当前位置:文档之家› 2016年最新等腰三角形和等边三角形知识点和典型例题

2016年最新等腰三角形和等边三角形知识点和典型例题

2016年最新等腰三角形和等边三角形知识点和典型例题
2016年最新等腰三角形和等边三角形知识点和典型例题

新知:等腰三角形

1.等腰三角形的定义:

2.等腰三角形的性质:等边对等角;等腰三角形的三线合一

3.等腰三角形的两底角的平分线相等。(两条腰上的中线相等,两条腰上的高相等)

4.等腰三角形的一腰上的高与底边的夹角等于顶角的一半

5.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)

6.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴

7.等腰三角形的判定:

1.在同一三角形中,有两条边相等的三角形是等腰三角形(定义)

2.在同一三角形中,等角对等边

8.等边三角形定义:三条边都相等的三角形叫做等边三角形

9.等边三角形的性质:

⑴等边三角形是锐角三角形,等边三角形的内角都相等,且均为60°。

⑵等边三角形每条边上的中线、高线和所对角的平分线互相重合(三线合一)

⑶等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线或对角的平分线所在的直线。

⑸等边三角形重心、内心、外心、垂心重合于一点,称为等边三角形的中心。(四心合一)

⑹等边三角形内任意一点到三边的距离之和为定值(等于其高)

10.等边三角形的判定:

⑴三边相等的三角形是等边三角形(定义)

⑵三个内角都相等(为60度)的三角形是等边三角形

⑶有一个角是60度的等腰三角形是等边三角形

(4)两个内角为60度的三角形是等边三角形

(5)说明:可首先考虑判断三角形是等腰三角形。

(6)等边三角形的性质与判定理解:

11、三角形中的中位线

三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。

三角形中位线定理的作用:

等腰三角形的性质应用及判定

例1如图,△ABC中,D、E分别是位置关系:可以证明两条直线平行。

数量关系:可以证明线段的倍分关系。

常用结论:任一个三角形都有三条中位线,由此有:

结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。

结论2:三条中位线将原三角形分割成四个全等的三角形。

例一:AC、AB上的点,BD与CE交于点O.出下列三个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;

③BE=CD.

1.上述三个条件中,哪两个条件可判定△ABC是等腰三角形(用序号写出所有情形)

2.选择第(1)小题中的一种情形,证明△ABC是等腰三角形

例2如图,△ABC为等边三角形,延长BC到D,又延长BA到E,使AE=BD,连接CE,DE,求证:△CDE为等腰三角形

例3如图将一个等腰直角三角形按图示方式依次翻折,若DE=a,则下列说法正确的个数有()

①DC'平分∠BDE ②BC长为(2

2 )a

③△BC'D是等腰三角形④△CED的周长等于BC的长

A.1个

B.2个

C.3个

D.4个

A

E

B C

O D E

A

B C D

例4如图,△ABC 是边长为1的正三角形,△BDC 是顶角为120°的等腰三角形,以D 为顶点作一个60°的∠MDN ,点M,N 分别在AB,AC 上,则△AMN 的周长是

追加练习:

1.如图所示.△ABC 是边长为1的正三角形,△BDC 是顶角∠BDC=120°的等腰三角形,以D 为顶点作一个60°角,角的两边分别交AB ,AC 于M ,N ,连接MN ,求△AMN 的周长.

2.如图①,△ABC 是正三角形,△BDC 是顶角∠BDC=120°的等腰三角形,以D 为顶点作一个60°角,角的两边分别交AB 、AC 边于M 、N 两点,连接MN 。 探究:线段BM 、MN 、NC 之间的关系,并加以证明。

例5已知一个等腰三角形两内角的度数比为1:4,则这个等腰三角形顶角的度数为( ) A.20° B.120° C.20°或120° D.36°

A

M N

D

B

C

例6等腰三角形两边长分别为4和9,则第三边长为

等边三角形的性质应用及判定

例7如图,在等边△ABC 中,点D,E 分别在边BC,AB 上,BD=AE,AD 与CE 交于点F.(1)求证:AD=CE;(2)求∠DFC 的度数。

例8如图,分别以Rt △ABC 的直角边AC,BC 为边,在Rt △ABC 外作两个等边三角形△ACE 和△BCF ,连接BE,AF 。求证:BE=AF

例9如图,△DAC 和△EBC 均是等边三角形,AE 、BD 分别与CD 、CE 交于点M 、N,有如下结论:①△ACD ≌△DCB; ②CM=CN; ③AC=DN.其中正确结论的个数是 A.3个 B.2个 C.1个 D.0个

例10如图,点C 在线段AB 上,在AB 的同侧作等边三角形ACM 和BCN ,连三角形ACM 和BCN ,连接AN ,BN ,若∠MBN=38°,则∠ANB 的大小等于。

B

C

D

A

B

E

例11已知,如图,延长△ABC 的各边,使得BF=AC,AE=CD=AB,顺次连接D,E,F ,得到△DEF 为等边三角形,求证:(1)△AEF ≌△CDE;(2)△ABC 为等边三角形

等腰直角三角形的性质应用及判定

例12如图,在Rt △ABC 中,∠B=90°,∠ACB=60°,D 是BC 延长线上一点,且AC=CD,则BC:CD=

例13已知,如图,AB 是等腰直角三角形ABC 的斜边,AD 是 ∠A 平分线,求证:AC+CD=AB

例14两个全等的含30°,60°的三角板ADE 和三角板ABC ,如图所示放置,E,A,C 三点一条直线上,连接BD,取BD 的中点M,连接ME,MC,试判断△EMC 的形状,并说明理由

1.已知AB =AC ,D 是AB 上一点,DE ⊥BC 于E ,ED 的延长线交CA 的延长线于F ,试说明△ADF 是等腰三角形的理由.

F E

D

2、如图,在△ABC 中,∠ABC 和∠ACB 的角平分线相交于点O ,过点O 作EF ∥BC ,交AB 于E ,交AC 于F ,若AB=18,AC=16,求△AEF 的周长?

3、已知BO 、CO 分别是∠ABC 和∠ACB 的平分线,OE ∥AB ,OF ∥AC ,如果已知BC 的长为a ,你能知道△OEF 的周长吗?.

4、如图,在ΔABC 中,AB=AC ,点D 在BC 上,DE ∥AC 交AB 于E ,DF ∥AB 交AC 于F. 求证:DE+DF=AB

5、已知:如图,△BDE 是等边三角形,A 在BE 延长线上,C 在BD 的延长线上,且AD=AC 。求证:DE+DC=AE 。

B C F E

O

6、等边三角形△ABC中,AD=CE,求∠BPC的度数。

7. 若等腰三角形一腰上的高和另一腰的夹角为25°,则该三角形的一个底角为

8.在Rt△ABC中,∠C=90°,∠A=30°,BC+AB=6cm,则AB=cm

5.已知:等边△ABC中,如图,E为AB上任意一点,以CE为斜边作等边△CDE,连结AD,则有AD∥BC,上述结论还成立吗?答

相似三角形经典大题(含答案)

相似三角形经典大题解析 1.如图,已知一个三角形纸片ABC ,B C 边的长为8,B C 边上的高为6,B ∠和C ∠都为锐角,M 为A B 一动点(点M 与点A B 、不重合),过点M 作M N B C ∥,交A C 于点N ,在A M N △中,设M N 的长为x ,M N 上的高为h . (1)请你用含x 的代数式表示h . (2)将AMN △沿M N 折叠,使A M N △落在四边形B C N M 所在平面,设点A 落在平面的点为1A ,1A M N △与四边形B C N M 重叠部分的面积为y ,当x 为何值时,y 最大,最大值为多少? 【答案】解:(1)M N B C ∥ A M N A B C ∴△∽△ 68 h x ∴= 34 x h ∴= (2)1AM N A M N △≌△ 1A M N ∴△的边M N 上的高为h , ①当点1A 落在四边形B C N M 内或B C 边上时, 1A M N y S =△= 2 11332 2 4 8 M N h x x x = = ·· (04x <≤) ②当1A 落在四边形B C N M 外时,如下图(48)x <<, 设1A EF △的边E F 上的高为1h , 则132662h h x =-= - 11EF M N A EF A M N ∴ ∥△∽△ 11A M N ABC A EF ABC ∴ △∽△△∽△

12 16A EF S h S ??= ??? △△ABC 168242 A B C S = ??= △ 2 2 3632241224 62EF x S x x ?? - ?∴==?=-+ ? ??? 1△A 112 223 3912241224828A M N A EF y S S x x x x x ??=-= --+=-+- ??? △△ 所以 2 91224 (48)8 y x x x =- +-<< 综上所述:当04x <≤时,2 38 y x =,取4x =,6y =最大 当48x <<时,2 912248 y x x =-+-, 取163 x = ,8y =最大 86> ∴当163 x = 时,y 最大,8y =最大 M N C B E F A A 1

相似三角形知识点及典型例题

相似三角形知识点及典型例题 知识点归纳: 1、三角形相似的判定方法 (1)定义法:对应角相等,对应边成比例的两个三角形相似。 (2)平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角 形与原三角形相似。 (3)判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两 个三角形相似。简述为:两角对应相等,两三角形相似。 (4)判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。简述为:两边对应成比例且夹角相等,两三角形相似。 (5)判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。简述为:三边对应成比例,两三角形相似。 (6)判定直角三角形相似的方法: ①以上各种判定均适用。 ②如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例, 那么这两个直角三角形相似。 ③直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。 #直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。 每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。 如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高, 则有射影定理如下: (1)(AD)2=BD·DC,(2)(AB)2=BD·BC , (3)(AC)2=CD·BC 。 注:由上述射影定理还可以证明勾股定理。即(AB)2+(AC)2=(BC)2。

典型例题: 例1 如图,已知等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ‖AB ,BG 分别交AD ,AC 于E 、 F ,求证:BE2=EF·EG 证明:如图,连结EC ,∵AB =AC ,AD ⊥BC , ∴∠ABC =∠ACB ,AD 垂直平分BC ∴BE =EC ,∠1=∠2,∴∠ABC-∠1=∠ACB-∠2, 即∠3=∠4,又CG ∥AB ,∴∠G =∠3,∴∠4=∠G 又∵∠CEG =∠CEF ,∴△CEF ∽△GEC ,∴EG CE =CE EF ∴EC 2 =EG· EF,故EB 2 =EF·EG 【解题技巧点拨】 本题必须综合运用等腰三角形的三线合一的性质,线段的垂直平分线的性质和相似三角形的基本图形来得到证明.而其中利用线段的垂直平分线的性质得到BE=EC ,把原来处在同一条直线上的三条线段BE ,EF ,EC 转换到相似三角形的基本图形中是证明本题的关键。 例2 已知:如图,AD 是Rt △ABC 斜BC 上的高,E 是AC 的中点,ED 与AB 的延长线相交于F ,求证:BA FB =AC FD 证法一:如图,在Rt △ABC 中,∵∠BAC =Rt ∠,AD ⊥BC , ∴∠3=∠C ,又E 是Rt △ADC 的斜边AC 上的中点, ∴ED=21 AC =EC ,∴∠2=∠C ,又∠1=∠2,∴∠1=∠3, ∴∠DFB =∠AFD ,∴△DFB ∽△AFD ,∴FD FB =AD BD (1) 又AD 是Rt △ABC 的斜边BC 上的高,∴Rt △ABD ∽Rt △CAD ,∴AD BD =AC BA (2) 由(1)(2)两式得FD FB =AC BA ,故BA FB =AC FD 证法二:过点A 作AG ∥EF 交CB 延长线于点G ,则BA FB =AG FD (1) ∵E 是AC 的中点,ED ∥AC ,∴D 是GC 的中点,又AD ⊥GC ,∴AD 是线段GC 的垂直平分线,∴AG =AC (2) 由(1)(2)两式得:BA FB =AC FD ,证毕。 【解题技巧点拨】 本题证法中,通过连续两次证明三角形相似,得到相应的比例式,然后通过中间比“AD BD ”过渡,使问题得证,证法 二中是运用平行线分线段成比例定理的推论,三角形的中位线的判定,线段的垂直平分线的判定与性质使问题得证.

初三数学相似三角形典型例题(含问题详解)

初三数学相似三角形 (一)相似三角形是初中几何的一个重点,同时也是一个难点,本节复习的目标是: 1. 理解线段的比、成比例线段的概念,会根据比例线段的有关概念和性质求线段的长或两线段的比,了解黄金分割。 2. 会用平行线分线段成比例定理进行有关的计算、证明,会分线段成已知比。 3. 能熟练应用相似三角形的判定和性质解答有关的计算与证明题。 4. 能熟练运用相似三角形的有关概念解决实际问题 本节的重点内容是相似三角形的判定定理和性质定理以及平行线分线段成比例定理。 本节的难点内容是利用判定定理证明两个三角形相似以及相似三角形性质的应用。 相似三角形是平面几何的主要内容之一,在中考试题中时常与四边形、圆的知识相结合构成高分值的综合题,题型常以填空、选择、简答或综合出现,分值一般在10%左右,有时也单独成题,形成创新与探索型试题;有利于培养学生的综合素质。 (二)重要知识点介绍: 1. 比例线段的有关概念: 在比例式 ::中,、叫外项,、叫内项,、叫前项,a b c d a b c d a d b c a c ==() b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。 把线段AB 分成两条线段AC 和BC ,使AC 2 =AB ·BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。 2. 比例性质: ①基本性质: a b c d ad bc =?= ②合比性质: ±±a b c d a b b c d d =?= ③等比性质: ……≠……a b c d m n b d n a c m b d n a b ===+++?++++++=()0 3. 平行线分线段成比例定理: ①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥l 2∥l 3。 则 ,,,…AB BC DE EF AB AC DE DF BC AC EF DF ===

等腰三角形典型例题练习(含答案)

等腰三角形典型例题练习 一.选择题(共2小题) 1.如图,∠C=90°,AD 平分∠BAC 交BC 于D ,若BC=5cm ,BD=3cm , 则点D 到AB 的距离为( ) 2.如图,已知C 是线段AB 上的任意一点(端点除外),分别以AC 、BC 为边并且在AB 的同一侧作等边△ACD 和等边△BCE ,连接AE 交CD 于M ,连接BD 交CE 于N .给出以下三个结论: ①AE=BD ②CN=CM ③MN ∥AB 其中正确结论的个数是( ) 二.填空题(共1小题) 3.如图,在正三角形ABC 中,D ,E ,F 分别是BC ,AC ,AB 上的点,DE ⊥AC ,EF ⊥AB ,FD ⊥BC ,则△DEF 的面积与△ABC 的面积之比等于_________ . 三.解答题(共15小题) 4.在△ABC 中,AD 是∠BAC 的平分线,E 、F 分别为AB 、AC 上的点,且 ∠EDF+∠EAF=180°,求证DE=DF . 5.在△ABC 中,∠ABC 、∠ACB 的平分线相交于点O ,过点O 作DE ∥BC ,分别交AB 、AC 于点D 、E .请说明DE=BD+EC . 6.已知:如图,D 是△ABC 的BC 边上的中点,DE ⊥AB ,DF ⊥ AC , 垂足分别为 E ,F ,且DE=DF .请判断△ABC 是什么三角形?并说明理由. 7.如图,△ABC 是等边三角形,BD 是AC 边上的高,延长BC 至E ,使CE=CD .连接DE . (1)∠E 等于多少度? (2)△DBE 是什么三角形?为什么? 8.如图,在△ABC 中,∠ACB=90°,CD 是AB 边上的高,∠A=30°.求证:AB=4BD . 9.如图,△ABC 中,AB=AC ,点D 、E 分别在AB 、AC 的延长线上,且BD=CE ,DE 与BC 相交于点F .求证:DF=EF . A . 5cm B . 3cm C . 2cm D . 不能确定 A . 0 B . 1 C . 2 D . 3

相似三角形压轴经典大题(含答案)

相似三角形压轴经典大题解析 1.如图,已知一个三角形纸片ABC ,BC 边的长为8,BC 边上的高为6,B ∠和C ∠都为锐角,M 为AB 一动点(点M 与点A B 、不重合),过点M 作MN BC ∥,交AC 于点N ,在AMN △中,设MN 的长为x ,MN 上的高为h . (1)请你用含x 的代数式表示h . (2)将AMN △沿MN 折叠,使AMN △落在四边形BCNM 所在平面,设点A 落在平面的点为1A , 1A MN △与四边形BCNM 重叠部分的面积为y ,当x 为何值时,y 最大,最大值为多少? 【答案】解:(1) MN BC ∥ AMN ABC ∴△∽△ 68 h x ∴= 34 x h ∴= (2)1AMN A MN △≌△ 1A MN ∴△的边MN 上的高为h , ①当点1A 落在四边形BCNM 内或BC 边上时, 1A MN y S =△=211332248MN h x x x ==··(04x <≤) ②当1A 落在四边形BCNM 外时,如下图(48)x <<, 设1A EF △的边EF 上的高为1h , 则13 2662 h h x =-= - 11EF MN A EF A MN ∴∥△∽△ 11A MN ABC A EF ABC ∴△∽△△∽△

12 16A EF S h S ??= ??? △△ABC 1 68242 ABC S =??=△ 2 2 363224122 462EF x S x x ??- ?∴==?=-+ ? ? ?? 1△A 1122233912241224828A MN A EF y S S x x x x x ?? =-= --+=-+- ??? △△ 所以 2 91224(48)8 y x x x =- +-<< 综上所述:当04x <≤时,2 38 y x =,取4x =,6y =最大 当48x <<时,2 912248 y x x =-+-, 取16 3x = ,8y =最大 86> ∴当16 3 x =时,y 最大,8y =最大 2.如图,抛物线经过(40)(10)(02)A B C -,,,,,三点. (1)求出抛物线的解析式; (2)P 是抛物线上一动点,过P 作PM x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与OAC △相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由; M N C B E F A A 1

解三角形典型例题

1.正弦定理和余弦定理 在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则 2.S △ABC =2ab sin C =2bc sin A =2ac sin B =4R =2(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R ,r . 1.在△ABC 中,A >B ?a >b ?sin A >sin B ?cos A c; a-b

相似三角形经典模型总结与例题分类(超全)

相似三角形经典模型总结 经典模型 【精选例题】“平行型” 【例1】 如图,111EE FF MM ∥∥,若AE EF FM MB ===, 则1 11 1 1 1 :::_________AEE EE F F FF M M MM CB S S S S ?=四边形四边形四边形 【例2】 如图,AD EF MN BC ∥∥∥,若9AD =, 18BC =,::2:3:4AE EM MB =,则 _____EF =,_____MN = 【例3】 已知,P 为平行四边形ABCD 对角线,AC 上一点,过点P 的 直线与AD ,BC ,CD 的延长线,AB 的延长线分别相交于点E ,F ,G ,H 求证: PE PH PF PG = M 1F 1E 1M E F A B C M N A B C D E F P H G F E D C B A

【例4】 已知:在ABC ?中,D 为AB 中点,E 为AC 上一点,且 2AE EC =,BE 、CD 相交于点F , 求BF EF 的值 【例5】 已知:在ABC ?中,12AD AB = , 延长BC 到F ,使1 3 CF BC =,连接FD 交AC 于点E 求证:①DE EF = ②2AE CE = 【例6】 已知:D ,E 为三角形ABC 中AB 、BC 边上的点,连接DE 并延长交AC 的延长线于点F ,::BD DE AB AC = 求证:CEF ?为等腰三角形 【例7】 如图,已知////AB EF CD ,若AB a =,CD b =,EF c =,求证: 111c a b =+. F E D C B A 【例8】 如图,找出ABD S ?、BED S ?、BCD S ?之间的关系,并证明你的结论. F E D C B A 【例9】 如图,四边形ABCD 中,90B D ∠=∠=?,M 是AC 上一点,ME AD ⊥于点E ,MF BC ⊥于点F 求证: 1MF ME AB CD += F E D C B A A B C D F E F E D C B A

相似三角形典型模型及例题

1:相似三角形模型 一:相似三角形判定的基本模型 (一)A 字型、反A 字型(斜A 字型) A B C D E C B A D E (平行) (不平行) (二)8字型、反8字型 J O A D B C A B C D (蝴蝶型) (平行) (不平行) (三)母子型 A B C D C A D (四)一线三等角型: 三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景,一个与等腰三角形的底角相等的顶点在底边所在的直线上,角的两边分别与等腰三角形的两边相交如图所示:

(五)一线三直角型: 三直角相似可以看着是“一线三等角”中当角为直角时的特例,三直角型相似通常是以矩形或者正方形形为背景,或者在一条直线上有一个顶点在该直线上移动或者旋转的直角,几种常见的基本图形如下: 当题目的条件中只有一个或者两个直角时,就要考虑通过添加辅助线构造完整的三直角型相似,这往往是很多压轴题的突破口,进而将三角型的条件进行转化。 (六)双垂型: C A D 二:相似三角形判定的变化模型 旋转型:由A字型旋转得到8字型拓展 C B E D A 共享性 一线三等角的变形 G A B C E F

一线三直角的变形 2:相似三角形典型例题 (1)母子型相似三角形 例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ?=2 . 例2:已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠. 求证:(1)DA DE DB ?=2 ; (2)DAC DCE ∠=∠. 例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F . 求证:EG EF BE ?=2 . 1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ?=2 . 2、已知:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延 A C D E B

三角形经典习题(必看)

三角形复习卷 一、选择题 1.一个三角形的两边长分别是2cm 和9cm ,第三边的长是一个奇数,则第三边长为( ) A 、5cm B 、7cm C 、9cm D 、11cm 2. 1.在下列条件中:①∠A+∠B=∠C ,②∠A∶∠B∶∠C=2∶3∶4,③∠A=90°-∠B ,④∠A=∠B= 2 1 ∠C 中,能确定△ABC 是直角三角形的条件有( ) A 、1个; B 、2个; C 、3个; D 、4个 3.对于三角形的内角,下列判断中不正确的是( ); A.至少有两个锐角 B.最多有一个直角 C.必有一个角大于600 D.至少有一个角不小600 4. 如图,∠BAC=90°,AD⊥BC,则图中互余的角有( ) A 、2对; B 、3对; C 、4对; D 、5对; 5. 下列说法错误的是( ) A. 三角形三条中线交于三角形内一点; B. 三角形三条角平分线交于三角形内一点 C. 三角形三条高交于三角形内一点; D. 三角形的中线、角平分线、高都是线段 6、一个三角形的两个内角分别为55°和65°,这个三角形的外角不可能是( ) A 、115° B、120° C、125° D、130° 7、如图,在锐角△ABC 中,CD 、BE 分别是AB 、AC 边上的高,且CD 、BE 相交于一点P ,若∠A=50°,则∠BPC=( ) A 、150° B、130° C、120° D、100° 8、7.一个多边形的内角和比它的外角的和的2倍还大180°,这个多边形的边数是( ) A.5 B.6 C.7 D.8 9如图,在△ABC 中,AD 是角平分线,AE 是高,已知∠BAC=2∠B,∠B=2∠DAE,那么∠ACB 为( )A. 80° B. 72° C. 48° D. 36° 10.在△ABC 中,∠A=2∠B=4∠C ,则△ABC 为( ) A.锐角三角形 B.钝角三角形 C.直角三角形 D.都有可能 11.直角三角形两锐角的平分线相交所夹的钝角为( ) A 、125° B 、135° C 、145° D 、150° 12.等腰△ABC 的底边为5cm ,一腰上的中线把周长分为差为3cm 的两部分,则△ABC 的腰长是( )cm 。 A B C D E P 第7题 第9题

等腰三角形经典练习题(有难度)

等腰三角形练习题 一、计算题: 1. 如图,△ABC 中,AB=AC,BC=BD,AD=DE=EB 求∠A 的度数 设∠ABD 为x,则∠A 为2x 由8x=180° 得∠A=2x=45° 2.如图,CA=CB,DF=DB,AE=AD 求∠A 的度数 设∠A 为x, 由5x=180° 得∠A=36° 3. 如图,△ABC 中,AB=AC ,D 在BC 上,DE ⊥AB 于E ,DF ⊥BC 交AC 于点F ,若∠EDF=70°, 求∠AFD 的度数 ∠AFD=160° C F D A B

4. 如图,△ABC 中,AB=AC,BC=BD=ED=EA 求∠A 的度数 设∠A 为x ∠A= 7 180 5. 如图,△ABC 中,AB=AC ,D 在BC 上, ∠BAD=30°,在AC 上取点E ,使AE=AD, 求∠EDC 的度数 设∠ADE 为x ∠EDC=∠AED -∠C=15 B A B 2x x -15°

6. 如图,△ABC 中,∠C=90°,D 为AB 上一点,作DE ⊥BC 于E ,若BE=AC,BD=21,DE+BC=1, 求∠ABC 的度数 延长DE 到点F,使EF=BC 可证得:△ABC ≌△BFE 所以∠1=∠F 由∠2+∠F=90°, 得∠1+∠F=90° 在Rt △DBF 中, BD=2 1,DF=1 所以∠F =∠1=30° 7. 如图,△ABC 中,AD 平分∠BAC ,若AC=AB+BD 求∠B :∠C 的值 在AC 上取一点E,使AE=AB 可证△ABD ≌△ADE 所以∠B=∠AED 由AC=AB+BD,得DE=EC, 所以∠AED=2∠C 故∠B :∠C=2:1 F A B C D E

相似三角形经典题型

相似三角形知识点与经典题型 知识点1 有关相似形的概念 (1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形. (2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多 边形.相似多边形对应边长度的比叫做相似比(相似系数). 知识点2 比例线段的相关概念 (1)如果选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是 n m b a =,或写成n m b a ::=.注:在求线段比时,线段单位要统一。 (2)在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段. 注:①比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:a d c b =. ②()a c a b c d b d ==在比例式::中,a 、d 叫比例外项,b 、c 叫比例内项, a 、c 叫比例前项,b 、 d 叫比例后项,d 叫第四比例项,如果b=c ,即 a b b d =::那么b 叫做a 、d 的比例中项, 此时有2b ad =。 (3)黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即2AC AB BC =?,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 2 1 5-=≈0.618AB .即 512AC BC AB AC -== 简记为:51 2 -长短==全长 注:黄金三角形:顶角是360的等腰三角形。黄金矩形:宽与长的比等于黄金数的矩形 知识点3 比例的性质(注意性质立的条件:分母不能为0) (1) 基本性质: ①bc ad d c b a =?=::;②2::a b b c b a c =?=?. 注:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad =,除 了可化为d c b a ::=,还可化为d b c a ::=,b a d c ::=,c a d b ::=,c d a b ::=,b d a c ::=,a b c d ::=,a c b d ::=. (2) 更比性质(交换比例的内项或外项):()() ()a b c d a c d c b d b a d b c a ?=?? ?=?=?? ?=?? , 交换内项,交换外项. 同时交换内外项 (3)反比性质(把比的前项、后项交换): a c b d b d a c =?=.

解三角形典型例题答案

1. 解:cos cos cos ,sin cos sin cos sin cos a A b B c C A A B B C C +=+= sin 2sin 2sin 2,2sin()cos()2sin cos A B C A B A B C C +=+-= cos()cos(),2cos cos 0A B A B A B -=-+= cos 0A =或cos 0B =,得2A π=或2B π= 所以△ABC 是直角三角形。 2. 证明:将ac b c a B 2cos 222-+=,bc a c b A 2cos 2 22-+=代入右边 得右边22222222 22()222a c b b c a a b c abc abc ab +-+--=-= 22a b a b ab b a -==-=左边, ∴)cos cos (a A b B c a b b a -=- 3.证明:∵△AB C 是锐角三角形,∴,2A B π+>即022A B ππ>>-> ∴sin sin()2 A B π >-,即sin cos A B >;同理sin cos B C >;sin cos C A > ∴C B A C B A cos cos cos sin sin sin ++>++ 4.解:∵2,a c b +=∴sin sin 2sin A C B +=,即2sin cos 4sin cos 2222 A C A C B B +-=, ∴1sin cos 222B A C -==0,22 B π<<∴cos 2B = ∴sin 2sin cos 22244B B B ==?=839 5解:22222222sin()sin cos sin ,sin()cos sin sin a b A B a A B A a b A B b A B B ++===-- cos sin ,sin 2sin 2,222cos sin B A A B A B A B A B π===+=或2 ∴等腰或直角三角形 6解:2sin sin 2sin sin )sin ,R A A R C C b B ?-?=- 222sin sin )sin ,,a A c C b B a c b -=--=-

初三数学相似三角形典型例题(含标准答案)

初三数学相似三角形典型例题(含答案)

————————————————————————————————作者:————————————————————————————————日期:

初三数学相似三角形 (一)相似三角形是初中几何的一个重点,同时也是一个难点,本节复习的目标是: 1. 理解线段的比、成比例线段的概念,会根据比例线段的有关概念和性质求线段的长或两线段的比,了解黄金分割。 2. 会用平行线分线段成比例定理进行有关的计算、证明,会分线段成已知比。 3. 能熟练应用相似三角形的判定和性质解答有关的计算与证明题。 4. 能熟练运用相似三角形的有关概念解决实际问题 本节的重点内容是相似三角形的判定定理和性质定理以及平行线分线段成比例定理。 本节的难点内容是利用判定定理证明两个三角形相似以及相似三角形性质的应用。 相似三角形是平面几何的主要内容之一,在中考试题中时常与四边形、圆的知识相结合构成高分值的综合题,题型常以填空、选择、简答或综合出现,分值一般在10%左右,有时也单独成题,形成创新与探索型试题;有利于培养学生的综合素质。 (二)重要知识点介绍: 1. 比例线段的有关概念: 在比例式::中,、叫外项,、叫内项,、叫前项,a b c d a b c d a d b c a c ==() b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。 把线段AB 分成两条线段AC 和BC ,使AC 2=AB ·BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。 2. 比例性质: ①基本性质:a b c d ad bc =?= ②合比性质:±±a b c d a b b c d d =?= ③等比性质: ……≠……a b c d m n b d n a c m b d n a b ===+++?++++++=()0

经典初中数学三角形专题训练及例题解析

知 识点梳理 考点一、三角形 1、三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形. 2、三角形的分类. ?????钝角三角形直角三角形锐角三角形 ??? ????) (等边三角形等腰三角形不等边三角形 3、三角形的三边关系: 三角形任意两边之和大于第三边,任意两边之差小于第三边. 4、三角形的重要线段 ①三角形的中线:顶点与对边中点的连线,三条中线交点叫重心 ②三角形的角平分线:内角平分线与对边相交,顶点和交点间的线段,三个角的角平分线的交点叫内心 ③三角形的高:顶点向对边作垂线,顶点和垂足间的线段.三条高的交点叫垂心(分锐角三角形,钝角三角形和直角三角形的交点的位置不同) 5、三角形具有稳定性 6、三角形的内角和定理及性质 定理:三角形的内角和等于180°. 推论1:直角三角形的两个锐角互补。 推论2:三角形的一个外角等于不相邻的两个内角的和。 推论3:三角形的一个外角大于与它不相邻的任何一个内角。 7、多边形的外角和恒为360° 8、多边形及多边形的对角线 ①正多边形:各个角都相等,各条边都相等的多边形叫做正多边形. ②凸凹多边形:画出多边形的任何一条边所在的直线,若整个图形都在这条直线的同一侧,这样的多边形称为凸多边形;,若整个多边形不都在这条直线的同一侧,称这样的多边形为凹多边形。 ③多边形的对角线的条数: A.从n 边形的一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形。 三角形 (按角分) 三角形 (按边分)

边形共有 2)3 ( n n 条对角线。 9、边形的内角和公式及外角和 ①多边形的内角和等于(n-2)×180°(n≥3)。 ②多边形的外角和等于360°。 10、平面镶嵌及平面镶嵌的条件。 ①平面镶嵌:用形状相同或不同的图形封闭平面,把平面的一部分既无缝隙,又不重叠地全部覆盖。 ②平面镶嵌的条件:有公共顶点、公共边;在一个顶点处各多边形的内角和为360°。考点二、全等三角形 1、全等三角形的概念 能够完全重合的两个三角形叫做全等三角形。。 2、三角形全等的判定 三角形全等的判定定理: (1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”) (2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”) (3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。直角三角形全等的判定: 对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”) 3、全等变换 只改变图形的位置,不改变其形状大小的图形变换叫做全等变换。 全等变换包括一下三种: (1)平移变换:把图形沿某条直线平行移动的变换叫做平移变换。 (2)对称变换:将图形沿某直线翻折180°,这种变换叫做对称变换。 (3)旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换。考点三、等腰三角形 1、等腰三角形的性质 (1)等腰三角形的性质定理及推论: 定理:等腰三角形的两个底角相等(简称:等边对等角) 推论1:等腰三角形顶角平分线平分底边并且垂直于底边。即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。 推论2:等边三角形的各个角都相等,并且每个角都等于60°。 2、三角形中的中位线

相似三角形经典习题

相似三角形 一.选择题 1.如图,D、E分别是AB、AC上两点,CD与BE相交于点O,下列条件中不能使△ABE和△ACD相似的是() A.∠B=∠C B.∠ADC=∠AEB C.BE=CD,AB=AC D.AD:AC=AE:AB 2.如图,△ACD和△ABC相似需具备的条件是() A. B. C.AC2=AD?AB D.CD2=AD?BD 3.如图,在等边三角形ABC中,D为AC的中点,,则和△AED(不包含△AED)相似的三角形有() A.1个 B.2个 C.3个 D.4个 4.如图,已知点P是Rt△ABC的斜边BC上任意一点,若过点P作直线PD与直角边AB或AC相交于点D,截得的小三角形与△ABC相似,那么D点的位置最多有() A.2处 B.3处 C.4处 D.5处 5.如图,在矩形ABCD中,E、F分别是CD、BC上的点.若∠AEF=90°,则一定有() A.△ADE∽△ECF B.△BCF∽△AEF C.△ADE∽△AEF D.△AEF∽△ABF 6.在△ABC中,∠ACB=90°,用直尺和圆规在AB上确定点D,使△ACD∽△CBD,根据作图痕迹判断,正确的是()

A. B. C. D. 7.如图,点D,E分别在△ABC的AB,AC边上,增加下列条件中的一个:①∠AED=∠B,②∠ADE=∠C,③,④,⑤AC2=AD?AE,使△ADE与△ACB一定相似的有() A.①②④ B.②④⑤ C.①②③④ D.①②③⑤ 8.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为() A.3:4 B.9:16 C.9:1 D.3:1 9.如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交AD的延长线于点E.若AB=12,BM=5,则DE的长为() A.18 B.C. D. 10.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论: ①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH?PC 其中正确的是() A.①②③④ B.②③ C.①②④ D.①③④ :S 11.如图,在平行四边形ABCD中,E为CD上一点,连接AE、BE、BD,且AE、BD交于点F,S △DEF =4:25,则DE:EC=() △ABF

初中三角形总复习专题典型例题经典测试题2套

三角形资料 一、三角形相关概念 1.三角形的概念 由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形 要点:①三条线段;②不在同一直线上;③首尾顺次相接. 2.三角形的表示 通常用三个大写字母表示三角形的顶点,如用A、B、C表示三角形的三个顶点时,此三角形可记作△ABC,其中线段AB、BC、AC是三角形的三条边,∠A、∠B、∠C分别表示三角形的三个内角. 3.三角形中的三种重要线段 三角形的角平分线、中线、高线是三角形中的三种重要线段. (1)三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线. 注意:①三角形的角平分线是一条线段,可以度量,而角的平分线是经过角的顶点且平分此角的一条射线. ②三角形有三条角平分线且相交于一点,这一点一定在三角形的内部. ③三角形的角平分线画法与角平分线的画法相同,可以用量角器画,也可通过尺规作图来画. (2)三角形的中线:在一个三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线. 注意:①三角形有三条中线,且它们相交三角形内部一点. ②画三角形中线时只需连结顶点及对边的中点即可. (3)三角形的高线:从三角形一个顶点向它的对边作垂线,顶点和垂足间的限度叫做三角形的高线,简称三角形的高. 注意:①三角形的三条高是线段 ②画三角形的高时,只需要向对边或对边的延长线作垂线,连结顶点与垂足的线段就是该边上的高.(二)三角形三边关系定理 ①三角形两边之和大于第三边,故同时满足△ABC三边长a、b、c的不等式有:a+b>c,b+c>a,c+a>b. ②三角形两边之差小于第三边,故同时满足△ABC三边长a、b、c的不等式有:a>b-c,b>a-c,c>b-a. 注意:判定这三条线段能否构成一个三角形,只需看两条较短的线段的长度之和是否大于第三条线段即可(三)三角形的稳定性 三角形的三边确定了,那么它的形状、大小都确定了,三角形的这个性质就叫做三角形的稳定性.例如起重机的支架采用三角形结构就是这个道理. 三角形内角和性质的推理方法有多种,常见的有以下几种: (四)三角形的内角 结论1:三角形的内角和为180°.表示:在△ABC中,∠A+∠B+∠C=180° (1)构造平角 ①可过A点作MN∥BC(如图) ②可过一边上任一点,作另两边的平行线(如图) (2)构造邻补角,可延长任一边得邻补角(如图) 构造同旁内角,过任一顶点作射线平行于对边(如图)

相似三角形典型例题精选

相似三角形的判定与性质综合运用经典题型 考点一:相似三角形的判定与性质: 例1、如图,△PCD是等边三角形,A、C、D、B在同一直线上,且∠APB=120°. 求证:⑴△PAC∽△BPD;⑵ CD2 =AC·BD. 例2、如图,在等腰△ABC中, ∠BAC=90°,AB=AC=1,点D是BC边上的一个动点(不与B、C 重合),在AC上取一点E,使∠ADE=45° (1)求证:△ ABD∽△DCE; (2)设BD=x,AE=y,求y关于x函数关系式及自变量x值范围,并求出当x为何值时AE 取得最小值? (3)在AC上是否存在点E,使得△ADE为等腰三角形若存在,求AE的长;若不存在,请说明理由 例3、如图所示,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B: 1)求证:△ADF∽△DEC; 2)若AB=4,3 3 AD,AE=3,求AF的长。 A B C D F

考点二:射影定理: 例4、如图,在RtΔABC中,∠ACB=90°,CD⊥AB于D,CD=4cm,AD=8cm,求AC、BC及BD的长。 例5、如图,已知正方形ABCD,E是AB的中点,F是AD上的一点,且AF= 1 4 AD,EG⊥CF于点G, (1)求证:△AEF∽△BCE;(2)试说明:EG2=CG·FG. 例6、已知:如图所示的一张矩形纸片ABCD(AD>AB),将纸片折叠一次,使点A与点C重合,再展开,折痕EF交AD边于E,交BC边于F,分别连结AF和CE. (1)求证:四边形AFCE是菱形; (2)若AE=10cm,△ABF的面积为24cm2,求△ABF的周长; (3)在线段AC上是否存在一点P,使得2AE2=AC·AP若存在,请说明点P的位置,并予以证明;若不存在,请说明理由. A B C D E F G

等腰三角形知识点+经典例题

第一讲等腰三角形 【要点梳理】 要点一、等腰三角形的定义 1.等腰三角形 有两条边相等的三角形,叫做等腰三角形,其中相等的两条边叫做腰,另一 边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角. 如图所示,在△ABC中,AB=AC,△ABC是等腰三角形,其中AB、AC 为腰,BC为底边,∠A是顶角,∠B、∠C是底角. 2.等腰三角形的作法 已知线段a,b(如图).用直尺和圆规作等腰三角形ABC,使AB=AC=b,BC=a. 作法:1.作线段BC=a; 2.分别以B,C为圆心,以b为半径画弧,两弧 相交于点A; 3.连接AB,AC. △ABC为所求作的等腰三角形 3.等腰三角形的对称性 (1)等腰三角形是轴对称图形; (2)∠B=∠C; (3)BD=CD,AD为底边上的中线. (4)∠ADB=∠ADC=90°,AD为底边上的高线. 结论:等腰三角形是轴对称图形,顶角平分线(底边上的高线或中线)所在的直线是它的对称轴. 4.等边三角形 三条边都相等的三角形叫做等边三角形.也称为正三角形.等边三角形是一类特殊的等腰三角形,有三条对称轴,每个角的平分线(底边上的高线或中线)所在的直线就是它的对称轴. 要点诠释:(1)等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角).∠A =180°-2∠B,∠B=∠C=180 2A ?-∠. (2)等边三角形与等腰三角形的关系:等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形. 要点二、等腰三角形的性质 1.等腰三角形的性质 性质1:等腰三角形的两个底角相等,简称“在同一个三角形中,等边对等角”. 推论:等边三角形的三个内角都相等,并且每个内角都等于60°. 性质2:等腰三角形的顶角平分线、底边上中线和高线互相重合.简称“等腰三角形三线合一”. 2.等腰三角形中重要线段的性质 等腰三角形的两底角的平分线(两腰上的高、两腰上的中线)相等. 要点诠释:这条性质,还可以推广到一下结论: (1)等腰三角形底边上的高上任一点到两腰的距离相等。

《解直角三角形》典型例题

《解直角三角形》典型例题 例1 在Rt △ABC 中,∠C=90°,∠B=60°,a=4,解这个三角形. 分析 本题实际上是要求∠A 、b 、c 的值.可根据直角三角形中各元素间的关系解决. 解 (1) ; (2)由a b B = tan ,知 ; (3)由c a B = cos ,知860cos 4 cos =? == B a c . 说明 此题还可用其他方法求b 和c . 例 2在Rt △ABC 中, ∠C=90°,∠A=30°,3=b ,解这个三角形. 解法一 ∵ ∴ 设 ,则 由勾股定理,得 ∴ . ∴ . 解法二 13 3 330tan =? =?=b a 说明 本题考查含特殊角的直角三角形的解法,它可以用目前所学的解直角三角形的方法,也可以用以前学的性质解题. 例 3 设 中, 于D ,若 ,解三 角形ABC .

分析“解三角形ABC”就是求出的全部未知元素.本题CD不是 的边,所以应先从Rt入手. 解在Rt中,有: 在Rt中,有 说明(1)应熟练使用三角函数基本关系式的变形,如: (2)平面几何中有关直角三角形的定理也可以结合使用,本例中 “”就是利用“对30°角的直角边等于斜边的一半”这一定理.事实上,还可以用面积公式求出AB的值: 所以解直角三角形问题,应开阔思路,运用多种工具. 例4在中,,求. 分析(1)求三角形的面积一方面可以根据面积公式求出底和底上的高的长,也可以根据其中规则面积的和或差; (2)不是直角三角形,可构造直角三角形求解.

解如图所示,作交CB的延长线于H,于是在Rt△ACH中,有 ,且有 ; 在中,,且 , ∴; 于是,有 , 则有 说明还可以这样求:

相关主题
文本预览
相关文档 最新文档