当前位置:文档之家› 单相电压型全桥逆变电路设计

单相电压型全桥逆变电路设计

单相电压型全桥逆变电路设计
单相电压型全桥逆变电路设计

第一章绪论

1.1整流技术的发展概况

正电路广泛应用于工业中。整流与逆变一直都是电力电子技术的热点之一。桥式整流是利用二极管的单向导通性进行整流的最常用的电路。常用来将交流电转化为直流电。从整流状态变到有源逆变状态,对于特定的实验电路需要恰到好处的时机和条件。基本原理和方法已成熟十几年了,随着我国交直流变换器市场迅猛发展,与之相应的核型技术应用于发展比较将成为业内企业关注的焦点。

目前,整流设备的发展具有下列特点:传统的相控整流设备已经被先进的高频开关整流设备所取代。系统的设计已经由固定式演化成模块化,以适应各种等级、各种模块通信设备的要求。加上阀控式密封铅酸蓄电池的广泛应用,为分散供电创造了条件。从而大大提高了通信网运行可靠和通信质量。高频开关整流器采用模块化设计、N1配置和热插拨技术,方便了系统的扩展,有利于设备的维护。由于整流设备和配电设备等配备了微机监控器,使系统设备具有了智能化管理功能和故障保护及自保护功能。新旗舰、新技术、新材料的应用,使高频开关整流器跃上了一个新台阶。

第二章设计方案及其原理

2.1电压型逆变器的原理图

原理框图

等效图及其输出波形

当开关S1、S4闭合,S2、S3断开时,负载电压u o 为正; 当开关S1、S4断开,S2、S3闭合时,u o 为负,如此交替进行下去,就在负载上得到了由直流电变换的交流电,u o 的波形如上图 (b)所示。

输出交流电的频率与两组开关的切换频率成正比。这样就实现了直流电到交流电的逆变。

(b)(a)

u o

2.2电压型单相全桥逆变电路

它共有4个桥臂,可以看成由两个半桥电路组合而成。

两对桥臂交替导通180°。输出电压和电流波形与半桥电路形状相同,幅值高出一倍。改变输出交流电压的有效值只能通过改变直流电压U d来实现。可采用移相方式调节逆变电路的输出电压,称为移相调压。各栅极信号为180o正偏,180o反偏,且T1和T2互补,T3和T4互补关系不变。T3的基极信号只比T1落后q ( 0

第三章仿真概念及其原理简述

3.1 系统仿真概述

1、基本概念

所谓系统仿真(system simulation),就是根据系统分析的目的,在分析系统各要素性质及其相互关系的基础上,建立能描述系统结构或行为过程的、且具有一定逻辑关系或数量关系的仿真模型,据此进行试验或定量分析,以获得正确决策所需的各种信息。

2、系统仿真的实质

(1)它是一种对系统问题求数值解的计算技术。尤其当系统无法通过建立数学模型求解时,仿真技术能有效地来处理。

(2)仿真是一种人为的试验手段。它和现实系统实验的差别在于,仿真实验不是依据实际环境,而是作为实际系统映像的系统模型以及相应的“人造”环境下进行的。这是仿真的主要功能。

3、系统仿真的作用

(1)仿真的过程也是实验的过程,而且还是系统地收集和积累信息的过程。尤其是对一些复杂的随机问题,应用仿真技术是提供所需信息的唯一令人满意的方法。

(2)对一些难以建立物理模型和数学模型的对象系统,可通过仿真模型顺利地解决预测、分析和评价等系统问题。

(3)通过系统仿真,可以把一个复杂系统降阶成若干子系统以便于分析。

(4)通过系统仿真,能启发新的思想或产生新的策略,还能暴露出原系统中隐藏着的一些问题,以便及时解决。

4、系统仿真的方法

系统仿真的基本方法是建立系统的结构模型和量化分析模型,并将其转换为适合在计算机上编程的仿真模型,然后对模型进行仿真实验。由于连续系统和离散(事件)系统的数学模型有很大差别,所以系统仿真方法基本上分为两大类,即连续系统仿真方法和离散系统仿真方法。在以上两类基本方法的基础上,还有一些用于系统

(特别是社会经济和管理系统)

系统动力学方法通过建立系统动力

学模型(流图等)、利用DYNAMO

统的仿真实验,从而研究系统结构、功能和行为之间的动态关系。

3.2 整流电路的概述

整流电路(rectifying circuit)把交流电能转换为直流电能的电路。大多数整流电路由变压器、整流主电路和滤波器等组成。

它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。整流电路通常由主电路、滤波器和变压器组成。20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。变压器设置与否视具体情况而定。变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离。

3.3 有源逆变的概述

逆变与整流相对应,直流电变成交流电。交流侧接电网,为有源逆变。交流侧接负载,为无源逆变。有源逆变的条件:负载侧存在一个直流电源E,由他提供能量,其电势极性与变流器的整流电压相反,对晶闸管为正向偏置电压;变流器在起直流侧输出应有一个与原整流电压相反的逆变电压U,其平均值U

变电路;电压型逆变电路,输出电压是矩形波,电流型逆变电路输出电流是矩形波。电压型逆变电路的特点:输出电流波形随负载而变;只有单方向传递功率的功能;故障电流较难抑制。

3.4逆变失败原因及消除方法

有源逆变失败(逆变颠覆)是指逆变时,一旦换相失败,外接直流电源就会通过晶闸管电路短路,或使变流器的输出平均电压和直流电动势变成顺向串联,形成很大短路电流。防止逆变失败的方法:采用精确可靠的触发电路,使用性能比较好的的晶闸管,保证

交流电源的质量,流出足够的逆变角等。

第四章参数计算

由题意得U2=50V β=35。P=200WE = -70V

U d=0.9U2cos(π-β)=0.9×50×cos145。= -36.86 V ·······①

I d=(U d-E)/R ··········································②

P=|EI d|-I d2R············································③联立①、②、③得

R = 6.199 ΩI d = 5.35A

晶闸管原件的额定电压为2U2=70.71V,取2~3倍的安全储备电压,并考虑晶闸管额定电压系取200V.

晶闸管元件额定电压IT:由查表得K f=I VT/I d =2/2,

I T=K f I d/1.57=2.41A

取2倍电流安全储备并考虑晶闸管原件额定电流系列取5 A.

4.1实验电路原理及结果图

实验原理图

单相桥式有源逆变原理图说明:负载侧存在一个直流电源E=70V,由他提供能量,其电势极性与单相桥式的整流电压相反,对晶闸管为正向偏置电压;在前半个周期延迟角为135度时,D1,D3导通,后半个周期D2,D4导通,如此循环,单相桥式在直流侧输出有一个与原整流电压相反的逆变电压U d=36.86V,其平均值U d

晶闸管1和3门极触发电源参数

晶闸管2和4门极触发电源参数

触发电路的原理:为简便起见,我们采用了脉冲信号发生器作为晶闸管的触发信号,其参数设定如上两图所示,其中1、3和2、4的参数只有延迟时间不同,相差半个周期,这样就使得两组晶闸管不同时触发,最重要的是脉冲信号发生器的频率和交流电源的频率相同,从而使得电路逆变的顺利进行

晶闸管触发电源的输出波形

U d波形图

晶闸管1、2、3、4两端的电压波形相同,1、3的波形与2、4的波形相差半个周期。

流过晶闸管电流及其两端电压

第五章心得与总结

本次电力电子课程设计以单相全控桥式整流及有源逆变电路为研究对象,对其原理做了很深入的理解。

通过本次课程设计暴露出了我在平时学习电力电子技术这门课程中存在的问题。首先在学习中只局限于课本知识,没有去探索新知识,至使在本次课程设计中出现当拿到课题后毫无头绪,无从下手的问题;其次,在学习了电力电子这门学科后,没能很好的将本学科中的知识互相联系,也没能将本学科和模拟电子技术、数字电子技术等学科相互联系,造成了在设计触发电路时遇到很大的困难,最终在老师的指导下才选择了直接使用信号源作为触发源这一

简便的方法;最后,缺少实际的操作,忽视了电力电子技术主要在于应用这一点,在设计时由于缺少实践经验,对参数的估算以及各元件参数的设定都走了很多弯路。

本次的课程设计需要查询大量的资料,通过本次设计,明白了不是任何东西都能在网络中轻易得到,还是需要自己的耐心寻找和筛选的。同时在设计的过程使我对于《Multisim》这款软件从最开始的了解到后来能够简单操作。

通过本次课程设计使我们明白了当面对实际的电力电子技术方面问题时,要能够将自己的理论知识与其结合起来,以及如何将其相互联系从而解决问题的方法,对以后的学习有了更好的指导。

参考文献

1、樊立萍,王忠庆.电力电子技术.北京:北京大学出版社,2006

2、王兆安,黄俊.电力电子技术.北京:机械工业出版社,2005

3、童诗白.模拟电子技术.北京:清华大学出版社, 2001

4、阎石.数字电子技术.北京:清华大学出版社, 1998

5、邱关源.电路.北京:高等教育出版社,1999

单相全桥逆变电路原理

单相全桥逆变电路原理 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

单相全桥型逆变电路原理 电压型全桥逆变电路可看成由两个半桥电路组合而成,共4个桥臂,桥臂1和4为一对,桥臂2和3为另一对,成对桥臂同时导通,两对交替各导通180° 电压型全桥逆变电路输出电压uo 的波形和半桥 电路的波形uo 形状相同,也是矩型波,但幅值 高出一倍,Um=Ud 输出电流io 波形和半桥电路的io 形状相同,幅值增加一倍 VD1 、V1、VD2、V2相继导通的区间,分别对应VD1和VD4、V1和V4、VD2和VD3、V2和V3相继导通的区间 + - VD 3 VD 4

单相半桥电压型逆变电路工作波形 全桥逆变电路是单相逆变电路中应用最多的, 对电压波形进行定量分析将幅值为Uo 的矩形波 uo 展开成傅里叶级数,得 其中基波幅值Uo1m 和基波有效值Uo1分别为 上述公式对半桥逆变电路也适用,将式中的ud 换成Ud /2 uo 为正负电压各为180°的脉冲时,要改变输出电压有效值只能通过改变输出直流电压Ud 来实现 O ON u o U - U m i o VD 1 VD 2 VD 1 VD 2 采用移相方式调节逆变电路的输出电压

t 1时刻前V 1和V 4导通,输出电压u o 为u d t 1时刻V 3和V 4栅极信号反向,V 4截止,因i o 不能突变,V 3不能立即导通,VD 3导通续流,因V 1和VD 3同时导通,所以输出电压为零 各IGBT 栅极信号uG1~uG4及输出电压uo 、输出电流io 的波形 u u u u u i o o 实际就是调节输出电压脉冲的宽度 ? 各IGBT 栅极信号为180°正偏, 180°反偏,且V 1和V 2栅极信号互补,V 3和V 4栅极信号互补 ? V 3的基极信号不是比V 1落后 180°,而是只落后 ( 0< <180°) ? V 3、V 4的栅极信号分别比V 2、V 1 的前移180°- ? VD 3 VD 4

单相全桥逆变电路原理

单相全桥型逆变电路原理 电压型全桥逆变电路可瞧成由两个半桥电路组合而成,共4个桥臂,桥臂1与4为一对,桥臂2与3为另一对,成对桥臂同时导通,两对交替各导通180° 电压型全桥逆变电路输出电压uo 的波形与半桥 电路的波形uo 形状相同,也就是矩型波,但幅值 高出一倍,Um=Ud 输出电流io 波形与半桥电路的io 形状相同,幅值增加一倍 VD1 、V1、VD2、V2相继导通的区间,分别对应VD1与VD4、V1与V4、VD2与VD3、V2与V3相继导通的区间 + - VD 3 VD 4

单相半桥电压型逆变电路工作波形 全桥逆变电路就是单相逆变电路中应用最多的, 对电压波形进行定量分析将幅值为Uo 的矩形波 uo 展开成傅里叶级数,得 其中基波幅值Uo1m 与基波有效值Uo1分别为 上述公式对半桥逆变电路也适用,将式中的ud 换成Ud /2 uo 为正负电压各为180°的脉冲时,要改变输出电压有效值只能通过改变输出直流电压Ud 来实现 d d o1m 27.14U U U == π d d 1o 9.022U U U == π O ON u o U - U m i o VD 1 VD 2 VD 1 VD 2 ?? ? ??+++= t t t U u ωωωπ5sin 513sin 31sin 4d o

t 1时刻前V 1与V 4导通,输出电压u o 为u d t 1时刻V 3与V 4栅极信号反向,V 4截止,因i o 不能突变,V 3不能立即导通,VD 3导通续流,因V 1与VD 3同时导通,所以输出电压为零 各 IGBT 栅极信号uG1~uG4及输出电压uo 、输出电流io 的波形 u u u u u i o o ? 各IGBT 栅极信号为180°正 偏,180°反偏,且V 1与V 2栅极信号互补,V 3与V 4栅极信号互补 ? V 3的基极信号不就是比V 1落后 180°,而就是只落后θ ( 0< θ <180°) ? V 3、V 4的栅极信号分别比V 2、V 1 采用移相方式调节逆变电路的输出电压

电压型单相全桥逆变电路

1.引言 逆变电路所谓逆变,就是与整流相反,把直流电转换成某一固定频率或可变频率的交流电(DC/AC)的过程。 当把转换后的交流电直接回送电网,即交流侧接入交流电源时,称为有源逆变;而当把转换后的交流电直接供给负载时,则称为无源逆变。通常所讲的逆变电路,若不加说明,一般都是指无源逆变电路。 1. 电压型逆变器的原理图 当开关S1、S4闭合,S2、S3断开时,负载电压u o为正;当开关S1、S4断开,S2、S3闭合时,u o为负,如此交替进行下去,就在负载上得到了由直流电变换的交流电,u o的波形如图7.4(b)所示。输出交流电的频率与两组开关的切换频率成正比。这样就 t (b) (a) u o t3 t2 t1 i o u o Z u o i o U d _ + S3 S2S 4 S1

实现了直流电到交流电的逆变。 2. 电压型单相全桥逆变电路 它共有4个桥臂,可以看成由两个半桥电路组合而成。 两对桥臂交替导通180°。 输出电压和电流波形与半桥电路形状相同,幅值高出一倍。 改变输出交流电压的有效值只能通过改变直流电压U d来实现。 输出电压定量分析 u o成傅里叶级数 基波幅值 基波有效值 ? ? ? ? ? + + + = t t t U uω ω ω π 5 sin 5 1 3 sin 3 1 sin 4 d o d d o1m 27 .1 4 U U U= = π d d 1o 9.0 2 2 U U U= = π

当u o为正负各180°时,要改变输出电压有效值只能改变U d 来实现 可采用移相方式调节逆变电路的输出电压,称为移相调压。 各栅极信号为180o正偏,180o反偏,且T1和T2互补,T3和T4互补关系不变。T3的基极信号只比T1落后q ( 0

电压型逆变器

电压型逆变电路[浏览次数:约247次] ?电压型逆变电路是指由电压型直流电源供电的逆变电路。它的直流侧为电压源,或并联有大电容,相当于电压源,直流侧电压基本无脉动,直流回路呈现低阻抗。电压型 逆变电路主要应用于各种直流电源。 目录 ?电压型逆变电路种类 ?电压型逆变电路原理 ?电压型逆变电路特点 电压型逆变电路种类 ?1、单相电压型逆变电路 (1)单相半桥电压型逆变电路 优点:简单,使用器件少 缺点:交流电压幅值Ud/2,直流侧需两电容器串联,要控制两者电压均衡 (2)单相全桥电压型逆变电路,由两个半桥电路的组合,是单相逆变电路中应用最多的。 (3)带中心抽头变压器的逆变电路 2、三相电压型逆变电路 三个单相逆变电路可组合成一个三相逆变电路,应用最广的是三相桥式逆变电路。 电压型逆变电路原理 ?以三相电压型逆变电路为例:图1是一个三相电压型逆变电路的主电路。直流电源采用相控整流电路,由普通晶闸管组成。逆变电路由6个导电臂组成,每个导电臂均由具有自关断能力的全控型器件及反并联二极管组成,所以实际上也是一种全控型逆变电路。负载为感性,星形接法,在整流电路和逆变电路之间并联大电容Cd。由于Cd的作用,逆变入端电压平滑连续,直流电源具有电压源性质。

逆变电路中各全控器件控制极电压信号的时序如图2b所示。信号脉宽为180°,每隔60°有一次脉冲电平的变化,任何时刻有3个脉冲处于高电平。相应地在主电路中也有3个导电臂处于导通状态。 依此类推,可得uAO波形如图2c所示。其他两相uBO和uCO波形分别滞后于uAO120°和240°。根据uAB=uAO-uBO,可得uAB波形如图2e所示。由图可见,逆变电路输出电压uAB、uBC和uCA是分别互差120°的交变四阶梯波。该波形不随负载而

单相全桥逆变电路毕业设计

2008级应用电子技术 毕业设计报告 设计题目单相电压型全桥逆变电路设计姓名及 学号 学院 专业应用电子技术 班级2008级3班 指导教师老师 2011年05月1日

题目:单相电压型全桥逆变电路设计

目录 第一章绪论 1.1整流技术的发展概况 (4) 第二章设计方案及其原理 2.1电压型逆变器的原理图 (5) 2.2电压型单相全桥逆变电路 (6) 第三章仿真概念及其原理简述 3.1 系统仿真概述 (6) 3.2 整流电路的概述 (8) 3.3 有源逆变的概述 (8) 3.4逆变失败原因及消除方法 (9) 第四章参数计算 4.1实验电路原理及结果图 (10) 第五章心得与总结 (14) 参考文献 (15)

第一章绪论 1.1整流技术的发展概况 正电路广泛应用于工业中。整流与逆变一直都是电力电子技术的热点之一。桥式整流是利用二极管的单向导通性进行整流的最常用的电路。常用来将交流电转化为直流电。从整流状态变到有源逆变状态,对于特定的实验电路需要恰到好处的时机和条件。基本原理和方法已成熟十几年了,随着我国交直流变换器市场迅猛发展,与之相应的核型技术应用于发展比较将成为业内企业关注的焦点。 目前,整流设备的发展具有下列特点:传统的相控整流设备已经被先进的高频开关整流设备所取代。系统的设计已经由固定式演化成模块化,以适应各种等级、各种模块通信设备的要求。加上阀控式密封铅酸蓄电池的广泛应用,为分散供电创造了条件。从而大大提高了通信网运行可靠和通信质量。高频开关整流器采用模块化设计、N1配置和热插拨技术,方便了系统的扩展,有利于设备的维护。由于整流设备和配电设备等配备了微机监控器,使系统设备具有了智能化管理功能和故障保护及自保护功能。新旗舰、新技术、新材料的应用,使高频开关整流器跃上了一个新台阶。

电流源型单相全桥逆变电路

电流源型单相全桥逆变电路的设计 摘要 本次设计说明书首先介绍了电流源型单相全桥逆变电路的特点和原理,用单相桥式电流型逆变电路的原理图说明了该电路是采用负载换相方式工作的,要求负载电流略超前于负载电压,又详细分析该电路的工作过程,并用图给出该逆变电路的工作波形。最后根据以上分析运用仿真软件PSIM对电路进行仿真设计,得到波形图。 关键词:电流源型单相电路,逆变电路,PSIM仿真 ' 目录

. 1.电流源型单相全桥逆变电路研究-----------------------------------------3 逆变电路介绍----------------------------------------------------3 电流型逆变电路的主要特点----------------------------------------3 电流源型单相全桥逆变电路----------------------------------------3 电流源型单相全桥逆变电路工作过程--------------------------------4 2.电流源型单相全桥逆变电路设计------------------------------------------7 电路设计原理----------------------------------------------------7 电路仿真图------------------------------------------------------7 3.参数设定及仿真结果----------------------------------------------------8 直流侧仿真------------------------------------------------------8 ) 参数设定-------------------------------------------------8 仿真结果-------------------------------------------------8交流侧仿真------------------------------------------------------8 参数设定-------------------------------------------------8 仿真结果-------------------------------------------------9 4.小结------------------------------------------------------------------9 5.参考文献--------------------------------------------------------------10 :

逆变器的分类和主要技术性能评价

逆变器的分类和主要技术性能评价 逆变器的种类很多,可按照不同的方法进行分类。 1、按逆变器输出交流电能的频率分,可分为工频逆变器、中频逆器和高频逆变器。工频逆变器的频率为 50~60Hz的逆变器;中频逆变器的频率一般为 400Hz到十几KHz;高频逆变器的频率一般为十几KHz到MHz。 2、按逆变器输出的相数分,可分为单相逆变器、三相逆变器和多相逆变器。 3、按照逆变器输出电能的去向分,可分为有源逆变器和无源逆变器。凡将逆变器输出的电能向工业电网输送的逆变器,称为有源逆变器;凡将逆变器输出的电能输向某种用电负载的逆变器称为无源逆变器。 4、按逆变器主电路的形式分,可分为单端式逆变器,推挽式逆变器、半桥式逆变器和全桥式逆变器。 5、按逆变器主开关器件的类型分,可分为晶闸管逆变器、晶体管逆变器、场效应逆变器和绝缘栅双极晶体管(IGBT)逆变器等。又可将其归纳为"半控型"逆变器和"全控制"逆变器两大类。前者,不具备自关断能力,元器件在导通后即失去控制作用,故称之为"半控型"普通晶闸管即属于这一类;后者,则具有自关断能力,即无器件的导通和关断均可由控制极加以控制,故称之为"全控型",电力场效应晶体管和绝缘栅双权晶体管(IGBT)等均属于这一类。 6、按直流电源分,可分为电压源型逆变器(VSI)和电流源型逆变器(CSI)。前者,直流电压近于恒定,输出电压为交变方波;后者,直流电流近于恒定,输也电流为交变方波。 7、按逆变器输出电压或电流的波形分,可分为正弦波输出逆变器和非正弦波输出逆变器。 8、按逆变器控制方式分,可分为调频式(PFM)逆变器和调脉宽式(PWM)逆变器。 9、按逆变器开关电路工作方式分,可分为谐振式逆变器,定频硬开关式逆变器和定频软开关式逆变器。 10、按逆变器换流方式分,可分为负载换流式逆变器和自换流式逆变器。 逆变器的主要技术性能及评价选用 一、技术性能 1、额定输出电压 在规定的输入直流电压允许的波动范围内,它表示逆变器应能输出的额定电压值。对输出额定电压值的稳定准确度一般有如下规定: (1)在稳态运行时,电压波动范围应有一个限定,例如其偏差不超过额定值的±3%或±5%。 (2)在负载突变(额定负载 0%→50%→100%)或有其他干扰因素影响的动态情况下,其输出电压偏差不应超过额定值的± 8%或±10%。 2、输出电压的不平衡度 在正常工作条件下,逆变器输出的三相电压不平衡度(逆序分量对正序分量之比)应不超过一个规定值,一般以%表示,如 5%或 8%。 3、输出电压的波形失真度 当逆变器输出电压为正弦度时,应规定允许的最大波形失真度(或谐波含量)。通常以输出电压的总波形失真度表示,其值不应超过 5%(单相输出允许 10%)。 4、额定输出频率 逆变器输出交流电压的频率应是一个相对稳定的值,通常为工频 50Hz。正常工作条件下其偏差应在±1%以内。

电压型逆变电路输出电压的调节

电压型逆变电路输出电压的调节 电动巡逻车调节电压型逆变电路输出电压的方式有三种,即调节直流侧电压、移相调压和脉宽调制调压。 调节直流侧电压 从上面的分析可以看出,改变直流侧电压Ud即可调节逆变电路输出电压。为了调节直流侧电压,可以采用如图8-11a的可控整流方式,也可以像图8-11b那样,用二极管整流桥整流,然后再用直流斩波调压。 调节直流侧电压方式 移相调压 电动巡逻车移相调压实际上就是调节输出电压脉冲的宽度。在图8-12a的单相全桥逆变电路中,各电力晶体管的基极信号仍为180°正偏,180°反偏,V1和V2的基极信号互补,V3和V4的基极信号互补,但V3的基极信号不是比V1落后180°,而是只落后θ(0<θ<180°)。这样,输出电压波形就不再是正负各为180°的矩形波,而是正负各为θ的矩形波,各基极信号ub1-ub4及输出电压uo输出电流io的波形如图,.8-12b所示。设在tl 以前,V1和V4导通,输出电压uo为Ud,t1时刻V3和V4基极信号反向,V4截止,而因感性负载电流io不能突变,V3不能立刻导通,VD3导通续流,因V1和VD3同时导通,所以输出电压为零。到t2时刻V1和V2基极信号反向,V1截止,而V2不能立刻导通,VD2导通续流,输出电压uo为-Ud。到负载电流过零并反向时,VD2和VD3截止,V2和V3开始导通,uo仍为-Ud。t时刻V3和V4基极信号再次反向,V3截止,而V4不能立刻导通,VD4续流,uo为零。以后的过程和前面类似。这样,输出电压uo的正负脉冲宽度就各为θ。改变θ,就可调节输出电压。

移相调压方式 脉宽调制(PWM)调压 电动巡逻车PWM控制方式是把逆变电路输出波形半个周期内的脉冲分割成多个,通过对每个脉冲的宽度进行控制,来控制输出电压并改善波形。PWM是一种非常重要的控制方式。 更多电动汽车详情:https://www.doczj.com/doc/f310290511.html,

IGBT单相电压型全桥无源逆变电路设计.

电子技术课程设计 说明书 IGBT 单相电压型全桥无源逆变电路 设计 学生姓名: 学号: 学 院: 专 指导教师: 2013年01月 XXX 1005044245 信息与通讯工程学院 电气工程及其自动化

中北大学 电子技术课程设计任务书 2012/2013 学年第一学期 学院:信息与通讯工程学院 专业:电气工程及其自动化 学生姓名:胡定章学号: 1005044245 课程设计题目:IGBT单相电压型全桥无源逆变电路设计 起迄日期: 12月24日~ 01月4 日 课程设计地点:电气工程系软件实验室 指导教师:石喜玲 系主任:王忠庆 下达任务书日期: 2012 年 12 月 24日

课程设计任务书

课程设计任务书

目录 1 引言 (1) 2 工作原理概论 (1) 2.1 IGBT的简述 (1) 2.2 电压型逆变电路的特点及主要类型 (2) 2.3 IGBT单相电压型全桥无源逆变电路原理分析 (2) 3 主电路设计及参数选择 (3) 3.1 主电路仿真图 (3) 3.2参数设置及计算 (3) 3.2.1参数设置 (3) 3.2.2计算 (3) 3.2.3设置主电路 (4) 4 仿真电路结果的分析 (5) 4.1 仿真电路图 (5) 1.1.14.1.1 触发电平与负载输出波的波形图 (5) 4.1.2 IGBT电流电压波形图 (6) 4.2 仿真波形分析 (6) 5 总结 (7) 参考文献 (7)

2引言 本次课程设计的题目是IGBT单相电压型全桥无源逆变电路设计,根据电力电子技术的相关知识,单相桥式逆变电路是一种常见的逆变电路,与整流电 路相比较,把直流电变成交流电的电路成为逆变电路。当交流侧接在电网上,称为有源逆变;当交流侧直接和负载相接时,称为无源逆变,逆变电路在现实 生活中有很广泛的应用。 3工作原理概论 2. 1 IGBT的简述 绝缘栅双极晶体管(Insulated-gate Bipolar Transistor),英文简写为IGBT。它是一种典型的全控器件。它综合了GTR和MOSFET的优点,因而具有良好的特性。现已成为中、大功率电力电子设备的主导器件。IGBT是三端器件,具有栅极G、集电极C 和发射极E。它可以看成是一个晶体管的基极通过电阻与MOSFET相连接所构成的一种器件。其等效电路和电气符号如下: 图1 IGBT等效电路和电气图形符号 它的开通和关断是由栅极和发射极间的电压错误!未找到引用源。所决定的。当UGE为正且大于开启电压UGE时,MOSFET内形成沟道,并为晶体管提供基极电流进而是IGBT导通。由于前面提到的电导调制效应,使得电阻错误!未找到引用源。减小,这样高耐压的IGBT也具有很小的通态压降。当山脊与发射极间施加反向电压或不加信

单相桥式逆变电路设计

《电力电子技术》课程设计说明书单相桥式逆变电路的设计 院、部:电气与信息工程学院 学生姓名: 指导教师:桂友超职称副教授 专业:电气工程及其自动化 班级: 完成时间: 2014年6月

电力电子技术》课程设计任务书 一、课程设计的目的 通过课程设计达到以下目的 1、加强和巩固所学的知识,加深对理论知识的理解; 2、培养学生文献检索的能力,特别是如何利用Internet检索需要的文献资料; 3、培养学生综合分析问题、发现问题和解决问题的能力; 4、培养学生综合运用知识的能力和工程设计能力; 5、培养学生运用仿真软件的能力和方法; 6、培养学生科技写作水平。 二、课程设计的主要内容 1、关于本课程学习情况简述 2、主电路的设计、原理分析和器件的选择; 3、控制电路的设计; 4、保护电路的设计; 5、利用MATLAB软件对自己的设计进行仿真。 三、课程设计的要求 1、通过查阅资料,确定自己的设计方案; 2、按学号尾数定课题,即课题一的学号尾数为1,以此类推。自拟参数不能雷同; 3、要求最后图纸是标准的CAD图; 4、课程设计在第18周五前交上来。 四、课题 1、课题一:单相桥式可控整流电路的设计 已知单相交流输入交流电压220V,负载自拟,要求整流电压在0~100V连续可调,其它性能指标自定。 2、课题二:三相半波可控整流电路的设计 已知三相交流输入线电压380V,要求整流电压在0~100V连续可调,负载自拟,其它性能指标自定。 3、课题三:三相桥式可控整流电路的设计

已知三相交流输入线电压380V,要求整流电压在0~100V连续可调,负载自拟,其它性能指标自定。 4、课题四:直流降压斩波电路的设计 已知直流输入电压200V,负载自拟,要求输出电压在50~100V可调,其它性能指标自定。 5、课题五:直流升压斩波电路的设计 已知直流输入电压200V,负载自拟,要求输出电压在300~400V可调,其它性能指标自定。 6、课题六:直流升降压斩波电路的设计 已知直流输入电压200V,负载自拟,要求输出电压在100~300V连续可调,其它性能指标自定。 7、课题七:单相桥式逆变电路的设计 已知直流输入电压100V,负载自拟,要求交流输出电压频率范围在30~60HZ,电压在30~50V范围可调,其它性能指标自定。 8、课题八:单相交流调压电路设计 已知单相交流输入交流电压220V,负载自拟,要求输出交流电压在0~220V 可调,其它性能指标自定。 9、课题九:三相交流调压电路的设计 已知三相交流输入交流线电压380V,负载自拟,要求输出交流电压在0~200V可调,其它性能指标自定。 10、课题十:三相桥式逆变电路的设计 已知直流输入电压100V,负载自拟,要求交流输出电压频率范围在30~60HZ,电压在30~50V范围可调,其它性能指标自定。 注意:若已经按上课时我讲解的内容和安排的课题进行了设计,则不必再更改。 五、格式要求 1、格式严格按照教务处规定的毕业设计格式; 2、文档内容: 1)绪言:主要介绍对本课程学习情况;本设计内容的掌握情况;拟出设计任务书。 2)主电路设计: (1)电路原理图:用CAD绘制电路; (2)原理分析:用自己的语言;

逆变器的基本知识

浅谈光伏发电系统用逆变器的基本知识 逆变器的概念 通常,把将交流电能变换成直流电能的过程称为整流,把完成整流功能的电路称为整流电路,把实现整流过程的装置称为整流设备或整流器。与之相对应,把将直流电能变换成交流电能的过程称为逆变,把完成逆变功能的电路称为逆变电路,把实现逆变过程的装置称为逆变设备或逆变器。 现代逆变技术是研究逆变电路理论和应用的一门科学技术。它是建立在工业电子技术、半导体器件技术、现代控制技术、现代电力电子技术、半导体变流技术、脉宽调制(PWM)技术等学科基础之上的一门实用技术。它主要包括半导体功率集成器件及其应用、逆变电路和逆变控制技术3大部分。 逆变器的分类 逆变器的种类很多,可按照不同的方法进行分类。 1.按逆变器输出交流电能的频率分,可分为工频逆变器、中频逆器和高频逆变器。工频逆变器的频率为50~60Hz的逆变器;中频逆变器的频率一般为400Hz到十几kHz;高频逆变器的频率一般为十几kHz到MHz。 2.按逆变器输出的相数分,可分为单相逆变器、三相逆变器和多相逆变器。3.按照逆变器输出电能的去向分,可分为有源逆变器和无源逆变器。凡将逆变器输出的电能向工业电网输送的逆变器,称为有源逆变器;凡将逆变器输出的电能输向某种用电负载的逆变器称为无源逆变器。 4.按逆变器主电路的形式分,可分为单端式逆变器,推挽式逆变器、半桥式逆变器和全桥式逆变器。 5.按逆变器主开关器件的类型分,可分为晶闸管逆变器、晶体管逆变器、场效应逆变器和绝缘栅双极晶体管(IGBT)逆变器等。又可将其归纳为“半控型”逆

变器和“全控制”逆变器两大类。前者,不具备自关断能力,元器件在导通后即失去控制作用,故称之为“半控型”普通晶闸管即属于这一类;后者,则具有自关断能力,即无器件的导通和关断均可由控制极加以控制,故称之为“全控型”,电力场效应晶体管和绝缘栅双权晶体管(IGBT)等均属于这一类。 6.按直流电源分,可分为电压源型逆变器(VSI)和电流源型逆变器(CSI)。前者,直流电压近于恒定,输出电压为交变方波;后者,直流电流近于恒定,输也电流为交变方波。 7.按逆变器输出电压或电流的波形分,可分为正弦波输出逆变器和非正弦波输出逆变器。 8.按逆变器控制方式分,可分为调频式(PFM)逆变器和调脉宽式(PWM)逆变器。 9.按逆变器开关电路工作方式分,可分为谐振式逆变器,定频硬开关式逆变器和定频软开关式逆变器。 10.按逆变器换流方式分,可分为负载换流式逆变器和自换流式逆变器。 逆变器的基本结构 逆变器的直接功能是将直流电能变换成为交流电能 逆变装置的核心,是逆变开关电路,简称为逆变电路。 该电路通过电力电子开关的导通与关断,来完成逆变的功能。电力电子开关器件的通断,需要一定的驱动脉冲,这些脉冲可能通过改变一个电压信号来调节。产生和调节脉冲的电路。通常称为控制电路或控制回路。逆变装置的基本结构,除上述的逆变电路和控制电路外,还有保护电路、输出电路、输入电路、输出电路等,如图2所示。 逆变器的工作原理。

电压型逆变器与电流型逆变电路的定义及特点

比较电压型逆变器和电流型逆变器的特点 先两者都属于交-直-交变频器,由整流器和逆变器两部分组成。 由于负载一般都是感性的,它和电源之间必有无功功率传送,因此在中间的直流环节中,需要有缓冲无功功率的元件。 如果采用大电容器来缓冲无功功率,则构成电压源型变频器;如采用大电抗器来缓冲无功功率,则构成电流源型变频器。 电压型变频器和电流型变频器的区别仅在于中间直流环节滤波器的形式不同,但是这样一来,却造成两类变频器在性能上相当大的差异,主要表现列表比较如下: 电压型变频器与电流型变频器的性能比较 1、储能元件:电压型变频器——电容器;电流型——电抗器。 2、输出波形的特点:电压形电压波形为矩形波电流波形近似正弦波;电流型变频器则为电流波形为矩形波电压波形为近似正弦波 3、回路构成上的特点,电压型有反馈二极管直流电源并联大容量电容(低阻抗电压源);电流型无反馈二极管直流电源串联大电感(高阻抗电流源)电动机四象限运转容易。

4、特性上的特点,电压型为负载短路时产生过电流,开环电动机也可能稳定运转;电流型为负载短路时能抑制过电流,电动机运转不稳定需要反馈控制 电流型逆变器采用自然换流的晶闸管作为功率开关,其直流侧电感比较昂贵,而且应用于双馈调速中,在过同步速时需要换流电路,在低转差频率的条件下性能也比较差; 高压变频器的结构特征 1.1电流型变频器变频器的直流环节采用了电感元件而得名,其优点是具有四象限运行能力,能很方便地实现电机的制动功能。缺点是需要对逆变桥进行强迫换流,装置结构复杂,调整较为困难。另外,由于电网侧采用可控硅移相整流,故输入电流谐波较大,容量大时对电网会有一定的影响。 1.2电压型变频器由于在变频器的直流环节采用了电容元件而得名,其特点是不能进行四象限运行,当负载电动机需要制动时,需要另行安装制动电路。功率较大时,输出还需要增设正弦波滤波器。 1.3高低高变频器;采用升降压的办法,将低压或通用变频器应用在中、高压环境中而得名。原理是通过降压变压器,将电网

电压型逆变器与电流型逆变电路的定义及特点

电压型逆变器与电流型逆变电路的定义及特点 比较电压型逆变器和电流型逆变器的特点 先两者都属于交-直-交变频器,由整流器和逆变器两部分组成。 由于负载一般都是感性的,它和电源之间必有无功功率传送,因此在中间的直流环节中,需要有缓冲无功功率的元件。 如果采用大电容器来缓冲无功功率,则构成电压源型变频器;如采用大电抗器来缓冲无功功率,则构成电流源型变频器。 电压型变频器和电流型变频器的区别仅在于中间直流环节滤波器的形式不同,但是这样一来,却造成两类变频器在性能上相当大的差异,主要表现列表比较如下: 电压型变频器与电流型变频器的性能比较 1、储能元件:电压型变频器——电容器;电流型——电抗器。 2、输出波形的特点:电压形电压波形为矩形波电流波形近似正弦波;电流型变频器则为电流波形为矩形波电压波形为近似正弦波 3、回路构成上的特点,电压型有反馈二极管直流电源并联大容量电容(低阻抗电压源);电流型无反馈二极管直流电源串联大电感(高阻抗电流源)电动机四象限运转容易。 4、特性上的特点,电压型为负载短路时产生过电流,开环电动机也可能稳定运转;电流型为负载短路时能抑制过电流,电动机运转不稳定需要反馈控制 电流型逆变器采用自然换流的晶闸管作为功率开关,其直流侧电感比较昂贵,而且应用于双馈调速中,在过同步速时需要换流电路,在低转差频率的条件下性能也比较差; 高压变频器的结构特征 1.1电流型变频器变频器的直流环节采用了电感元件而得名,其优点是具有四象限运行能力,能很方便地实现电机的制动功能。缺点是需要对逆变桥进行强迫换流,

装置结构复杂,调整较为困难。另外,由于电网侧采用可控硅移相整流,故输入电流谐波较大,容量大时对电网会有一定的影响。 1.2电压型变频器由于在变频器的直流环节采用了电容元件而得名,其特点是不能进行四象限运行,当负载电动机需要制动时,需要另行安装制动电路。功率较大时,输出还需要增设正弦波滤波器。 1.3高低高变频器;采用升降压的办法,将低压或通用变频器应用在中、高压环境中而得名。原理是通过降压变压器,将电网 电压降到低压变频器额定或允许的电压输入范围内,经变频器的变换形成频率和幅度都可变的交流电,再经过升压变压器变换成电机所需要的电压等级。这种方式,由于采用标准的低压变频器,配合降压,升压变压器,故可以任意匹配电网及电动机的电压等级,容量小的时侯( 1.3.1高低高电流型变频器在低压变频器的直流环节由于采用了电感元件而得名。输入侧采用可控硅移相控制整流,控制电动机的电流,输出侧为强迫换流方式,控制电动机的频率和相位。能够实现电机的四象限运行。 1.3.2高低高电压型变频器在低压变频器的直流环节由于采用了电容元件而得名。输入侧可采用可控硅移相控制整流,也可以采用二极管三相桥直接整流,电容的作用是滤波和储能。逆变或变流电路可采用GTO,IGBT,IGCT,或,SCR元件,通过SPWM变换,即可得到频率和幅度都可变的交流电,再经升压变压器变换成电机所需要的电压等级。需要指出的是,在变流电路至升压变压器之间还需要置入正弦波滤波器(F),否则升压变压器会因输入谐波或dv/dt过大而发热,或破坏绕组的绝缘。该正弦波滤波器成本很高,一般相当于低压变频器的1/3到1/2的价格。 1.4高高变频器高高变频器无需升降压变压器,功率器件在电网与电动机之间直接构建变换器。由于功率器件耐压问题难于解决,目前国际通用做法是采用器件串联的办法来提高电压等级,其缺点是需要解决器件均压和缓冲难题,技术复杂,难度大。但这种变频器由于没有升降压变压器,故其效率较高低高方式的高,而且结构比较紧凑。高高变频器也可分为电流型和电压型两种。

单相桥式PWM逆变电路设计

指导教师评定成绩: 审定成绩: 重庆邮电大学 自动化学院 综合设计报告 设计题目:单相桥式PWM逆变电路设计 单位(二级学院):自动化学院 学生姓名:梁勇 专业:电气工程与自动化 班级:0830702 学号:07350225 指导教师:罗萍 设计时间:2010年10月 重庆邮电大学自动化学院制

目录 一、课程设计任务 (2) 二、SPWM逆变器的工作原理 (2) 1.工作原理 (3) 2.控制方式 (4) 3.单片机电源与程序下载模块 (7) 4.正弦脉宽调制的调制算法 (8) 5.基于STC系列单片机的SPWM波形实现 (11) 三、总结 (14) 四、心得体会 (15) 五、附录: (17) 1.程序 (17) 2.模拟电路图 (19) 3.电路图 (22)

摘要: 单片机控制逆变电路,以逆变器为主要元件,稳压、稳频输出的电源保护设备。采用面积等效的SPWM波,又单片机为主导,输出三角波和正弦波再由这两个波相叠加输出spwm波来控制逆变电路的触发,使其把直流编程频率可变的交流电 关键字:单片机逆变电源正弦波脉冲触发 单相桥式PWM逆变电路设计 一、课程设计任务 对单相桥式pwm逆变电路的主电路及控制电路进行设计,参数要求如下:直流电压为12 V,L=1mH,要求频率可调,输出为5V的正弦交流电。 设计要求:1.理论设计:了解掌握单相桥式PWM逆变电路的工作原理,设计单相桥式PWM逆变电路的主电路和控制电路。包括: IGBT电流,电压额定的选择 驱动电路的设计 画出完整的主电路原理图和控制原理图 列出主电路所用元器件的明细表 二、SPWM逆变器的工作原理 由于期望的逆变器输出是一个正弦电压波形,可以把一个正弦半波分作N 等分。然后把每一等分的正弦曲线与横轴所包围的面积都用个与此面积相等的等高矩形脉冲来代替,矩形脉冲的中点与正弦波每一等分的中点重合。这样,由N 个等幅不等宽的矩形脉冲所组成的波形为正弦的半周等效。同样,正弦波的负半周也可用相同的方法来等效。 这一系列脉冲波形就是所期望的逆变器输出SPWM波形。由于各脉冲的幅值相等,所以逆变器可由恒定的直流电源供电,逆变器输出脉冲的幅值就是整流器的输出电压。当逆变器各开关器件都是在理想状态下工作时,驱动相应开关器件的信号也应为与形状相似的一系列脉冲波形,这是很容易推断出来的。 从理论上讲,这一系列脉冲波形的宽度可以严格地用计算方法求得,作为控制逆变器中各开关器件通断的依据。但较为实用的办法是引用通信技术中的“调制”这一概念,以所期望的波形(在这里是正弦波)作为调制波(ModulationWave ),而受它调制的信号称为载波(Carrier Wave )。在SPWM中

电压型逆变器电流型逆变器的区别

论文摘要:在电机漏感上减小的情况下,可以相应地降低功率半导体器件的耐压要求,为了减小换流时间以提高逆变器的运行频率,也要求降低电动机的总漏感上。 下述问题涉及电流型逆变器内部结构,以串联二极管式电流型逆变器为讨论对象。对异步电动机的从逆变器元件的选择对电机参数的要求。 串联二极管式电流型逆变器的品闸管和隔离二极管可以确定耐压值。可以看到,在电机漏感上减小的情况下,可以相应地降低功率半导体器件的耐压要求。另外,二极管换流阶段的持续时间可确定。为了减小换流时间以提高逆变器的运行频率,也要求降低电动机的总漏感上。因而,电流型逆变器要求异步电动机有尽可能小的漏感上。这一点正好与电压型逆变器对异步电动机的要求相反。在功率半导体器件耐压已知的情况下,应合理地选择电动机,以减小换流电容器的电容量。 从电动机运行的安全可靠性对电动机材料的要求,电动机在电流型逆变器供电的运行过程中,由干每次换流在电压波形中产生尖峰。这个尖峰在数值上等于I,差加千正线电势波形之上。因此,电动机在运行过程中实际承受的最高电压,于电动机额定线电压的峰值。为了电动机安全地运行,应适当加强其绝缘。由于电流矩形波对电动机供电在电动机内造成谐波损耗,逆变器在高于50赫的情况下运行时,电动机的损坏也有所增加。为了不致因电机效率过低和温升过高造电动机过热而损坏,应适当降低电动机铜铁材料的电负荷。在运行频率较高的情况下,应注意降低电动机的机械损耗和铁耗。 起动转矩和避免机振对电动机结构的要求。电动机低频起动时,起动转矩的平均值和转矩的波动率。起动转矩在某频率时具有最大值。它取决于电动机参数。当频率低于出现最大起动转矩的数值时,转矩的波动率急剧增加。因此,应根据运行要求和特性等决定最佳起动频率或电动机参数。此外,即使在逆变器对电动机供电的正常运行情况下,转矩波形中也含有六倍于逆变器输出频率的脉动转矩。为了避免这种脉动转矩造成的机械系统谐振,应使机械系统的谐振频率与逆变器运行频率范围的六倍相互错开。 对于功率半导体器件的要求。在串联二极管式电流型逆变器中,在触发一个晶闸管,用电容电压关断另一晶闸管以后争由恒流对电容器反向充电。由于电容电压过零需要一段时间,这就保证被关断晶闸管有较长的承受反压的时间。如果说,电压型逆变器对于晶闸管元件的关断时间有较高的要求(郎要求使用快速晶闸管),那末电流型逆变器由于承受反压的时间较长,因而可以使用普通晶闸管元件。在换流过程中以谐振造成了电压尖峰,因此要求晶闸管元件和隔离二雌有较高的耐压值。 换流浪涌电压吸收回路。在正弦电势波形上迭加的尖峰电压,是由于换流过程中电动机释放漏感贮能所产生的。特别是在运行频率较高的场合,在为了缩短换流时间而选择较小的换流电容值的情况下,换流浪涌过电压就更加严重。浪涌电压将直接威胁功率半导体器件和电动机的安全运行。为了减小这种影响,可以在逆变器输出端,与负载电动机并联一个换流浪涌电压吸收回路(也称为电压箝位器),如采用电压箝位器以后,逆变器的输出电压和输出电流波形如逆变器输出电压的尖峰可以限制在正弦电势峰值的(11~12)倍以内。有源逆变器型式,可以使箝位电压保持一定。 逆变器运行的可靠性问题。在逆变器的直流侧设有乎波大电感上,在电流闭环的作用下,可以有效地限制故障电流,即使在逆变器换流失败或短路的情况下,也不会造成大电流而损坏元件,因此,电流型逆变器的卫作是可靠的。 能够实现电能再生。在电动机降频减速时,系统能自动地运行于再生状态,可把机械能有效地转变为电能,并缩短电动机的减速时间。此时,逆变器与整流器直流侧电压的极性反号,而电流的流向保持不变,功率由电动机经逆变器和整流器流向交流电源,实现再生制动。因此,电流型逆变器能够方便地实现四象限运行,其动态特性好,容易满足快速及可逆系统的要求。 使用电流型逆变器除了用于要求电变频调速的系统以外,近年来在下述两个方面受到较大的关注。(1)用于泵、风机、增压机等机械的节能。过去这些机械常用恒频的交流电机拖动,在流量、压力要求变化时,用调节阀门的蘐芸方法以满足要求。这样,就白白地浪费了大量的电能。电流型逆变器因有许

单相电压型全桥逆变电路及其simulink仿真(含开题报告)

电力电子技术课程设计单相电压型全桥逆变电路及其simulink仿真

开题报告 课题名称:单相电压型全桥逆变电路及其simulink仿真 完成时间:2012.12.14 指导老师:刘彬 (一)简要背景说明 随着电力电子技术的发展,逆变电路具有广泛的应用范围。交流电机调速用变频器、不间断电源、感应加热电源等电力电子装置的核心部分都是逆变电路。由于电压型逆变电路具有直流侧为电压源或并联大电容,直流侧电压基本无脉动;输出电压为矩形波,输出电流因负载阻抗不同而不同;阻感负载时需要提供无功功率,为了给交流侧向直流侧反馈的无功提供通道,逆变桥各臂并联反馈二极管等特点而具有广泛的应用范围。电压型逆变电路主要用于两方面:①笼式交流电动机变频调速系统。由于逆变电路只具有单方向传递电能的功能,故比较适用于稳态运行、无需频繁起制动和加、减速的场合。②不停电电源。该电源在逆变输入端并接蓄电池,类似于电压源。 图1 单相电压型全桥逆变电路

(二)研究的目的及其意义 在教学及实验基础上,设计单相电压型全桥逆变电路及其控制与保护电路,并通过使用simulink对课程中理论对电路进行仿真实现,进一步了解单相电压型全桥逆变电路的工作原理、波形及计算。 培养学生运用所学知识综合分析问题解决问题的能力。 在电力电子技术的应用中,逆变电路是通用变频器核心部件之一,起着非常重要的作用。逆变电路是与整流电路相对应,把直流电变成交流电的电路。逆变电路的基本作用是在控制电路的控制下将中间直流电路输出的直流电源转换为频率和电压都任意可调的交流电源。无源逆变电路的应用非常广泛。在已有的各种电源中,蓄电池、太阳能电池等都是直流电源,当需要这些电源向交流负载供电时,需要通过无源逆变电路;无源逆变电路与其它电力电子变换电路组合形成具有特殊功能的电力电子设备,如无源逆变器与整流器组合为交-直-交变频器(来自交流电源的恒定幅度和频率的电能先经整流变为直流电,然后经无源逆变器输出可调频率的交流电供给负载)。当电网提供的50 Hz 工频电源不能满足负载的需要,就需要用交-直-交变频电路进行电能交换。如感应加热需要较高频率的电源;交流电动机为了获得良好的调速特性需要频率可变的电源。 (三)研究的主要内容 1单相电压型全桥逆变电路的原理。 2单相电压型全桥逆变电路的结构。 3单相电压型全桥逆变电路及其控制电路、保护电路的设计(画出原理图,标明器件的选择)。 4完成单相电压型全桥逆变电路的数学模型的设计。 5建立simulink仿真系统进行建模,并对模型参数进行设置。 6仿真结果与分析。 (四)研究的主要方法和手段 首先建立单相电压型全桥逆变电路的电路拓扑图,在MATLAB中使用simulink工具箱建立相关控制模型,设置模型参数后,通过仿真得到电路的电压、电流结果,并对该结果进行分析。

电压型单相全桥逆变电路

1. 引言 逆变电路 所谓逆变,就是与整流相反,把直流电转换成某一固定频率或可变频率的交流电(DC/AC)的过程。 当把转换后的交流电直接回送电网,即交流侧接入交流电源时,称为有源逆变;而当把转换后的交流电直接供给负载时,则称为无源逆变。通常所讲的逆变电路,若不加说明,一般都是指无源逆变电路。 1. 电压型逆变器的原理图 当开关S1、S4闭合,S2、S3断开时,负载电压u o 为正;当开关S1、S4断开,S2、S3闭合时,u o 为负,如此交替进行下去,就在负载上得到了由直流电变换的交流电,u o 的波形如图7.4(b)所示。输出交流电的频率与两组开关的切换频率成正比。这样就实现了直流电到交流电的逆变。 2. 电压型单相全桥逆变电路 (b) (a) u o

它共有4个桥臂,可以看成由两个半桥电路组合而成。 两对桥臂交替导通180°。 输出电压和电流波形与半桥电路形状相同,幅值高出一倍。 改变输出交流电压的有效值只能通过改变直流电压U d 来实现。 输出电压定量分析 u o 成傅里叶级数 基波幅值 基波有效值 当u o 为正负各180°时,要改变输出电压有效值只能改变U d 来实现 ?? ? ??+++= t t t U u ωωωπ5sin 513sin 31sin 4d o d d o1m 27.14U U U == π d d 1o 9.022U U U == π

可采用移相方式调节逆变电路的输出电压,称为移相调压。 各栅极信号为180o正偏,180o反偏,且T1和T2互补,T3和T4互补关系不变。T3的基极信号只比T1落后q ( 0

相关主题
文本预览
相关文档 最新文档