当前位置:文档之家› 上海高考中的解析几何

上海高考中的解析几何

上海高考中的解析几何
上海高考中的解析几何

x

y

上海高考中的解析几何问题

解析几何历来是高考的重点,有基础题也有能力题。基础题主要考查曲线(直线)方程的确定,直线与曲线相交的点、线关系,要求对解析几何中的诸多公式掌握全面,使用合理,有一定的计算能力要求。在能力立意理念指导下,解析几何能力题从传统中脱胎出来,充分利用其数形结合的特点,椭圆、双曲线、抛物线三类曲线的内在联系及特殊到一般的本质探求,编拟考题,面目一新。

(一) 确定曲线(直线)方程

此类问题属基本题,常用待定系数法确定相关曲线,计算相关的点、线等。通常题号比较靠前,能力题的(1)(2)问也常属于此基础题。

(2008-19春)在平面直角坐标系xoy 中,A 、B 分别是直线x+y=2与x 、y 轴的交点,C 为AB 的中点。若抛物线y 2=2px (p>0)过点C ,求焦点F 到直线AB 的距离。

(2007-18春)如图,在直角坐标系xOy 中,设椭圆)0(1:22

22>>=+b a b

y a x C 的左右两个焦点 分别为21F F 、. 过右焦点2F 且与x 轴垂直的直线l 与椭圆C 相交,其中一个交点为(

)

1,2M .

(1) 求椭圆C 的方程;

(2) 设椭圆C 的一个顶点为),0(b B -,直线2BF 交椭圆C 于另一点N ,求△BN F 1的面积.

(2002-18

春)已知

F 1、F 2为双曲线

)0,0(122

22

>>=-b a b

y a x 的焦点.过F 2作垂直于x 轴的直线交双曲线于点P ,且∠PF 1F 2=30?,求双曲线的渐近方程.

(2002-18秋)已知点A (—3,0)和B (3,0),

动点C 到A 、B 两点的距离之差的绝对值为2,点C 的轨迹与直线y=x —2交于D 、E 两点.求线段DE 的长

(2000-17秋)已知椭圆C 的焦点分别为)0,22()0,22(21F F 和-,长轴长为6,设直2+=x y 交椭圆C 于A 、B 两点,求线段AB 的中点坐标。

(2001-18秋)设F 1、F 2为椭圆4

92

2y x +=1的两个焦点,P 为椭圆上的一点.已知P

F 1、F 2是一个直角三角形的三个顶点,且|P F 1|>|P F 2|,求

2

1PF PF 的值.

(二) 与函数结合,局部图形动态化

将曲线中的点、线变化运动,利用函数刻画这种变化,通过相应函数的分析求解有关几何量的最值和取值范围等。选择合适的自变量,列出函数关系是关键。

(2009—21秋)已知双曲线2

2:12

x C y -=,设过点(-的直线L 的方向向量(1,)d k =

(1)当直线L 与双曲线的一条渐近线m 平行时,求直线L 的方程及L 与m 的距

离;

(2)证明:当2

k >

时,在双曲线C 的右支上不存在点Q ,使之与直线L 。 (2008—18秋)已知双曲线2

2:14

x C y -=,P 是C 上的任意点。 (1)求证:点P 到双曲线C 的两条渐近线的距离的乘积是一个常数; (2)设点A 的坐标为(3,0),求|PA|的最小值。

(2005-19秋)点A 、B 分别是椭圆

120

362

2=+y x 长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,PF PA ⊥。

(1)求点P 的坐标;

(2)设M 是椭圆长轴AB 上的一点,M 到直线AP 的距离等于||MB ,求椭圆上的点到点M 的距离d 的最小值。

(2004-22春)已知倾斜角为?45的直线l 过点)2,1(-A 和点B ,B 在第一象限,

23||=AB .

(1) 求点B 的坐标;

(2) 若直线l 与双曲线1:222

=-y a

x C )0(>a 相交于E 、F 两点,且线段EF 的中点坐

标为)1,4(,求a 的值;

(3) 对于平面上任一点P ,当点Q 在线段AB 上运动时,称||PQ 的最小值为P 与线段

AB 的距离. 已知点P 在x 轴上运动,写出点)0,(t P 到线段AB 的距离h 关于t 的函数关系式.

(2003-21秋)在以O 为原点的直角坐标系中,点A (4,-3)为△OAB 的直角顶点.已知|AB|=2|OA|,且点B 的纵坐标大于零.

(2)求圆0262

2

=++-y y x x 关于直线OB 对称的圆的方程;

(3)是否存在实数a ,使抛物线12-=ax y 上总有关于直线OB 对称的两个点?若不存在,说明理由:若存在,求a 的取值范围.

(2000-22春)如图所示,A 、F 分别是椭圆:

112

)1(16)1(2

2=-++x y 的一个顶点与一个焦点,位于x 轴的正半轴上的动点)0,(t T 与F 的连线交射线OA 于Q .求: (1)点A 、F 的坐标及直线TQ 的方程;

(2)OTQ ?的面积S 与t 的函数关系式)(t f S =及该函数的最小值;

(3)写出)(t f S =的单调递增区间,并证明之.

(三) 探究圆锥曲线的本质特征

圆锥曲线有统一的几何性质,用代数的方法探究其中一些性质常被编为试题。 (2009秋—19)如图,在直角坐标系xoy 中,有一组对角线长....为n a 的正方形(1,2))n n n n A B C D n = ,其对角线n n B D 依次放置在x 轴上(相邻顶点重合)。设{}n a 是首项为a ,公差为d(d>0)的等差数列,点1B 的坐标为(,0)d 。

(1)当a =8,d=4时,证明:

123,,A A A 不在同一条直线上;

(2)在(1)的条件下,证明:所有顶点n A 均落在抛物线2

2y x =上;

(3)为使所有顶点n A 均落在抛物线2

2(0)y px p =>上,求a 与d 之间所应满足的关系式。

(2008—秋20)设(,)(0)Pab

b ≠是平面直角坐标系xoy 中的点,L 是经过原点与点(1,

b )的直线。记Q 是直线L 与抛物线2

2(0)x py p =≠的异于原点的交点。 (1)已知a=1,b=2,p=2,求点Q 的坐标;

(2)已知点(,)(0)P a b ab ≠在椭圆2

214

x y +=上,12p ab =,求证:点Q 落在双曲线

22441x y -=上;

(3)已知动点(,)P a b 满足0ab ≠,1

2p ab

=

。若点Q 始终落在一条关于x 轴对称的抛物线上,试问动点P 的轨迹落在哪种二次曲线上,并说明理由。

(2007秋-21)已知半椭圆22221(0)x y x a b +=≥与半椭圆22

221(0)y x x b c

+=≤组成的曲

线称为“果圆”,其中222,0)a b c a b c =+>>>,F 0,F 1,F 2是对应的焦点,A 、A 1、B 、B 1分别为果圆与坐标轴的交点。

(1)若△F 0F 1F 2是边长为1的等边三角形,求“果圆”的方程 (2)若11||||A A B B >,求

b

a

的取值范围 (3)连接“果圆”上任意两点的线段称为“果圆”的弦。试研究,是否存在实数k ,使得斜率为k 的直线交果圆于两点,得到的弦的中点的轨迹方程落在某个椭圆上?若存在,求出所有k 的值;若不存在,说明理由。

(2006-20秋)在平面直角坐标系x O y 中,直线l 与抛物线2y =2x 相交于A 、B 两点.

(1)求证:“如果直线l 过点T (3,0),那么→

--OA →

--?OB =3”是真命题;

(2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由.

(2005-22春)(1)求右焦点坐标是)0,2(,且经过点)2,2(--的椭圆的标准方程;

(2)已知椭圆C 的方程是122

22=+b y a x )0(>>b a . 设

斜率为k 的直线l ,交椭圆C 于A B 、

两点,AB 的中点为M . 证明:当直线l 平行移动时,动点M 在一条过原

点的定直线上;

(3)利用(2)所揭示的椭圆几何性质,用作图方法找出下面给定椭圆的中心,简要写出作图步骤,并在图中标出椭圆的中心.

(2003-21春)设21,F F 分别为椭圆)0(1:22

22>>=+b a b

y a x C 的左、右两个焦点.

(1) 若椭圆C 上的点)2

3

,1(A 到21,F F 两点的距离之和等于4,写出椭圆C 的方程; (2) 设K 是(1)中所得椭圆上的动点,求线段K F 1的中点的轨迹方程;

(3) 已知椭圆具有性质:若N M ,是椭圆C 上关于原点对称的两个点,点P 是椭圆上任意一点,当直线PM 、PN 的斜率都存在,并记为PN PM K K ,时,那么PN PM K K ?是与

点P 位置无关的定值. 试对双曲线122

22=-b

y a x 写出具有类似特性的性质,并加以证明.

解析几何中求参数取值范围的5种常用方法

解析几何中求参数取值范围的5种常用方法 解析几何中求参数取值范围的5种常用方法及经典例题详细解析: 一、利用曲线方程中变量的范围构造不等式 曲线上的点的坐标往往有一定的变化范围,如椭圆 x2a2 + y2b2 = 1上的点P(x,y)满足-a≤x≤a,-b≤y≤b,因而可利用这些范围来构造不等式求解,另外,也常出现题中有多个变量,变量之间有一定的关系,往往需要将要求的参数去表示已知的变量或建立起适当的不等式,再来求解.这是解决变量取值范围常见的策略和方法. 例1 已知椭圆 x2a2 + y2b2 = 1 (a>b>0),A,B是椭圆上的两点,线段AB的垂直平分线与x轴相交于点P(x0,0) 求证:-a2-b2a ≤ x0 ≤ a2-b2a 分析:先求线段AB的垂直平分线方程,求出x0与A,B横坐标的关系,再利用椭圆上的点A,B满足的范围求解. (x1≠x2)代入椭圆方程,作差得: y2-y1x2-x1 解: 设A,B坐标分别为(x1,y1),(x2,y2), =-b2a2 ?x2+x1 y2+y1 又∵线段AB的垂直平分线方程为 y- y1+y22 =- x2-x1 y2-y1 (x-x1+x22 ) 令y=0得 x0=x1+x22 ?a2-b2a2 又∵A,B是椭圆x2a2 + y2b2 = 1 上的点 ∴-a≤x1≤a,-a≤x2≤a,x1≠x2 以及-a≤x1+x22 ≤a ∴ -a2-b2a ≤ x0 ≤ a2-b2a

例2 如图,已知△OFQ的面积为S,且OF?FQ=1,若 12 < S <2 ,求向量OF与FQ的夹角θ的取值范围. 分析:须通过题中条件建立夹角θ与变量S的关系,利用S的范围解题. 解: 依题意有 ∴tanθ=2S ∵12 < S <2 ∴1< tanθ<4 又∵0≤θ≤π ∴π4 <θ< p> 例3对于抛物线y2=4x上任一点Q,点P(a,0)都满足|PQ|≥|a|,则a的取值范围是() A a<0 B a≤2 C 0≤a≤2 D 0<2< p> 分析:直接设Q点坐标,利用题中不等式|PQ|≥|a| 求解. 解: 设Q( y024 ,y0)由|PQ| ≥a 得y02+( y024 -a)2≥a2 即y02(y02+16-8a)≥0 ∵y02≥0 ∴(y02+16-8a)≥0即a≤2+ y028 恒成立 又∵ y02≥0 而 2+ y028 最小值为2 ∴a≤2 选( B ) 二、利用判别式构造不等式

高考中解析几何的常考题型分析总结

高考中解析几何的常考题型分析 一、高考定位 回顾2008,2012年的江苏高考题,解析几何是重要内容之一,所占分值在25 分左右,在高考中一般有2,3条填空题,一条解答题.填空题有针对性地考查椭圆、双曲线、抛物线的定义、标准方程和简单几何性质及其应用,主要针对圆锥曲线本身,综合性较小,试题的难度一般不大;解答题主要是以圆或椭圆为基本依托,考查椭圆方程的求解、考查直线与曲线的位置关系,除了本身知识的综合,还会与其它知识如向量、函数、不等式等知识构成综合题,多年高考压轴题是解析几何题. 二、应对策略 复习中,一要熟练掌握椭圆、双曲线、抛物线的基础知识、基本方法,在抓住通性通法的同时,要训练利用代数方法解决几何问题的运算技巧. 二要熟悉圆锥曲线的几何性质,重点掌握直线与圆锥曲线相关问题的基本求解方法与策略,提高运用函数与方程思想、向量与导数的方法来解决问题的能力. 三在第二轮复习中要熟练掌握圆锥曲线的通性通法和基本知识. 预测在2013年的高考题中: 1.填空题依然是直线和圆的方程问题以及考查圆锥曲线的几何性质为主,三种圆锥曲线都有可能涉及. 2.在解答题中可能会出现圆、直线、椭圆的综合问题,难度较高,还 有可能涉及简单的轨迹方程和解析几何中的开放题、探索题、证明题,重点关注定值问题. 三、常见题型

1.直线与圆的位置关系问题 直线与圆的位置关系是高考考查的热点,常常将直线与圆和函数、三角、向量、数列、圆锥曲线等相互交汇,求解参数、函数最值、圆的方程等,主要考查直线与圆的相交、相切、相离的判定与应用,以及弦长、面积的求法等,并常与圆的几何性质交汇,要求学生有较强的运算求解能力. 求解策略:首先,要注意理解直线和圆等基础知识及它们之间的深入联系;其次,要对问题的条件进行全方位的审视,特别是题中各个条件之间的相互关系及隐含条件的挖掘;再次,要掌握解决问题常常使用的思想方法,如数形结合、化归转化、待定系数、分类讨论等思想方法;最后,要对求解问题的过程清晰书写,准确到位. 点评:(1)直线和圆的位置关系常用几何法,即利用圆的半径r,圆心到直线的距离d及半弦长l2构成直角三角形关系来处理. (2)要注意分类讨论,即对直线l分为斜率存在和斜率不存在两种情况分别研究,以防漏解或推理不严谨. 2.圆锥曲线中的证明问题 圆锥曲线中的证明问题,主要有两类:一类是证明点、直线、曲线等几何元素中的位置关系,如:某点在某直线上、某直线经过某个点、某两条直线平行或垂直等;另一类是证明直线与圆锥曲线中的一些数量关系(相等或不等). 求解策略:主要根据直线、圆锥曲线的性质、直线与圆锥曲线的位置关系等,通过相关的性质应用、代数式的恒等变形以及必要的数值计算等进行证明. 常用的一些证明方法: 点评:本题主要考查双曲线的概念、标准方程、几何性质及其直线与双曲线的关系.特别要注意直线与双曲线的关系问题,在双曲线当中,最特殊的为等轴双曲

近四年上海高考解析几何试题

近四年上海高考解析几何试题 近四年上海高考解析几何试题一(填空题:只要求直接填写结果,每题填对得4分,否则一律得零分. 5221 ( 2005春季7 ) 双曲线的焦距是 . 9x,16y,162 (2005年3) 直角坐标平面中,若定点与动点满足,则点P的A(1,2)P(x,y)xoyOP,OA,4轨迹方程是 __________。解答:设点P的坐标是(x,y),则由知OP,OA,4 x,2y,4,x,2y,4,0 3 (2005年5) 若双曲线的渐近线方程为,它的一个焦点是,则双曲线的方程是,,y,,3x10,0 b__________。解答:由双曲线的渐近线方程为,知,它的一个焦点是,知,,y,,3x,310,0a 2y222,因此双曲线的方程是 a,1,b,3x,,1a,b,109 ,,,x12cos,4 (2005年6) 将参数方程(为参数)化为普通方程,所得方程是 __________。 ,,y,2sin,, 22解答: (x,1),y,4 2225 (2006春季5) 已知圆和直线. 若圆与直线没l:3x,y,5,0C:(x,5),y,r(r,0)Cl有公共 r 点,则的取值范围是 . (0,10) 6 (2006春季11) 已知直线过点,且与轴、轴的正半轴分别交于两点,为坐 P(2,1)yxlA、BO标原 点,则三角形面积的最小值为 . 4. OAB 227 (2006年2) 已知圆,4,4,,0的圆心是点P,则点P到直线,,1,0的距离yxxyx

是 ; |201|,,2 解:由已知得圆心为:,由点到直线距离公式得:; P(2,0)d,,211,8 (2006年7) 已知椭圆中心在原点,一个焦点为F(,2,0),且长轴长是短轴长的2倍,则3 该椭圆的标准方程是 ; 2b,4, 2,abc,,2,23,2y,,x2解:已知为所 求; ,,,,,,a161,,222164abc,,,,,F(23,0),,, ,5,9 (2006年8)在极坐标系中,O是极点,设点A(4,),B(5,,),则?OAB的面积是 ; 36 ,,,55 解:如图?OAB中, ,,,,,,,,OAOBAOB4,5,2(()),366 15, (平方单位); ,,,S45sin5,AOB26 210 (2006年11) 若曲线,||,1与直线,,没有公共点,则、分别应满足的条件yyxkxbkb

2020高考数学专题复习-解析几何专题

《曲线的方程和性质》专题 一、《考试大纲》要求 ⒈直线和圆的方程 (1)理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式.掌握直线方 程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程. (2)掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式.能够根据直线的方程判断两条直线的位置关系. (3)了解二元一次不等式表示平面区域. (4)了解线性规划的意义,并会简单的应用. (5)了解解析几何的基本思想,了解坐标法. (6)掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程. ⒉圆锥曲线方程 (1)掌握椭圆的定义、标准方程和椭圆的简单几何性质,理解椭圆的参数方程. (2)掌握双曲线的定义、标准方程和双曲线的简单几何性质. (3)掌握抛物线的定义、标准方程和抛物线的简单几何性质. (4)了解圆锥曲线的初步应用. 二、高考试题回放 1.(福建)已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直 的直线交椭圆于A 、B 两点,若△ABF 2是正三角形,则这个椭圆的离心率是 ( ) A . 33 B .32 C .2 2 D .23

2.(福建)直线x +2y=0被曲线x 2+y 2-6x -2y -15=0所截得的弦长等于 . 3.(福建)如图,P 是抛物线C :y=2 1x 2上一点,直线l 过点P 且与抛物线C 交于另一点Q.(Ⅰ)若直线l 与过点P 的切线垂直,求线段PQ 中点M 的轨迹方程; (Ⅱ)若直线l 不过原点且与x 轴交于点S ,与y 轴交于点T ,试求 | || |||||SQ ST SP ST +的取值范围. 4.(湖北)已知点M (6,2)和M 2(1,7).直线y=mx —7与线段M 1M 2的交点M 分有向线段M 1M 2的比为3:2,则m 的值为 ( ) A .2 3 - B .3 2- C .4 1 D .4 5.(湖北)两个圆0124:0222:222221=+--+=-+++y x y x C y x y x C 与的 公切线有且仅有 ( ) A .1条 B .2条 C .3条 D .4条 6.(湖北)直线12:1:22=-+=y x C kx y l 与双曲线的右支交于不同的两 点A 、B. (Ⅰ)求实数k 的取值范围; (Ⅱ)是否存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F ?若存在,求出k 的值;若不存在,说明理由. 7.(湖南)如果双曲线112 132 2 =-y x 上一点P 到右焦点的距离为13, 那么 点 P 到右准线 的 距 离 是 ( )

高中数学解析几何中的基本公式

解析几何中的基本公式 1、 两点间距离:若)y ,x (B ),y ,x (A 2211,则212212)()(y y x x AB -+-= 特别地:x //AB 轴, 则=AB 。 y //AB 轴, 则=AB 。 2、 平行线间距离:若0C By Ax :l ,0C By Ax :l 2211=++=++ 则:2 221B A C C d +-= 注意点:x ,y 对应项系数应相等。 3、 点到直线的距离:0C By Ax :l ),y ,x (P =++ 则P 到l 的距离为:2 2 B A C By Ax d +++= 4、 直线与圆锥曲线相交的弦长公式:?? ?=+=0 )y ,x (F b kx y 消y :02 =++c bx ax ,务必注意.0>? 若l 与曲线交于A ),(),,(2211y x B y x 则:2122))(1(x x k AB -+= 5、 若A ),(),,(2211y x B y x ,P (x ,y )。P 在直线AB 上,且P 分有向线段AB 所成的比 为λ, 则??? ????λ+λ+=λ+λ+=112121y y y x x x ,特别地:λ=1时,P 为AB 中点且??????? +=+=222 121y y y x x x 变形后:y y y y x x x x --= λ--= λ21 21或 6、 若直线l 1的斜率为k 1,直线l 2的斜率为k 2,则l 1到l 2的角为),0(,π∈αα 适用范围:k 1,k 2都存在且k 1k 2≠-1 , 2 11 21tan k k k k +-= α 若l 1与l 2的夹角为θ,则= θtan 21211k k k k +-,]2 ,0(π ∈θ 注意:(1)l 1到l 2的角,指从l 1按逆时针方向旋转到l 2所成的角,范围),0(π l 1到l 2的夹角:指 l 1、l 2相交所成的锐角或直角。 (2)l 1⊥l 2时,夹角、到角= 2 π 。 (3)当l 1与l 2中有一条不存在斜率时,画图,求到角或夹角。

高考中解析几何命题特点分析

2019年高考中解析几何命题特点分析 (1)题型稳定:近几年来高考解析几何试题一直稳定在三(或二)个选择题,一个填空题,一个解答题上,分值约为30分左右,占总分值的20%左右。 (2)整体平衡,重点突出:对直线、圆、圆锥曲线知识的考查几乎没有遗漏,通过对知识的重新组合,考查时既注意全面,更注意突出重点,对支撑数学科知识体系的主干知识,考查时保证较高的比例并保持必要深度。近四年新教材高考对解析几何内容的考查主要集中在如下几个类型: ①求曲线方程(类型确定、类型未定); ②直线与圆锥曲线的交点问题(含切线问题); ③与曲线有关的最(极)值问题; ④与曲线有关的几何证明(对称性或求对称曲线、平行、垂直); ⑤探求曲线方程中几何量及参数间的数量特征; 与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。金代元好问《示侄孙伯安》诗云:“伯安入小学,颖悟非凡貌,属句有夙性,说字惊老师。”于是看,宋元时期小学教师被称为“老师”有案可稽。清代称主考官也为“老师”,而一般学堂里的先生则称为“教师”或“教习”。可见,“教师”一说是比较晚的事了。如今体会,“教师”的含义比之“老师”一说,具有资历和学识程度上较低一些的差别。辛亥革命后,

教师与其他官员一样依法令任命,故又称“教师”为“教员”。宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。至元明清之县学一律循之不变。明朝入选翰林院的进士之师称“教习”。到清末,学堂兴起,各科教师仍沿用“教习”一称。其实“教谕”在明清时还有学官一意,即主管县一级的教育生员。而相应府和州掌管教育生员者则谓“教授”和“学正”。“教授”“学正”和“教谕”的副手一律称“训导”。于民间,特别是汉代以后,对于在“校”或“学”中传授经学者也称为“经师”。在一些特定的讲学场合,比如书院、皇室,也称教师为“院长、西席、讲席”等。(3)能力立意,渗透数学思想:一些虽是常见的基本题型,但如果借助于数形结合的思想,就能快速准确的得到答案。 要练说,得练看。看与说是统一的,看不准就难以说得好。练看,就是训练幼儿的观察能力,扩大幼儿的认知范围,让幼儿在观察事物、观察生活、观察自然的活动中,积累词汇、理解词义、发展语言。在运用观察法组织活动时,我着眼观察于观察对象的选择,着力于观察过程的指导,着重于幼儿观察能力和语言表达能力的提高。 (4)题型新颖,位置不定:近几年解析几何试题的难度有所下降,选择题、填空题均属易中等题,且解答题未必处于压轴题的位置,计算量减少,思考量增大。加大与相关知识的联系(如向量、函数、方程、不等式等),凸现教材中研

2019年上海市高三数学一模分类汇编:解析几何

2(2019黄浦一模). 双曲线2 2 12 y x -=的渐近线方程为 2(2019奉贤一模). 双曲线22 13y x -=的一条渐近线的一个方向向量(,)d u v =u r ,则u v = 2(2019金山一模). 抛物线24y x =的准线方程是 2(2019浦东一模). 抛物线24y x =的焦点坐标为 3(2019杨浦一模). 已知双曲线221x y -=,则其两条渐近线的夹角为 4(2019静安一模). 若直线22(273)(9)30a a x a y -++-+=与x 轴平行,则a 的值是 4(2019普陀一模). 若直线l 经过抛物线2 :4C y x =的焦点且其一个方向向量为(1,1)d =u r , 则直线l 的方程为 5(2019徐汇一模). 已知双曲线22221x y a b -=(0a >,0b >) 的一条渐近线方程是2y x =,它的一个焦点与抛物线220y x =的焦点相同,则此双曲线的方程是 6(2019崇明一模). 在平面直角坐标系xOy 中,已知抛物线24y x =上一点P 到焦点的距离为5,则点P 的横坐标是 6(2019松江一模). 已知双曲线标准方程为2 213 x y -=,则其焦点到渐近线的距离为 7(2019闵行一模). 已知两条直线1:4230l x y +-=和2:210l x y ++=,则1l 与2l 的距离 为 7(2019崇明一模). 圆22240x y x y +-+=的圆心到直线3450x y +-=的距离等于 8(2019虹口一模). 双曲线22 143 x y -=的焦点到其渐近线的距离为 8(2019奉贤一模). 椭圆2214x y t +=上任意一点到其中一个焦点的距离恒大于1,则t 的取值范围为 9(2019静安一模). 以两条直线1:20l x y +=和2:350l x y ++=的交点为圆心,并且与直线315x y ++相切的圆的方程是 12(2019徐汇一模). 已知圆22:(1)1M x y +-=,圆22 :(1)1N x y ++=,直线1l 、2l 分 别过圆心M 、N ,且1l 与圆M 相交于A 、B 两点,2l 与圆N 相交于C 、D 两点,点P 是 椭圆22 194 x y +=上任意一点,则PA PB PC PD ?+?u u u r u u u r u u u r u u u r 的最小值为 12(2019黄浦一模). 如图,1l 、2l 是过点M 夹角为 3 π 的两条直线,且与圆心 为O ,半径长为1的圆分别相切,设圆周上一点P 到1l 、2l

解析几何专题含答案

椭圆专题练习 1.【2017浙江,2】椭圆22 194 x y +=的离心率是 A B C .23 D .5 9 2.【2017课标3,理10】已知椭圆C :22 221x y a b +=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为 A .3 B .3 C .3 D .13 3.【2016高考浙江理数】已知椭圆C 1:+y 2=1(m >1)与双曲线C 2:–y 2=1(n >0)的焦点重合,e 1, e 2分别为C 1,C 2的离心率,则() A .m >n 且e 1e 2>1 B .m >n 且e 1e 2<1 C .m 1 D .m b >0),四点P 1(1,1),P 2(0,1),P 3(–1, 2),P 4(1,2 )中恰有三点在椭圆C 上. (1)求C 的方程; (2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点. 8.【2017课标II ,理】设O 为坐标原点,动点M 在椭圆C :2 212 x y +=上,过M 作x 轴的垂线, 垂足为N ,点P 满足NP =u u u r u u u r 。

2020年上海市高三数学二模分类汇编:解析几何(16区全)

3(2020闵行二模). 若直线10ax by ++=的方向向量为(1,1),则此直线的倾斜角为 3(2020松江二模). 已知动点P 到定点(1,0)的距离等于它到定直线:1l x =-的距离,则点 P 的轨迹方程为 4(2020黄浦二模). 若直线1:350l ax y +-=与2:210l x y +-=互相垂直,则实数a 的值为 4(2020宝山二模). 已知双曲线22 22:1x y C a b -=(0,0)a b >>的实轴与虚轴长度相等,则C 的渐近线方程是 4(2020奉贤二模). 已知P 为双曲线22 :1412 x y Γ+=上位于第一象限内的点,1F 、2F 分别 为Γ的两焦点,若12F PF ∠是直角,则点P 坐标为 5(2020闵行二模). 已知圆锥的母线长为10,母线与轴的夹角为30°,则该圆锥的侧面积为 5(2020青浦二模). 双曲线22 144x y -=的一个焦点到一条渐近线的距离是 6(2020金山二模). 已知双曲线2 221x y a -=(0)a >的一条渐近线方程为20x y -=,则实 数a = 7(2020黄浦二模). 已知双曲线22 221x y a b -=(0a >,0b >)的一条渐近线平行于直线 :210l y x =+,双曲线的一个焦点在直线l 上,则双曲线的方程为 8(2020徐汇二模). 已知直线(2)(1)30a x a y ++--=的方向向量是直线 (1)(23)20a x a y -+++=的法向量,则实数a 的值为 8(2020浦东二模). 已知双曲线的渐近线方程为y x =±,且右焦点与抛物线24y x =的焦点重合,则这个双曲线的方程是 9(2020闵行二模). 已知直线1:l y x =,斜率为q (01q <<)的直线2l 与x 轴交于点A ,与y 轴交于点0(0,)B a ,过0B 作x 轴的平行线,交1l 于点1A ,过1A 作y 轴的平行线,交2l 于点1B , 再过1B 作x 轴的平行线交1l 于点2A ,???,这样依次得线 段01B A 、11A B 、12B A 、22A B 、???、1n n B A -、n n A B , 记n x 为点n B 的横坐标,则lim n n x →∞ = 9. 一个水平放置的等轴双曲线型的拱桥桥洞如图所示,已知当 前拱桥的最高点离水面5米时,量得水面宽度30AB =米,则 当水面升高1米后,水面宽度为 米(精确到0.1米)

2019-2020年高考数学二轮复习难点2.9解析几何中的面积,共线,向量结合的问题教学案文

2019-2020年高考数学二轮复习难点2.9解析几何中的面积,共线,向量结合的 问题教学案文 圆锥曲线是解析几何部分的核心内容,以计算量大、方法灵活、技巧性强著称,既是中学数学的重点、难点,也是历年高考的热点,常以压轴题的形式出现.而直线与圆锥曲线的位置关系,集中交汇了解析几何中直线与圆锥曲线的内容, 特别是解析几何中的面积,共线,向量结合的问题是圆锥曲线综合题,解决圆锥曲线综合题,关键是熟练掌握每一种圆锥曲线的定义、标准方程、图形与几何性质,注意挖掘知识的内在联系及其规律,通过对知识的重新组合,以达到巩固知识、提高能力的目的.综合题中常常离不开直线与圆锥曲线的位置,因此,要树立将直线与圆锥曲线方程联立,应用判别式、韦达定理的意识.解析几何应用问题的解题关键是建立适当的坐标系,合理建立曲线模型,然后转化为相应的代数问题作出定量或定性的分析与判断.常用的方法:数形结合法,以形助数,用数定形. 在与圆锥曲线相关的综合题中,常借助于“平面几何性质”数形结合(如角平分线的双重身份――对称性、利用到角公式)、“方程与函数性质”化解析几何问题为代数问题、“分类讨论思想”化整为零分化处理、“求值构造等式、求变量范围构造不等关系”等等. 1解析几何中的面积问题 解析几何中某些问题,可以通过三角形面积的等量关系去解.研究方法:先选定一个易于计算面积的几何图形,再用不同方法计算同一图形面积,得到一个面积等式;或是用一图形面积等于其它图形面积的和或差.在教学时,适当讲解此法,是开拓学生思路,提高数学教学质量的有效手段之一. 例1【西南名校联盟高三2018年元月考试】已知抛物线2 :8C y x =上的两个动点()11,A x y , ()22,B x y 的横坐标12x x ≠,线段AB 的中点坐标为()2,M m ,直线:6l y x =-与线段AB 的垂直平分线相交于点Q . (1)求点Q 的坐标; (2)求AQB ?的面积的最大值. 思路分析:(1)根据题设条件可求出线段AB 的斜率,进而求出线段AB 的垂直平分线方程,联立直线 :6l y x =-与线段AB 的垂直平分线方程,即可求出点Q 的坐标; (2)联立直线AB 与抛物线C 的方程,结合韦达定理及弦长公式求出线段AB 的长,再求出点Q 到直线AB 的距离,即可求出AQB S 的表达式,再构造新函数,即可求出最大值.

高考解析几何压轴题精选(含答案)

1. 设抛物线22(0)y px p =>的焦点为F ,点(0,2)A .若线段FA 的中点B 在抛物线上, 则B 到该抛物线准线的距离为_____________。(3分) 2 .已知m >1,直线2:02m l x my --=,椭圆2 22:1x C y m +=,1,2F F 分别为椭圆C 的左、 右焦点. (Ⅰ)当直线l 过右焦点2F 时,求直线l 的方程;(Ⅱ)设直线l 与椭圆C 交于,A B 两点,12AF F V ,12BF F V 的重心分别为 ,G H .若原点O 在以线段GH 为直径的圆内,求实数m 的取值范 围.(6分) 3已知以原点O 为中心,) F 为右焦点的双曲线C 的离心率2 e = 。 (I ) 求双曲线C 的标准方程及其渐近线方程; (II ) 如题(20)图,已知过点()11,M x y 的直线111:44l x x y y +=与过点 ()22,N x y (其中2x x ≠)的直 线222:44l x x y y +=的交点E 在双曲线C 上,直线MN 与两条渐近线分别交与G 、H 两点,求OGH ?的面积。(8分)

4.如图,已知椭圆 22 22 1(0)x y a b a b +=>>的离心率为2,以该椭圆上的点和椭圆的左、右 焦点12,F F 为顶点的三角形的周长为1).一等轴双曲线的顶点是该椭圆的焦点,设P 为该双曲线上异于顶点的任一点,直线1PF 和2PF 与椭圆的交点分别为B A 、和C D 、. (Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线1PF 、 2PF 的斜率分别为1k 、2k ,证明12·1k k =;(Ⅲ)是否存在常数λ,使得 ·A B C D A B C D λ +=恒成立?若存在,求λ的值;若不存在,请说明理由.(7分) 5.在平面直角坐标系xoy 中,如图,已知椭圆15 922=+y x

高中数学立体几何解析几何常考题汇总

新课标立体几何解析几何常考题汇总 1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点 (1) 求证:EFGH 是平行四边形 (2) 若BD=AC=2,EG=2。求异面直线AC 、BD 所成的角和EG 、BD 所成的角。 证明:在ABD ?中,∵,E H 分别是,AB AD 的中点∴1 //,2 EH BD EH BD = 同理,1 //,2 FG BD FG BD =∴//,EH FG EH FG =∴四边形EFGH 是平行四边形。 (2) 90° 30 ° 考点:证平行(利用三角形中位线),异面直线所成的角 2、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。 求证:(1)⊥AB 平面CDE; (2)平面CDE ⊥平面ABC 。 证明:(1)BC AC CE AB AE BE =??⊥?=? 同理, AD BD DE AB AE BE =? ?⊥?=? 又∵CE DE E ?= ∴AB ⊥平面CDE (2)由(1)有AB ⊥平面CDE 又∵AB ?平面ABC , ∴平面CDE ⊥平面ABC 考点:线面垂直,面面垂直的判定 A H G F E D C B A E D B C

3、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点, 求证: 1//A C 平面BDE 。 证明:连接AC 交BD 于O ,连接EO , ∵E 为1AA 的中点,O 为AC 的中点 ∴EO 为三角形1A AC 的中位线 ∴1//EO AC 又EO 在平面BDE 内,1A C 在平面BDE 外 ∴1//A C 平面BDE 。 考点:线面平行的判定 4、已知ABC ?中90ACB ∠=,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC . 证明:90ACB ∠=∵° BC AC ∴⊥ 又SA ⊥面ABC SA BC ∴⊥ BC ∴⊥面SAC BC AD ∴⊥ 又,SC AD SC BC C ⊥?=AD ∴⊥面SBC 考点:线面垂直的判定 5、已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1) C 1O ∥面11AB D ;(2)1 AC ⊥面11AB D . 证明:(1)连结11A C ,设 11111 A C B D O ?=,连结1AO ∵ 1111ABCD A B C D -是正方体 11A ACC ∴是平行四边形 ∴A 1C 1∥AC 且 11A C AC = 又1,O O 分别是11,A C AC 的中点,∴O 1C 1∥AO 且11O C AO = 11AOC O ∴是平行四边形 111,C O AO AO ∴? ∥面11AB D ,1C O ?面11AB D ∴C 1O ∥面11AB D (2)1CC ⊥面1111A B C D 11!CC B D ∴⊥ 又1111 A C B D ⊥∵, 1111B D A C C ∴⊥面 1 11AC B D ⊥即 同理可证11A C AD ⊥, 又 1111 D B AD D ?= A 1 E D 1 C 1 B 1 D C B A S D C B A D 1O D B A C 1 B 1 A 1 C

解析几何三角形面积问题答案

解析几何三角形面积问题答案 1、解: (Ⅰ)由题意知,曲线C 是以12,F F 为焦点的椭圆. ∴2,1,a c ==2 3b ∴= 故曲线C 的方程为: 2 2 14 3 x y + =. 3分 (Ⅱ)设直线l 与椭圆 2 2 14 3 x y + =交点1122(,),(,)A x y B x y , 联立方程22 3412 y x b x y =-+??+=?得22 784120x bx b -+-= 4分 因为2 48(7)0b ?=->,解得2 7b <,且2 12128412 ,7 7 b b x x x x -+= = 5分 点O 到直线l 的距离d = 6分 AB = = 9分 ∴12 AO B S ?=? = 10分 ≤ 当且仅当227b b =-即2 772 b = <时取到最大值. ∴A O B ? . 12分 2、解:(1)依题意可得???? ?-= -+= +, 12,12c a c a 解得.1,2==c a 从而.1,22 2 2 2 =-==c a b a 所求椭圆方程为 .12 2 2 =+x y …………………4分 (2)直线l 的方程为.1+=kx y 由?????=++=,12 , 12 2x y kx y 可得() .01222 2=-++kx x k 该方程的判别式△=()2 2 2 88244k k k +=++>0恒成立. 设()(),,,,2211y x Q y x P 则.2 1,222 212 21+- =+-=+k x x k k x x ………………5分 可得().2 4 22 2121+= ++=+k x x k y y 设线段PQ 中点为N ,则点N 的坐标为.22 , 22 2?? ? ??++-k k k ………………6分

高考数学难点:解析几何题

2019高考数学难点:解析几何题每次和同学们谈及高考数学,大家似乎都有同感:高中数学难,解析几何又是难中之难。其实不然,解析几何题目自有路径可循,方法可依。只要经过认真的准备和正确的点拨,完全可以让高考数学的解析几何压轴题变成让同学们都很有信心的中等题目。 我们先来分析一下解析几何高考的命题趋势: (1)题型稳定:近几年来高考解析几何试题一直稳定在三(或二)个选择题,一个填空题,一个解答题上,分值约为30分左右,占总分值的20%左右。 (2)整体平衡,重点突出:《考试说明》中解析几何部分原有33个知识点,现缩为19个知识点,一般考查的知识点超过50%,其中对直线、圆、圆锥曲线知识的考查几乎没有遗漏,通过对知识的重新组合,考查时既注意全面,更注意突出重点,对支撑数学科知识体系的主干知识,考查时保证较高的比例并保持必要深度。近四年新教材高考对解析几何内容的考查主要集中在如下几个类型: ①求曲线方程(类型确定、类型未定); ②直线与圆锥曲线的交点问题(含切线问题); ③与曲线有关的最(极)值问题; ④与曲线有关的几何证明(对称性或求对称曲线、平行、垂直);

⑤探求曲线方程中几何量及参数间的数量特征; (3)能力立意,渗透数学思想:如2019年第(22)题,以梯形为背景,将双曲线的概念、性质与坐标法、定比分点的坐标公式、离心率等知识融为一体,有很强的综合性。一些虽是常见的基本题型,但如果借助于数形结合的思想,就能快速准确的得到答案。 (4)题型新颖,位置不定:近几年解析几何试题的难度有所下降,选择题、填空题均属易中等题,且解答题未必处于压轴题的位置,计算量减少,思考量增大。加大与相关知识的联系(如向量、函数、方程、不等式等),凸现教材中研究性学习的能力要求。加大探索性题型的分量。 在近年高考中,对直线与圆内容的考查主要分两部分:(1)以选择题题型考查本章的基本概念和性质,此类题一般难度不大,但每年必考,考查内容主要有以下几类: ①与本章概念(倾斜角、斜率、夹角、距离、平行与垂直、线性规划等)有关的问题; ②对称问题(包括关于点对称,关于直线对称)要熟记解法; ③与圆的位置有关的问题,其常规方法是研究圆心到直线的距离. 以及其他“标准件”类型的基础题。 (2)以解答题考查直线与圆锥曲线的位置关系,此类题综合性比较强,难度也较大。

上海 解析几何综合测试题附答案

1.12F F 、是椭圆2 214 x y +=的左、右焦点,点P 在椭圆上运动,则12||||PF PF ?的最大值是 . 2.若直线mx +ny -3=0与圆x 2+y 2=3没有公共点,则m 、n 满足的关系式为____________; 以(m ,n )为点P 的坐标,过点P 的一条直线与椭圆72x +3 2 y =1的公共点有_______个. 3.P 是抛物线y 2=x 上的动点,Q 是圆(x-3)2+y 2 =1的动点,则|PQ |的最小值为 . 4.若圆012222=-+-+a ax y x 与抛物线x y 2 1 2 =有两个公共点。则实数a 的范围为 . 5.若曲线y =与直线(2)y k x =-+3有两个不同的公共点,则实数 k 的取值范围 是 . 6.圆心在直线2x -y -7=0上的圆C 与y 轴交于两点A (0,-4)、B (0,-2),则圆C 的方程为____________. 7.经过两圆(x+3)2 +y 2 =13和x+2 (y+3)2 =37的交点,且圆心在直线x -y -4=0上的圆的方程为____________ 8.双曲线x 2 -y 2 =1的左焦点为F ,点P 为左支下半支上任意一点(异于顶点),则直线PF 的斜率的变化范围是___________. 9.已知A (0,7)、B (0,-7)、C (12,2),以C 为一个焦点作过A 、B 的椭圆,椭圆的另一个焦点F 的轨迹方程是___________. 10.设P 1(2,2)、P 2(-2,-2),M 是双曲线y = x 1 上位于第一象限的点,对于命题①|MP 2|-|MP 1|=22;②以线段MP 1为直径的圆与圆x 2+y 2=2相切;③存在常数b ,使得M 到直线 y =-x +b 的距离等于 2 2 |MP 1|.其中所有正确命题的序号是____________. 11.到两定点A (0,0),B (3,4)距离之和为5的点的轨迹是( ) A.椭圆 B.AB 所在直线 C.线段AB D.无轨迹 12.若点(x ,y )在椭圆4x 2+y 2=4上,则2 -x y 的最小值为( ) A.1 B.-1 C.- 3 23 D.以上都不对 13已知F 1(-3,0)、F 2(3,0)是椭圆m x 2+n y 2 =1的两个焦点,P 是椭圆上的点,当∠F 1PF 2= 3 π 2时,△F 1PF 2的面积最大,则有( ) A.m =12,n =3 B.m =24,n =6 C.m =6,n = 2 3 D.m =12,n =6 14.P 为双曲线C 上一点,F 1、F 2是双曲线C 的两个焦点,过双曲线C 的一个焦点F 1作∠F 1PF 2的平分线的垂线,设垂足为Q ,则Q 点的轨迹是( ) 12. A.直线 B.圆 C.椭圆 D.双曲线 三、解答题

解析几何中的与三角形面积相关的问题

解析几何中的与三角形面积相关的问题 类型 对应典例 椭圆中有关三角形的面积最值 典例1 抛物线中有关三角形的面积最值 典例2 椭圆中有关三角形的面积的取值范围 典例3 抛物线中有关三角形的面积的取值范围 典例4 椭圆中由三角形面积问题求参数值或范围 典例5 抛物线中由三角形面积问题求参数值或范围 典例6 椭圆中由三角形面积问题求直线方程 典例7 抛物线中由三角形面积问题求直线方程 典例8 【典例1】已知椭圆C :()222210x y a b a b +=>>的离心率为2 2 ,且与抛物线x y =2交于M ,N 两点,OMN ?(O 为坐标原点)的面积为22 (1)求椭圆C 的方程; (2)如图,点A 为椭圆上一动点(非长轴端点)1F ,2F 为左、右焦点,2AF 的延长线与椭圆交于B 点,AO 的延长线与椭圆交于C 点,求ABC ?面积的最大值. 【解析】(1)椭圆22 22:1(0)x y C a b a b +=>>与抛物线x y =2交于M ,N 两点, 可设(M x x ,(,)N x x -, ∵OMN ?的面积为22 ∴22x x =2x =,∴2)M ,(2,2)N , 由已知得222222 242 1c a a b a b c ?=? ??+=??=+??? ,解得22a =2b =,2c =,

∴椭圆C 的方程为22 184 x y +=. (2)①当直线AB 的斜率不存在时,不妨取A ,(2,B ,(2,C -,故 1 42 ABC ?=?=; ②当直线AB 的斜率存在时,设直线AB 的方程为(2)y k x =-,()11,A x y ,()22,B x y , 联立方程22(2)18 4y k x x y =-???+=??,化简得()2222 218880k x k x k +-+-=, 则()()()2222 64421883210k k k k ?=-+-=+>, 2122821k x x k +=+,212288 21 k x x k -?=+, ||AB = = 22121k k +=+, 点O 到直线02=-- k y kx 的距离d = = , 因为O 是线段AC 的中点,所以点C 到直线AB 的距离为2d = , ∴1 ||22ABC S AB d ?= ?2211221k k ??+=? ?+?? = ∵ () () ()()22222 2 2 2211211k k k k k k k ++= ?? +++??() () 222211 4 41k k k k += +,又221 k k ≠+ ,所以等号不成立. ∴ ABC S ?=< 综上,ABC ?面积的最大值为 【典例2】已知抛物线()02:2>=p py x C ,其焦点到准线的距离为2,直线l 与抛物线C 交于A ,

理科数学2010-2019高考真题分类训练专题九解析几何第二十七讲双曲线

专题九 解析几何 第二十七讲 双曲线 2019年 1.(2019全国III 理10)双曲线C :22 42 x y -=1的右焦点为F ,点P 在C 的一条渐进线 上,O 为坐标原点,若=PO PF ,则△PFO 的面积为 A B C . D .2.(2019江苏7)在平面直角坐标系xOy 中,若双曲线2 2 21(0)y x b b -=>经过点(3,4), 则该双曲线的渐近线方程是 . 3.(2019全国I 理16)已知双曲线C :22 221(0,0)x y a b a b -=>>的左、右焦点分别为F 1, F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =uuu r uu u r ,120F B F B ?=uuu r uuu r ,则 C 的离心率为____________. 4.(2019年全国II 理11)设F 为双曲线C :22 221(0,0)x y a b a b -=>>的右焦点,O 为坐标 原点,以OF 为直径的圆与圆222 x y a +=交于P ,Q 两点.若PQ OF =,则C 的离心率 为 A B C .2 D 5.(2019浙江2)渐近线方程为±y =0的双曲线的离心率是 A B .1 C D .2 6.(2019天津理5)已知抛物线2 4y x =的焦点为F ,准线为l ,若l 与双曲线 22 221(0,0)x y a b a b -=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为 C.2

2010-2018年 一、选择题 1.(2018浙江)双曲线2 213 x y -=的焦点坐标是 A .(, B .(2,0)-,(2,0) C .(0,, D .(0,2)-,(0,2) 2.(2018全国卷Ⅰ)已知双曲线C :2 213 -=x y ,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若?OMN 为直角三角形,则||MN = A . 3 2 B .3 C . D .4 3.(2018全国卷Ⅱ)双曲线22 221(0,0)-=>>x y a b a b A .=y B .=y C .2=± y x D .2 =±y x 4.(2018全国卷Ⅲ)设1F ,2F 是双曲线C :22 221(0,0)x y a b a b -=>>的左、右焦点,O 是 坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1|||PF OP =,则C 的离心率为 A B .2 C D 5.(2018天津)已知双曲线22 221(0,0)x y a b a b -=>>的离心率为2,过右焦点且垂直于x 轴 的直线与双曲线交于A ,B 两点.设A ,B 到双曲线同一条渐近线的距离分别为1d 和 2d , 且126d d +=,则双曲线的方程为 A . 221412x y -= B .221124x y -= C .22139x y -= D .22 193 x y -=

相关主题
文本预览
相关文档 最新文档