当前位置:文档之家› 电力电子课程设计-IGBT单相电压型全桥无源逆变电路

电力电子课程设计-IGBT单相电压型全桥无源逆变电路

电力电子课程设计-IGBT单相电压型全桥无源逆变电路
电力电子课程设计-IGBT单相电压型全桥无源逆变电路

1引言

本次课程设计的题目是IGBT单相电压型全桥无源逆变电路设计,根据电力电子技术的相关知识,单相桥式逆变电路是一种常见的逆变电路,与整流电路相比较,把直流电变成交流电的电路成为逆变电路。当交流侧接在电网上,称为有源逆变;当交流侧直接和负载相接时,称为无源逆变,逆变电路在现实生活中有很广泛的应用。

2工作原理概论

2. 1 IGBT的简述

绝缘栅双极晶体管(Insulated-gate Bipolar Transistor),英文简写为IGBT。它是一种典型的全控器件。它综合了GTR和MOSFET的优点,因而具有良好的特性。现已成为中、大功率电力电子设备的主导器件。IGBT是三端器件,具有栅极G、集电极C 和发射极E。它可以看成是一个晶体管的基极通过电阻与MOSFET相连接所构成的一种器件。其等效电路和电气符号如下:

图1 IGBT等效电路和电气图形符号

它的开通和关断是由栅极和发射极间的电压所决定的。当UGE为正且大于开启电压UGE时,MOSFET内形成沟道,并为晶体管提供基极电流进而是IGBT导通。由于前面提到的电导调制效应,使得电阻减小,这样高耐压的IGBT也具有很小的通态压降。当山脊与发射极间施加反向电压或不加信号时,MOSFET内的沟道消失,晶体管的积极电流被切断,使得IGBT关断。

2.2 电压型逆变电路的特点及主要类型

根据直流侧电源性质的不同可分为两种:直流侧是电压源的称为电压型逆变电路;直流侧是电流源的则称为电流型逆变电路。电压型逆变电路有以下特点:直流侧为电压源,或并联有大电容,相当于电压源。直流侧电压基本无脉动,直流回路呈现低阻抗。

由于直流电压源的钳位作用,交流侧输出电压波形为矩形波,并且与负载阻抗角无关。而交流侧输出电流波形和相位因为负载阻抗的情况不同而不同。

当交流侧为阻感负载时需要提供无功功率,直流侧电容起缓冲无功能量的作用。为了给交流侧想直流侧反馈的无功能量提供通道,逆变桥各臂都并联了反馈二极管。又称为续流二极管。

逆变电路分为三相和单相两大类。其中,单相逆变电路主要采用桥式接法。主要有:单相半桥和单相全桥逆变电路。而三相电压型逆变电路则是由三个单相逆变电路组成。

2.3 IGBT单相电压型全桥无源逆变电路原理分析

单相逆变电路主要采用桥式接法。它的电路结构主要由四个桥臂组成,其中

每个桥臂都有一个全控器件IGBT和一个反向并接的续流二极管,在直流侧并联有

大电容而负载接在桥臂之间。其中桥臂1,4为一对,桥臂2,3为一对。可以看成

由两个半桥电路组合而成。其基本电路连接图如下所示:

图2 电压型全桥无源逆变电路的电路图

由于采用绝缘栅晶体管(IGBT)来设计,如图2的单相桥式电压型无源逆变电路,此课程设计为电阻负载,故应将RLC负载中电感、电容的值设为零。此电路由两对桥臂组成,V1和V4与V2和V3两对桥臂各导通180度。再加上采用了移相调压法,所以VT3的基极信号落后于VT1的90度,VT4的基极信号落后于VT2的90度。因为是电阻负载,故晶体管均没有续流作用。输出电压和电流的波形相同,均为90度正值、90度零、90度负值、90度零……这样一直循环下去。

3主电路设计及参数选择

3.1主电路仿真图

在本次设计中,主要采用单相全桥式无源逆变电路(电阻负载)作为设计的主电路。由于软件上的电源等器件都是理想器件,故可将直流侧并联的大电容直接去掉。由以上工作原理概论的分析可得其主电路仿真图如下所示:

单相电压型全桥无源逆变电路(电阻负载)的主电路

3.2参数设计及计算

3.2.1参数设置

电阻负载,直流侧输入电压=100V, 脉宽为θ=90°的方波,输出功率为300W,电容和电感都设置为理想零状态。频率为1000Hz

3.2.2计算

由频率为1000Hz即可得出周期为T=0.001s,由于V3的基波信号比V1的落后了90度(即相当1/4个周期)。

通过换算得:

t3=0.001/4=0.00025s,而t1=0s。

同理得:

t2=0.001/2=0.0005S, 而t4=0.00075S。

由理论情况有效值:

Uo=Ud/2=50V。

又因为P=300W 所以有电阻:

R=Uo*Uo/P=8.333Ω

则输出电流有效值:

Io=P/Uo=6A

则可得电流幅值为

Imax=12A,Imin=-12A

电压幅值为

Umax=100V,Umin=-100V

晶闸管额定值计算,电流有效值:

Ivt=Imax/4=3A。

额定电流In额定值:

In=(1.5-2)*3=(4.5-6)A。

最大反向电压

Uvt=100V

则额定电压

Un=(2—3)*100V=(200-300)V

3.2.3设置主电路

根据以上计算的各参数即可正确设置主电路图如下,进而仿真出波形图。

VT1的触发电平参数设置

VT2的触发电平参数设置

VT3的触发电平参数设置

VT4的触发电平参数设置

负载参数设置

4仿真电路结果的分析

4.1仿真电路图

4.1.1触发电平的波形图

从上到下依次为VT1,VT2,VT3,VT4的触发电压,幅值为5V。

4.1.2负载输出波形图

从上到下依次为输出电流(最大值为12A),输出电压波形(最大值为100V)。

则所得的波形即是上图所示的波形。一个周期内的两个半个周期的输出电压值大小相等,幅值的正负相反,则输出平均电压为0。同理输出平均电流也为0。

4.1.3器件IGBT的输出波形图

从上到下依次为VT1,VT2,VT3,VT4的输出电流和电压波形。

VT1电流波形(最大值12A,最小值0A)VT1电压波形(最大值100V,最小值0V)

VT2电流波形(最大值12A,最小值0A)VT2电压波形(最大值100V,最小值0V)

VT3电流波形(最大值12A,最小值0A)VT3电压波形(最大值100V,最小值0V)

VT4电流波形(最大值12A,最小值0A)VT4电压波形(最大值100V,最小值0V)

4.2仿真波形分析

在接电阻负载时,采用移相的方式来调节逆变电路的输出电压。移相调压实际上就是调节输出电压脉冲的宽度。通过对4.1.1触发脉冲的控制得到如图

4.12和4.13的波形图,4.12波形为输出电流电压的波形,由于没有电感负载,

在波形图中可看出,一个周期内的两个半个周期的输出电压值大小相等,幅值的正负相反,则输出平均电压为0。

VT1电压波形和VT2的互补,VT3电压波形和VT4的互补,但VT3的基极信号不是比VT1落后180°,而是只落后θ。即VT3、VT4的栅极信号不是分别和VT2、VT1的栅极信号同相位,而是前移了90°。输出的电压就不再是正负各为180°的的脉冲,而是正负各为90°的脉冲。由于没有电感负载,故电流情形与电压相同。

5 总结

IGBT单相电压型全桥无源逆变电路共有4个桥臂,可以看成两个半桥电路组合而成,采用移相调压方式后,输出交流电压有效值即可通过改变直流电压Ud来实现,也可通过改变θ来调节输出电压的脉冲宽度来改变其有效值。

由于MATLAB软件中电源等器件均为理想器件,故可将电容直接去掉。又由于在纯电阻负载中,VD1—VD4不再导通,不起续流作用,古可将起续流作用的4个二极管也去掉,对结果没有影响。

相比于半桥逆变电路而言,全桥逆变电路克服了半桥逆变电路输出交流电压幅值仅为1/2Ud的缺点,且不需要有两个电容串联,就不需要控制电容电压的均衡,因此可用于相对较大功率的逆变电源。

参考文献

[1]王兆安刘进军.电力电子技术. 北京:机械工业出版社.第五版,2009.5﹒100~103

[2]黄忠霖黄京.电力电子技术MATLAB实践. 北京:国防工业出版社.2009.1. 246~248

[3]洪乃刚. 电力电子、电机控制系统的建模和仿真. 北京:机械工业出版社.2010.1. 100~107

目录

1 引言 (1)

2 工作原理概论 (1)

2.1 IGBT的简述 (1)

2.2 电压型逆变电路的特点及主要类型 (2)

2.3 IGBT单相电压型全桥无源逆变电路原理分析 (2)

3 主电路设计及参数选择 (3)

3.1 主电路仿真图 (4)

3.2参数设置及计算 (4)

3.2.1参数设置 (4)

3.2.2计算 (4)

3.2.3设置主电路 (5)

4 仿真电路结果的分析 (7)

4.1 仿真电路图 (8)

4.1.1 触发电平的波形图 (8)

4.1.2 负载输出波形图 (8)

4.1.3 器件IGBT的输出波形图 (8)

4.2 仿真波形分析 (8)

5 总结 (11)

参考文献 (11)

电力电子课设(参考版)

一总体方案设计级总体框图 1、1总体方案设计 根据任务湖中的,本次设计的是dcdc降压变换器。DC-DC变换 器有两类:一类由两级电路组成DC-AC-DC变换,第一级为逆变,实现DC-AC变换,第二级为整流,实现AC-DC变换。另一类变 换器由晶体管和二极管开关组合成PWM开关,将输入直流电 压斩波后,再经滤波后输出。由于第一类比较复杂,方针起来 比较麻烦。第二类简单方便,比较贴合课本中的知识。第二类 dcdc降压电路有以下几种: BUCK PWM变换器在CCM下的工作原理(如图2-2):一个开 关周期内,开关晶体管的开,关过程将直流输入电压斩波,形 成脉宽为onT的方波脉冲(onT为开关管导通时间)。当开关晶 体管导通时,二极管关断,输入端直流电流电源Vi将功率传送 到负载,并使用电感储能(电感电流上升):当开关晶体管关断 时,二极管导通,续流,电感储能向负载释放(电感电流下降)。 一个开关周期内,电感电流的平均值等于负载电流OI(忽略滤 波电容C的ESR)。根据原理和电路拓扑可以推导出工作在CCM 下的DC-DC PWM变换器的输出-输入电压变换比: DVi Vo (2-1)

占空比D总是小于1的,所以BUCK变换器是一种降压变换器。 升降压型BUCK-BOOST技术 图2-4 升降压反极性(BUCK-BOOST)变换器电路拓扑 如图2-4所示,极性反转型(BUCK-BOOST)变换器主电路如用 元器件与BUCK,BOOST变换器相同,由开关管,储能电感,整 流二极管及滤波电容等元器件组成。这种电路具有BUCK变换 器降压和BOOST变换器升压的双重作用。升压还是降压取决与 PWM驱动脉冲的占空比D。虽然输入与输出共用一个连接端,但输出电压的极性与输入电压是相反的,故称为降压反极性变 换器。,根据我们的设计要求,是要求把12-18V的直流电压转 换到5V的直流电压,那么分析后可得降压型BUCK转换技术最 适合这次设计。 1、2总体框图设计

基本半桥逆变电路分析

节能灯产品节能灯产品基本半桥逆变电路分析基本半桥逆变电路分析 一、各元件的作用 FUSE 保险电阻:过电流和短路电流保护元件,抑制浪涌电流; L1,C1,C2:组成π型EMI 滤波器,减轻高频逆变电路产生的电磁干扰; D1,D2,D3,D4:组成桥式整流电路,将输入的交流变为直流; C3 滤波电容:将整流出的电压进行平滑滤波,使其接近直流电压; R1,C5:RC 积分电路,滤波后的电压经过R1对C5进行充电,提供DB3导通电压; DB3双向触发二极管:当 C5上的电压高于DB3的导通电压时,DB3导通, 向Q2的基极注入电流,使T2导通,电路起振后, DB3不再导通; D5:隔离启动电路和振荡电路,使振荡电流不会经过C5到地; R2,C4:C4为续流电容,R2为C4提供放电网络。当Q1和Q2在交替开关 的同时截止阶段,使灯丝有电流流过,C4通常为1000~3300pF ; R2,C4组成的放电网络同时避免两个三极管电流重叠,提供一个 死区时间。、

积分电容在启动时为触发管提供导通电压,电源电压经过R1对其进行充电,充电达到DB3的28V导通电压,下管导通. 移相电容,在上下管轮流导通工作过程当中,存在一个管子截止而另一个管子尚未导通的现象,而流过灯管的电流需要是连续的,利用电容电流可以突变的特性,把这一缺陷弥补上! 移相电容比较好!电容减小时电流滞后电压,三极管关断功耗加大,三极管打开时功耗减小,所谓电路呈感性;电容增加时电流超前电压,三极管关 断功耗减小,三极管打开时功耗增加,所谓电路呈容性.T5灯管管压 略高,启辉电容略小电路本身就接近中性,如果还是将移相电容容量 增加大会超成三极管滞后打开,三极管在因导通时有较高电压而产 生功耗!如T8T9灯管管压略低启辉电容略高,电路容易呈感性,如果 还是将移相电容容量减小会超成三极管超前打开,三极管在因关闭 时有较高电压而产生功耗!可能有朋友要说了,那我后面灯管的管压 和启辉电容选一定参数达到一定呈中性时就不是可以不用这个电 容了吗?那不行!我们这里讲的感容性是基波电流相对于矩形波电压 而言,矩形波内的高次谐波无法通过选频网络,经电感反势迭加到三 极管上,这样三极管有可能瞬态导通和关断时被硬性击穿!有时象 T5灯管不加移相电容时也没事,是因为管压过高时,高次谐波电流经 过高的管压强度大大减弱,三极管反而安全了!所以加一定容量的电 容也吸收了这些谐波,所以一定要加! 补充一点具体操作方法:用示 波器观看三极管的电流波形,调节该电容和磁环的参数就能使三极

电力电子技术课程设计范例

电力电子技术课程设计 题目:直流降压斩波电路的设计 专业:电气自动化 班级:14电气 姓名:周方舟 学号: 指导教师:喻丽丽

目录 一设计要求与方案 (4) 二设计原理分析 (4) 2.1总体结构分分析 (4) 2.2直流电源设计 (5) 2.3主电路工作原理 (6) 2.4触发电路设计 (10) 2.5过压过流保护原理与设计 (15) 三仿真分析与调试 (17) 3.1M a t l a b仿真图 (17) 3.2仿真结果 (18) 3.3仿真实验结论 (24) 元器件列表 (24) 设计心得 (25) 参考文献 (25) 致 (26) 一.设计要求与方案 供电方案有两种选择。一,线性直流电源。线性电源(Linear power supply)是先将交流电经过变压器降低电压幅值,再经过整流电路整流后,得到脉冲直流电,后经滤波得到带有微小波纹电压的直流电压。要达到高精度的直流电压,必须经过稳压电源进行稳压。线性电源体积重量大,很难实现小型化、损耗大、效率低、输出与输入之间有公共端,不易实现隔离,只能降压,不能升压。二,升压斩波电路。由脉宽调制芯片TL494为控制器构成BOOST原理的,实现升压型DC-DC变换器,输出电压的可调整与稳压控制的开关源是借助晶体管的开/关实现的。因此选择方案二。 设计要求:设计要求是输出电压Uo=220V可调的DC/DC变换器,这里为升压斩波电路。由于这些电路中都需要直流电源,所以这部分由以前所学模拟电路知识可以由整流器解决。MOSFET的通断用PWM控制,用PWM方式来控制MOSFET的通断需要使用脉宽调制器TL494来产生

电压型单相全桥逆变电路

1.引言 逆变电路所谓逆变,就是与整流相反,把直流电转换成某一固定频率或可变频率的交流电(DC/AC)的过程。 当把转换后的交流电直接回送电网,即交流侧接入交流电源时,称为有源逆变;而当把转换后的交流电直接供给负载时,则称为无源逆变。通常所讲的逆变电路,若不加说明,一般都是指无源逆变电路。 1. 电压型逆变器的原理图 当开关S1、S4闭合,S2、S3断开时,负载电压u o为正;当开关S1、S4断开,S2、S3闭合时,u o为负,如此交替进行下去,就在负载上得到了由直流电变换的交流电,u o的波形如图7.4(b)所示。输出交流电的频率与两组开关的切换频率成正比。这样就 t (b) (a) u o t3 t2 t1 i o u o Z u o i o U d _ + S3 S2S 4 S1

实现了直流电到交流电的逆变。 2. 电压型单相全桥逆变电路 它共有4个桥臂,可以看成由两个半桥电路组合而成。 两对桥臂交替导通180°。 输出电压和电流波形与半桥电路形状相同,幅值高出一倍。 改变输出交流电压的有效值只能通过改变直流电压U d来实现。 输出电压定量分析 u o成傅里叶级数 基波幅值 基波有效值 ? ? ? ? ? + + + = t t t U uω ω ω π 5 sin 5 1 3 sin 3 1 sin 4 d o d d o1m 27 .1 4 U U U= = π d d 1o 9.0 2 2 U U U= = π

当u o为正负各180°时,要改变输出电压有效值只能改变U d 来实现 可采用移相方式调节逆变电路的输出电压,称为移相调压。 各栅极信号为180o正偏,180o反偏,且T1和T2互补,T3和T4互补关系不变。T3的基极信号只比T1落后q ( 0

单相半桥逆变电路

目录 摘要 (1) 第一章系统方案设计及原理 (2) 1.1、系统方案 (2) 1.2、系统工作原理 (2) 1.2.1、逆变电路的基本工作原理 (2) 1.2.2、单相半桥阻感负载逆变电路 (3) 1.2.3、单相半桥纯电阻负载逆变电路 (4) 1.3、IGBT的结构特点和工作原理 (4) 1.3.1、IGBT的结构特点 (4) 1.3.2、IGBT对驱动电路的要求 (6) 第二章硬件电路设计与参数计算 (7) 2.1、系统硬件连接 (7) 2.1.1、单相半桥无源逆变主电路如图下所示 (7) 2.2、整流电路设计方案 (8) 2.2.1、整流变压器的参数运算 (8) 2.2.2、整流变压器元件选择 (9) 2.2.3、整流电路保护元件的选用 (9) 2.3、驱动电路设计方案........................................................................... 错误!未定义书签。 2.3.1、IGBT驱动器的基本驱动性能.............................................. 错误!未定义书签。 2.3.2、驱动电路................................................................................ 错误!未定义书签。 2.4、触发电路设计方案........................................................................... 错误!未定义书签。第三章系统仿真.............................................................................................. 错误!未定义书签。 3.1、建立仿真模型................................................................................... 错误!未定义书签。 3.2、仿真结果分析................................................................................... 错误!未定义书签。第四章小结...................................................................................................... 错误!未定义书签。参考文献............................................................................................................ 错误!未定义书签。

江苏大学电力电子课程设计

电力电子课程设计 学院:电气信息工程学院 专业: 学号: 姓名:

一. 设计要求 (1)根据给定的参数范围,设计BOOST 电路的参数; (2)根据给定的参数范围,设计CUK 电路的参数; (3)利用MATLAB 对上述电路图仿真实验得出波形; (4)在实验室平台上试验,观测数据与波形,并与仿真图形进行比对; (5)撰写实验报告; 二. 电路设计 1.电路工作原理 (1)Boost 电路 Boost 电路原理图 基本原理 假设L ,C 值很大。当可控开关V 处于通态的时候,电源E 向电感L 充电,充电的电流基本恒定不变I 1,同时电容C 向负载R 放电。因为C 很大,基本保持输出电压U 0不变。当可控开关处于断态的时候,E 和电感L 上积蓄的能量共同向电容C 充电并向负载R 提供能量。当电路工作处于稳态时,一个周期T 中电感L 积蓄的 能量与释放的能量相等,即: 化简得: ()off o on t I E U t EI 11-=E t T E t t t U off off off on o =+=

基本数值计算: 输出电压U 0与输入电压E 关系: 01 1 1U E E βα==- 输出电流I0与输入电流I1的关系: 01021U I I E E β== 输出电流I0与输出电压U0的关系: 001U E I R R β== (2)Cuk 电路 Cuk 电路原理图 基本原理 当可控开关V 处于通态的时候,E-L1-V 回路和R-L2-C-V 回路分别流过电流。当V 处于断态的时候,E-L1-C-VD 回路和R-L1-VD 回路分别流过电流。输出电压的极性与电源电压极性相反。

单相全桥逆变电路原理

单相全桥型逆变电路原理 电压型全桥逆变电路可瞧成由两个半桥电路组合而成,共4个桥臂,桥臂1与4为一对,桥臂2与3为另一对,成对桥臂同时导通,两对交替各导通180° 电压型全桥逆变电路输出电压uo 的波形与半桥 电路的波形uo 形状相同,也就是矩型波,但幅值 高出一倍,Um=Ud 输出电流io 波形与半桥电路的io 形状相同,幅值增加一倍 VD1 、V1、VD2、V2相继导通的区间,分别对应VD1与VD4、V1与V4、VD2与VD3、V2与V3相继导通的区间 + - VD 3 VD 4

单相半桥电压型逆变电路工作波形 全桥逆变电路就是单相逆变电路中应用最多的, 对电压波形进行定量分析将幅值为Uo 的矩形波 uo 展开成傅里叶级数,得 其中基波幅值Uo1m 与基波有效值Uo1分别为 上述公式对半桥逆变电路也适用,将式中的ud 换成Ud /2 uo 为正负电压各为180°的脉冲时,要改变输出电压有效值只能通过改变输出直流电压Ud 来实现 d d o1m 27.14U U U == π d d 1o 9.022U U U == π O ON u o U - U m i o VD 1 VD 2 VD 1 VD 2 ?? ? ??+++= t t t U u ωωωπ5sin 513sin 31sin 4d o

t 1时刻前V 1与V 4导通,输出电压u o 为u d t 1时刻V 3与V 4栅极信号反向,V 4截止,因i o 不能突变,V 3不能立即导通,VD 3导通续流,因V 1与VD 3同时导通,所以输出电压为零 各 IGBT 栅极信号uG1~uG4及输出电压uo 、输出电流io 的波形 u u u u u i o o ? 各IGBT 栅极信号为180°正 偏,180°反偏,且V 1与V 2栅极信号互补,V 3与V 4栅极信号互补 ? V 3的基极信号不就是比V 1落后 180°,而就是只落后θ ( 0< θ <180°) ? V 3、V 4的栅极信号分别比V 2、V 1 采用移相方式调节逆变电路的输出电压

单相半桥型逆变电路原理

单相半桥型逆变电路原理 在直流侧接有两个相互串联的足够大的电容,两个电容的联结点是直流电源的中点。 半桥逆变电路有两个桥臂,每个桥臂有一个可控器件和一个反并联二极管组成。 负载联结在直流电源中点和两个桥臂联结点之间。 设开关器件V1和V2栅极信号在一周期内各半周正偏、半 周反偏,两者互补。当负载为感性时,工作波形如图所示 + -a) U VD 1 VD 2

t3时刻io 降为零时,VD2截止,V2开通,io 开始反向并逐渐增大。 t4时刻给V2关断信号,给V1开通信号,V2关断,VD1先导通续流,t5时刻V1才开通。 O O u o U m -U m i o V D 1 V D 2 V D 1 V D 2 O O u o U m -U m i o V D V D V D V D

V1或V2通时,负载电流io 和电压uo 同方向,直流侧向负载提供能量 VD1或VD2通时,io 和uo 反向,负载电感中贮藏的能量向直流侧反馈 负载电感将其吸收的无功能量反馈回直流侧,反馈 回的能量暂时储存在直流侧电容器中,直流侧电容 器起着缓冲这种无功能量的作用。 反馈二极 续流二极管 是负载向直流侧反馈能量的通道 使负载电流连续 O O u o U m -U m i o V D 1 V D 2 V D 1 V D 2

可控器件是不具有门极可关断能力的晶闸管时,须附加强迫换流电路才能正常工作。 半桥逆变电路特点 优点:简单,使用器件少 缺点:输出交流电压幅值Um仅为Ud/2,直流侧需两电容器串联,工作时要控制两个电容器电压均衡 半桥逆变电路常用于几kW以下的小功率逆变电源

电力电子课程设计模板

电气工程学院 电力电子课程设计 设计题目:MOSFET降压斩波电路设计专业班级:电气0907 学号:09291210 姓名:李岳 同组人:刘遥(09291212 ) 指导教师: 设计时间:2012年6月25日-29日 设计地点:电气学院实验中心

电力电子课程设计成绩评定表 指导教师签字: 年月日

电力电子课程设计任务书 学生姓名:李岳,刘遥专业班级电气0907 指导教师: 一、课程设计题目: MOSFET降压斩波电路设计(纯电阻负载) 设计条件:1、输入直流电压:U d=100V 2、输出功率:300W 3、开关频率5KHz 4、占空比10%~90% 5、输出电压脉率:小于10% 二、课程设计要求 1. 根据具体设计课题的技术指标和给定条件,能独立而正确地进行方案论证和电路设计,要求概念清楚、方案合理、方法正确、步骤完整; 2. 查阅有关参考资料和手册,并能正确选择有关元器件和参数,对设计方案进行仿真; 3. 完成预习报告,报告中要有设计方案,还要有仿真结果; 4. 进实验室进行电路调试,边调试边修正方案; 5. 撰写课程设计报告——画出主电路、控制电路原理图,说明主电路的工作原理、选择元器件参数,说明控制电路的工作原理、绘出主电路典型波形(比较实际波形与理论波形),绘出触发信号(驱动信号)波形,说明调试过程中遇到的问题和解决问题的方法。 三、进度安排

2.执行要求 电力电子课程设计共6个选题,每组不得超过2人,要求学生在教师的指导下,独力完成所设计的系统主电路、控制电路等详细的设计(包括计算和器件选型)。严禁抄袭,严禁两篇设计报告雷同,甚至完全一样。 四、课程设计参考资料 [1]王兆安,黄俊.电力电子技术(第四版).北京:机械工业出版社,2001 [2]王文郁.电力电子技术应用电路.北京:机械工业出版社,2001 [3]李宏.电力电子设备用器件与集成电路应用指南.北京:机械工业出版社,2001 [4] 石玉、栗书贤、王文郁.电力电子技术题例与电路设计指导. 北京:机械工业出版社,1999 [5] 赵同贺等.新型开关电源典型电路设计与应用.北京:机械工业出版社,2010 摘要 关键词:整流、无源逆变、晶闸管

电力电子技术课程设计报告

电力电子课程设计报告题目三相桥式全控整流电路设计 学院:电子与电气工程学院 年级专业:2015级电气工程及其自动化 姓名: 学号: 指导教师:高婷婷,林建华 成绩:

摘要 整流电路尤其是三相桥式可控整流电路是电力电子技术中最为重要同时也是应用得最为广泛的电路,不仅用于一般工业,也广泛应用于交通运输、电力系统、通信系统,能源系统及其他领域,因此对三相桥式可控整流电路的相关参数和不同性质负载的工作情况进行对比分析与研究具有很强的现实意义,这不仅是电力电子电路理论学习的重要一环,而且对工程实践的实际应用具有预测和指导作用,因此调试三相桥式可控整流电路的相关参数并对不同性质负载的工作情况进行对比分析与研究具有一定的现实意义。 关键词:电力电子,三相,整流

目录 1 设计的目的和意义………………………………………1 2 设计任务与要求 (1) 3 设计方案 (1) ?3.1三相全控整流电路设计 (1) 3.1.1三相全控整流电路图原理分析 (2) ?3.1.2整流变压器的设计 (2) ?3.1.3晶闸管的选择 (3) 3.2 保护电路的设计 (4) 3.2.1变压器二次侧过压保护 (4) ?3.2.2 晶闸管的过压保护………………………………………………4 3.2.3 晶闸管的过流保护………………………………………………5 3.3 触发电路的选择设计 (5) 4 实验调试与分析 (6) 4.1三相桥式全控整流电路的仿真模型 (6)

4.2仿真结果及其分析……………………………………………7 5 设计总结 (8) 6 参考文献 (9)

1 设计的目的和意义 本课程设计属于《电力电子技术》课程的延续,通过设计实践,进一步学习掌握《电力电子技术》,更进一步的掌握和了解他三相桥式全控整流电路。通过设计基本技能的训练,培养学生具备一定的工程实践能力。通过反复调试、训练、便于学生掌握规范系统的电子电力方面的知识,同时也提高了学生的动手能力。 2 设计任务与要求 三相桥式全控整流电路要求输入交流电压2150,10,0.5U V R L H ==Ω=为阻 感性负载。 1.写出三相桥式全控整流电路阻感性负载的移相范围,并计算出直流电压的变化范围 2.计算α=60°时,负载两端电压和电流,晶闸管平均电流和有效电流。 3.画出α=60°时,负载两端 d U 和晶闸管两端 1 VT U 波形。 4.分析纯电阻负载和大电感负载以及加续流二极管电路的区别。 5.晶闸管的型号选择。 3 设计方案 3.1三相全控整流电路设计

IGBT单相电压型半桥无源逆变电路设计

IGBT单相电压型半桥无源逆变电路设计

————————————————————————————————作者:————————————————————————————————日期:

1 引言 本次课程设计的题目是IGBT单相电压型半桥无源逆变电路设计,根据电力电子技术的相关知识,单相桥式逆变电路是一种常见的逆变电路,与整流电路相比较,把直流电变成交流电的电路成为逆变电路。当交流侧接在电网上,称为有源逆变;当交流侧直接和负载相接时,称为无源逆变,逆变电路在现实生活中有很广泛的应用。 电力电子技术课程设计是电力电子技术课程理论教学之后的一个实践教学环节。其目的是训练学生综合运用学过的各种变流电路原理的基础知识,独立完成查找资料、选择方案、设计电路、撰写报告的能力,使学生进一步加深对变流电路基本理论的理解和基本技能的运用,为今后的学习和工作打下坚实的基础。 2 工作原理概论 2.1 IGBT单相电压型半桥无源逆变电路 2.1.1单相电压型逆变电路 (1)半桥逆变电路结构及其工作原理 V 1和V 2 栅极信号各半周正偏、半周反偏,二者互补。输出电压u o 为矩形波,幅 值为Um=Ud/2,输出电流i o 波形随负载而异,感性负载时,V 1 或V 2 通时,i o 和u o 同方向,直流侧向负载提供能量,VD 1或VD 2 通时,i o 和u o 反向,电感中贮能向直流 侧反馈,VD 1、VD 2 称为反馈二极管,还使i o 连续,又称续流二极管。 单相半桥电压型逆变电路及其工作波形

优点:简单,使用器件少。缺点:交流电压幅值U d/2,直流侧需两电容器串联,要控制两者电压均衡,用于几k W以下的小功率逆变电源。 2.1.2 IGBT绝缘栅双极型晶体管 IGBT(Insulated Gate Bipolar Transistor),绝缘栅双极型晶体管,是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件, 兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点。GTR 饱和压降低,载流密度大,但驱动电流较大;MOSFET驱动功率很小,开关速度快,但导通压降大,载流密度小。IGBT综合了以上两种器件的优点,驱动功率小而饱和压降低。非常适合应用于直流电压为600V及以上的变流系统如交流电机、变频器、开关电源、照明电路、牵引传动等领域。 2.2电压型逆变电路的特点及主要类型 根据直流侧电源性质的不同可分为两种:直流侧是电压源的称为电压型逆变电路;直流侧是电流源的则称为电流型逆变电路。电压型逆变电路有以下特点:直流侧为电压源,或并联有大电容,相当于电压源。直流侧电压基本无脉动,直流回路呈现低阻抗。 由于直流电压源的钳位作用,交流侧输出电压波形为矩形波,并且与负载阻抗角无关。而交流侧输出电流波形和相位因为负载阻抗的情况不同而不同。 当交流侧为阻感负载时需要提供无功功率,直流侧电容起缓冲无功能量的作用。为了给交流侧想直流侧反馈的无功能量提供通道,逆变桥各臂都并联了反馈二极管。又称为续流二极管。 逆变电路分为三相和单相两大类。其中,单相逆变电路主要采用桥式接法。主要有:单相半桥和单相全桥逆变电路。而三相电压型逆变电路则是由三个单相逆变电路组成。 2.3 根据设计题目要求的指标,通过查阅有关资料分析其工作原理,确定各器件参数,设计电路原理图; 设计条件: =100V 1.电源电压:直流U d 2.输出功率:300W

电力电子技术课程设计报告

电力电子技术课程设计 报告书 专业班级:16电气2班 姓名:王浩淞 学号:2016330301054 指导教师:雷美珍

目录 1、webench电路设计 1.1设计任务要求 输入电压为(8V-10V),输出电压为5V,负载电流为1A 1.2设计方案分析 图1.3.1主电路原理图 图1.3.2元器件参数 图1.3.3额定负载时工作值

图1.3.4输出电流和系统效率间的关系 如图1.3.4所示,在输出电流相同的情况下,输入电压越小,系统的稳态效率越高,因此提高效率的最直接方式就是降低系统的输入电压,其次在输入电压相同的情况下,我们可以调节输出电压的大小,使系统效率达到最大,例如当输入电压为9.0V时,根据图像输出电流为0.40A的时候效率最高。第二种方法是改变元器件的参数,通过使用DCR(直流电阻)小的电感元件来实现输出纹波电压降低。 1.3主芯片介绍 TPS561201和TPS561208采用SOT-23封装,是一款简单易用的1A同步降压转换器。这些器件经过优化,可以在最少的外部元件数量下工作,并且还经过优化以实现低待机电流。这些开关模式电源(SMPS)器件采用D-CAP2模式控制,可提供快速瞬态响应,并支持低等效串联电阻(ESR)输出电容,如特种聚合物和超低ESR陶瓷电容,无需外部补偿元件。TPS561201以脉冲跳跃模式工作,在轻负载操作期间保持高效率。TPS561201和TPS561208采用6引脚1.6×2.9(mm)SOT(DDC)封装,工作在-40°C至125°C的结温范围内。 1.4电气仿真结果分析

图1.4.1启动仿真图1.4.2稳态仿真 图1.4.3暂态仿真图1.4.4 负载暂态仿真 二、基于电力系统工具箱的电力电子电路仿真 2.1 设计要求和方案分析 本课程设计主要应用了MATLAB软件及其组件之一Simulink,进行系统的设计与仿真系统主要包括:Boost升压斩波主电路部分、PWM控制部分和负载。Boost升压斩波主电路部分拖动带反电动势的电阻,模拟显示中的一般负载,若实际负载中没有反电动势,只需令其为零即可。负载为主电路部分提供脉冲信号,控制全控器件IGBT的导通和关断,实现整个系统的运行。在Simulink中完成各个功能模块的绘制后,即可进行仿真和调试,用Simulink 提供的示波器观察波形,进行相应的电压和电流等的计算,最后进行总结,完成整个Boost 变换器的研究与设计。 2.2 simulink仿真模型分析 电路设计好后主电路中的电感电容值已确定,此时只要调节触发波形的占空比即可调节Boost Chopper输出电压。电路设计好后主电路中的电感电容值已确定,此时只要调节触发波形的占空比即可调节Boost Chopper输出电压。占空比越大,Boost Chopper的输出电压值

IGBT单相电压型全桥无源逆变电路设计.

电子技术课程设计 说明书 IGBT 单相电压型全桥无源逆变电路 设计 学生姓名: 学号: 学 院: 专 指导教师: 2013年01月 XXX 1005044245 信息与通讯工程学院 电气工程及其自动化

中北大学 电子技术课程设计任务书 2012/2013 学年第一学期 学院:信息与通讯工程学院 专业:电气工程及其自动化 学生姓名:胡定章学号: 1005044245 课程设计题目:IGBT单相电压型全桥无源逆变电路设计 起迄日期: 12月24日~ 01月4 日 课程设计地点:电气工程系软件实验室 指导教师:石喜玲 系主任:王忠庆 下达任务书日期: 2012 年 12 月 24日

课程设计任务书

课程设计任务书

目录 1 引言 (1) 2 工作原理概论 (1) 2.1 IGBT的简述 (1) 2.2 电压型逆变电路的特点及主要类型 (2) 2.3 IGBT单相电压型全桥无源逆变电路原理分析 (2) 3 主电路设计及参数选择 (3) 3.1 主电路仿真图 (3) 3.2参数设置及计算 (3) 3.2.1参数设置 (3) 3.2.2计算 (3) 3.2.3设置主电路 (4) 4 仿真电路结果的分析 (5) 4.1 仿真电路图 (5) 1.1.14.1.1 触发电平与负载输出波的波形图 (5) 4.1.2 IGBT电流电压波形图 (6) 4.2 仿真波形分析 (6) 5 总结 (7) 参考文献 (7)

2引言 本次课程设计的题目是IGBT单相电压型全桥无源逆变电路设计,根据电力电子技术的相关知识,单相桥式逆变电路是一种常见的逆变电路,与整流电 路相比较,把直流电变成交流电的电路成为逆变电路。当交流侧接在电网上,称为有源逆变;当交流侧直接和负载相接时,称为无源逆变,逆变电路在现实 生活中有很广泛的应用。 3工作原理概论 2. 1 IGBT的简述 绝缘栅双极晶体管(Insulated-gate Bipolar Transistor),英文简写为IGBT。它是一种典型的全控器件。它综合了GTR和MOSFET的优点,因而具有良好的特性。现已成为中、大功率电力电子设备的主导器件。IGBT是三端器件,具有栅极G、集电极C 和发射极E。它可以看成是一个晶体管的基极通过电阻与MOSFET相连接所构成的一种器件。其等效电路和电气符号如下: 图1 IGBT等效电路和电气图形符号 它的开通和关断是由栅极和发射极间的电压错误!未找到引用源。所决定的。当UGE为正且大于开启电压UGE时,MOSFET内形成沟道,并为晶体管提供基极电流进而是IGBT导通。由于前面提到的电导调制效应,使得电阻错误!未找到引用源。减小,这样高耐压的IGBT也具有很小的通态压降。当山脊与发射极间施加反向电压或不加信

电力电子专业技术课程设计任务大全

电力电子技术课程设计任务大全

————————————————————————————————作者:————————————————————————————————日期:

《电力电子技术》课程设计任务书(一) 小功率晶闸管整流电路设计 一、设计的技术数据及要求 1、电路输出的直流电压和电流应满足负载要求; 2、电路应具有一定的稳压和保护功能,同时还具有较高的防止过电压和过电流的抗干扰能力; 3、触发电路满足要求; 4、电网供电电压:三相380V,电动机负载,工作于电动状态。 直流电机参数: 型号额定功率 (KW) 额定电压 (V) 额定电流 (A) 额定转速 (r/min) 电枢回路电感 (mH) Z3-52 7.5 220 40.8 1500 4.42 二、设计内容及要求 1、方案论证及选择; 2、主电路设计(包括整流变压器电压及容量计算,晶闸管元件选择,电 抗器容量等计算); 3、控制电路设计(触发电路的选择与设计); 4、保护电路设计(包括过流和过压保护等); 5、总结及心得体会; 6、参考文献设计; 7、完成电路原理图1份。 《电力电子技术》课程设计任务书(二) 小功率晶闸管整流电路设计 一、设计的技术数据及要求 1、电路输出的直流电压和电流应满足负载要求; 2、电路应具有一定的稳压和保护功能,同时还具有较高的防止过电压和过电流的抗干扰能力; 3、触发电路满足要求。 4、电网供电电压:单相220V,电动机负载,工作于电动状态。 直流电机参数: 型号额定功率 (KW) 额定电压 (V) 额定电流 (A) 额定转速 (r/min) 电枢回路电感 (mH) Z3-52 3 220 17.4 750 17.69

电力电子技术课程设计-240w半桥型开关稳压电源设计讲解

辽宁工业大学 电力电子技术课程设计(论文)题目:240W半桥型开关稳压电源设计 院(系):电气工程学院 专业班级:电气102 学号:100303044 学生姓名:邹伟龙 指导教师:(签字) 起止时间:2012-12-31至2012-1-11

课程设计(论文)任务及评语 院(系):电气工程学院教研室:电气教研室Array 注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算

摘要 开关电源在效率、体积和重量等方面都远远优于线性电源,因此已经基本取代了线性电源,成为电子热备供电的主要形式, 受到人们的青睐.随着开关电源在计算机、通信、航空航天、仪器仪表及家用电器等方面的广泛应用,人们对其需求量日益增长。开关电源以其效率高、体积小、重量轻等优势在很多方面逐步取代了效率低、又笨又重的线性电源。开关电源技术的主要用途之一是为信息产业服务,信息技术的发展对电源技术又提出了更高的要求,从而促进了开关电源技术的发展。本次设计采用反激式开关电源,以UC3842作为控制核心器件,运用脉宽调制的基本原理。同时,电路中辅以过压过流保护电路,为系统的安全工作提供保障。 关键词:整流电路;逆变电路;驱动电路

目录 第1章绪论 (1) 1.1电力电子技术概况 (1) 1.2本文设计内容 (2) 第2章开关稳压电源电路设计 (3) 2.1半桥型开关稳压电源总体设计方案 (3) 2.2具体电路设计 (5) 2.2.1主电路设计 (5) 2.2.2整流电路设计 (6) 2.2.3逆变电路设计 (7) 2.2.4驱动电路设计 (8) 2.2.5 整体电路设计 (10) 2.3元器件型号选择 (12) 第3章课程设计总结 (15) 参考文献 (16)

电流源型单相全桥逆变电路

电流源型单相全桥逆变电路的设计 摘要 本次设计说明书首先介绍了电流源型单相全桥逆变电路的特点和原理,用单相桥式电流型逆变电路的原理图说明了该电路是采用负载换相方式工作的,要求负载电流略超前于负载电压,又详细分析该电路的工作过程,并用图给出该逆变电路的工作波形。最后根据以上分析运用仿真软件PSIM对电路进行仿真设计,得到波形图。 关键词:电流源型单相电路,逆变电路,PSIM仿真 ' 目录

. 1.电流源型单相全桥逆变电路研究-----------------------------------------3 逆变电路介绍----------------------------------------------------3 电流型逆变电路的主要特点----------------------------------------3 电流源型单相全桥逆变电路----------------------------------------3 电流源型单相全桥逆变电路工作过程--------------------------------4 2.电流源型单相全桥逆变电路设计------------------------------------------7 电路设计原理----------------------------------------------------7 电路仿真图------------------------------------------------------7 3.参数设定及仿真结果----------------------------------------------------8 直流侧仿真------------------------------------------------------8 ) 参数设定-------------------------------------------------8 仿真结果-------------------------------------------------8交流侧仿真------------------------------------------------------8 参数设定-------------------------------------------------8 仿真结果-------------------------------------------------9 4.小结------------------------------------------------------------------9 5.参考文献--------------------------------------------------------------10 :

IGBT单相电压型半桥无源逆变电路设计

1 引言 本次课程设计的题目是IGBT单相电压型半桥无源逆变电路设计,根据电力电子技术的相关知识,单相桥式逆变电路是一种常见的逆变电路,与整流电路相比较,把直流电变成交流电的电路成为逆变电路。当交流侧接在电网上,称为有源逆变;当交流侧直接和负载相接时,称为无源逆变,逆变电路在现实生活中有很广泛的应用。 电力电子技术课程设计是电力电子技术课程理论教学之后的一个实践教学环节。其目的是训练学生综合运用学过的各种变流电路原理的基础知识,独立完成查找资料、选择方案、设计电路、撰写报告的能力,使学生进一步加深对变流电路基本理论的理解和基本技能的运用,为今后的学习和工作打下坚实的基础。 2 工作原理概论 2.1 IGBT单相电压型半桥无源逆变电路 2.1.1单相电压型逆变电路 (1)半桥逆变电路结构及其工作原理 V 1和V 2 栅极信号各半周正偏、半周反偏,二者互补。输出电压u o 为矩形波,幅 值为Um=Ud/2,输出电流i o 波形随负载而异,感性负载时,V 1 或V 2 通时,i o 和u o 同方向,直流侧向负载提供能量,VD 1或VD 2 通时,i o 和u o 反向,电感中贮能向直流 侧反馈,VD 1、VD 2 称为反馈二极管,还使i o 连续,又称续流二极管。 单相半桥电压型逆变电路及其工作波形

优点:简单,使用器件少。缺点:交流电压幅值U d/2,直流侧需两电容器串联,要控制两者电压均衡,用于几k W以下的小功率逆变电源。 2.1.2 IGBT绝缘栅双极型晶体管 IGBT(Insulated Gate Bipolar Transistor),绝缘栅双极型晶体管,是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件, 兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点。GTR 饱和压降低,载流密度大,但驱动电流较大;MOSFET驱动功率很小,开关速度快,但导通压降大,载流密度小。IGBT综合了以上两种器件的优点,驱动功率小而饱和压降低。非常适合应用于直流电压为600V及以上的变流系统如交流电机、变频器、开关电源、照明电路、牵引传动等领域。 2.2电压型逆变电路的特点及主要类型 根据直流侧电源性质的不同可分为两种:直流侧是电压源的称为电压型逆变电路;直流侧是电流源的则称为电流型逆变电路。电压型逆变电路有以下特点:直流侧为电压源,或并联有大电容,相当于电压源。直流侧电压基本无脉动,直流回路呈现低阻抗。 由于直流电压源的钳位作用,交流侧输出电压波形为矩形波,并且与负载阻抗角无关。而交流侧输出电流波形和相位因为负载阻抗的情况不同而不同。 当交流侧为阻感负载时需要提供无功功率,直流侧电容起缓冲无功能量的作用。为了给交流侧想直流侧反馈的无功能量提供通道,逆变桥各臂都并联了反馈二极管。又称为续流二极管。 逆变电路分为三相和单相两大类。其中,单相逆变电路主要采用桥式接法。主要有:单相半桥和单相全桥逆变电路。而三相电压型逆变电路则是由三个单相逆变电路组成。 2.3 根据设计题目要求的指标,通过查阅有关资料分析其工作原理,确定各器件参数,设计电路原理图; 设计条件: =100V 1.电源电压:直流U d 2.输出功率:300W

电力电子课程设计定稿版

电力电子课程设计 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

本科课程设计专用封面 设计题目: Cuk 变换器的设计与仿真 所修课程名称: 电力电子技术课程设计 修课程时间: 2013 年 06 月 17 日至 6 月 23 日 完成设计日期: 2013 年 06 月 23 日 评阅成绩: 评阅意见: 评阅教师签名: 年 月 日 ________学院____专业 姓名_____ 学号_____ ………………………………(密)………………………………(封)………………………………(线)………………………………

Cuk 变换器的设计与仿真 一.设计要求 1)完成Cuk 变换器的设计、仿真; 2)设计要求: 输入:DC100V ; 输出:DC50~150V 二.题目分析 Cuk 电路是一种可升降压的直流变换器电路,它基本可看成是升压电路和降压电路相结合产生的一种开关电路,其电原理图如图1所示 图1 Cuk 主电路图 基本工作原理为: 当控制开关VT 处于通态时,E —L 1—V 回路和R —L 2—C —V 回路分别流过电流。 当控制开关VT 处于断态 时,E —L 1—C —VD 回路和R —L 2—VD 回路分别流过电流。 输出电压的极性与电源电压极性相反。 稳态时电容C 的电流在一周期内的平均值应为零,也就是其对时间的积分为零,即 在书P127页的等效电路中,开关S 合向B 点时间即V 处于通态的时间t on ,则电容电流和时间的乘积为I 2t on 。开关S 合向A 点的时间为V 处于断态的时间t off ,则电容电流和时间的乘积为I 1 t off 。由此可得 off 1on 2t I t I

电力电子技术课程设计分析解析

摘要 高频开关稳压电源已广泛运用于基础直流电源、交流电源、各种工业电源,通信电源、通信电源、逆变电源、计算机电源等。它能把电网提供的强电和粗电,它是现代电子设备重要的“心脏供血系统”。BUCK变换器是开关电源基本拓扑结构中的一种,BUCK变换器又称降压变换器,是一种对输入输出电压进行降压变换的直流斩波器,即输出电压低于输入电压,由于其具有优越的变压功能,因此可以直接用于需要直接降压的地方。 关键词:稳压电源;buck变换器

Abstract Has been widely used in the DC power supply, AC power supply, industry power supply of high frequency switching power supply, communication power supply, communication power supply, inverter power supply, computer power supply etc.. It can provide high power and coarse grid electricity, it is an important system of modern electronic equipment "the blood flow to the heart". BUCK converter is a switch for power supply the basic topology of BUCK converter, also called buck converter, a DC chopper for buck to input and output voltage, the output voltage is less than the input voltage, because of its variable function superior, therefore, it can be directly used for the need for direct step-down place. Keyword:regulated power supply;BUCK converter

相关主题
文本预览
相关文档 最新文档