当前位置:文档之家› r射线能谱

r射线能谱

r射线能谱
r射线能谱

数据处理:

一、观察Co 60和Cs 137的γ射线能谱,在图上指出光电峰、康普顿边界、电子对峰、背散射峰等峰位。

图1.

Co 60

放射源的γ射线能谱

图2.

Cs 137

放射源的γ射线能谱

二、计算Cs 137的光电峰和Co 60的左侧光电峰对应的能量刻度。

已知:Co 60的左侧光电峰MeV E 17.11=γ对应B 道,Cs 137的光电峰γE =0.661MeV 对应A 道

于是可得能量刻度公式为:

MeV A

B e --=

661

.017.1

其中由实验数据可知,B 道道址为835.738,由图2知A 道道址为478.611。代入数据得:

MeV MeV MeV A B e 310425.1611

.478738.835661

.017.1661.017.1-?=--=--=

三、测量Co 60的右侧光电峰能量及计算Cs 137光电峰的能量分辨率。

1、测量Co 60的右侧光电峰能量

Co 60

的右侧光电峰能量 =

Co 60

的右侧光电峰道址C ×能量刻度e

即E 2 = C ×e = 949.721×310425.1-?MeV = 1.353MeV ≈ 1.35MeV

与理论值MeV E 33.12=γ相比,相对误差为

2E ?2

γE 2

γE ×100% = 1.50%

理论值比实验值少一位有效数字,所以相对误差不大准确。但从中可看出实验误差相对较小,

说明实验比较成功,实验较为精确。

由于我们选择的Co 60放射源不大活跃或是我们4号台的仪器不大灵敏,导致我们组在进行

5000多秒后,右侧光电峰的计数才刚到440左右(参见图1)。由于计数的数量不足够大也是造成误差的主要原因之一。 2、计算Cs 137光电峰的能量分辨率

Cs 137

光电峰的能量分辨率为:

%94.8%10010425.1661

.041.4796

e FWHM e FWHM 3=???=?=?=

-γγηE E 四、测量紫铜片对Cs 137发射的γ射线的吸收曲线,在半对数纸上作图,求出线性吸收系数和半吸收厚度。

1、将实验数据制作成表格,如下:(其中I 0=36528)

表1. 不同紫铜片对γ射线吸收情况

2、以厚度h(mm)为横坐标, ln(I0

I )×104纵坐标,做半对数坐标图并线性分析如下:

[2009-3-20 11:50 "/Graph1" (2454915)]

Linear Regression for Data1_B:

Y = A + B * X

Parameter Value Error ---------------------------------------------

A 0.05592 0.02191

B 0.05425 0.00129

---------------------------------------------

R SD N P

---------------------------------------------

x(mm) -0.99748 0.03889 11 <0.0001

图3. ln(n)~h 线性拟合 ---------------------------------------------

由origin 软件得出的数据知: 斜率B = 0.05425±0.00129 相对误差为:2.38% 相关系数r = 0.99748

由公式x -0e I I μ=得现行吸收系数μ为:

20

10425.5B I

I ln x 1-?===

μ 当0I 2

1

I =时,x 的值为半吸收厚度:

mm 777.122ln 10425.51ln21I I ln

1

x 2

0=??===

-μμ

即当紫铜片厚度为12.78mm ,刚好能吸收Cs 137发射的γ射线的一半。

思考题:

用闪烁谱仪测量γ射线能谱时,要求在多道分析器的道址范围内能同时测量出Cs 137和Co 60的光电峰,应如何选择合适的工作条件?在测量过程中该工作条件可否改变?

1、由上面的实验情况可知,要使Cs 137和Co 60的光电峰能同时测量,需调节电压,使Cs 137的光电

峰处于420道址附近,这样才能使Co 60

的右光电峰为870道址左右,不致于超出量程不能显示。

2、在测量过程中该工作条件不能改变,否则不同的道址对应的能量就不相同,实验不具有可比性,该测量过程也就没有意义。

MATLAB基本操作实验报告

南昌航空大学 数学与信息科学学院 实验报告 课程名称:数学实验 实验名称: MATLAB基本操作 实验类型:验证性■综合性□ 设计性□ 实验室名称:数学实验室 班级学号: 10 学生姓名:钟 X 任课教师(教师签名): 成绩: 实验日期: 2011-10- 10

一、实验目的 1、熟悉MATLAB基本命令与操作 2、熟悉MATLAB作图的基本原理与步骤 3、学会用matlab软件做图 二、实验用仪器设备、器材或软件环境 计算机MATLAB软件 三、实验原理、方案设计、程序框图、预编程序等 问题1:在区间【0,2π】画sinx 实验程序: >> x=linspace(0,2*pi,30); >> y=sin(x); >> plot(x,y) 问题2:在【0,2π】用红线画sinx,用绿圈画cosx,实验程序:

>> x=linspace(0,2*pi,30); >> y=sin(x); >> z=cos(x); >> plot(x,y,'r',x,z,'co') >> 问题3:在【0,π】上画y=sinx的图形。 实验程序: >> ezplot('sin(x)',[0,pi]) >> 问题4:在【0,π】上画x=cos3t,y=sin3t星形图形。

实验程序: >> ezplot('cos(t).^3','sin(t).^3',[0,pi]) >> 问题5:[-2,0.5],[0,2]上画隐函数 实验程序: >> ezplot('exp(x)+sin(x*y)',[-2,0.5,0,2]) >> 问题6:在[-2,2]范围内绘制tanh的图形。实验程序: >> fplot('tanh',[-2,2])

第五章X射线能谱(波谱)分析技术

第五章 X射线能谱(波谱)分析技术

5.1 X射线(波谱)分析的理论基础 X射线的产生: 连续X射线电子束在原子实(由原子核与紧密束缚的电子组成)的库仑场中减速,形成能量连续的X射线谱, 其能量从零延伸到入射电子束的能量值 特征X射线电子束与内壳层电子相互作用驱出 束缚电子,使原子处于激发态,并在电子壳层内留出一个空位。在随后的去激过程中,某个外层电子发生跃迁填充这个空位.这个跃迁过程伴随着能量的变化,原子以发射X射线或者 发射一个俄歇(俄歇(Auger))电子的形式释放能量。由于 发射X射线的能量与原子中确定能级间的能量差有关,所以这 种X射线称为特征X射线

X射线作为电磁辐射,其能量E与波长λ的关系λ=hc/eE=1.2398/E(nm) 式中: h为普朗克常数,c为光速,e为电子电荷, E是以keV为单位的能量,λ的单位为nm。 由于用作X射线显微分析的谱仪包括波长谱仪(WDS)和能量谱仪(EDS),所以通常用波长(nm或?)或者能量(keV)单位描述X射线。

在任何能量E 或波长λ处的X 射线连续谱的强度I cm 由Kramers (1923)给出: 一、连续谱X 射线 E E E Z i Z i I o cm /)(~]1)/[(~min --λλ式中 i 为电流, 为靶的平均原子序数。 连续辐射强度随原子序数的上升而增加,是因为与低原 子序数的原子相比,重原子实(核与内层电子)中的库仑场强度较高的缘故,连续谱强度还直接随电子束的数量发生变化,即随束流i B 直接变化。因为连续谱形成各被测特征信号 的背底,所以连续谱辐射的高度对确定某个元素的最小检测限起着重要作用,通常认为连续谱有碍于分析。

图形学实验报告

山东建筑大学测绘地理信息学院 实验报告 (2016—2017学年第一学期) 课程:计算机图形学 专业:地理信息科学 班级:地信141 学生姓名:王俊凝 学号:20140113010 指

实验一直线生成算法设计 一、实验目的 掌握基本图形元素直线的生成算法,利用编程语言C分别实现直线和圆的绘制算法。 二、实验任务 在TurboC环境下开发出绘制直线和圆的程序。 三、实验仪器设备 计算机。 四、实验方法与步骤 1 运行TurboC编程环境。 2 编写Bresenham直线绘制算法的函数并进行测试。 3 编写中点圆绘制算法的函数并进行测试。 4 增加函数参数,实现直线颜色的设置。 提示: 1. 编程时可分别针对直线和圆的绘制算法,设计相应的函数,例如void drawline(…)和void drawcircle(…),直线的两个端点可作为drawline的参数,圆的圆心和半径可作为drawcircle的参数。 2. 使用C语言编写一个结构体类型用来表示一个点,结构体由两个成员构成,x和y。这样,在向函数传入参数时,可使用两个点类型来传参。定义方法为:

typedef struct{ int x; int y; }pt2; 此处,pt2就是定义的一个新的结构体数据类型,之后就可用pt2来定义其他变量,具体用法见程序模板。 3. 在main函数中,分别调用以上函数,并传入不同的参数,实现对直线的绘制。 4. 线的颜色也可作为参数传入,参数可采用TurboC语言中的预设颜色值,具体参见TurboC图形函数。 五、注意事项 1 代码要求正确运行,直线和圆的位置应当为参数,实现可配置。 2 程序提交.c源文件,函数前和关键代码中增加注释。 程序模板 #include #include typedef struct{ int x; int y; }pt2; /*declare your drawing functions.*/ void drawline(pt2 startpt,pt2 endpt,int color); void drawcircle(pt2 centerpt,int radius,int color); void circlePlotPoints(pt2 centerpt,int x,int y,int color); int main() { int color,radius;

γ射线的能谱测量和吸收测定_实验报告

γ射线能谱的测量 【摘要】某些物质的原子核能够发生衰变,放出我们肉眼看不见也感觉不到的射线,γ射线产生的原因正是由于原子核的能级跃迁。我们通过测量γ射线的能量分布,可确定原子核激发态的能级,这对于放射性分析,同位素应用及鉴定核素等都有重要意义。因此本实验通过使用γ闪烁谱仪测定不同的放射源的γ射线能谱。同时学习和掌握γ射线与物质相互作用的特性,并且测定窄束γ射线在不同物质中的吸收系数μ。 【关键词】γ射线能谱γ闪烁谱仪 【引言】从1896年的法国科学家贝可勒尔发现放射性现象开始,经过居里夫人等一系列科学家对一些新放射性元素的发现及其性质进行研究的杰出工作后,人类便进入了对原子核能研究、利用的时代。 而原子核衰变能放出α、β、γ三种射线,这些射线可以通过仪器精确测量。本次实验主要研究γ射线,通过对γ射线谱的研究可了解核的能级结构。γ射线有很强的穿透力,工业中可用来探伤或流水线的自动控制。人体受到γ射线照射时,γ射线可以进入到人体的内部,并与体内细胞发生电离作用,电离产生的离子能侵蚀复杂的有机分子,如蛋白质、核酸和酶,它们都是构成活细胞组织的主要成份,一旦它们遭到破坏,就会导致人体内的正常化学过程受到干扰,严重的可以使细胞死亡。 因此本次实验研究了不同材料对于γ射线的吸收情况这是非常具有实际意义的,比如在居民区制造防空洞的时候可以使用一定厚度的抗辐射材料确保安全,而且在核电站、军事防护地以及放射源存放处等地方我们都有必要使用防辐射材料。 γ射线与物质的相互作用主要是光电效应、康普顿散射和正、负电子对产生这三种过程,如下图所示。 本实验主要研究的是窄束γ射线在物质中的吸收规律。所谓窄束γ射线是指不包括散射成份的射线束,仅由未经相互作用或称为未经碰撞的光子所组成。窄束γ射线再穿过物质时,由于上述三种效应,其强度就会减弱,这种现象称为γ射线的吸收。γ射线强度随物质厚度的衰减服从指数规律。 本次实验仪器如下:

图的遍历操作实验报告

. .. . .. .. 实验三、图的遍历操作 一、目的 掌握有向图和无向图的概念;掌握邻接矩阵和邻接链表建立图的存储结构;掌握DFS及BFS对图的遍历操作;了解图结构在人工智能、工程等领域的广泛应用。 二、要求 采用邻接矩阵和邻接链表作为图的存储结构,完成有向图和无向图的DFS 和BFS操作。 三、DFS和BFS 的基本思想 深度优先搜索法DFS的基本思想:从图G中某个顶点Vo出发,首先访问Vo,然后选择一个与Vo相邻且没被访问过的顶点Vi访问,再从Vi出发选择一个与Vi相邻且没被访问过的顶点Vj访问,……依次继续。如果当前被访问过的顶点的所有邻接顶点都已被访问,则回退到已被访问的顶点序列中最后一个拥有未被访问的相邻顶点的顶点W,从W出发按同样方法向前遍历。直到图中所有的顶点都被访问。 广度优先算法BFS的基本思想:从图G中某个顶点Vo出发,首先访问Vo,然后访问与Vo相邻的所有未被访问过的顶点V1,V2,……,Vt;再依次访问与V1,V2,……,Vt相邻的起且未被访问过的的所有顶点。如此继续,直到访问完图中的所有顶点。 四、示例程序 1.邻接矩阵作为存储结构的程序示例

#include"stdio.h" #include"stdlib.h" #define MaxVertexNum 100 //定义最大顶点数 typedef struct{ char vexs[MaxVertexNum]; //顶点表 int edges[MaxVertexNum][MaxVertexNum]; //邻接矩阵,可看作边表int n,e; //图中的顶点数n和边数e }MGraph; //用邻接矩阵表示的图的类型 //=========建立邻接矩阵======= void CreatMGraph(MGraph *G) { int i,j,k; char a; printf("Input VertexNum(n) and EdgesNum(e): "); scanf("%d,%d",&G->n,&G->e); //输入顶点数和边数 scanf("%c",&a); printf("Input Vertex string:"); for(i=0;in;i++) { scanf("%c",&a); G->vexs[i]=a; //读入顶点信息,建立顶点表 }

《建筑结构试验》实验报告

《建筑结构试验》实验报告 班级: 学号: 姓名: 南昌航空大学土木工程试验中心 二○一○年四月

目录 试验一电阻应变片的粘贴及防潮技术试验二静态电阻应变仪的使用及接桥试验三电阻应变片灵敏系数的测定 试验四简支钢筋混凝土梁的破坏试验

试验一电阻应变片的粘贴及防潮技术 姓名:学号:星期第讲第组 实验日期:年月日同组者: 一、实验目的: 1.掌握电阻应变片的选用原则和方法; 2.学习常温用电阻应变片的粘贴方法及过程; 3.学会防潮层的制作; 4.认识并理解粘贴过程中涉及到的各种技术及要求对应变测试工作的影响。 二、实验仪表和器材: 1.模拟试件(小钢板); 2.常温用电阻应变片; 3.数字万用表; 4.兆欧表; 5.粘合剂:T-1型502胶,CH31双管胶(环氧树脂)或硅橡胶; 6.丙酮浸泡的棉球; 7.镊子、划针、砂纸、锉刀、刮刀、塑料薄膜、胶带纸、电烙铁、焊锡、焊锡膏等小工具; 8.接线柱、短引线 三、简述整个操作过程及注意事项: 1.分选应变片。在应变片灵敏数K相同的一批应变片中,剔除电阻丝栅有形状缺陷,片内有气泡、霉斑、锈点等缺陷的应变片,将电阻值在120±2Ω范围内的应变片选出待用。 2.试件表面处理。去除贴片位置的油污、漆层、锈迹、电镀层,用丙酮棉球将贴片处擦洗干净,至棉球洁白为止,以保证应变片能够牢固的粘贴在试件表面。 3.测点定位。应变片必须准确地粘贴在结构或试件的应变测点上,而且粘贴方向必须是要测量的应变方向。 4.应变片粘贴。注意分清应变片的正、反面,保证电阻栅的中心与十字交叉点对准。应变片贴好后,先检查有无气泡、翘曲、脱胶等现象,再用数字万用表的电阻档检查应变片有无短路、断路和阻值发生突变(因应变片粘贴不平整导致)的现象。 5.导线固定。接线柱粘帖不要离应变片太远,接线柱挂锡不可太多,导线挂锡一端的裸露线芯不能过长,以31mm为宜。引出线不要拉得太紧,以免试件受到拉力作用后,接线柱与应变片之间距离增加,使引出线先被拉断,造成断路;也不能过松,以避免两引出线互碰

γ射线能谱测量

γ射线能谱测量 ——物理0805 乔英杰u200810200 王振宇u200810256 实验背景:19世纪下半叶,物理学家对X射线和阴极射线进行了大量的研究,导致了放射性、电子以及α、β、γ射线的发现,这些射线的发现同时也为原子科学的发展奠定了基础。 自20世纪进入原子能时代,科学家对射线进行了更进一步的研究,射线在科学技术中开始渗透,根据γ射线具有波长短、能量高、穿透能力强和对细胞有很强的杀伤力的特性,γ射线的应用也成了一门新兴产业,现在它已经应用到了国民经济和社会生活的各个领域,特别是在工农业、医疗卫生和生物学方面取得了巨大的成果和效益,为科学技术和人类历史的进程起了巨大而深刻的影响。 目前γ射线的应用正在蓬勃快速的发展,应用领域仍在不断拓宽,它以低能耗、无污染、无残留、安全卫生等优点,深受众多行业的青睐,可是,其危害性也不容忽视。我们需要对γ射线深入了解,才能在降低其危害性的同时让其更好的为我们服务。本实验采用闪烁探测器和多道脉冲幅度分析器对γ射线的能量分布谱进行测量,以便我们了解用闪烁探测器测量γ射线的方法,学会分析能谱的特征及其影响因素。 实验原理: 1、闪烁探测器工作原理:闪烁探测器探测γ射线时,γ光子与物质作用不直接产生电离,而是发生光电效应、康普顿效应、电子对效应,闪烁体的原子、分子、电离或激发的作用来自三种效应所产生的次级电子。这样,我们就得到了对应于γ射线能量强度的电信号。之后,光电倍增管将所得电信号放大(倍增管阴极与阳极之间有十余个打那级,每个打那级均发生电子的倍增现象),其阳极最后收集电子的电极,与射级跟随器电路相连,使收集到的电子流以电压脉冲的方式输出。 2、γ闪烁能谱仪的工作原理:如下图(1)所示,整个仪器的信号传递大致是:由γ射线放射源放出的γ射线被闪烁探测器接受并转换为电压脉冲,前置放大器和脉冲放大器对探测器输出的电压脉冲进行放大,最后这些脉冲被多道分析器采集、处理。 多道分析器的到是指在分析器中存在的记录不同高度脉冲的位置。我们在试验中采用的是1024道分析器,即将脉冲电压范围分成1024份,然后计算机记录探测器输出的脉冲落在每份范围上的数目。

实验报告1windows的基本操作范例

实验名称:Windows的基本操作 一、实验目的 1.掌握桌面主题的设置。 2.掌握快捷方式的创建。 3.掌握开始菜单的组织。 4.掌握多任务间的数据传递——剪贴板的使用。 5.掌握文件夹和文件的创建、属性查看和设置。 6.掌握文件夹和文件的复制、移动和删除与恢复。 7.熟悉文件和文件夹的搜索。 8.熟悉文件和文件夹的压缩存储和解压缩。 二、实验环境 1.中文Windows 7操作系统。 三、实验内容及步骤 通过上机完成实验4、实验5所有内容后完成该实验报告 1.按“实验4--范例内容(1)”的要求设置桌面,将修改后的界面复制过来。 注:没有桌面背景图“Autumn”的,可选择其它背景图。 步骤:在桌面空白区域右击,选择菜单中的“个性化”,在弹出的窗口中点击“桌面背景”,在背景栏内选中“某一张图片”,单击“确定”。 修改后的界面如下图所示: 2.将画图程序添加到“开始”菜单的“固定项目列表”上。 步骤:右击“开始/所有程序/附件”菜单中的画图程序项,在弹出的快捷菜单中选“附到「开始」菜单”命令。 3.在D盘上建立以“自己的学号+姓名”为名的文件夹(如01108101刘琳)和其子文件 夹sub1,然后:

步骤:选定D:\为当前文件夹,选择“文件/新建/文件夹”命令,并将名字改为“学号+姓名”;选定“ D:\学号+姓名”为当前文件夹,选择“文件/新建/文件夹”命令,并将名字改为“sub1” ①在C:\WINDOWS中任选2个TXT文本文件,将它们复制到“学号+姓名”文件夹中;步骤:选定“C:\WINDOWS”为当前文件夹,随机选取2个文件, CTRL+C复制,返回“D:\学号+姓名”的文件夹,CTRL+V粘贴 ②将“学号+姓名”文件夹中的一个文件移到其子文件夹sub1中; 步骤:选定“ D:\学号+姓名”为当前文件夹,选中其中任意一个文件将其拖拽文件到subl ③在sub1文件夹中建立名为“”的空文本文档; 步骤:选定“ D:\学号+姓名\ sub1”为当前文件夹,在空白处单击右键,选择“新建\文本文档”,把名字改为test,回车完成。 ④删除文件夹sub1,然后再将其恢复。 步骤:选定“ D:\学号+姓名”为当前文件夹,右键单击“sub1”文件夹,选择“删除”,然后打开回收站,右键单击“sub1”文件夹,在弹出的快捷菜单中选择“还原”。 4.搜索C:\WINDOWS\system文件夹及其子文件夹下所有文件名第一个字母为s、文件长 度小于10KB且扩展名为exe的文件,并将它们复制到sub1文件夹中。 步骤:选定“ C:\WINDOWS\system”为当前文件夹,单击“搜索”按钮,在左侧窗格选择“所有文件和文件夹”,在“全部或部分文件名”中输入“s*.exe”,在“大小”中,选择“0~10KB”。 5.用不同的方法,在桌面上创建名为“计算器”、“画图”和“剪贴板”的三个快捷方式, 它们应用程序分别为:、和。并将三个快捷方式复制到sub1文件夹中。 步骤:①在"开始"菜单的"所有程序"子菜单中找到"计算器",单击右键,在弹出的快捷菜单中选择“发送到\桌面快捷方式”。 ②在"开始"菜单的"所有程序"子菜单中找到"画图",将其拖至桌面空白处。 ③在桌面上单击右键,在弹出的快捷菜单中选择“新建\快捷方式”,在“创建快捷方式”

NaI(Tl) 闪烁晶体γ能谱测量

NaI(Tl) 闪烁晶体γ能谱测量 实验人:吴家燕学号:15346036 一、实验目的 1、加深对γ射线和物质相互作用的理解; 2、掌握NaI(Tl) γ谱仪的原理及使用方法; 3、学会测量分析γ能谱; 4、学会测定γ谱仪的能量分辨率、线性、探测效率曲线; 5、测定未知放射源的能量和活度。 二、实验原理 1、γ谱仪的组成 NaI(Tl)闪烁谱仪由NaI(Tl)闪烁探头(包括闪烁体、光电倍增管、前置放大器)、高压电源以及谱仪放大器、多道分析器、计算机等设备组成。图1 为NaI(Tl)闪烁谱仪装置的示意图。 2、射线与闪烁体的相互作用 当γ射线入射至闪烁体时,发生三种基本相互作用过程:(1)光电效应;(2)

康普顿散射;(3)电子对效应。 图2 为示波器上观察到的单能γ射线的脉冲波形,谱仪测得的能谱图。图3 是137Cs、22Na 和60Co 放射源的γ能谱。图中标出的谱峰称为全能峰。在γ射 线能区,光电效应主要发生在K 壳层。在击出K 层电子的同时,外层电子填补K 层 空穴而发射X 光子。在闪烁体中,X 光子很快地再次光电吸收,将其能量转移给光 电子。上述两个过程是几乎同时产生的,因此它们相应的光输出必然是叠加在一起的,即由光电效应形成的脉冲幅度直接代表了γ射线的能量(而非减去该层电 子结合能)。 3、137Cs 能谱分析 4、闪烁谱仪的性能 能量分辨率

探测器输出脉冲幅度的形成过程中存在着统计涨落。即使是确定能量的粒子的脉冲幅度,也仍具有一定的分布,其分布示意图如图4 所示。通常把分布曲线极大值一半处的全宽度称半宽度即 FWHM,有时也用表示。半宽度反映了谱仪对相邻脉冲幅度或能量的分辨本领。因为有些涨落因素与能量有关,使用相对分辨本领即能量分辨率η更为确切。一般谱仪在线性条件下工作,故η也等于脉冲幅度分辨率,即 对于一台谱仪来说,近似地有 对于单晶谱仪来说,能量分辨率是以137Cs 的0.662MeV 单能γ射线的光电峰为标准的,它的值一般在8-15%,最好可达6-7%。 能量线性刻度曲线 为检查谱仪的能量线性情况,必须利用一组已知能量的γ放射源,测出它们的γ射线在谱中相应的全能峰位置(或道址),然后,作出γ能量对脉冲幅度(或道址)的能量刻度曲线。这个线性关系可用线性方程表示,即 式中x p 为峰位,即道址;E0 为截距,即零道对应的能量;G 为斜率,即每道对应的能量间隔,又称增益。实验中用的γ核素能量列于表2 中。典型的能量刻度曲线如图5 所示。

数据结构实验图的基本操作

浙江大学城市学院实验报告 课程名称数据结构 实验项目名称实验十三/十四图的基本操作 学生姓名专业班级学号 实验成绩指导老师(签名)日期2014/06/09 一.实验目的和要求 1、掌握图的主要存储结构。 2、学会对几种常见的图的存储结构进行基本操作。 二.实验内容 1、图的邻接矩阵定义及实现: 建立头文件test13_AdjM.h,在该文件中定义图的邻接矩阵存储结构,并编写图的初始化、建立图、输出图、输出图的每个顶点的度等基本操作实现函数。同时建立一个验证操作实现的主函数文件test13.cpp(以下图为例),编译并调试程序,直到正确运行。 2、图的邻接表的定义及实现: 建立头文件test13_AdjL.h,在该文件中定义图的邻接表存储结构,并编写图的初始化、建立图、输出图、输出图的每个顶点的度等基本操作实现函数。同时在主函数文件test13.cpp中调用这些函数进行验证(以下图为例)。

3、填写实验报告,实验报告文件取名为report13.doc。 4、上传实验报告文件report13.doc到BB。 注: 下载p256_GraphMatrix.cpp(邻接矩阵)和 p258_GraphAdjoin.cpp(邻接表)源程序,读懂程序完成空缺部分代码。 三. 函数的功能说明及算法思路 (包括每个函数的功能说明,及一些重要函数的算法实现思路) 四. 实验结果与分析 (包括运行结果截图、结果分析等)

五.心得体会

程序比较难写,但是可以通过之前的一些程序来找到一些规律 (记录实验感受、上机过程中遇到的困难及解决办法、遗留的问题、意见和建议等。) 【附录----源程序】 256: //p-255 图的存储结构以数组邻接矩阵表示, 构造图的算法。 #include #include #include #include typedef char VertexType; //顶点的名称为字符 const int MaxVertexNum=10; //图的最大顶点数 const int MaxEdgeNum=100; //边数的最大值 typedef int WeightType; //权值的类型 const WeightType MaxValue=32767; //权值的无穷大表示 typedef VertexType Vexlist[MaxVertexNum]; //顶点信息,定点名称 typedef WeightType AdjMatrix[MaxVertexNum][MaxVertexNum]; //邻接矩阵typedef enum{DG,DN,AG,AN} GraphKind; //有向图,有向网,无向图,无向网typedef struct{ Vexlist vexs; // 顶点数据元素 AdjMatrix arcs; // 二维数组作邻接矩阵 int vexnum, arcnum; // 图的当前顶点数和弧数 GraphKind kind; // 图的种类标志 } MGraph; void CreateGraph(MGraph &G, GraphKind kd)// 采用数组邻接矩阵表示法,构造图G {//构造有向网G int i,j,k,q; char v, w; G.kind=kd; //图的种类 printf("输入要构造的图的顶点数和弧数:\n"); scanf("%d,%d",&G.vexnum,&G.arcnum); getchar();//过滤回车 printf("依次输入图的顶点名称ABCD...等等:\n"); for (i=0; i

数据结构实验报告图实验

邻接矩阵的实现 1. 实验目的 (1)掌握图的逻辑结构 (2)掌握图的邻接矩阵的存储结构 (3)验证图的邻接矩阵存储及其遍历操作的实现2. 实验内容 (1)建立无向图的邻接矩阵存储 (2)进行深度优先遍历 (3)进行广度优先遍历3.设计与编码MGraph.h #ifndef MGraph_H #define MGraph_H const int MaxSize = 10; template class MGraph { public: MGraph(DataType a[], int n, int e); ~MGraph(){ void DFSTraverse(int v); void BFSTraverse(int v); private: DataType vertex[MaxSize]; int arc[MaxSize][MaxSize]; }

int vertexNum, arcNum; }; #endif MGraph.cpp #include using namespace std; #include "MGraph.h" extern int visited[MaxSize]; template MGraph::MGraph(DataType a[], int n, int e) { int i, j, k; vertexNum = n, arcNum = e; for(i = 0; i < vertexNum; i++) vertex[i] = a[i]; for(i = 0;i < vertexNum; i++) for(j = 0; j < vertexNum; j++) arc[i][j] = 0; for(k = 0; k < arcNum; k++) { cout << "Please enter two vertexs number of edge: " cin >> i >> j; arc[i][j] = 1; arc[j][i] = 1; } }

α射线能谱测量(有算能量刻度哦)

**************************************************************************** 西南科技大学 《α射线能谱测量》报告 设计名称α射线能谱测量 学院 班级 学生姓名 学号 设计日期 2014年12月 2014年10月制

目录 1实验目的 (1) 2实验内容 (1) 3实验原理 (1) 3.1α能谱 (1) 3.2α放射源 (2) 3.3α放谱仪 (3) 3.4探测器测量α射线能谱相关原理 (4) 3.5α谱仪的能量刻度和能量分辨率 (4) 4实验仪器、器材 (5) 5实验步骤 (5) 6实验数据记录、处理 (6) 7实验结论 (8)

1实验目的 α衰变中发射的α粒子能量及辐射几率的测量,对于核结构研究具有重要意义。这些核数据的测量通常是用α磁谱仪或半导体α谱仪。而本实验主要从以下几个方面进行: 1、了解α谱仪工作原理与特性 2、掌握α能谱测量原理及测量方法 3、测量获取表中各种放射源在不同探源距下α能谱的数据与图像记录并进行刻度 2实验内容 测定α谱仪在不同源距下α能谱的数据,并通过计算获得相关能量分辨率。同时,进行能量刻度。 3实验原理 3.1α能谱 α粒子通过物质时,主要是与物质的原子的壳层电子相互作用发生电离损失,使物质产生正负离子对,对于一定物质,α在其内部产生一对离子所需的平均能量是一定的(即平均电能w),所以在物质中产生的正负离子对数与α粒子损失的能量成正比,即:E N= W 公式中N为α粒子在物质中产生的正负离子对数目,E是在物质中损失的α粒子能量。如果α粒子将其全部能量损失在物质内,E就是α粒子的能量。 由于α粒子在空气中的射程很短(在T=15℃,P=1大气压时,天然放射性核素衰变产生的α粒子,射程最大为Thc’(212Po) 为8.62cm,能量最小232Th为2.5cm),所以测量室应采用真空室,如上图1所示,采用真空泵将测量室抽成真空,这样与探测器接触的α粒子的能量才近似等于放射性核素经过α粒子放出的α粒子的初始能量(近似是因为不可能将测量室抽成绝对真空)。 α粒子在探测器中因电离、激发(由于α粒子的质量很大,所以与物质的散射作用很不明显。α粒子在空气中的径迹是一条直线,这种直线很容易在威尔逊云室中看到。)等效应而产生电流脉冲,其幅度与α粒子能量成正比。电流信号经前置放大器、主放大器放大,出来的电信号通过多道分析器进行数据采集,最后通过计算机采集并显示其仪器谱(实验用α谱仪硬件连接及内部结构框图如图1所示)。仪器谱以α粒子的能量(即脉冲幅度)为横坐标,某个能量段内α粒子数(或计数率)为纵坐标,即可计算样品中各单个核素发射的α粒

数字图像处理实验报告

目录 实验一:数字图像的基本处理操作 (4) :实验目的 (4) :实验任务和要求 (4) :实验步骤和结果 (5) :结果分析 (8) 实验二:图像的灰度变换和直方图变换 (9) :实验目的 (9) :实验任务和要求 (9) :实验步骤和结果 (9) :结果分析 (13) 实验三:图像的平滑处理 (14) :实验目的 (14) :实验任务和要求 (14) :实验步骤和结果 (14) :结果分析 (18) 实验四:图像的锐化处理 (19) :实验目的 (19) :实验任务和要求 (19) :实验步骤和结果 (19) :结果分析 (21)

实验一:数字图像的基本处理操作 :实验目的 1、熟悉并掌握MATLAB、PHOTOSHOP等工具的使用; 2、实现图像的读取、显示、代数运算和简单变换。 3、熟悉及掌握图像的傅里叶变换原理及性质,实现图像的傅里叶变换。:实验任务和要求 1.读入一幅RGB图像,变换为灰度图像和二值图像,并在同一个窗口内分 成三个子窗口来分别显示RGB图像和灰度图像,注上文字标题。 2.对两幅不同图像执行加、减、乘、除操作,在同一个窗口内分成五个子窗口来分 别显示,注上文字标题。 3.对一幅图像进行平移,显示原始图像与处理后图像,分别对其进行傅里叶变换, 显示变换后结果,分析原图的傅里叶谱与平移后傅里叶频谱的对应关系。 4.对一幅图像进行旋转,显示原始图像与处理后图像,分别对其进行傅里 叶变换,显示变换后结果,分析原图的傅里叶谱与旋转后傅里叶频谱的 对应关系。 :实验步骤和结果 1.对实验任务1的实现代码如下: a=imread('d:\'); i=rgb2gray(a); I=im2bw(a,; subplot(1,3,1);imshow(a);title('原图像'); subplot(1,3,2);imshow(i);title('灰度图像'); subplot(1,3,3);imshow(I);title('二值图像'); subplot(1,3,1);imshow(a);title('原图像'); 结果如图所示:

工程结构试验与检测实验报告

实验一静态应变测量原理 在电阻应测量中,如在电桥中仅接入一个电阻应变片,则实际测量值中含有由于温度变化时构件产生的应变,这是实验中所不希望的,通过适当的接线方式,可消除温度的影响,在课本中有许多不同的接线方式,主要分为两大类,一是设置专门温度补偿片,这种方式又可分为公共补偿与单片补偿两种,二是通过工作片间互相补偿,称为互相补偿或自补偿,接线要有一定的技巧。掌握电阻应变测量中的温度补偿方式及不同接线方式的测量结果的区别是很重要的。 一、实验目的 1、熟悉电阻应变仪的操作规程; 2、掌握电阻应变仪测量的基本原理; 3、学会用电阻应变片作半桥测量的方法; 4、掌握温度补偿的基本原理。 二、实验设备及仪表 1、DH3819型静态电阻应变仪; 2、等强度梁; 3、电阻应变片,导线。 三、实验内容 进行两种电阻应变测量接线方法的实验,掌握电阻应变测量的不同接线基本原理,以及消除温度影响的方法,根据实验结果分析两种接线不同测量数值理论依据。 四、试验方法 1、1/4桥接线+公共补偿:

单片补偿接线方法:将应变片R1接于应变仪1组,Eg、接线柱,温度补偿片R2接于、0接线柱,则构成外半桥,另内半桥由应变仪内部两个标准电阻构成。输入应变片灵敏度系数,导线电阻,应变片电阻。 公共补偿接线方法:断开补偿组的连线,将公共补偿接线连接于该组,将等强度梁的上侧应变片R1接于1组的Eg、接线柱,将等强度梁下侧应变片R3接、0接线柱。 2、半桥接线 按应变仪的设计原理更换公共补偿端的接线方式,然后在每个测量桥路中接入两个电阻应变片。本试验中,在一个测量桥路中按半桥方式接入等强度梁的上下测应变片。 五、实验步骤 1、接上述接桥方法分别接通桥路; 2、将电阻应变仪调平衡; 3、作预加载1公斤,检查仪表和装置; 4、正式试验,每级加载1公斤,加三级,记取读数,重复三次。 六、试验报告 1、实验方案; 2、实验过程; 3、整理出实验数据,试验数据填入应变记录表。(表格见下表) 4、比较两种接线方法,分析原因,给出结论。 5、写出试验操作方法和体会。 6、回答后面的思考题。

数字图像处理实验报告

目录 实验一:数字图像的基本处理操作....................................................................... 错误!未定义书签。:实验目的 .............................................................................................................. 错误!未定义书签。:实验任务和要求..................................................................................................... 错误!未定义书签。:实验步骤和结果..................................................................................................... 错误!未定义书签。:结果分析................................................................................................................. 错误!未定义书签。实验二:图像的灰度变换和直方图变换............................................................... 错误!未定义书签。:实验目的 .............................................................................................................. 错误!未定义书签。:实验任务和要求..................................................................................................... 错误!未定义书签。:实验步骤和结果..................................................................................................... 错误!未定义书签。:结果分析................................................................................................................. 错误!未定义书签。实验三:图像的平滑处理....................................................................................... 错误!未定义书签。:实验目的 .............................................................................................................. 错误!未定义书签。:实验任务和要求..................................................................................................... 错误!未定义书签。:实验步骤和结果..................................................................................................... 错误!未定义书签。:结果分析................................................................................................................. 错误!未定义书签。实验四:图像的锐化处理......................................................................................... 错误!未定义书签。:实验目的 .............................................................................................................. 错误!未定义书签。:实验任务和要求..................................................................................................... 错误!未定义书签。:实验步骤和结果..................................................................................................... 错误!未定义书签。:结果分析................................................................................................................. 错误!未定义书签。

数据结构实验报告图实验

图实验 一,邻接矩阵的实现 1.实验目的 (1)掌握图的逻辑结构 (2)掌握图的邻接矩阵的存储结构 (3)验证图的邻接矩阵存储及其遍历操作的实现 2.实验内容 (1)建立无向图的邻接矩阵存储 (2)进行深度优先遍历 (3)进行广度优先遍历 3.设计与编码 #ifndef MGraph_H #define MGraph_H const int MaxSize = 10; template class MGraph { public: MGraph(DataType a[], int n, int e); ~MGraph(){ } void DFSTraverse(int v); void BFSTraverse(int v); private: DataType vertex[MaxSize]; int arc[MaxSize][MaxSize]; int vertexNum, arcNum; }; #endif #include using namespace std; #include "" extern int visited[MaxSize]; template MGraph::MGraph(DataType a[], int n, int e) { int i, j, k; vertexNum = n, arcNum = e; for(i = 0; i < vertexNum; i++) vertex[i] = a[i]; for(i = 0;i < vertexNum; i++) for(j = 0; j < vertexNum; j++) arc[i][j] = 0;

1、连续X射线谱:具有连续波长的X射线,也称多色X射线。

1、连续X射线谱:具有连续波长的X射线,也称多色X射线。 2、标识(特征)X射线谱:在连续谱的基础上叠加若干条具有一定波长的谱线。也称单色X射线。 3、短波限:电子与靶相撞,其能力(EV)全部转变为辐射光子能量,此时光子能量最大,波长最短,因此连续谱有一个下线波长&0,即为短限波 4、同步辐射X射线源:当电子被加速到足够能量时,它便像圆周的切线方向辐射X射线波段范围的电磁波,把这种辐射称为同步辐射X射线源。(特点1)通量大,亮度高;(2)频谱宽,连续可调;(3)光束准直性好;(4)有特定的时间结构;(5)偏振性好,在电子轨道平面上基本是100&的线偏振。 5、X射线强度:垂直X射线传播方向的单位面积上在单位时间内通过的光子数目能量总和,常用单位是 J/cm2.s。 6、激发电压:开始产生标识谱线的临界电压。 7、K系激发:当K层电子被激活时,原子的系统能量便由基态升高到K激发态,把这个过程称K系激发。 8、K系辐射:产生K系激发后,K层的空位被高能级电子填充,这时产生的辐射称为K系辐射。 9、相干散射:物质中电子在X射线电场的作用,产生强迫振动,每个受迫振动电子便成为新电磁波源向空间的各个方向辐射同频率的电磁波,这些新的散射波之间可以发生干涉作用,把这种散射现象称为相干散射。(它不损失X射线的能量,而只是改变了它的传播方向,但对X射线方向来说确是起到了强度衰减的作用。) 10、非相干散射:当X射线光子与束缚力不大的外层电子或自由电子碰撞时,电子获得一部分动能称为反冲电子,光子也离开原来方向,碰撞后的光子能量减少,波长增加,这样的散射现象称为非相干散射。 11、X射线的吸收:物质对X射线的吸收指的是X射线能量在通过物质时转变为其他形式的能量。 12、光电效应:以光子激发原子所发生的激发和辐射过程称为光电效应,被击出的电子称为光电子。辐射出的次级标识X射线称为荧光X射线(或称第二标识X射线)。 13、荧光辐射:光子激发原子所发生的激发和辐射过程中发出荧光X射线,称为荧光辐射。 14、俄歇效应:原子在入射的X射线光子或电子的作用下失掉一个K层电子变成K激发态。若该过程中所释放的能量用来产生二次电离,使另一个核外电子脱离原子变为二次电子的现象。(产生的二次电子的能量具有固定值,这种具有特征的能量电子称为俄歇效应。) 15、穿透系数:X射线通过物体衰减后的强度与入射强度的比值称为穿透系数,既Ih/Ic=e-uH。 16、线衰减系数:单位体积物质对X射线强度的衰减程度,它与物质的密度成正比(u=ump)。 17、质量衰减系数:表示单位重量物质对X射线强度衰减程度。当物质状态发生改变时,它保持不变。(um) 18、吸收限:物质对电磁辐射的吸收随辐射波长的减小而减小,当波长减小至某一限度时质量衰减系数骤增,此时的波长称为吸收限。(吸收限为X射线性状的特殊标识,并与原子的能级的精细结构一一对应。)19、点阵:从晶体结构抽象出来的,描述结构基元空间分布周期性的几何点,总体称为晶体的空间点阵。空间点阵是从晶体结构中抽象出来的几何图形,它反映了晶体结构中最基本的几何特征,不能脱离晶体的结构而单独存在。(空间点阵+结构基元=晶体结构。) 20、阵点:空间点阵中的几何点。21阵胞:在空间点阵中按照一定得方式选取一个平行六面体,作为空间点阵的基本单元称为阵胞,它是空间点阵几何形象的代表。 22简单阵胞:只在顶点上有阵点的阵胞 23点阵参数:用来描述阵胞的形状和大小的,相交于某一个点的三个棱边上的点阵周期a,b,c以及他们之间的夹角αβγ。 形式,它的许多性质与晶体点阵存在倒易关系。

相关主题
文本预览
相关文档 最新文档