其

余七位表示它的绝对大小。此实验中,样值为2K正弦波信号,用8K帧同步

信号传送编码,则用4帧就可以传完。

4、观测PCM译码波形

CH1接SIN IN-A信号做示波器的触发源,CH2接SIN OUT-A波形。观察译码信号与原信号的关系。

图4-5 提取的256K位同步信号

(CH1是提取的256K同步信号,CH2是2K同步正弦波)

图4-6 PCM译码波形

(CH1是原始信号,CH2是译码恢复信号)

波形分析:译码电路也只是在一个特定的时隙(此时隙应与发送时隙相同,否则接收不到PCM编码信号)里才从外部接收PCM编码信号,然后按照编码的规则进行译码。

由图可知,原始信号与解调信号波形一致,但是有相位差,这是因为内部电路中

存在电容等器件。上下波形幅值波形一致。由图形知,PCM编解码系统没有产生

失真,这是因为抽样频率大于样值信号最高频率的两倍,满足抽样定理,故不会

失真。

六、实验总结

通过这次实验,我终于把PCM编码译码的过程弄懂了,知道了模拟信号经过抽样,量化,编码转化成数字信号的波形变化过程。然后通过自己对波形分析,实验原理的分析,深入的了解了编译码的本质。解开了我上通信原理课程时的许多疑问,让我受益匪浅。

一、实验目的

1、掌握时分复用的概念。

2、了解时分复用的构成及工作原理。

3、了解时分复用的优点与缺点。

4、了解时分复用在整个通信系统中的作用。

二、实验内容

对两路模拟信号进行PCM编码,然后进行复用,观察复用后的信号。

三、实验器材

1、信号源模块一块

2、②号模块一块

3、⑧号模块一块

4、60M双踪示波器一台

5、连接线若干

四、实验原理

在数字通信中,PCM、 M、ADPCM或者其它模拟信号的数字化,一般都采用时分复用方式来提高信道的传输效率。所谓复用就是多路信号(语音、数据或图像信号)利用同一个信道进行独立的传输。时分复用(TDM)的主要特点是利用不同时隙来传递各路不同信号,时分复用是建立在抽样定理基础上的,因为抽样定理是连续(模拟)的基带信号有可能在被时间上离散出现的抽样脉冲所代替。这样,当抽样脉冲占据较短时间时,在抽样脉冲之间就留出了时间空隙。利用这些空隙便可以传输其他信号的抽样值,因此,就可能用一条信道同时传送若干个基带信号,并且每一个抽样值占用的时间越短,能够传输的路数也就越多。

TDM的方法有两个突出的优点:

(1)多路信号的汇合与分路都是数字电路,比FDM的模拟滤波器分路简单、可靠。

(2)信道的非线性会在FDM系统中产生交调失真与高次谐波,引起路际串话,因此,对信道的非线性失真要求很高;而TDM系统的非线性失真要求可降低。

然而,TDM对信道中时钟相位抖动及接收端与发送端的时钟同步问题则提出了较高要求。所谓同步是指接收端能正确地从数据流中识别各路序号。为此,必须在每帧内加上标志信号(称为帧同步信号)。它可以是一组特定的码组,可以是特定宽度的脉冲。在实际通信系统中还必须传送命令以建立通信连接,如传送电话通信中的占线、摘机与挂机信号以及振铃信号等命令。上述所有信号都是时间分割,按某种固定方式排列起来,称为帧结构。

采用TDM制的数字通信系统,在国际上已逐步建立起标准。原则上是先把一定路数电话语音复合成一个标准数据流(称为基群),然后再把基群数据流采用同步或准同步数字复接技术,汇合成更高速的数据信号,复接后的序列中按传输速率不同,分别成为一次群、二次群、三次群、四次群等等。

图20-1两个信号的时分复用

1、时分复用原理

我国使用的PCM系统,规定采用PCM30/32路的帧结构,如图20-2所示。

偶帧

奇帧

图20-2 PCM基群帧结构

抽样频率f s为8kHz,所以帧长度T s=1/8 kHz=125 s。一帧分为32个时隙,其中30个时隙供30个用户(即30路话)使用,即TS1~TS15和TS17~TS31为用户时隙。因为采用的是13折线A律编码,因此所有的时隙都是采用8位二进制码。TS0是帧同步时隙,TS16是信令时隙。帧同步码组成为*0011011,它是在偶数帧中TS0的固定码组,接收端根据此码组建立正确的路序,即实现帧同步。其中的第一位码元“*”供国际间通信用。奇数帧中TS0不作为帧同步用,供其他用途。TS16用来传送话路信令。话路信令有两种:一种是共路信令,另一种是随路信令。若将总比特率为64kbps的各TS16统一起来使用,称为共路信令传输,这里必须将16个帧构成一个更大的帧,称之为复帧。若将TS16按时间顺序分配给各个话路,直接传送各话路的信令,称之随路信令传送。此时每个信令占4bit,即每个TS16含两路信令。根据以上帧结构,我们不难看到,PCM30/32系统传码率为

f×n×N=8000×32×8=2.048Mbps

R BP =

s

f为抽样率,n为一帧中所含时隙数,N为一个时隙中所含码元数

式中

s

因为码元是二进制,所以该系统传信率R bP=2.048Mbps。在本实验中通过FPGA产生的帧同步信号FS1和FS_SEL来使两个W681512其编码产生的数据分别在3时隙和可选时隙。其中FS_SEL是由拨码开关来选择27个时隙,十位由一个两位的拨码开关选择,个位由一个四位的拨码开关选择。

拨码开关拨ON为“1”,拨OFF为“0”拨码开关所对应的时隙如下表:

注:16

五、实验步骤

1、将信号源模块和模块

2、8固定在主机箱上。双踪示波器,设置CH1通道为同步源。

2、将信号源模块上S4拨为“0100”,S5也拨为“0100”。

3、在电源关闭的状态下,按照下表完成实验连线:

4、打开电源,观察时钟、2K同步信源和A路固定时隙的PCM编码信号(为了便于比较

时隙位置,A路帧同步信号FS3不可改变)。

图5-1 2.048M系统主时钟

(CH1是A路2.048M主时钟,CH2是B路2.048M主时钟)

图5-2 2K同步信源

(CH1是A路2K同步信源,CH2是B路2K同步信源)

图5-3 A路TS3时隙的PCM编码信号

(CH1是A路帧同步信号,CH2是A路PCM编码信号)

5、观察B路随时隙变化的编码信号,按指导书38页表的内容设置B路可变帧同步脉冲

FS_SEL,将模块8上的拨码开关S1,S2分别设置为S1S2=00 0100(TS4)、S1S2=01 0000(TS10)、S1S2=10 0000(TS20)。

图5-4 TS4时隙的B路PCM编码信号

(CH1是0时隙帧同步信号,CH2是TS4时隙的PCM编码信号)

图5-5 TS10时隙的B路PCM编码信号

(CH1是0时隙帧同步信号,CH2是TS10时隙的PCM编码信号)

图5-6 TS20时隙的B路PCM编码信号

(CH1是0时隙帧同步信号,CH2是TS20时隙的PCM编码信号)

波形分析:单路编译码器在一个PCM帧(32个时隙)里,只在一个特定的时隙发送编码信号。这三张图的形成是在样值一定的情况下,选择4、10、20时隙传送时得到的

编码信号。这三张图的差别是在不同的时隙下传送编码信号,编码信号离帧同步

信号越来越远。帧同步信号标志着一个帧的开始,一个帧分为32个时隙,所以改

变时隙后,编码信号会离帧同步信号越来越远。

6、观察编码信号的复用,S1,S2可按指导书列表自己选择设置,CH1接FS0(帧同步码所在0时隙的帧同步信号),CH2接FJOUT(复接信号输出)。

图5-7 PCM的时分复用

(CH1是FS0帧同步信号,CH2是复接PCM编码信号)

波形分析:该实验选择的时隙位置为10时隙。时分复用(TDM)是利用不同时隙来传递各路不同信号,时分复用是建立在抽样定理基础上的,因为抽样定理是连续(模拟)

的基带信号有可能在被时间上离散出现的抽样脉冲所代替。这样,当抽样脉冲占

据较短时间时,在抽样脉冲之间就留出了时间空隙。利用这些空隙便可以传输其

他信号的抽样值,因此,就可能用一条信道同时传送若干个基带信号,并且每一个

抽样值占用的时间越短,能够传输的路数也就越多。该实验抽样频率f s为8kHz,

所以帧长度T s=1/8 kHz=125 s。一帧分为32个时隙,其中30个时隙供30个用

户(即30路话)使用,即TS1~TS15和TS17~TS31为用户时隙。TS0是帧同步

时隙,TS16是信令时隙。

7、实验结束关闭电源。

六、实验总结

通过这次实验,我知道了多路复用的原理,本实验就是利用这个原理将三路信号复用到一路上。这个原理在通信行业有非常大的作用。特别是帧分成的时隙,可以用来几路话使用。

通信原理实验报告

通信原理实验报告

作者: 日期:

通信原理实验报告 实验名称:实验一—数字基带传输系统的—MATLAB方真 实验二模拟信号幅度调制仿真实验班级:10通信工程三班_________ 学号:2010550920 ________________ 姓名:彭龙龙______________

指导老师:王仕果______________

实验一数字基带传输系统的MATLA仿真 一、实验目的 1、熟悉和掌握常用的用于通信原理时域仿真分析的MATLAB函数; 2、掌握连续时间和离散时间信号的MATLAB产生; 3、牢固掌握冲激函数和阶跃函数等函数的概念,掌握卷积表达式及其物理意义,掌握卷积的计算方法、卷积的基本性质; 4、掌握利用MATLAB计算卷积的编程方法,并利用所编写的MATLAB程序验证卷积的常用基本性质; 5、掌握MATLAB描述通信系统中不同波形的常用方法及有关函数,并学会利用MATLAB求解系统功率谱,绘制相应曲线。 基本要求:掌握用MATLAB描述连续时间信号和离散时间信号的方法,能够编写 MATLAB程序,实现各种常用信号的MATLA实现,并且以图形的方式再现各种信号的波形。 二、实验内容 1、编写MATLAB程序产生离散随机信号 2、编写MATLAB程序生成连续时间信号 3、编写MATLAB程序实现常见特殊信号 三、实验原理 从通信的角度来看,通信的过程就是消息的交换和传递的过程。而从数学的角度来看,信息从一地传送到另一地的整个过程或者各个环节不外乎是一些码或信号的交换过程。例如信源压缩编码、纠错编码、AMI编码、扰码等属于码层次上的变换,而基带成形、滤波、调 制等则是信号层坎上的处理。码的变换是易于用软件来仿真的。要仿真信号的变换,必须解 决信号与信号系统在软件中表示的问题。 3.1信号及系统在计算机中的表示 3.1.1时域取样及频域取样 一般来说,任意信号s(t)是定义在时间区间(-R, +R)上的连续函数,但所有计算机的CPU都只能按指令周期离散运行,同时计算机也不能处理( -R, + R)这样一个时间段。 为此将把s(t)按区间T, T截短为 2 2 S T(t),再对S T(t)按时间间隔△ t均匀取样,得到取样 点数为: 仿真时用这个样值集合来表示信号 T Nt t s(t)。显然△ t反映了仿真系统对信号波形的分辨 率, (3-1) △ t越小则仿真的精确度越高。据通信原理所学,信号被取样以后,对应的频谱时频率的周期函数,其重复周期是—。如果信号的最高频率为f H,那么必须有f H W 丄才能保证不发 t 2 t 生频域混叠失真。设 1 B s 2 t 则称B s为仿真系统的系统带宽。如果在仿真程序中设定的采样间隔是△ (3-2) t,那么不能用

移动通信原理课程设计-实验报告-

电子科技大学 通信抗干扰技术国家级重点实验室 实验报告 课程名称移动通信原理 实验内容无线信道特性分析; BPSK/QPSK通信链路搭建与误码性能分析; SIMO系统性能仿真分析 课程教师胡苏 成员姓名成员学号成员分工 独立完成必做题第二题,参与选做题SIMO仿 真中的最大比值合并模型设计 参与选做题SIMO仿真中的 等增益合并模型设计 独立完成必做题第一题 参与选做题SIMO仿真中的 选择合并模型设计

1,必做题目 1.1无线信道特性分析 1.1.1实验目的 1)了解无线信道各种衰落特性; 2)掌握各种描述无线信道特性参数的物理意义; 3)利用MATLAB中的仿真工具模拟无线信道的衰落特性。 1.1.2实验内容 1)基于simulink搭建一个QPSK发送链路,QPSK调制信号经过了瑞利衰 落信道,观察信号经过衰落前后的星座图,观察信道特性。仿真参数:信源比特速率为500kbps,多径相对时延为[0 4e-06 8e-06 1.2e-05]秒,相对平均功率为[0 -3 -6 -9]dB,最大多普勒频移为200Hz。例如信道设置如下图所示:

1.1.3实验仿真 (1)实验框图 (2)图表及说明 图一:Before Rayleigh Fading1 #上图为QPSK相位图,由图可以看出2比特码元有四种。

图二:After Rayleigh Fading #从上图可以看出,信号通过瑞利信道后,满足瑞利分布,相位和幅度发生随机变化,所以图三中的相位不是集中在四点,而是在四个点附近随机分布。 图三:Impulse Response #从冲激响应的图可以看出相位在时间上发生了偏移。

通信原理实验报告模拟调制

通信原理实验报告 HUNAN UNIVERSITY 实验报告 题目第五章数字基带传输 学生姓名谢琰 学生学号20110808223 指导老师肖玲

1.实验目的 通过使用MATLAB软件模拟模拟调制的过程使我们加深对几种模拟调制机制的原理和过程过程的理解。 在数字通信系统中,需要将输入的数字序列映射为信号波形在信道中传输,此时信源输出数字序列,经过信号映射后成为适于信道传输的数字调制信号。数字序列中每个数字产生的时间间隔称为码元间隔,单位时间内产生的符号数称为符号速率,它反映了数字符号产生的快慢速度。由于数字符号是按码元间隔不断产生的,经过数字符号--映射为向银行的信号波形后,就形成了数字调制信号。根据映射后信号的频谱特性,可以分成基带信号和频带信号。 通常基带信号指信号的频谱为低通型,而频带信号为带通型。 2实验内容 脚本文件T2F.m定义了函数T2F.m,计算信号的傅里叶变换。 %T2F function [f,sf]=T2F(t,st) %This is a function using the FFT function to calculate a signal's Fourier %Translation %Input is th etime and the signal vectors,the length of time must greater %than 2 %Output is the frequence and the sihnal spectrum dt=t(2)-t(1); T=t(end);

df=1/T; N=length(st); f=-N/2*df:df:N/2*df-df; sf=fft(st); sf=T/N*fftshift(sf); 脚本文件F2T.m定义了函数F2T.m,计算信号的反傅里叶变换。 %F2T function [t,st]=F2T(f,sf) %Ths is function calculate the time signal using lfft function for the input %signal's spectrum df=f(2)-f(1); Fmx=(f(end)-f(1)+df); dt=1/Fmx; N=length(sf); T=dt*N; %-T/2:dt:T/2-dt; t=0:dt:T-dt; sff=ifftshift(sf); st=Fmx*ifft(sff); %st=real(st);

通信原理之PCM编解码

重庆交通大学信息科学与工程学院综合性设计性实验报告 专业班级: 姓名 学号: 实验所属课程:通信原理 实验室(中心):语音八楼 指导教师: 实验完成时间:2013 年1月1日

教师评阅意见: 签名:年月日实验成绩: 一、设计题目 基于MATLAB的通信系统仿真——信源编解码 二、实验目的: 1.综合应用《Matlab编程与系统仿真》、《信号与系统》、《现代通信原理》等多门课程知识,使我们建立通信系统的整体概念; 2.培养我们系统设计与系统开发的思想; 3.培养我们利用软件进行通信仿真的能力。 4.培养我发现问题,解决问题,查阅资料解决问题的能力。 5、培养我熟练掌握MATLAB,运用此matlab软件工具进行通信仿真的能力 三、实验设备及软件: PC机一台,MATBLAB。 四、实验主要内容及要求: 1、对通信系统有整体的较深入的理解,深入理解自己仿真部分的原理的基础,画出对应的通信子 系统的原理框图 2、提出仿真方案; 3、完成仿真软件的编制 4、仿真软件的演示 5、提交详细的设计报告 五、实验原理 1、PCM基本原理 脉冲编码调制(PCM)简称脉码调制,它是一种用二进制数字代码来代替连续信号的抽样值,从而实现通信的方式。因此此种通信方式抗干扰能力强,因此在很多领域都得到了广泛运用。PCM信号的形

成主要由三大步骤组成,包括:抽样、量化和编码。它们分别完成时间上离散、幅度上离散及量化信号的二进制表示。量化分为均匀量化和非均匀量化,为了减小小信号的量化误差,我们常使用的是非均匀量化。非均匀量化分为A 律和μ律。我国采用的是A 律,但由于A 律不好实现,所以我们常用近似的13折线编码。 1.1抽样 抽样即是将时间连续的模拟信号由一系列时间离散的样值所取代的过程它实现的是信号在时间上的离散化。抽样信号要想无失真的恢复出原信号,抽样频率必须要满足抽样定理。即:如果信号的最高频率为f H ,那么抽样频率fs 必须要满足fs>=2f H . 1.2量化 经过抽样后的信号还并不是数字信号,它只实现了时间上的离散化。幅值上并不离散。所以我们要对信号进行量化,实现其幅值的离散化。量化分为均匀量化和非均匀量化。本实验主要用到了非均匀量化中的A 律13折线压缩。下面主要介绍A 律13折线。 A 律压缩是指压缩器具有如下的压缩特性: 由于A 律在工程上不好实现,所以我们经常用近似的13折线压缩法去代替A 率压缩 下面是13折线时的X 值与A 律计算得的X 的比较 第二行的X 值是根据A=87.6时计算得到的,第三行的X 值是13折线分段时的值。可见,13折线各段 ??? ? ?? ?≤≤++≤+=11)],ln(1[ln 1)sgn(1 ),(ln 1V x A V Ax A x A V x V x A A Z 20 2-1 2-2 2-3 2-4 2-5 2-6 2-7 0 X 近 似值 1 0 x 准 确值 1 7/8 6/8 5/8 4/8 3/8 2/8 1/8 0 z 128 1 60.6 130.6 115.4 17.79 1 3.93 1 1.98 10.25 0.5 1 2 4 8 16 16 斜率 8 7 6 5 4 3 2 1 段号

通信原理2DPSK调制与解调实验报告

通信原理课程设计报告

一. 2DPSK基本原理 1.2DPSK信号原理 2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,Φ=π表示1码。则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图2.1所示。 图1.1 2DPSK信号 在这种绝对移相方式中,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。如果基准相位发生变化,则在接收端回复的信号将与发送的数字信息完全相反。所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。 定义?Φ为本码元初相与前一码元初相之差,假设: ?Φ=0→数字信息“0”; ?Φ=π→数字信息“1”。 则数字信息序列与2DPSK信号的码元相位关系可举例表示如下: 数字信息: 1 0 1 1 0 1 1 1 0 1

DPSK信号相位:0 π π 0 π π 0 π 0 0 π 或:π 0 0 π 0 0 π 0 π π 0 2. 2DPSK信号的调制原理 一般来说,2DPSK信号有两种调试方法,即模拟调制法和键控法。2DPSK 信号的的模拟调制法框图如图1.2.1所示,其中码变换的过程为将输入的单极性不归零码转换为双极性不归零码。 图1.2.1 模拟调制法 2DPSK信号的的键控调制法框图如图1.2.2所示,其中码变换的过程为将输入的基带信号差分,即变为它的相对码。选相开关作用为当输入为数字信息“0”时接相位0,当输入数字信息为“1”时接pi。 图1.2.2 键控法调制原理图 码变换相乘 载波 s(t)e o(t)

通信原理实验模拟调制系统(AM,FM)实现方法

实验一模拟调制系统(AM,FM)实现方法一、实验目的 实现各种调制与解调方式的有关运算 二、实验内容 对DSB,抑制载波的双边带、SSB,FM等调制方式下调制前后的信号波形及频谱进行观察。要求用system view 或Matlab中的基本工具组建各种调制解调系统,观察信号频谱。 三、实验原理 AM: 1)标准调幅就是常规双边带调制,简称调幅(AM)。将调制信号m(t)与一个直流分量A叠加后与载波相乘可形成调幅信号。AM信号的的频谱由载频分量、上边带、下边带组成。上边带的频谱结构与原调制信号的频谱结构相同,下边带是上边带的镜像。 2)DSB。若在AM调制模型中将A0去掉,即得到双边带信号(DSB)。与AM信号比较,因为不存在载波分量。 3)SSB。单边带调制(SSB)是将双边带信号中的一个边带滤掉而形成的。产生SSB信号的方法有:滤波法和相移法。SSB调制包括上边带调制和下边带调制。 解调: 解调是调制的逆过程,其作用是从接受的已调信号中恢复调制信号。解调的方法可分为两类:相干解调和非相干解调(包络检波)。 1)相干解调。解调与调制的实质一样,均是频谱搬移。即把在载频

位置的已调信号的浦搬回到原始基带位置。 2)包络检波。包络检波器就是直接从已调信号的幅度中提取预案调制信号。 FM: 调制中,若载频的频率随调制信号变化,称为频率调制或调频(FM)。调频信号的产生方法有两种:直接调频和间接调频。 1)直接调频。用调制信号直接控制载波振荡器的频率,使其按调制信号的规律线性变化。 2)间接调频。先将调制信号积分,然后对载波进行调相,即可产生一个NBFM信号,再经n次频倍器得到WBFM信号。 解调: 调频信号的解调也分为相干解调和非相干解调。相干解调仅适用于NBFM信号,而非相干解调对于NBFM和WBFM信号均适用。 四、实验内容 (一)标准调幅信号 实验代码: f=5; T=1/f; fc=500; A=1.5; ts=0.001; fs=1/ts; t=0:ts:2*T; mt=cos(2*pi*f*t)+cos(2*pi*2*f*t);%调制信号 ft=cos(2*pi*fc*t);%载波 yt=(mt+A).*ft;%调幅信号 N=2*T/ts;%设置抽样点数

北邮通信原理软件实验报告XXXX27页

通信原理软件实验报告 学院:信息与通信工程学院 班级: 一、通信原理Matlab仿真实验 实验八 一、实验内容 假设基带信号为m(t)=sin(2000*pi*t)+2cos(1000*pi*t),载波频率为20kHz,请仿真出AM、DSB-SC、SSB信号,观察已调信号的波形和频谱。 二、实验原理 1、具有离散大载波的双边带幅度调制信号AM 该幅度调制是由DSB-SC AM信号加上离散的大载波分量得到,其表达式及时间波形图为: 应当注意的是,m(t)的绝对值必须小于等于1,否则会出现下图的过调制: AM信号的频谱特性如下图所示: 由图可以发现,AM信号的频谱是双边带抑制载波调幅信号的频谱加上离散的大载波分量。 2、双边带抑制载波调幅(DSB—SC AM)信号的产生 双边带抑制载波调幅信号s(t)是利用均值为0的模拟基带信号m(t)和正弦载波 c(t)相乘得到,如图所示: m(t)和正弦载波s(t)的信号波形如图所示:

若调制信号m(t)是确定的,其相应的傅立叶频谱为M(f),载波信号c(t)的傅立叶频谱是C(f),调制信号s(t)的傅立叶频谱S(f)由M(f)和C(f)相卷积得到,因此经过调制之后,基带信号的频谱被搬移到了载频fc处,若模拟基带信号带宽为W,则调制信号带宽为2W,并且频谱中不含有离散的载频分量,只是由于模拟基带信号的频谱成分中不含离散的直流分量。 3、单边带条幅SSB信号 双边带抑制载波调幅信号要求信道带宽B=2W, 其中W是模拟基带信号带宽。从信息论关点开看,此双边带是有剩余度的,因而只要利用双边带中的任一边带来传输,仍能在接收机解调出原基带信号,这样可减少传送已调信号的信道带宽。 单边带条幅SSB AM信号的其表达式: 或 其频谱图为: 三、仿真设计 1、流程图:

移动通信原理的实验报告范文

移动通信原理的实验报告范文 一、实验目的 1、掌握用数字环提取位同步信号的原理及对信息代码的要求。 2、掌握位同步器的同步建立时间、同步保持时间、位同步信号同步抖动等概念。 二、实验内容 1、观察数字环的失锁状态和锁定状态。 2、观察数字环锁定状态下位同步信号的相位抖动现象及相位抖动大小与固有频差的关系。 3、观察数字环位同步器的同步保持时间与固有频差之间的关系。 三、实验器材 1、移动通信原理实验箱 2、20M双踪示波器 一台一台 四、实验步骤 1、安装好发射天线和接收天线。 2、插上电源线,打开主机箱右侧的交流开关,再按下开关POWER301、POWER302、POWER401和POWER402,对应的发光二极管LED301、LED302、LED401和LED402发光,CDMA系统的发射机和接收机均开始工作。

3、发射机拨位开关“信码速率”、“扩频码速率”、“扩频”均拨下,“编码”拨上,接收机拨位开关“信码速率”、“扩频码速率”、“跟踪”均拨下,“调制信号输入”和“解码”拨上。此时系统的信码速率为1Kbit/s,扩频码速率为 100Kbit/s。将“第一路”连接,“第二路”断开,这时发射机发射的是第一路信号。将拨码开关“GOLD3置位”拨为与“GOLD1置位”一致。 4、根据实验四中步骤8~11的方法,调节“捕获”和“跟踪”旋钮,使接收机与发送机GOLD码完全一致。 5、根据实验五中步骤6~7的方法,调节“频率调节”旋钮,恢复出相干载波。 6、用示波器双踪同时观察“整形前”和“整形电平”,并将双通道置于直流耦合,零电平、电压设为一致。调节“整形”旋钮,使整形电平置于“整形前”波形上部凸出部分。用示波器观察“整形后”的波形,并与“整形前”比较,如完全相同,则整形电平调节正确。 7、用示波器观察接收机“BS”信号,该点即为接收机恢复出的位同步信号,将其与发射机的“S1-BS”进行比较。 8、改变系统的信码速率,按“发射机复位”和“接收机复位”键,通过与发射机的“S1-BS”对比观察“BS”信号的变化。 9、将“第一路”断开,再连接,通过与发射机的“S1-BS”对比观察接收机“BS”信号的变化。

通信原理实验报告

AM调制和解调的仿真原理:1)AM调制的原理是,发射信号的一侧将信号加到高频振荡上,然后通过天线发射出去。在此,高频振荡波是载波信号,也称为载波。调幅是通过调制信号来控制高频载波的幅度,直到其随调制信号线性变化。在线性调制系列中,第一幅度调制是全幅度调制或常规幅度调制,称为am。在频域中,调制频谱是基带调制信号频谱的线性位移;在时域中,调制包络与调制信号波形具有线性关系。设正弦载波为:C(T)= ACOS (WCT +φ0),其中a为载波幅度;WC是载波角频率;φ0是载波的初始相位(通常假设φ0 = 0)。调制信号(基带信号)为m(T)。根据调制的定义,幅度调制信号(调制信号)通常可以表示为:如果调制信号M(T)的频谱为m(W),则SM(T)= am(T)cos(WCT),则调制信号的频谱SM(T):SM(W)= a [M(W + WC)+ m(w﹥6 ﹣1wc)] /22。从高频调制信号中恢复调制信号的过程称为解调。)也称为检测。对于幅度调制信号,解调是从幅度变化中提取调制信号的过程。解调是调制的逆过程。产品类型的同步检波器可用于解调振幅。可以将调制信号与本地恢复载波信号相乘,并且可以通过低通滤波来获得解调信号。下图显示了AM解调的原理:原理图和仿真结果:参数设置:正弦波WAVE1和正弦波WAVE2

模块分别在发送器和接收器处生成载波信号,并且角频率ωC设置为60 rad / s,并且调幅系数为1;调制信号M(T)由正弦波模块产生,为正弦波信号,角频率为5rad / s,幅度为1V。直流分量A0恒定。低通滤波器模块的截止频率设置为6rad / s。承运人:sin60t;调制信号:sin(5T)sin(60t)2 2. B DSB调制和解调模拟调制原理:在幅度调制的一般模型中,如果滤波器是全通网络(= 1),则滤波器中没有DC分量。调制信号,则输出调制信号是没有载波分量(DSB)的双边带调制信号。当源信号的极性改变时,调制信号的相位将突然改变π。SDSB (T)= m(T)coswct调制的目的是将调制信号的频谱移动到所需位置,从而提高系统信息传输的有效性和可靠性。DSB调制原理的框图如图4-3所示:图1:DSB信号本质上是基带信号和载波的乘法,而卷积在频域中。表达式为:调制后,s DSB(W)= [M(W + WC)+ m (W?6?1 WC)] / 2(1),已调制信号的带宽变为原始基带信号带宽的两倍:模拟基带信号的带宽为W。则调制信号的带宽为2W;(2)在调制信号中没有离散的载波频率分量,因为原始的模拟基带信号不包含离散的DC分量。(3)(4)某个信号的频谱或随机信号的功率谱是基带信号的频谱/功率谱的线性位移。因此,它称为线性调制。解调原理:DSB只能进

通信原理(虚拟仿真实验)

实验五双极性不归零码 一、实验目的 1.掌握双极性不归零码的基本特征 2.掌握双极性不归零码的波形及功率谱的测量方法 3.学会用示波器和功率谱分析仪对信号进行分析 二、实验仪器 1.序列码产生器 2.单极性不归零码编码器 3.双极性不归零码编码器 4.示波器 5.功率谱分析仪 三、实验原理 双极性不归零码是用正电平和负电平分别表示二进制码1和0的 码型,它与双极性归零码类似,但双极性非归零码的波形在整个码元持续期间电平保持不变.双极性非归零码的特点是:从统计平均来看,该码型信号在1和0的数目各占一半时无直流分量,并且接收时判决电平为0,容易设置并且稳定,因此抗干扰能力强.此外,可以在电缆等无接地的传输线上传输,因此双极性非归零码应用极广.双极性非归零码常用于低速数字通信.双极性码的主要缺点是:与单极性非归零码一样,不能直接从双极性非归零码中提取同步信号,并且1码和0码不等概时,仍有直流成分。 四、实验步骤

1.按照图3.5-1 所示实验框图搭建实验环境。 2.设置参数:设置序列码产生器序列数N=128;观察其波形及功率谱。 3.调节序列数N 分别等于6 4.256,重复步骤2. 图3.5-1 双极性不归零码实验框图 实验五步骤2图 N=128

实验五步骤3图N=64 N=256

六、实验报告 (1)分析双极性不归零码波形及功率谱。 (2)总结双极性不归零码的波形及功率谱的测量方法。 实验六 一、实验目的 1.掌握双极性归零码的基本特征 2.掌握双极性归零码的波形及功率谱的测量方法 3.学会用示波器和功率谱分析仪对信号进行分析 二、实验仪器 1.序列码产生器 2.单极性不归零码编码器 3.双极性归零码编码器

PPM和PCM的工作原理

PPM和PCM的工作原理: 前面提到了PPM和PCM编解码技术,那么,究竟什么是PPM和PCM呢?两者又有什么区别呢? PCM是英文pulse-code modulation的缩写,中文的意思是:脉冲编码调制,又称脉码调制。PPM是英文pulse position modulation的缩写,中文意思是:脉冲位置调制,又称脉位调制,这里顺便提一句,有些航模爱好者误将PPM编码说成是FM,其实这是两个不同的概念。前者指的是信号脉冲的编码方式,后者指的是高频电路的调制方式。比例遥控发射电路的工作原理如图1所示。操作通过操纵发射机上的手柄,将电位器组值的变化信息送人编码电路。编码电路将其转换成一组脉冲编码信号(PPM或PCM)。这组脉冲编码信号经过高频调制电路(AM或FM)调制后,再经高放电路发送出去。 目前,比例遥控设备中最常用的两种脉冲编码方式就是PPM和PCM:最常用的两种高频调制方式是FM调频和AM调幅:最常见的组合为PPM/AM脉位调制编码/调幅、PPM/FM 脉位调制编码/调频、PPM/FM脉冲调制编码/调频三种形式。通常的PPM接收解码电路都由通用的数字集成电路组成,如CD4013,CD4015等。对于这类电路来说,只要输入脉冲的上升沿达到一定的高度,都可以使其翻转。这样,一旦输入脉冲中含有干扰脉冲,就会造成输出混乱。由于干扰脉冲的数量和位置是随机的,因此在接收机输出端产生的效果就是“抖舵”。除此之外,因电位器接触不好而造成编码波形的畸变等原因,也会影响接收效果,造成“抖舵”。对于窄小的干扰脉冲,一般的PPM电路可以采用滤波的方式消除;而对于较宽的干扰脉冲,滤波电路就无能为力了。这就是为什么普通的PPM比例遥控设备,在强干扰的环境下或超出控制范围时会产生误动作的原因。尤其是在有同频干扰的情况下,模型往往会完全失控。 PPM的编解码方式一般是使用积分电路来实现的,而PCM编解码则是用模/数(A/D)和数/模(D/A)转技术实现的。 首先,编码电路中模/数转换部分将电位器产生的模拟信息转换成一组数字脉冲信号。由于每个通道都由8个脉冲组成,再加上同步脉冲和校核脉冲,因此每个脉冲包含了数十个脉冲信号。在这里,每一个通道都是由8个信号脉冲组成。其脉冲个数永远不变,只是脉冲的宽度不同。宽脉冲代表“1”,窄脉冲代表“0”。这样每个通道的脉冲就可用8位二进制数据来表示,共有256种变化。接收机解码电路中的单片机(单片计算机,下同)收到这种数字编码信号后,再经过数/模转换,将数字信号还原成模拟信号。由于在空中传播的是数字信号,其中包含的信号只代表两种宽度。这样,如果在此种编码脉冲传送过程中产生了干扰脉冲,解码电路中的单片机就会自动将与“0”或“1”脉冲宽度不相同的干扰脉冲自动清除。如果干扰脉冲与“0”或“1”脉冲的宽度相似或干脆将“0”脉冲干扰加宽成“1”脉冲,解码电路的单片机也可以通过计数功能或检验校核码的方式,将其滤除或不予输出。而因电位器接触不良对编码电路造成的影响,也已由编码电路中的单片机将其剔除,这样就消除了各种干扰造成误动作的可能。 PCM编码的优点不仅在于其很强的抗干扰性,而且可以很方便的利用计算机编程,不增加或少增加成本,实现各种智能化设计。例如,将来的比例遥控设备完成可以采用个性化设计,在编解码电路中加上地址码,实现真正意义上的一对一控制。另外,如果在发射机上加

通信原理实验报告systemview-数字信号的基带传输

通信原理实验报告 实验名称:数字信号的基带传输 一.实验目的 (1)理解无码间干扰数字基带信号的传输; (2)掌握升余弦滚降滤波器的特性;

(3)通过时域、频域波形分析系统性能。 二、仿真环境 SystemView 仿真软件 三、实验原理 (1)数字基带传输系统的基本结构 它主要由信道信号形成器、信道、接收滤滤器和抽样判决器组成。为了保证系统可靠有序地工作,还应有同步系统。 1.信道信号形成器 把原始基带信号变换成适合于信道传输的基带信号,这种变换主要是通过码型变换和波形变换来实现的。 2.信道 是允许基带信号通过的媒质,通常为有线信道,信道的传输特性通常不满足无失真传输条件,甚至是随机变化的。另外信道还会进入噪声。 3.接收滤波器 滤除带外噪声,对信道特性均衡,使输出的基带波形有利于抽样判决。 4.抽样判决器 在传输特性不理想及噪声背景下,在规定时刻(由位定时脉冲控制)对接收滤波器的输出波形进行抽样判决,以恢复或再生基带信号。而用来抽样的位定时脉冲则依靠同步提取电路从接收信号中提取。 (2) 奈奎斯特第一准则 奈奎斯特准则提出:只要信号经过整形后能够在抽样点保持不变, 即使其波形已经发生了变化,也能够在抽样判决后恢复原始的信号, 因为信息完全恢复携带在抽样点幅度上。 奈奎斯特准则要求在波形成形输入到接收端的滤波器输出的整个 传送过程传递函数满足: 令k′=j -k , 并考虑到k′也为整数,可用k 表示: 在实际应用中,理想低通滤波器是不可能实现的,升余弦滤波器 是在实际中满足无码间干扰传输的充要条件,已获得广泛应用的滤波 器。 升余弦滤波器满足的传递函数为: ???=+-0)(1])[(0或其它常数t T k j h b k j k j ≠=???=+0 1)(0t kT h b 00≠=k k

通信原理软件仿真实验报告-实验3-模拟调制系统—AM系统

成绩 西安邮电大学 《通信原理》软件仿真实验报告 实验名称:实验三模拟调制系统——AM系统院系:通信与信息工程学院 专业班级:通工 学生姓名: 学号:(班内序号) 指导教师: 报告日期:2013年5月15日

实验三模拟调制系统——AM系统 ●实验目的: 1、掌握AM信号的波形及产生方法; 2、掌握AM信号的频谱特点; 3、掌握AM信号的解调方法; 4*、掌握AM系统的抗噪声性能。 ●仿真设计电路及系统参数设置: 图1 模拟调制系统——AM系统仿真电路 建议时间参数:No. of Samples = 4096;Sample Rate = 20000Hz 1、记录调制信号与AM信号的波形和频谱; 调制信号为正弦信号,Amp= 1V,Freq=200Hz; 直流信号Amp = 2V; 余弦载波Amp = 1V,Freq= 1000Hz; 频谱选择|FFT|; 2、采用相干解调,记录恢复信号的波形和频谱; 接收机模拟带通滤波器Low Fc = 750Hz,Hi Fc = 1250Hz,极点个数6;接收机模拟低通滤波器Fc = 250Hz,极点个数为9;

3、采用包络检波,记录恢复信号的波形和频谱; 接收机包络检波器结构如下: 其中图符0为全波整流器Zero Point = 0V; 图符1为模拟低通滤波器Fc = 250Hz,极点个数为9; 4、在接收机模拟带通滤波器前加入高斯白噪声; 建议Density in 1 ohm = 0.00002W/Hz; 观察并记录恢复信号波形和频谱的变化; 5*、改变高斯白噪声的功率谱密度,观察并记录恢复信号的变化。 仿真波形及实验分析: 1、记录调制信号与AM信号的波形和频谱; 图1-1 调制信号波形 图1-2 AM已调信号波形

时分复用和频分复用

时分复用和频分复用

时分复用频分复用 简介 数据通信系统或计算机网络系统中,传输媒体的带宽或容量往往超过 传输单一信号的需求,为了有效地利用通信线路,希望一个信道同时传输多路信号,这就是所谓的多路复用技术(MultiplexiI1g)。采用多路复用技术能把多个信号组合起来在一条物理信道上进行传输,在远距离传输时可大 大节省电缆的安装和维护费用。频分多路复用FDM (Frequency Division Multiplexing)和时分多路复用TDM (Time Di-vision MultiplexiIIg)是两种最常用的多路复用技术。 举个例最简单的例子: 从A地到B地 坐公交2块。打车要20块 为什么坐公交便宜呢 这里所讲的就是“多路复用”的原理。 频分复用 (FDM) 频分复用按频谱划分信道,多路基带信号被调制在不同的频谱上。因此它们在频谱上不会重叠,即在频率上正交,但在时间上是重叠的,可以同时在一个信道内传输。在频分复用系统中,发送端的各路信号m1(t),m2(t),…,mn(t)经各自的低通滤波器分别对各路载波f1(t),f2(t),…,fn(t)进行调制,再由各路带通滤波器滤出相应的边带(载波电话通常采用单边带调制),相加后便形成频分多路信号。在接收端,各路的带通滤波器将各路信号分开,并分别与各路的载波f1(t),f2(t),…,fn(t)相乘,实现相干解调,便可恢复各路信号,实现频分多路通信。为了构造大容量的频分复用设备,现代大容量载波系列的频谱是按模块结构由各种基础群组合而成。根据国际电报电话咨询委员会(CCITT)建议,基础群分为前群、基群、超群和主群。①前群,又称3路群。它由3个话路经变频后组成。各话路变频的载频分别为12,16,20千赫。取上边带,得到频谱为12~24千赫的前群信号。②基群,又称12路群。它由4个前群经变频后组成。各前群变频的载频分别为84,96,108,120千赫。取下边带,得到频谱为 60~108千赫的基群信号。基群也可由12个话路经一次变频后组成。③超群, 又称60路群。它由5个基群经变频后组成。各基群变频的载频分别为420,468,516,564,612千赫。取下边带,得到频谱为312~552千赫的超群信号。④主群,又称300路群。它由5个超群经变频后组成。各超群变频的载频分别为1364,1612,1860,2108,2356千赫。取下边带,得到频谱为812~2044千赫的主群信号。3个主群可组成 900路的超主群。4个超主群可组

PCM基本工作原理

PCM基本工作原理 脉冲调制就是把一个时间连续,取值连续的模拟信号变换成时间离散,取值离散的数字信号后在信道中传输.脉冲编码调制就是对模拟信号先抽样,再对样值幅度量化,编码的过程. 所谓抽样,就是对模拟信号进行周期性扫描,把时间上连续的信号变成时间上离散的信号.该模拟信号经过抽样后还应当包含原信号中所有信息,也就是说能无失真的恢复原模拟信号.它的抽样速率的下限是由抽样定理确定的.在该实验中,抽样速率采用8Kbit/s. 所谓量化,就是把经过抽样得到的瞬时值将其幅度离散,即用一组规定的电平,把瞬时抽样值用最接近的电平值来表示. 一个模拟信号经过抽样量化后,得到已量化的脉冲幅度调制信号,它仅为有限个数值. 所谓编码,就是用一组二进制码组来表示每一个有固定电平的量化值.然而,实际上量化是在编码过程中同时完成的,故编码过程也称为模/数变换,可记作A/D. PCM的原理如图5-1所示.话音信号先经防混叠低通滤波器,进行脉冲抽样,变成8KHz重复频率的抽样信号(即离散的脉冲调幅PAM信号),然后将幅度连续的PAM信号用"四舍五入"办法量化为有限个幅度取值的信号,再经编码后转换成二进制码.对于电话,CCITT规定抽样率为8KHz,每抽样值编8位码,即共有28=256个量化值,因而每话路PCM编码后的标准数码率是64kb/s.为解决均匀量化时小信号量化误差大,音质差的问题,在实际中采用不均匀选取量化间隔的非线性量

化方法,即量化特性在小信号时分层密,量化间隔小,而在大信号时分层疏,量化间隔大. 在实际中广泛使用的是两种对数形式的压缩特性:A律和律.A律PCM 用于欧洲和我国,律用于北美和日本. #include"stdio.h" #include"iomanip.h" #include"math.h" #include"time.h" #include"fstream.h" #include"iostream.h" int code1[9]; int code2[8]; int s[8]; void main() { void dlm(int n); void dnm(int x,int m,int n); int ipre(int x,int y[8]);

哈工程通信原理软件仿真实验报告

实验报告 哈尔滨工程大学教务处制

实验一基带码型仿真 (一)单、双极性归零码仿真 一、实验原理 1.1归零码 归零码,是信号电平在一个码元之内都要恢复到零的编码方式,它包括曼彻斯特编码和差分曼彻斯特编码两种编码方式。 1.2单、双极性归零码 对于传输数字信号来说,最常用的方法是用不同的电压电平来表示两个二进制数字,即数字信号由矩形脉冲组成。 A)单极性不归零码,无电压表示”0”,恒定正电压表示”1”,每个码元时间的中间点是采样时间,判决门限为半幅电平。 单极性归零码(RZ)即是以高电平和零电平分别表示二进制码1 和0,而且在发送码1 时高电平在整个码元期间T 只持续一段时间τ,其余时间返回零电平.在单极性归零码中,τ/T 称为占空比.单极性归零码的主要优点是可以直接提取同步信号,因此单极性归零码常常用作其他码型提取同步信号时的过渡码型.也就是说其他适合信道传输但不能直接提取同步信号的码型,可先变换为单极性归零码,然后再提取同步信号 B)双极性不归零码,”1”码和”0”码都有电流,”1”为正电流,”0”为负电流,正和负的幅度相等,判决门限为零电平。 双极性归零码是二进制码0 和1 分别对应于正和负电平的波形的编码,在每个码之间都有间隙产生.这种码既具有双极性特性,又具有归零的特性.双极性归零码的特点是:接收端根据接收波形归于零电平就可以判决1 比特的信息已接收完毕,然后准备下一比特信息的接收,因此发送端不必按一定的周期发送信息.可以认为正负脉冲的前沿起了起动信号的作用,后沿起了终止信号的作用.因此可以经常保持正确的比特同步.即收发之间无需特别的定时,且各符号独立地构成起止方式,此方式也叫做自同步方式.由于这一特性,双极性归零码的应用十分广泛。 1.3 功率谱密度 求信号的功率谱,功率谱= 信号的频率的绝对平方/ 传输序列的持续时间,求得的 功率谱进行单位换算以dB值表示

通信原理PCM

1 设计原理 1.1 PCM系统基本原理 PCM即脉冲编码调制,在通信系统中完成将语音信号数字化功能。PCM调制的实现主要包括三个步骤完成:抽样、量化、编码。分别完成时间上离散、幅度上离散、及量化信号的二进制表示。为改善小信号量化性能,采用压扩非均匀量化,有两种方式,分别为A律和μ律方式,此处采用了A律方式,由于A律压缩实现复杂,常使用13 折线法编码,采用非均匀量化。PCM通信系统示意图 图1.1 时分复用PCM通信系统框图

1.2 抽样、量化、编码 下面介绍PCM编码中抽样、量化及编码的原理: (1)抽样 所谓抽样,就是对模拟信号进行周期性扫描,把时间上连续的信号变成时间上离散的信号。该模拟信号经过抽样后还应当包含原信号中所有信息,也就是说能无失真的恢复原模拟信号。它的抽样速率的下限是由抽样定理确定的。 (2)量化 从数学上来看,量化就是把一个连续幅度值的无限数集合映射成一个离散幅度值的有限数集合。 模拟信号的量化分为均匀量化和非均匀量化。由于均匀量化存在的主要缺点 m t 是:无论抽样值大小如何,量化噪声的均方根值都固定不变。因此,当信号()较小时,则信号量化噪声功率比也就很小,这样,对于弱信号时的量化信噪比就难以达到给定的要求。通常,把满足信噪比要求的输入信号取值范围定义为动态范围,可见,均匀量化时的信号动态范围将受到较大的限制。为了克服这个缺点,实际中,往往采用非均匀量化。 非均匀量化是根据信号的不同区间来确定量化间隔的。对于信号取值小的区?也小;反之,量化间隔就大。它与均匀量化相比,有两个突间,其量化间隔v 出的优点。首先,当输入量化器的信号具有非均匀分布的概率密度(实际中常常是这样)时,非均匀量化器的输出端可以得到较高的平均信号量化噪声功率比;其次,非均匀量化时,量化噪声功率的均方根值基本上与信号抽样值成比例。因此量化噪声对大、小信号的影响大致相同,即改善了小信号时的量化信噪比。 非均匀量化的实际方法通常是将抽样值通过压缩再进行均匀量化。通常使用的压缩器中,大多采用对数式压缩。广泛采用的两种对数压缩律是μ压缩律和A 压缩律。美国采用μ压缩律,我国和欧洲各国均采用A压缩律,因此,PCM编码方式采用的也是A压缩律。 所谓A压缩律也就是压缩器具有如下特性的压缩律:

word版本hslogic_通信原理仿真实验报告

通信原理仿真实验报告 实验一 功率谱密度 1.1功率谱密度简介 平稳过程的任何一个非零样本函数的持续时间为无限长,显然都不满足绝对可积和总能量有限的条件。因此,它的傅里叶变换不存在即没有频谱函数。所以我们用功率谱密度来表述其频谱特性。 随机过程的任一实现是一个确定的功率型信号。而对于任意的确定功率信号f(t),它的功率谱密度为: 2 ()()lim T f T F P T ωω→∞ = 式中,()T F ω是f(t)的截短函数() T f t 对应的频谱函数。f(t)是平稳随机过程() t ξ的一个实现。而随机过程某一个实现的功率谱密度不能作为过程的功率谱密度。过程的功率谱密度应该看作是任一实现的功率谱密度的统计平均,即 2 () ()[()]lim T f T E F P E P T ξωωω→∞ == 虽然该式给出了平稳随机过程的功率谱密度,但我们通常都不利用这个式子来计算功率谱。我们知道,确知的非周期功率信号的自相关函数与功率谱密度是一对傅里叶变换。对于平稳随机过程,也有类似的关系,即 ()()j P R e d ωτ ξωττ ∞ --∞=?和 1 ()()2j R P e d ωτ ξτωωπ ∞ -∞ = ? 对于平稳随机过程我们通常先求出其自相关函数再利用上式求出其功率谱密度。 1.2实验要求 ? 1.了解平稳随机信号功率谱的概念及计算方法 ? 2.仿真不同占空比,等概、非等概双极性矩形随机信号的归一化功率谱密度 ? 3.分析不同信号(不同占空比,等概非等概)所包含的频谱分量,有无直流 分量和定时分量信息 1.3实验 1、随机的脉冲序列没有确定的频谱函数,所以只能用功率谱来描述它的频谱特征。随机序列的功率谱密度可能包含连续谱和离散谱,其中连续谱可以确定随机序列的带宽,离散谱可以确定随机序列是否包含直流分量和定时分量。 2、仿真图形

实验2脉冲编码调制PCM与时分复用实验(.)-

实验2脉冲编码调制PCM与时分复用实验(.)- 实验2脉冲编码调制和时分复用实验-实验目的 1。加深对脉码调制过程的理解; 2。熟悉PCM编解码专用集成电路的功能和用法;3.了解PCM系统的工作流程; 4。掌握时分复用的工作流程;用同步正弦波信号观察α律PCM八位编码 2,实验仪器 1。HD8621D实验盒1 2.20米双踪示波器1 3。铆钉孔线5 3,实验电路工作原理(PCM基本工作原理 脉冲调制是将模拟信号转换成数字信号,然后在通道中传输它脉码调制是模拟信号的过程所谓 采样,就是在采样脉冲到达的瞬间提取模拟信号,并及时将信号转换成信号所谓的 的量化意味着采样瞬时值的幅度,即一组指定的电平,被用来表示瞬时采样值在对模拟信号进行采样和量化之后,获得量化的脉冲幅度调制信号,该信号只是有限数量的值首先对

语音信号进行滤波、脉冲采样并转换成采样信号,然后将幅度连续的PAM信号通过舍入法量化成信号,再经过编码转换成信号对于语音电话通信,CCITT规定采样速率为8千赫。每个采样值都是编码的,即总共有量化值。因此,每个信道的脉码调制后的标准数字速率是每秒为了解决均匀量化时小信号量化误差大、音质差的问题,在实践中采用量化方法,即小信号量化特征密集分层,量化间隔小,大信号稀疏分层,大信号大 (2个PCM编解码器电路[PCM编解码器电路TP3067芯片)1。根据图4-4和4-5,解释了单通道PCM编解码器的工作原理。a: 定时,可实现编解码器的省电控制图4-5是短帧同步定时的波形图 4,实验内容 1。用同步正弦波信号观察模数转换八位编码的实验:2.脉码调制和系统实验; 3。PCM 8位编码时分复用输出波形观测实验:4.脉码调制时分复用定

相关主题
文本预览
相关文档 最新文档