当前位置:文档之家› 微分几何第四版习题答案梅向明,DOC

微分几何第四版习题答案梅向明,DOC

微分几何第四版习题答案梅向明,DOC
微分几何第四版习题答案梅向明,DOC

§1曲面的概念

1.求正螺面r ={u v cos ,u v sin ,bv}的坐标曲线.

解u-曲线为r ={u 0cos v ,u 0sin v ,bv 0}={0,0,bv 0}+u{0cos v ,0sin v ,0},为曲线的直母线;v-曲线为r ={0u v cos ,0u v sin ,bv}为圆柱螺线.

2.证明双曲抛物面r ={a (u+v ),b (u-v ),2uv }的坐标曲线就是它的直母线。

证u-曲线为r ={a (u+0v ),b (u-0v ),2u 0v }={a 0v ,b 0v ,0}+u{a,b,20v }表示过点{a 0v ,b 0v ,0}以{a,b,20v }为方向向量的直线;

v-曲线为r ={a (0u +v ),b (0u -v ),20u v }={a 0u ,b 0u ,0}+v{a,-b,20u }表示过点(a 0u ,b 0u ,0)以{a,-b,20u }为方向向量的直线。

3.求球面r =}sin ,sin cos ,sin cos {?????a a a 上任意点的切平面和法线方程。

解?r

=}cos ,sin sin ,cos sin {?????a a a --,?r =}0,cos cos ,sin cos {????a a -

任意点的切平面方程为00

cos cos sin cos cos sin sin cos sin sin sin cos cos cos =------?

??

?????

??????a a a a a a z a y a x

即xcos ?cos ?+ycos ?sin ?+zsin ?-a=0; 法线方程为

?

?

????????sin sin sin cos sin cos cos cos cos cos a z a y a x -=-=-。

4.求椭圆柱面22

221x y a b

+=在任意点的切平面方程,并证明沿每一条直母线,此

曲面只有一个切平面。

22

22

1x y a b +=的参数方程为

x=cos ?,y=asin ?,z=t,}0,cos ,sin {??θb a r -= ,}1,0,0{=t r

。所以切平面方程为:

01

0cos sin sin cos =----????b a t

z b y a x ,即xbcos ?+yasin ?-ab=0 此方程与t 无关,对于?的每一确定的值,确定唯一一个切平面,而?的每一数值对应一条直母线,说明沿每一条直母线,此曲面只有一个切平面。

5.证明曲面},,{3

uv

a v u r = 的切平面和三个坐标平面所构成的四面体的体积是常

数。

证 },0,1{23v u a r u -= ,},1,0{23uv

a r v -= 。切平面方程为:33=++z a uv

v y u x 。

与三坐标轴的交点分别为(3u,0,0),(0,3v,0),(0,0,uv a 2

3)。于是,四面体的体积为:

3

32

9||3||3||361a uv a v u V ==是常数。

§2曲面的第一基本形式

1. 求双曲抛物面r ={a (u+v ),b (u-v ),2uv }的第一基本形式.

解,4},2,,{},2,,{2222v b a r E u b a r v b a r u v u ++==-==

2222224,4u b a r G uv b a r r F v v u ++==+-=?=

,

∴I=+++2222)4(du v b a 2222222)4()4(dv u b a dudv uv b a ++++-。

2.求正螺面r ={u v cos ,u v sin ,bv}的第一基本形式,并证明坐标曲线互相垂直。

解 },cos ,sin {},0,sin ,{cos b v u v u r v v r v u -== ,12==u r E ,0=?=v u r r F

,222b u r G v +==

,∴ I=2222)(dv b u du ++,∵F=0,∴坐标曲线互相垂直。

3.在第一基本形式为I=222sinh udv du +的曲面上,求方程为u=v 的曲线的弧长。

解由条件=2ds 22

2s in h u d v du +,沿曲线u=v 有du=dv ,将其代入2ds 得

=2ds 222sinh udv du +=22cosh vdv ,ds=coshvdv,在曲线u=v 上,从1v 到2v 的弧长为

|sinh sinh ||cosh |122

1

v v vdv v v -=?。

4.设曲面的第一基本形式为I=2222)(dv a u du ++,求它上面两条曲线u+v=0,u –v=0的交角。

分析由于曲面上曲线的交角是曲线的内蕴量,即等距不变量,而求等距不变量只须知道曲面的第一基本形式,不需知道曲线的方程。

解由曲面的第一基本形式知曲面的第一类基本量1=E ,0=v F ,22a u G +=,曲线u+v=0与u –v=0的交点为u=0,v=0,交点处的第一类基本量为1=E ,0=v F ,

2a G =。曲线u+v=0的方向为du=-dv,u –v=0的方向为δu=δv,设两曲线的夹角为

?,则有

cos ?=

22

222211a a v

G u E Gdv Edu u Gdv u Edu +-=+++δδδδ。 5.求曲面z=axy 上坐标曲线x=x 0,y=0y 的交角. 解曲面的向量表示为r ={x,y,axy},坐标曲线x=x

的向量表示为

r ={x 0,y,ax 0y},其切向量y r

={0,1,ax 0};坐标曲线y=0y 的向量表示为

r ={x,0y ,ax 0y },其切向量x r

={1,0,a 0y },设两曲线x=x 0与y=0y 的夹角为?,

则有cos ?=20

22020

0211||||y a x a y x a r r r r y x y x ++=?

6.求u-曲线和v-曲线的正交轨线的方程.

解对于u-曲线dv=0,设其正交轨线的方向为δu:δv,则有

Edu δu+F(du δv+dv δu)+Gdv δv=0,将dv=0代入并消去du 得u-曲线的正交轨线的微分方程为E δu+F δv=0.

同理可得v-曲线的正交轨线的微分方程为F δu+G δv=0.

7.在曲面上一点,含du,dv 的二次方程P 2du +2Qdudv+R 2dv =0,确定两个切方向(du :dv )和(δu :δv ),证明这两个方向垂直的充要条件是ER-2FQ+GP=0.

证明 因为du,dv 不同时为零,假定dv ≠0,则所给二次方程可写成为

P 2)(

dv du +2Q

dv du +R=0,设其二根dv du ,v u δδ,则dv du v u δδ=P R ,dv du +v u

δδ=P

Q 2-……①又根据二方向垂直的条件知E dv du v u δδ+F(dv du +v

u

δδ)+G=0……②

将①代入②则得ER-2FQ+GP=0.

8. 证明曲面的坐标曲线的二等分角线的微分方程为E 2du =G 2dv .

证 用分别用δ、*δ、d 表示沿u -曲线,v -曲线及其二等分角线的微分符号,即沿u -曲线δu ≠0,δv =0,沿v -曲线*δu =0,*δv ≠0.沿二等分角轨线方向为du:dv,根据题设条件,又交角公式得

2

22222)()(ds

v G v Gdv v Fdu ds u E u Fdv v Edu ***+=+δδδδδδ,即G Gdv Fdu E Fdv Edu 22)()(+=+。 展开并化简得E(EG-2F )2du =G(EG-2F )2dv ,而EG-2F >0,消去EG-2F 得坐标曲线的二等分角线的微分方程为E 2du =G 2dv .

9.设曲面的第一基本形式为I=2222)(dv a u du ++,求曲面上三条曲线u=a ±v,v=1相交所成的三角形的面积。 解三曲线在平面上的图形(如图)所示。曲线

围城的三角形的面积是

u

v

V=1 u=-av

u=av o

S=????+++--1

2

2

12

2

a

u a

a

a

u dv du a u dv du a u

=2??+102

2

a

u a dv du a u =2du a u a u

a

?+-0

22)1(

=a

a u u a a u u a u a

02222223

22|)]ln()(32[++++++-

=)]21ln(3

2

2[

2++-a 。 10.求球面r =}sin ,sin cos ,sin cos {?????a a a 的面积。

解?r

=}cos ,sin sin ,cos sin {?????a a a --,?r =}0,cos cos ,sin cos {????a a -

E=2?r

=2a ,F=?r ?r =0,G=2?r =?22cos a .球面的面积为:

S=222

2

2

2

2

20

2

4

22

4|sin 2cos 2cos a a d a

d a d π?π??π???π

πππ

π

π

π===--

-

?

??.

11.证明螺面r ={ucosv,usinv,u+v}和旋转曲面r ={tcos ?,tsin ?,12-t } (t>1,0

分析根据等距对应的充分条件,要证以上两曲面可建立等距映射

?=arctgu+v,t=12+u ,可在一个曲面譬如在旋转曲面上作一参数变换使两曲面在

对应点有相同的参数,然后证明在新的参数下,两曲面具有相同的第一基本形式.

证明螺面的第一基本形式为I=22du +2dudv+(2u +1)2dv ,旋转曲面的第一基本

形式为I=?d t dt t t 222

2

)1

1(+-+,在旋转曲面上作一参数变换?=arctgu+v,t=12+u ,则其第一基本形式为:

=2222

222)1(211

)11(dv u dudv du u

du u u +++++++=22du +2dudv+(2u +1)2dv =I. 所以螺面和旋转曲面之间可建立等距映射?=arctgu+v,t=12+u .

§3曲面的第二基本形式

1. 计算悬链面r ={coshucosv,coshusinv,u}的第一基本形式,第二基本形式.

解u r ={sinhucosv,sinhusinv,1},v r

={-coshusinv,coshucosv,0} uu r ={coshucosv,coshusinv,0},uv r

={-sinhusinv,sinhucosv,0},

vv r ={-coshucosv,-coshusinv,0},2u r E ==cosh 2u,v u r r F

?==0,2v r G ==cosh 2u.

所以I=cosh 2u 2du +cosh 2u 2dv .

n =

2

F E

G r r v u -? =

}sin sinh ,sin cosh ,cos cosh {cosh 1

2v u v u v u u

--,

L=11

sinh cosh 2

-=+-

u ,M=0,N=

1

sinh cosh 2

+u =1.

所以II=-2du +2dv 。

2. 计算抛物面在原点的2

2212132452x x x x x ++=第一基本形式,第二基本形式.

解曲面的向量表示为}22

5,,{22212121x x x x x x r ++= ,

}0,0,1{}25,0,1{)0,0(211=+=x x r x ,}0,1,0{}22,1,0{)0,0(212=+=x x r x ,}5,0,0{11=x x r

, }2,0,0{21=x x r ,}2,0,0{22=x x r

,E=1,F=0,G=1,L=5,M=2,N=2,

I=2221dx dx +,II=2

22121245dx dx dx dx ++.

3.证明对于正螺面r ={u v cos ,u v sin ,bv},-∞

解},cos ,sin {},0,sin ,{cos b v u v u r v v r v u -==

,uu r ={0,0,0},

uv r ={-uucosv,cosv,0},vv r ={-ucosv,-usinv,0},12==u r E ,0=?=v u r r F

,222b u r G v +==

,L=0,M=

2

2

b

u b +-,N=0.所以有EN-2FM+GL=0.

4.求出抛物面)(2

1

22by ax z +=

在(0,0)点沿方向(dx:dy)的法曲率. 解}0,0,1{},0,1{)0,0(==ax r x ,}0,1,0{},1,0{)0,0(==by r y ,},0,0{a r xx =

,}0,0,0{=xy r },0,0{b r yy = ,E=1,F=0,G=1,L=a,M=0,N=b,沿方向dx:dy 的法曲率2

222dy

dx bdy adx k n ++=. 5.已知平面π到单位球面(S)的中心距离为d(0

解设平面π与(S)的交线为(C),则(C)的半径为21d -,即(C)的曲率为

2

11d k -=

,又(C)的主法向量与球面的法向量的夹角的余弦等于±21d -,所以

(C)的法曲率为n k k =±21d -=±1.

6.利用法曲率公式I

II

k n =,证明在球面上对于任何曲纹坐标第一、第二类基本量成比例。

证明因为在球面上任一点处,沿任意方向的法截线为球面的大圆,其曲率为球面半径R 的倒数1/R 。即在球面上,对于任何曲纹坐标(u,v),沿任意方向du:dv

R Gdv

Fdudv Edu Ndv Mdudv Ldu I II k n 1222

222=++++==或-R 1,所以)1(R G N F M E L ===,即第一、第二类基本量成比例。

7.求证在正螺面上有一族渐近线是直线,另一族是螺旋线。 证明对于正螺面r ={u v cos ,u v sin ,bv},

},cos ,sin {},0,sin ,{cos b v u v u r v v r v u -==

,uu r ={0,0,0},vv r ={-ucosv,-usinv,0},

L=

2

),,(F

EG r r r uu v u - =0,N=

2

),,(F

EG r r r vv v u - =0.所以u 族曲线和v 族曲线都是渐近线。而u 族曲

线是直线,v 族曲线是螺旋线。

8.求曲面2xy z =的渐近线.

解曲面的向量表示为},,{2xy y x r =

,},,0,1{2y r x + }0,0,0{},2,1,0{==xx y r xy r ,

22224241,2,41},2,0,0{},2,0,0{y x r G xy r r F y r E x r y r y y x x yy xy +===?=++===

. 4

2

2

4

2

2

412,412,0y

y x x N y

y x y M L ++=

++=

=.

渐近线的微分方程为222Ndy Mdxdy Ldx ++,即,0242=+xdy ydxdy 一族为dy=0,即

1c y =,1c 为常数.另一族为2ydx=-xdy,即.,,ln 222为常数或c c y x c y x ==.

9. 证明每一条曲线在它的主法线曲面上是渐近线.

证在每一条曲线(C)的主法线曲面上,沿(C)的切平面是由(C)的切向量与(C)的主法向量所确定的平面,与曲线(C)的密切平面重合,所以每一条曲线(C)在它的主法线曲面上是渐近线.

方法二:任取曲线:()r r s Γ=,它的主法线曲面为:(,)()()S s t r s t s ρρβ==+,

()()()(1)s s t s t t t ραβακατγκατγ=+=+-+=-+,t ρβ=,(1)s t t t ρρκακγ?=-+-

在曲线Γ上,t=0,s t ρργ?=,曲面的单位法向量2

s t

n EG F

ρργ?==-,即n γ=,所

以曲线Γ在它的主法线曲面上是渐近线.

10.证明在曲面z=f(x)+g(y)上曲线族x=常数,y=常数构成共轭网.

证曲面的向量表示为r ={x,y,f(x)+g(y)},x=常数,y=常数是两族坐标曲线。

},0,1{'f r x = ,},1,0{'g r y

.''''{0,0,},{0,0,0},{0,0,},xx xy yy r f r r g ===

因为2

0x y xy r r M r EG F

?=?

=-,所以坐标曲线构成共轭网,即曲线族x=常数,y=常数构

成共轭网。

11.确定螺旋面r ={u v cos ,u v sin ,bv}上的曲率线. 解

}

,cos ,sin {},0,sin ,{cos b v u v u r v v r v u -==

uu

r ={0,0,0},

vv r ={-ucosv,-usinv,0},uv r ={-sinv,cosv,0},12==u r E ,0=?=v u r r F

,222b u r G v +==

,L=0,M=

2

2

b

u b +-,N=0,曲率线的微分方程为:

00

012

2222

2=+-+-b u b b u du dudv dv ,即du b

u dv 2

2

1+±=,积分得两族曲率线方程:

222122)ln()ln(c u b u v c b u u v +-+=+++=和. 12.求双曲面z=axy 上的曲率线.

解,1,0,1,,12

2

2

2

2222222y

a x a a M L x a G y x a F y a E ++=

=+==+=N=0.

由0

10

112

2

2

222

222

22

2

2

y

a x a a x a y x a x a dx dxdy dy ++++-=0得222222)1()1(dy x a dx y a +=+,积分得

两族曲率线为c y a ay x a ax +++±=++)1ln()1ln(2222.

13.求曲面}2

),(2),(2{uv

v u b v u a r +-= 上的曲率线的方程.

解,0,4,4,42

2222222=++=++-=++=

L u b a G uv b a F v b a E M=

2

2F EG ab

-,N=0.代入曲率线的微分方程得所求曲率线的方程是:

积分得,)()(22222222du v b a dv u b a ++=++:

c v b a v u b a u ++++±=+++)ln()ln(222222.

14.给出曲面上一曲率线L,设L 上每一点处的副法线和曲面在该点的法向量成定角,求证L 是一平面曲线.

证法一:因L 是曲率线,所以沿L 有r d n d n

κ-=,又沿L 有γ ?n =常数,求微商

得正交与而γγγ r d n d n n n ////,0=?+?,所以0=?n γ,即-τβ ·n =0,则有τ=0,或

β

·n

=0.

若τ=0,则L 是平面曲线;若β

·n

=0,L 又是曲面的渐近线,则沿L ,n κ=0,

这时d n =0 ,n 为常向量,而当L 是渐近线时,γ =±n

,所以γ 为常向量,L 是一

平面曲线.

证法二:若γ

⊥n ,则因n ⊥dr ‖α,所以n ‖β ,所以d n

‖β,由伏雷

内公式知d n ‖(κατβ-+)而L 是曲率线,所以沿L 有d n

‖α,所以有τ=0,从而曲线为平面曲线;

若γ 不垂直于n

,则有γ ?n =常数,求微商得0,n n γγ?+?=因为L 是曲率线,所

以沿L 有dn ‖dr ⊥γ

,所以0n γ?=,所以0=?n γ,即-τβ ·n =0,若τ=0,则问

题得证;否则β ·n =0,则因0n α?=,有n ‖γ

,dn ‖d γ‖(-τβ )‖α,矛盾。

15.如果一曲面的曲率线的密切平面与切平面成定角,则它是平面曲线。 证曲线的密切平面与曲面的切平面成定角,即曲线的副法向量和曲面的法向量成定角,由上题结论知正确。 16.求正螺面的主曲率。

解设正螺面的向量表示为r ={u v cos ,u v sin ,bv}.

解},cos ,sin {},0,sin ,{cos b v u v u r v v r v u -== ,uu r ={0,0,0},

vv r ={-ucosv,-usinv,0},uv r ={-sinv,cosv,0},12==u r E ,0=?=v u r r F

,222b u r G v +==

,L=0,M=

2

2

b

u b +-,N=0,代入主曲率公式

(EG-2

F )2N

κ-(LG-2FM+EN )N κ+LN-2

M =0得2N

κ=2

222

)

(a u a +。 所以主曲率为2

22221,a

u a

a u a +-=+=

κκ。 17.确定抛物面z=a(22y x +)在(0,0)点的主曲率.

解曲面方程即{0,0,2}yy r a =,22{,,()}r x y a x y =+,{1,0,2}x r ax ={0,1,2}y r ay =,

{0,0,2}xx r a =,{0,0,0},xy r ={0,0,2}yy r a =。在(0,0)点,E=1,F=0,G=1,L=2a,M=0,

N=2a.所以2

N κ-4a N κ+42a =0,两主曲率分别为1κ=2a,2κ=2a.

18.证明在曲面上的给定点处,沿互相垂直的方向的法曲率之和为常数. 证曲面上的给定点处两主曲率分别为1κ、2κ,任给一方向?及与其正交的方向

?+2π,则这两方向的法曲率分别为?κ?κ?κ2221sin cos )(+=n ,

?κ?κπ?κπ?κπ?κ22212221cos sin )2(sin )2(cos )2(+=+++=+n ,即 +)(?κn 21)2

(κκπ?κ+=+n 为常数。

19.证明若曲面两族渐近线交于定角,则主曲率之比为常数. 证由?κ?κκ2221sin cos +=n 得2

1

2κκ?-

=tg ,即渐进方向为

211κκ?-

=arctg ,2?=-21κκ-arctg .又-2?+1?=21?为常数,所以为1?为常数,即2

1κκ为常数.

20.求证正螺面的平均曲率为零. 证由第3题或第16题可知.

21.求双曲面z=axy 在点x=y=0的平均曲率和高斯曲率. 证在点x=y=0,E=1,F=0,G=1,L=0,M=a,N=0,H=

0)

(222

=-+-F EG NE

FM LG , K=2

2F

EG M LN --=-2a . 22.证明极小曲面上的点都是双曲点或平点. 证法一:由H=

2

2

1κκ+=0有1κ=2κ=0或1κ=-2

κ≠

0.

若1κ=2κ=0,则沿任意方向?,?κ?κ?κ2221sin cos )(+=n =0,即对于任意的

du:dv,0222

22

2=++++=

=Gdv Fdudv Edu Ndv Mdudv Ldu I II k n ,所以有L=M=N=0,对应的点为平点. 若1κ=-2

κ≠

0,则K=1κ2κ<0,即LN-M 2<0,对应的点为双曲点.

证法二:取曲率网为坐标网,则F=M=0,因为极小曲面有H=0,

所以LG+EN=0,因E>0,G>0,所以LN<0。若2L N M -=0,则L=M=N=0,曲面上的点是平点,若2LN M -<0,则曲面上的点是双曲点。

23.证明如果曲面的平均曲率为零,则渐近线构成正交网.

证法一:如果曲面的平均曲率为零,由上题曲面上的点都是双曲点或平点. 若为平点,则任意方向为渐近方向,任一曲线为渐近曲线,必存在正交的渐近曲线网. 若为双曲点,则曲面上存在渐近曲线网.由19题,渐近方向?满足2

1

2κκ?-

=tg =1,

即1?=π/4,2?=-π/4,两渐近线的夹角为2

π

,即渐近曲线网构成正交网.

证法二:020H LG FM NE =∴-+=渐近线方程为2220Ldu Mdudv Ndv ++= 所以2

(

)2

0d u d u L M N d v

d v ++=,所以2,d u u N d u u M

d v v L d v v L

δδδδ=+=-

,所以()[()]d u u d u u

E d u u

F d u v d v u

G d v v d v v E F

G

d v v d v v

δδδδδδδδδ+++=+++ =2[()]0N M

dv v E

F G L L

δ+-+=,所以渐近网为正交网。 证法三:0

M ≠121

()02

H κκ=+=,

所以高斯曲率120K κκ=≤,所以2LN M -≤0,所以曲面上的点是平点或双曲点。所以曲面上存在两族渐近线。取曲面上的两族渐近线为坐标网,则L=N=0,若M=0,曲面上的点是平点,若 0M ≠,则020H L G F M N E =∴-+=,所以MF=0,所以F=0,所以渐近网为正交网。

24.在xoz 平面上去圆周y=0,)()(2

2

2

a b a z b x =+-,并令其绕轴旋转的圆环面,

参数方程为r

={(b+acos ?)cos ?,(b+acos ?)sin ?,asin ?},求圆环面上的椭圆点、双曲点、抛物点。

解E=2a ,F=0,G=2)cos (?a b +,L=a,M=0,N=cos ?(b+acos ?),

LN-2M =a cos ?(b+acos ?),由于b >a>0,b+acos ?>0,所以LN-2M 的符号与cos ?的符

号一致,当0≤?<2π

2

0,曲面上的点为椭圆点,即圆环面外

侧的点为椭圆点;当-2π

,曲面上的点为双曲点,即圆环面内侧的点为双曲

点;当?=2π或2

时,LN-2M =0,为抛物点,即圆环面上、下两纬圆上的点为抛

物点。

25.若曲面的第一基本形式表示为))(,(222dv du v u I +=λ的形式,则称这个曲

面的坐标曲线为等温网。试证:旋转曲面)}(,sin )(,cos )({t f t g t g r ??=

上存在等温

网。

证旋转曲面)}(,sin )(,cos )({t f t g t g r ??=

的第一基本形式为

))((2

22

2'2'2

?d dt g

f g t g I ++=,做参数变换dt g f g u ?+=2'2',v=?,则在新参数下,),)](([222dv du u t g I +=为等温网。

26.两个曲面1S 、2S 交于一条曲线(C ),而且(C )是1S 的一条曲率线,则(C )也是2S 的一条曲率线的充要条件为1S 、2S 沿着(C )相交成固定角。

证两个曲面1S 、2S 交于曲线(C ),1n 、2n

分别为1S 、2S 的法向量,则沿交线(C ),1n 与2n 成固定角的充要条件为1n ·2n =常数,这等价于d(1n ·2n )=0,即 d 1n ·2n +1n ·d 2n

=0,而(C )是1S 的一条曲率线,因此d 1n 与(C )的切向量d r 共线,则与2n 正交,即d 1n ·2n =0,于是1n ·d 2n =0,又d 2n ⊥2n ,所以1n ·d 2n

=d 1n ·

2n =0的充要条件为d 2n

//d r ,即(C )是2S 的曲率线。

27.证明在曲面(S)上的一个双曲点P 处,若两条渐近线都不是直线,则它们之中,一条在点P 的挠率是K -,另一条在点P 的挠率是-K -,其中K 是(S)在P 点的高斯曲率。

证曲面在双曲点P 处,有两条渐近线过点P ,沿渐近线有n

=±γ ,且II=0,于是有d n

=±d γ .则KI KI HII III d n d -=-===222γ ,即,22Kds d -=γ 或

K ds

d -=2

)(γ ,所以有K K -±=-==-ττβτ,)(22 。 28.证明如果曲面上没有抛物点,则它上面的点和球面上的点是一一对应的。 证设给出的曲面(S):r =r (u,v)上的点r (u,v)与(u,v)∈D 内的点一一对应,其

球面像上的点为n =n

(u,v),由于)(v u v u r r k n n ?=?,所以||||v u v u r r k n n ?=?=

2

2||F EG M LN --,当曲面(S)上没有抛物点时,LN-M 2

≠0,则v u n n

?≠

0 。

说明球面像上的点n

(u,v)与区域D 内的点一一对应,因此曲面(S)上的点与球面像上的点一一对应。

微分几何第四版习题答案解析梅向明

§1曲面的概念 1.求正螺面r r ={ u v cos ,u v sin , bv }的坐标曲线. 解 u-曲线为r r ={u 0cos v ,u 0sin v ,bv 0 }={0,0,bv 0}+u {0cos v ,0sin v ,0},为曲线的直母线;v-曲线为r r ={0u v cos ,0u v sin ,bv }为圆柱螺线. 2.证明双曲抛物面r r ={a (u+v ), b (u-v ),2uv }的坐标曲线就是它的直母线。

证 u-曲线为r r ={ a (u+0v ), b (u-0v ),2u 0v }={ a 0v , b 0v ,0}+ u{a,b,20v }表示过点{ a 0v , b 0v ,0}以{a,b,20v }为方向向量的直线; v-曲线为r r ={a (0u +v ), b (0u -v ),20u v }={a 0u , b 0u ,0}+v{a,-b,20u }表示过点(a 0u , b 0u ,0)以{a,-b,20u }为方向向量的直线。 3.求球面r r =}sin ,sin cos ,sin cos {?????a a a 上任意点的切平面和法线方程。 解 ?r ρ =}cos ,sin sin ,cos sin {?????a a a -- ,?r ρ=}0,cos cos ,sin cos {????a a - 任意点的切平面方程为00 cos cos sin cos cos sin sin cos sin sin sin cos cos cos =------? ?? ????? ??????a a a a a a z a y a x 即 xcos ?cos ? + ycos ?sin ? + zsin ? - a = 0 ; 法线方程为 ? ? ????????sin sin sin cos sin cos cos cos cos cos a z a y a x -=-=- 。 4.求椭圆柱面22 221x y a b +=在任意点的切平面方程,并证明沿每一条直母线,此 曲面只有一个切平面 。 解 椭圆柱面22 221x y a b +=的参数方程为x = cos ?, y = asin ?, z = t , }0,cos ,sin {??θb a r -=ρ , }1,0,0{=t r ρ 。所以切平面方程为: 01 0cos sin sin cos =----????b a t z b y a x ,即x bcos ? + y asin ? - a b = 0 此方程与t 无关,对于?的每一确定的值,确定唯一一个切平面,而?的每一数值对应一条直母线,说明沿每一条直母线,此曲面只有一个切平面 。

微分几何习题全解(梅向明高教版第四版)

微分几何主要习题解答 第一章 曲线论 §2 向量函数 5. 向量函数)(t r 具有固定方向的充要条件是)(t r × ) ('t r = 0 。 分析:一个向量函数)(t r 一般可以写成)(t r =)(t λ)(t e 的形式,其中)(t e 为单位向 量函数,)(t λ为数量函数,那么)(t r 具有固定方向的充要条件是)(t e 具有固定方向,即)(t e 为常向量,(因为)(t e 的长度固定)。 证 对于向量函数)(t r ,设)(t e 为其单位向量,则)(t r =)(t λ)(t e ,若)(t r 具有固 定方向,则)(t e 为常向量,那么)('t r =)('t λe ,所以 r ×'r =λ'λ(e ×e )=0 。 反之,若r ×'r =0 ,对)(t r =)(t λ)(t e 求微商得'r ='λe +λ 'e ,于是r × 'r =2 λ(e ×'e )=0 ,则有 λ = 0 或e ×'e =0 。当)(t λ= 0时,)(t r =0 可与任意方 向平行;当λ≠ 0时,有e ×'e =0 ,而(e ×'e 2)=22'e e -(e ·'e 2)=2'e ,(因为e 具有固定长, e ·'e = 0) ,所以 'e =0 ,即e 为常向量。所以,)(t r 具有固定方向。 6.向量函数)(t r 平行于固定平面的充要条件是(r 'r ''r )=0 。 分析:向量函数)(t r 平行于固定平面的充要条件是存在一个定向向量)(t n ,使 )(t r ·n = 0 ,所以我们要寻求这个向量n 及n 与'r ,''r 的关系。 证 若)(t r 平行于一固定平面π,设n 是平面π的一个单位法向量,则n 为常向 量,且)(t r ·n = 0 。两次求微商得'r ·n = 0 ,''r ·n = 0 ,即向量r ,'r ,''r 垂直 于同一非零向量n ,因而共面,即(r 'r ''r )=0 。 反之, 若(r 'r ''r )=0,则有r ×'r =0 或r ×'r ≠0 。若r ×'r =0 ,由上题知 )(t r 具有固定方向,自然平行于一固定平面,若r ×' r ≠ ,则存在数量函数)(t λ、 )(t μ,使''r = r λ +μ'r ①

微分几何试题库

微分几何 一、判断题 1 、两个向量函数之和的极限等于极限的和(√) 2、二阶微分方程22 u v du u v dudv u v dv ++=总表示曲面上两族曲A(,)2B(,)B(,)0 线. (?) 3、若() s t均在[a,b]连续,则他们的和也在该区间连续(√)r t和() 4、向量函数() s t具有固定长的充要条件是对于t的每一个值, s t平行(×) s t的微商与() () 5、等距变换一定是保角变换.(√) 6、连接曲面上两点的所有曲线段中,测地线一定是最短的.(?) 7、常向量的微商不等于零(×) 8、螺旋线x=cost,y=sint,z=t在点(1,0,0)的切线为X=Y=Z(×) 9、对于曲线s=() s t上一点(t=t0),若其微商是零,则这一点为曲线的正常点(×) 10、曲线上的正常点的切向量是存在的(√) 11、曲线的法面垂直于过切点的切线(√) 12、单位切向量的模是1(√) 13、每一个保角变换一定是等距变换(×) 14、空间曲线的形状由曲率与挠率唯一确定.(√) F=,这里F是第一基本量.(√)15、坐标曲线网是正交网的充要条件是0

二、填空题 16、曲面上的一个坐标网,其中一族是测地线 17、螺旋线x=2cost,y=2sint,z=2t,在点(1,0,0)的法平面是___ y+z=0, . 18.设给出1 c 类曲线:)(t r r =,.b t a ≤≤则其弧长可表示为?'b a dt t r )( 19、已知33{cos ,sin ,cos 2}r x x x =,02x π << ,则α=1 {3cos ,3sin ,4}5 x x --, β= {sin ,cos ,0}x x ,γ=1{4cos ,4sin ,3}5x x --,κ= 625sin 2x ,τ=8 25sin 2x 。 20、曲面的在曲线,如果它上面每一点的切点方向都是渐近方向,则称为渐进曲线。 21、旋转面r ={()cos ,()sin ,()t t t ?θ?θψ},他的坐标网是否为正交的?____是_____(填“是”或“不是”). 22、过点平行于法方向的直线叫做曲面在该点的_____法线_____线. 23.任何两个向量q p ,的数量积=?q p )cos(~ pq q p 24、保持曲面上任意曲线的长度不便的变称为____等距(保长)变换__. 25、圆柱螺线的曲率和挠率都是_____常数____数(填“常数”或“非常数”). 26.若曲线(c)用自然参数表示)(t r r =,则曲线(c)在)(0s P 点的密切平面的方程是 0))(),(),((000=-s r s r s r R 27.曲线的基本三棱形由三个基本向量和密切平面、法平面、从切平面 28.杜邦指标线的方程为1222±=++Ny Mxy Lx 29、已知曲面{cos ,sin ,6}r u v u v v =,0u >,02 v π ≤<,则它的第一基本形式 为 222(36)du u dv ++ ,第二基本形式为 dv ,高斯曲率

第四版 微分几何 第二章课后习题答案

第二章 曲面论 §1曲面的概念 1.求正螺面r ={ u v cos ,u v sin , bv }的坐标曲线. 解 u-曲线为r ={u 0cos v ,u 0sin v ,bv 0 }={0,0,bv 0}+u {0cos v ,0sin v ,0},为曲线的直母线;v-曲线为r ={0u v cos ,0u v sin ,bv }为圆柱螺线. 2.证明双曲抛物面r ={a (u+v ), b (u-v ),2uv }的坐标曲线就是它的直母线。 证 u-曲线为r ={ a (u+0v ), b (u-0v ),2u 0v }={ a 0v , b 0v ,0}+ u{a,b,20v }表示过点{ a 0v , b 0v ,0}以{a,b,20v }为方向向量的直线; v-曲线为r ={a (0u +v ), b (0u -v ),20u v }={a 0u , b 0u ,0}+v{a,-b,20u }表示过点(a 0u , b 0u ,0)以{a,-b,20u }为方向向量的直线。 3.求球面r =}sin ,sin cos ,sin cos {?????a a a 上任意点的切平面和法线方程。

4.求椭圆柱面 222 2 1x y a b + =在任意点的切平面方程, 并证明沿每一条直母线,此曲面只有一个切平面 。 解 椭圆柱面 222 2 1x y a b + =的参数方程为x = cos ?, y = asin ?, z = t , }0,cos ,sin {??θb a r -= , }1,0,0{=t r 。所以切平面方程为: 01 0cos sin sin cos =----?? ??b a t z b y a x ,即x bcos ? + y asin ? - a b = 0 此方程与t 无关,对于?的每一确定的值,确定唯一一个切平面,而?的每一数值对应一条直母线,说明沿每一条直母线,此曲面只有一个切平面 。 5.证明曲面},,{3 uv a v u r = 的切平面和三个坐标平面所构成的四面体的体积是常 数。 证 },0,1{23 v u a r u -= ,},1,0{23 uv a r v -= 。切平面方程为:33=++z a uv v y u x 。 与三坐标轴的交点分别为(3u,0,0),(0,3v,0),(0,0, uv a 2 3)。于是,四面体的体积为: 3 3 2 9| |3| |3||36 1a uv a v u V = =是常数。

微分几何练习题库及参考答案(已修改)

《微分几何》复习题与参考答案 一、填空题 1.极限232 lim[(31)i j k]t t t →+-+=138i j k -+. 2.设f ()(sin )i j t t t =+,2g()(1)i j t t t e =++,求0 lim(()())t f t g t →?= 0 . 3.已知{}42 r()d =1,2,3t t -?, {}6 4 r()d =2,1,2t t -?,{}2,1,1a =,{}1,1,0b =-,则 4 6 2 2 ()()a r t dt+b a r t dt=???? ?{}3,9,5-. 4.已知()r t a '=(a 为常向量),则()r t =ta c +. 5.已知()r t ta '=,(a 为常向量),则()r t = 2 12 t a c +. 6. 最“贴近”空间曲线的直线和平面分别是该曲线的___ 切线___和 密切平面____. 7. 曲率恒等于零的曲线是_____ 直线____________ . 8. 挠率恒等于零的曲线是_____ 平面曲线________ . 9. 切线(副法线)和固定方向成固定角的曲线称为 一般螺线 . 10. 曲线()r r t =在t = 2处有3αβ=,则曲线在t = 2处的曲率k = 3 . 11. 若在点00(,)u v 处v 0u r r ?≠,则00(,)u v 为曲面的_ 正常______点. 12. 已知()(2)(ln )f t t j t k =++,()(sin )(cos )g t t i t j =-,0t >,则4 ()d f g dt dt ?=?4cos 62-. 13.曲线{}3()2,,t r t t t e =在任意点的切向量为{}22,3,t t e . 14.曲线{}()cosh ,sinh ,r t a t a t at =在0t =点的切向量为{}0,,a a . 15.曲线{}()cos ,sin ,r t a t a t bt =在0t =点的切向量为{}0,,a b . 16.设曲线2:,,t t C x e y e z t -===,当1t =时的切线方程为 2111 -=-- =-z e e y e e x . 17.设曲线t t t e z t e y t e x ===,sin ,cos ,当0t =时的切线方程为11-==-z y x . 18. 曲面的曲纹坐标网是曲率线网的充要条件是____F =M =0_ ______________. 19. u -曲线(v -曲线)的正交轨线的微分方程是 _____ E d u +F d v =0(F d u +G d v =0)__. 20. 在欧拉公式2212cos sin n k k k θθ=+中,θ是 方向(d) 与u -曲线 的夹角. 21. 曲面的三个基本形式,,I II III 、高斯曲率K 、平均曲率H 之间的关系是20H K III -II +I = . 22.已知{}r(,),,u v u v u v uv =+-,其中2,sin u t v t ==,则dr d t ={}2cos ,2cos ,2cos t t t t vt u t +-+. 23.已知{}r(,)cos cos , cos sin ,sin a a a ?θ?θ?θ?=,其中t =?,2t =θ,则

微分几何习题及答案解析

第一章 曲线论 §2 向量函数 5. 向量函数)(t r 具有固定方向的充要条件是)(t r × )('t r = 0 。 分析:一个向量函数)(t r 一般可以写成)(t r =)(t λ)(t e 的形式,其中)(t e 为单位向 量函数,)(t λ为数量函数,那么)(t r 具有固定方向的充要条件是)(t e 具有固定方向,即)(t e 为常向量,(因为)(t e 的长度固定)。 证 对于向量函数)(t r ,设)(t e 为其单位向量,则)(t r =)(t λ)(t e ,若)(t r 具有固 定方向,则)(t e 为常向量,那么)('t r =)('t λe ,所以 r ×'r =λ'λ(e ×e )=0 。 反之,若r ×'r =0 ,对)(t r =)(t λ)(t e 求微商得'r ='λe +λ'e ,于是r × 'r =2 λ(e ×'e )=0 ,则有 λ = 0 或e ×'e =0 。当)(t λ= 0时,)(t r =0 可与任意 方向平行;当λ≠0时,有e ×'e =0 ,而(e ×'e 2)=22'e e -(e ·'e 2)=2'e ,(因 为e 具有固定长, e ·'e = 0) ,所以 'e =0 ,即e 为常向量。所以,)(t r 具有固 定方向。 6.向量函数)(t r 平行于固定平面的充要条件是(r 'r ''r )=0 。 分析:向量函数)(t r 平行于固定平面的充要条件是存在一个定向向量)(t n ,使)(t r ·n = 0 ,所以我们要寻求这个向量n 及n 与'r ,''r 的关系。 证 若)(t r 平行于一固定平面π,设n 是平面π的一个单位法向量,则n 为常向 量,且)(t r ·n = 0 。两次求微商得'r ·n = 0 ,''r ·n = 0 ,即向量r ,'r ,' 'r 垂直于同一非零向量n ,因而共面,即(r 'r ''r )=0 。 反之, 若(r 'r ''r )=0,则有r ×'r =0 或r ×'r ≠0 。若r ×'r =0 ,由上题知 )(t r 具有固定方向,自然平行于一固定平面,若r ×' r ≠ ,则存在数量函数)(t λ、

微分几何第四版习题答案梅向明

§1曲面的概念 1.求正螺面r ={ u v cos ,u v sin , bv }的坐标曲线. 解 u-曲线为r ={u 0cos v ,u 0sin v ,bv 0 }={0,0,bv 0}+u {0cos v ,0sin v ,0},为曲线的直母线;v-曲线为r ={0u v cos ,0u v sin ,bv }为圆柱螺线. 2.证明双曲抛物面r ={a (u+v ), b (u-v ),2uv }的坐标曲线就是它的直母线。 证 u-曲线为r ={ a (u+0v ), b (u-0v ),2u 0v }={ a 0v , b 0v ,0}+ u{a,b,20v }表示过点{ a 0v , b 0v ,0}以{a,b,20v }为方向向量的直线; v-曲线为r ={a (0u +v ), b (0u -v ),20u v }={a 0u , b 0u ,0}+v{a,-b,20u }表示过点(a 0u , b 0u ,0)以{a,-b,20u }为方向向量的直线。 3.求球面r =}sin ,sin cos ,sin cos {?????a a a 上任意点的切平面和法线方程。 解 ?r =}cos ,sin sin ,cos sin {?????a a a -- ,?r =}0,cos cos ,sin cos {????a a - 任意点的切平面方程为00 cos cos sin cos cos sin sin cos sin sin sin cos cos cos =------? ?? ????? ??????a a a a a a z a y a x 即 xcos ?cos ? + ycos ?sin ? + zsin ? - a = 0 ; 法线方程为 ? ? ????????sin sin sin cos sin cos cos cos cos cos a z a y a x -=-=- 。 4.求椭圆柱面22 221x y a b +=在任意点的切平面方程,并证明沿每一条直母线,此曲面只 有一个切平面 。 解 椭圆柱面22 221x y a b +=的参数方程为x = cos ?, y = asin ?, z = t , }0,cos ,sin {??θb a r -= , }1,0,0{=t r 。所以切平面方程为: 01 0cos sin sin cos =----????b a t z b y a x ,即x bcos ? + y asin ? - a b = 0 此方程与t 无关,对于?的每一确定的值,确定唯一一个切平面,而?的每一数值对应一条

微分几何试题库

微分几何 一、判断题 1、两个向量函数之和的极限等于极限的和(√) 2、二阶微分方程22A(,)2B(,)B(,)0u v du u v dudv u v dv ++=总表示曲面上两族曲线.(?) 3、若4 ()s t 的微商与()s t 平行(5、等距变换一定是保角变换678910、曲线上的正常点的切向量是存在的(1112131415二、16、曲面上的一个坐标网,其中一族是测地线 17、螺旋线x=2cost,y=2sint,z=2t,在点(1,0,0)的法平面是___y+z=0,. 18.设给出1c 类曲线:)(t r r =,.b t a ≤≤则其弧长可表示为?'b a dt t r )( 19、已知33{cos ,sin ,cos 2}r x x x =,02x π << ,则α=1 {3cos ,3sin ,4}5 x x --,β={sin ,cos ,0}x x ,

γ=1{4cos ,4sin ,3}5x x --,κ= 625sin 2x ,τ=8 25sin 2x 。 20、曲面的在曲线,如果它上面每一点的切点方向都是渐近方向,则称为渐进曲线。 21、旋转面r ={()cos ,()sin ,()t t t ?θ?θψ},他的坐标网是否为正交的?____是_____(填“是”或“不是”). 22、过点平行于法方向的直线叫做曲面在该点的_____法线_____线. 23.242526.27.28.29第二基本形式为 21236 u -+:du 30同或对称。3132.一个曲面为可展曲面的充分必要条件为此曲面为单参数平面族的包络 三、综合题 33.求曲线t te z t t y t t x ===,cos ,sin 在原点的密切平面,法平面,切线方程。 解:},,cos ,sin {t te t t t t r = 在原点处0=t 在原点处切平面的方程为:

微分几何 陈维桓 习题答案

习题答案2 p. 58 习题3.1 2. 在球面2222{(,,)|1}S x y z x y z =++=上,命(0,0,1)N =,(0,0,1)S =-. 对于赤道平面上的任意一点(,,0)p u v =,可以作为一的一条直线经过,N p 两点,它与球面有唯一的交点,记为p '. (1) 证明:点p '的坐标是 2 221u x u v =++,2221 v y u v =++,222211u v z u v +-=++, 并且它给出了球面上去掉北极N 的剩余部分的正则参数表示; (2) 求球面上去掉南极S 的剩余部分的类似的正则参数表示; (3) 求上面两种正则参数表示在公共部分的参数变换; (4) 证明球面是可定向曲面. 证明. (1) 设(,)r u v Op '=v . 如图,,,N p p '三点共线,故有t ∈R 使得 (1)Op tOp t ON '=+-u u u v u u v u u u v . (1) 由于21Op ON =='u u u v u u u v ,222 u v Op =+u u v ,0Op ON '?=u u u v u u u v ,0t ≠,取上式两边的模长平方, 得222/(1)t u v =++. 从而 22222221 (,,)(,,0)(0,0,1)11u v x y z Op u v u v u v +-'==+++++u u u v 22222222 221,,111u v u v u v u v u v ??+-= ?++++++?? ,2 (,)u v ∈R . (2) 由(1)可知 (,,1)(0,0,1)(,,1)r Op tNp ON t u v tu tv t '==+=-+=-u u u v u u u v u u u v v , 又2()dt t udu vdv =-+,所以 2(,,1)(1,0,0)u r t u u v t =--+v ,2(,,1)(0,1,0)v r t v u v t =--+v ,

微分几何期终试题

《微分几何》 期终考试题(A) 班级:____ 学号:______ 姓名:_______ 成绩:_____ 一、 填空题(每空1分, 共20分) 1. 半径为R 的球面的高斯曲率为 ;平面的平均曲率为 . 2. 若的曲率为,挠率为)(t r )(t k )(t τ,则关于原点的对称曲线的曲率为 )(t r ;挠率为 . 3. 法曲率的最大值和最小值正好是曲面的 曲率, 使法曲率达到最大值和最小值的方向是曲面的 方向. 4. 距离单位球面球心距离为)10(<

二、 单项选择题(每题2分,共20分) 1. 等距等价的两曲面上,对应曲线在对应点具有相同的 【 】 A. 曲率 B. 挠率 C. 法曲率 D. 测地曲率 2. 下面各对曲面中,能建立局部等距对应的是 【 】 A. 球面与柱面 B. 柱面与平面 C. 平面与伪球面 D. 伪球面与可展曲面 3. 过空间曲线C 上点P (非逗留点)的切线和P 点的邻近点Q 的平面π,当Q 沿曲线趋于点C P 时,平面π的极限位置称为曲线C 在P 点的 【 】 A. 法平面 B. 密切平面 C. 从切平面 D. 不存在 4. 曲率和挠率均为非零常数的曲线是 【 】 A. 直线 B. 圆 C. 圆柱螺线 D. 平面曲线 5. 下列关于测地线,不正确的说法是 【 】 A. 测地线一定是连接其上两点的最短曲线 B. 测地线具有等距不变性 C. 通过曲面上一点,且具有相同切线的一切曲线中,测地线的曲率最小 D. 平面上测地线必是直线 6. 设曲面的第一、第二基本型分别是,则曲面的两个主曲率分别是 【 】 2222,Ndv Ldu II Gdv Edu I +=+= A.G N k E L k ==21, B. N G k L E k ==21, C. v E G k k ???==ln 21 21 D. u G E k k ??==ln 2121 7. 曲面上曲线的曲率,测地曲率,法曲率之间的关系是 【 】 k g k n k

微分几何彭家贵课后题答案

习题一(P13) 2.设()a t 是向量值函数,证明: (1)a =常数当且仅当(),()0a t a t '=; (2)()a t 的方向不变当且仅当()()0a t a t '∧=。 (1)证明:a =常数?2 a =常数?(),()a t a t <>=常数 ?(),()(),()0a t a t a t a t ''<>+<>= ?2(),()0a t a t '<>=?(),()0a t a t '<>=。 (2)注意到:()0a t ≠,所以 ()a t 的方向不变?单位向量() ()() a t e t a t = =常向量。 若单位向量() ()() a t e t a t = =常向量,则()0()()0e t e t e t ''=?∧=。 反之,设()e t 为单位向量,若()()0e t e t '∧=,则()//()e t e t '。 由()e t 为单位向量?(),()1(),()0e t e t e t e t '<>=?<>=?()()e t e t '⊥。 从而,由()//()()0()()()e t e t e t e t e t e t '? '?=?=?'⊥? 常向量。 所以,()a t 的方向不变?单位向量() ()() a t e t a t = =常向量 ?()()1 ()()0()()0()()()a t a t d e t e t a t a t a t dt a t ??''∧=?∧+= ? ??? ( )()2111()()()()()0()() () d a t a t a t a t dt a t a t a t '? ∧+∧= ()()0a t a t '?∧=。即 ()a t 的方向不变当且仅当()()0a t a t '∧=。 补充:

最新微分几何答案

微分几何答案

第二章曲面论 §1曲面的概念 1.求正螺面={ u ,u , bv }的坐标曲线. 解 u-曲线为={u ,u ,bv }={0,0,bv}+u {,,0},为曲线的直母线;v-曲线为={,,bv }为圆柱螺线. 2.证明双曲抛物面={a(u+v), b(u-v),2uv}的坐标曲线就是它的直母线。 证 u-曲线为={ a(u+), b(u-),2u}={ a, b,0}+ u{a,b,2}表示过点{ a, b,0}以{a,b,2}为方向向量的直线; v-曲线为={a(+v), b(-v),2v}={a, b,0}+v{a,-b,2}表示过点(a, b,0)以{a,-b,2}为方向向量的直线。 3.求球面=上任意点的切平面和法线方程。 解 = ,= 任意点的切平面方程为 即 xcoscos + ycossin + zsin - a = 0 ; 法线方程为。 4.求椭圆柱面在任意点的切平面方程,并证明沿每一条直母线,此曲面只有一个切平面。 解椭圆柱面的参数方程为x = cos, y = asin, z = t , , 。所以切平面方程为: ,即x bcos + y asin - a b = 0 此方程与t无关,对于的每一确定的值,确定唯一一个切平面,而的每一数值对应一条直母线,说明沿每一条直母线,此曲面只有一个切平面。 5.证明曲面的切平面和三个坐标平面所构成的四面体的体积是常数。 证,。切平面方程为:。 与三坐标轴的交点分别为(3u,0,0),(0,3v,0),(0,0,)。于是,四面体的体积为: 是常数。 §2曲面的第一基本形式 1.求双曲抛物面={a(u+v), b(u-v),2uv}的第一基本形式. 解 , ∴ I = 2。 2.求正螺面={ u ,u , bv }的第一基本形式,并证明坐标曲线互相垂直。 解,,,,∴I =,∵F=0,∴坐标曲线互相垂直。 3.在第一基本形式为I =的曲面上,求方程为u = v的曲线的弧长。

微分几何第四版习题答案梅向明

微分几何第四版习题答 案梅向明 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

§1曲面的概念 1.求正螺面r ={ u v cos ,u v sin , bv }的坐标曲线. 解 u-曲线为r ={u 0cos v ,u 0sin v ,bv 0 }={0,0,bv 0}+u {0cos v ,0sin v ,0},为曲线的直母线;v-曲线为r ={0u v cos ,0u v sin ,bv }为圆柱螺线. 2.证明双曲抛物面r ={a (u+v ), b (u-v ),2uv }的坐标曲线就是它的直母线。 证 u-曲线为r ={ a (u+0v ), b (u-0v ),2u 0v }={ a 0v , b 0v ,0}+ u{a,b,20v }表示过点{ a 0v , b 0v ,0}以{a,b,20v }为方向向量的直线; v-曲线为r ={a (0u +v ), b (0u -v ),20u v }={a 0u , b 0u ,0}+v{a,-b,20u }表示过点(a 0u , b 0u ,0)以{a,-b,20u }为方向向量的直线。 3.求球面r =}sin ,sin cos ,sin cos {?????a a a 上任意点的切平面和法线方程。 解 ?r =}cos ,sin sin ,cos sin {?????a a a -- ,?r =}0,cos cos ,sin cos {????a a - 任意点的切平面方程为00 cos cos sin cos cos sin sin cos sin sin sin cos cos cos =------? ?? ????? ??????a a a a a a z a y a x 即 xcos ?cos ? + ycos ?sin ? + zsin ? - a = 0 ; 法线方程为 ? ? ????????sin sin sin cos sin cos cos cos cos cos a z a y a x -=-=- 。 4.求椭圆柱面22 221x y a b +=在任意点的切平面方程,并证明沿每一条直母线,此曲面只有一个 切平面 。 解 椭圆柱面22 221x y a b +=的参数方程为x = cos ?, y = asin ?, z = t , }0,cos ,sin {??θb a r -= , }1,0,0{=t r 。所以切平面方程为: 01 0cos sin sin cos =----????b a t z b y a x ,即x bcos ? + y asin ? - a b = 0

微分几何第四版习题答案梅向明

微分几何第四版习题 答案梅向明 Revised on November 25, 2020

§1曲面的概念 1.求正螺面r ={ u v cos ,u v sin , bv }的坐标曲线. 解 u-曲线为r ={u 0cos v ,u 0sin v ,bv }={0,0,bv }+u {0cos v ,0sin v ,0},为曲线的直母线;v-曲线为r ={0u v cos ,0u v sin ,bv }为圆柱螺线. 2.证明双曲抛物面r ={a (u+v ), b (u-v ),2uv }的坐标曲线就是它的直母线。 证 u-曲线为r ={ a (u+0v ), b (u-0v ),2u 0v }={ a 0v , b 0v ,0}+ u{a,b,20v }表示过点{ a 0v , b 0v ,0}以{a,b,20v }为方向向量的直线; v-曲线为r ={a (0u +v ), b (0u -v ),20u v }={a 0u , b 0u ,0}+v{a,-b,20u }表示过点(a 0u , b 0u ,0)以{a,-b,20u }为方向向量的直线。 3.求球面r =}sin ,sin cos ,sin cos {?????a a a 上任意点的切平面和法线方程。 解 ? r =}cos ,sin sin ,cos sin {?????a a a -- , ?r =}0,cos cos ,sin cos {????a a - 任意点的切平面方程为00 cos cos sin cos cos sin sin cos sin sin sin cos cos cos =------? ?? ????? ??????a a a a a a z a y a x 即 xcos ?cos ? + ycos ?sin ? + zsin ? - a = 0 ; 法线方程为 ? ? ????????sin sin sin cos sin cos cos cos cos cos a z a y a x -=-=- 。 4.求椭圆柱面22 221x y a b +=在任意点的切平面方程,并证明沿每一条直母线,

(整理)《微分几何》陈维桓第六章习题及答案.

§ 6.1 测地曲率 1. 证明:旋转面上纬线的测地曲率是常数。 证明: 设旋转面方程为{()cos ,()sin ,()} r f v u f v u g v =, 22222 ()()(()())()f v du f v g v dv ''I =++, 222(),()() E f v G f v g v ''==+ 纬线即u —曲线:0 v v =(常数), 其测地曲率为2 u g k == =为常数。 2、 证明:在球面S (cos cos ,cos sin ,sin )r a u v a u v a u =, ,0222 u v ππ π- <<<< 上,曲线 C 的测地曲率可表示成 ()()sin(())g d s dv s k u s ds ds θ=- , 其中((),())u s v s 是球面S 上曲线C 的参数方程, s 是曲线C 的弧长参数, ()s θ是曲线C 与球面上经线(即u -曲

线)之间的夹角。 证明 易求出2 E a =, 0 F =,2 2 cos G a u =, 因此 g d k ds θθθ= 221ln(cos )sin 2d a u ds a u θθ?=+? sin sin cos d u ds a u θθ= -, 而1sin cos dv ds a u θθ ==, 故 sin g d dv k u ds ds θ= -。 3、证明:在曲面S 的一般参数系(,)u v 下,曲线:(),()C u u s v v s ==的测地曲率是 ()()()()()())g k Bu s Av s u s v s v s u s ''''''''=-+-, 其中s 是曲线C 的弧长参数,2 g EG F =-, 并且 12 112 11 12 22 (())2()()(())A u s u s v s v s ''''=Γ+Γ+Γ, 2222 2111222(())2()()(())B u s u s v s v s ''''=Γ+Γ+Γ 特别是,参数曲线的测地曲率分别为 2 3 11(())u g k u s ',1322(()) v g k v s '= 。 证明 设曲面S 参数方程为12(,)r r u u =,1122:(),()C u u s u u s ==

微分几何练习题库及参考答案(已修改)

> 《微分几何》复习题与参考答案 一、填空题 1.极限232 lim[(31)i j k]t t t →+-+=138i j k -+. 2.设f ()(sin )i j t t t =+,2g()(1)i j t t t e =++,求0 lim(()())t f t g t →?= 0 . 3.已知{}42 r()d =1,2,3t t -?, {}6 4 r()d =2,1,2t t -?,{}2,1,1a =,{}1,1,0b =-,则 4 6 2 2 ()()a r t dt+b a r t dt=???? ?{}3,9,5-. 4.已知()r t a '=(a 为常向量),则()r t =ta c +. 5.已知()r t ta '=,(a 为常向量),则()r t = 212 t a c +. 6. 最“贴近”空间曲线的直线和平面分别是该曲线的___ 切线___和 密切平面____. 【 7. 曲率恒等于零的曲线是_____ 直线____________ . 8. 挠率恒等于零的曲线是_____ 平面曲线________ . 9. 切线(副法线)和固定方向成固定角的曲线称为 一般螺线 . 10. 曲线()r r t =在t = 2处有3αβ=,则曲线在t = 2处的曲率k = 3 . 11. 若在点00(,)u v 处v 0u r r ?≠,则00(,)u v 为曲面的_ 正常______点. 12. 已知()(2)(ln )f t t j t k =++,()(sin )(cos )g t t i t j =-,0t >,则4 ()d f g dt dt ?=?4cos 62-. 13.曲线{}3()2,,t r t t t e =在任意点的切向量为{}22,3,t t e . 14.曲线{}()cosh ,sinh ,r t a t a t at =在0t =点的切向量为{}0,,a a . \ 15.曲线{}()cos ,sin ,r t a t a t bt =在0t =点的切向量为{}0,,a b . 16.设曲线2:,,t t C x e y e z t -===,当1t =时的切线方程为 2111 -=-- =-z e e y e e x . 17.设曲线t t t e z t e y t e x ===,sin ,cos ,当0t =时的切线方程为11-==-z y x . 18. 曲面的曲纹坐标网是曲率线网的充要条件是____F =M =0_ ______________. 19. u -曲线(v -曲线)的正交轨线的微分方程是 _____ E d u +F d v =0(F d u +G d v =0)__. 20. 在欧拉公式2212cos sin n k k k θθ=+中,θ是 方向(d) 与u -曲线 的夹角. 21. 曲面的三个基本形式,,I II III 、高斯曲率K 、平均曲率H 之间的关系是20H K III -II +I = . 22.已知{}r(,),,u v u v u v uv =+-,其中2,sin u t v t ==,则 dr d t ={}2cos ,2cos ,2cos t t t t vt u t +-+.

微分几何陈维桓习题答案3

习题答案3 p. 148 习题4.1 1. 求下列曲面的第二基本形式: (1)√旋转椭球面:()cos cos ,cos sin ,sin r a a b ?θ?θ?=; (2) 旋转椭圆抛物面:()2212 ,,()r u v u v =+; (3) 双曲抛物面:()(),(),2r a u v a u v uv =+-; (4)√一般柱面:()(),(),r f u g u v =;(5)√劈锥曲面:()cos ,sin ,()r u v u v f v =. 解. (1) ()cos sin ,cos ,0r a θ?θθ=-,()sin cos ,sin sin ,cos r a a b ??θ?θ?=--, ()cos cos cos ,cos sin ,sin r r a b b a θ???θ?θ??=,22(,)ππ??∈- )21cos cos ,cos sin ,sin sin n b b a a ?θ?θ?= . 又 ()cos cos ,sin ,0r a θθ?θθ=-,()sin sin ,cos ,0r a θ??θθ=-, ()cos cos ,cos sin ,sin r a a b ???θ?θ?=-. 所以 222cos ab L b ?-=+,0M = ,N =, )222II cos d d ?θ?=+. (2) ()1,0,u r u =,()0,1,v r v =,(),,1u v r r u v ?=--,)2,,11n u v u =--+. ()0,0,1uu r =,0uv r =,()0,0,1vv r =,)22II 1du dv u v =++. (3) (),,2u r a a v =,(),,2v r a a u =-,()2,,u v r r a u v v u a ?=+--. 不妨设0a >. 则 )2,,22n u v v u a a v =+--++,0uu vv r r ==,()0,0,2uv r =, 4II adudv -=. (4) (),,0u r f g ''=,()0,0,1v r =,(),,0u v r r g f ''?=- ,)21,,0n g f f ''= -'+, (),,0uu r f g ''''=,0uv vv r r ==,2II =. (5) ()cos ,sin ,0u r v v =,()sin ,cos ,v r u v u v f '=-,()sin ,cos ,u v r r f v f v u ''?=-,

微分几何练习题库与答案

《微积分几何》复习题 本科 第一部分:练习题库及答案 一、填空题(每题后面附有关键词;难易度;答题时长) 第一章 1.已知(1,1,1),(1,0,1)=-=-a b ,则这两个向量的夹角的余弦θcos = 3 6 2.已知(0,1,1),(1,0,1)=-=-a b ,求这两个向量的向量积?=a b (-1,-1,-1). 3.过点)1,1,1(P 且与向量(1,0,1)=-a 垂直的平面方程为X-Z=0 4.求两平面0:1=++z y x π与12:2=+-z y x π的交线的对称式方程为2 1 131--= -=+z y x 5.计算2 3 2 lim[(31)]t t t →+-+=i j k 138-+i j k . 6.设()(sin )t t t =+f i j ,2()(1)t t t e =++g i j ,求0 lim(()())t t t →?=f g 0 . 7.已知(,)(,,)u v u v u v uv =+-r ,其中2 t u =,t v sin =,则d d t =r (2cos ,2cos ,2cos )t t t t vt u t +-+ 8.已知t =?,2 t =θ,则 d (,) d t ?θ=r (sin cos 2cos sin ,sin sin 2cos cos ,cos )a at a at a ?θ?θ?θ?θ?---+ 9.已知4 2 ()d (1,2,3)t t =-?r ,6 4 ()d (2,1,2)t t =-? r ,求 4 6 2 2 ()d ()d t t t t ?+??=??a r b a r )5,9,3(-,其中(2,1,1)=a ,(1,1,0)=-b 10.已知()t '=r a (a 为常向量),求()t =r t +a c 11.已知()t t '=r a ,(a 为常向量),求()t =r 2 12 t +a c 12.已知()(2)(log )t t t =++f j k ,()(sin )(cos )t t t =-g i j ,0t >,则4 d ()d d t t ?=?f g 4cos 62-. 第二章 13.曲线3 ()(2,,)t t t t e =r 在任意点的切向量为2 (2,3,)t t e 14.曲线()(cosh ,sinh ,)t a t a t at =r 在0t =点的切向量为(0,,)a a 15.曲线()(cos ,sin ,)t a t a t bt =r 在0t =点的切向量为(0,,)a b

相关主题
文本预览
相关文档 最新文档