当前位置:文档之家› 等腰三角形经典题型总结(绝对经典)

等腰三角形经典题型总结(绝对经典)

等腰三角形经典题型总结(绝对经典)
等腰三角形经典题型总结(绝对经典)

等腰三角形

知识点梳理

知识点一等腰三角形的有关概念

要点:定义:有两条边相等的三角形是等腰三角形。相等的两条边叫做腰,另一条边叫做底。两腰所夹的角叫做顶角;腰与底边的夹角叫做底角。

典例分析

1、等腰三角形的两边长分别是3和6,那么它的周长为()A.15 B.12 C.12或15 D.不能确定

2、等腰三角形两边长分别是5和6,那么它的第三边长是()A.5 B.6 C.5或6 D.不能确定

3.如图,ABC

∠的平分线,

∠=?,CD是ACB

?中,AB AC

A

=,36 Array //

DE BC.找出下图中的所有等腰三角形。(只需写出来即可)

知识点二等腰三角形的性质

要点:(1)性质一:等腰三角形的两个底角相等;(等边对等角)(2)性质二:等腰三角形的高、中线、角平分线互相重合;(三

线合一)

1 / 12

2 / 12

典例分析

1、等腰三角形的一个角是80°,则它顶角的度数是( ) A .80°

B .80°或20°

C .80°或50°

D .20°

2、在等腰△ABC 中,AB=AC ,中线BD 将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为( ) A .7

B .11

C .7或11

D .7或10

3、如图所示,△ABC 中,AC=AD=BD ,∠DAC=80°,则∠B 的度数是( )

A 、40o

B 、35o

C 、25o

D 、20o

4、如图,△ABC 中,AB=AC ,∠A=36°,BD 是AC 边上的高,则∠DBC 的度数是( ) A .18° B .24° C .30° D .36°

第 4题图 第 5题图

3 / 12

5、如图,在△ABC 中,AB=AC ,DE ∥BC ,∠ADE=48°,则下列结论中不正确的是( ) A .∠B=48°

B .∠AED=66°

C .∠A=84°

D .∠B+∠C=96°

6、已知等腰三角形一腰上的高与另一腰的夹角为60°,则这个等腰三角形的顶角是 ( ) A .30°

B .60°

C .150°

D .30°或150

7、如图,等腰△ABC 的周长为21,底边BC=5,AB 的垂直平分线DE 交AB 于点D ,交AC 于点E ,则△BEC 的周长为( ) A .13 B .14

C .15

D .16

7题图 8题图

8、如图,在△ABC 中,AB=AC ,点D 、E 在BC 上,连接AD 、AE ,如果只添加一个条件使∠DAB=∠EAC ,则添加的条件不能为( ) A .BD=CE B .AD=AE

C .DA=DE

D .BE=CD

4 / 12

9、如图,△ABC 中,D 、E 两点分别在AC 、BC 上,则AB=AC ,CD=DE .若∠A=40°,∠ABD :∠DBC=3:4,则∠BDE=( ) A .25° B .30° C .35° D .40°

9题图

10题图

10、如图,在△ABC 中,AB=AC ,∠A=36°,AB 的中垂线DE 交AC 与D ,交AB 于E ,下列论述错误的是( ) A .BD 平分∠ABC B .D 是AC 的中点

C .AD=BD=BC

D .△BDC 的周长等于AB+BC

A .45°

B .75°

C .45°或75°或15°

D .60°

★12、如图,在△ABC中,∠ACB=100°,AC=AE,BC=BD,则∠DCE的度数为()

A.20°B.25°C.30°D.40°

13、如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,其中一个动点到达端点时,另一个动点也随之停止运动,当△APQ是等腰三角形时,运动的时间是()

A.2.5秒B.3秒C.3.5秒D.4秒

13 题图 14题图

★14、如图所示,在△ABC中,AB=AC,∠BAD=α,且AE=AD,则∠EDC=()

A.1

B.1

3

α

C.1

4

α

D.2

3

α

5 / 12

6 / 12

15、如图,在直角ABC ?中,90,C CAB ∠=?∠的平分线AD 交BC 于点D ,若DE 垂直平分线AB ,求B ∠的度数.

16、如图,在ABC ?中,,AB AC AD =和BE 是ABC ?的高,AD 与BE 相交于点H ,且.AE BE =求证:

知识点三 等腰三角形的判定

要点:(1)定义判定:两边相等的三角形是等腰三角形; (2)性质判定:两角相等的三角形是等腰三角形; 典例分析

1、如图,在△ABC 中,AB=AC ,∠A=36°,BD ,CE 分别为∠ABC ,∠ACB 的角平分线,则图中等腰三角形共有( ) A .5个

B .6个

C .7个

D .8个

D

D

B

A

C

H E D

C

B

A

7 / 12

第1题图 第 2题图 2、如图,在△ABC 中,AB=AC ,点D 、E 在BC 边上,

∠ABD=∠DAE=∠EAC=36°,则图中共有等腰三角形的个数是( ) A .4个

B .5个

C .6个

D .7个

3、在平面直角坐标系中,O 为坐标原点,点A 的坐标为(1,3) ,M 为坐标轴上一点,且使得△MOA 为等腰三角形,则满足条件的点M 的个数为( ) A .4

B .5

C .6

D .8

4、如图,在平面直角坐标系中,点A 在第一象限,点P 在x 轴上,若以P ,O ,A 为顶点的三角形是等腰三角形,则满足条件的点P 共有( ) A .2个 B .3个 C .4个 D .5个

8 / 12

5、如图所示的正方形网格中,网格线的交点称为格点.已知A 、B 是两格点,如果C 也是图中的格点,且使得△ABC 为等腰三角形,则点C 的个数是( ) A .6 B .7

C .8

D .9

5题图 6题图 8题图 9题图 6、如图,点A 的坐标是(1,1),若点B 在x 轴上,且△ABO 是等腰三角形,则点B 的坐标不可能是( )

A.(2,0) B 、(0,2

1) C 、(0,2 ) D 、(1,0) 7、下列能断定△ABC 为等腰三角形的是( ) A .∠A=30°,∠B=60° B .∠A=50°,∠B=80° C .AB=AC=2,BC=4

D .AB=3,BC=7,周长为10

8、如图:若AD 平分∠BAC ,AD ∥EC ,则( )是等腰三角形. A .△ABD

B .△ACD

C .△ACE

D .△ABC

9、如图,在△ABC 中,AD 平分外角∠EAC ,且AD ∥BC ,则△ABC 一定是( )

A 、任意三角形

B 、等边三角形

C 、等腰三角形

D 、直角三角形

(完整版)数列题型及解题方法归纳总结

知识框架 111111(2)(2)(1)( 1)()22()n n n n n n m p q n n n n a q n a a a q a a d n a a n d n n n S a a na d a a a a m n p q --=≥=?? ←???-=≥?? =+-??-?=+=+??+=++=+??两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解 的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1) 11(1)() n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+???? ? ???????????????? ??? ???????????? ???? ????????????? ?????? ? ?? ?? ?? ?? ??? ???????? 等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积 归纳猜想证明分期付款数列的应用其他??????? ? ? 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足11 2 n n a a +=,而12a =,求n a =? (2)递推式为a n+1=a n +f (n ) 例3、已知{}n a 中112a = ,121 41 n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+= -+n n a a n n )1 21 121(21+--=n n 令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1) 2 43 4)1211(211--= --+=n n n a a n ★ 说明 只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代 入,可得n-1个等式累加而求a n 。 (3)递推式为a n+1=pa n +q (p ,q 为常数) 例4、{}n a 中,11a =,对于n >1(n ∈N )有132n n a a -=+,求n a . 解法一: 由已知递推式得a n+1=3a n +2,a n =3a n-1+2。两式相减:a n+1-a n =3(a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为a 2-a 1=(3×1+2)-1=4 ∴a n+1-a n =4·3n-1 ∵a n+1=3a n +2 ∴3a n +2-a n =4·3n-1 即 a n =2·3n-1 -1 解法二: 上法得{a n+1-a n }是公比为3的等比数列,于是有:a 2-a 1=4,a 3-a 2=4·3,a 4-a 3=4·32,…,a n -a n-1=4·3n-2 , 把n-1个等式累加得: ∴an=2·3n-1-1 (4)递推式为a n+1=p a n +q n (p ,q 为常数) )(3211-+-= -n n n n b b b b 由上题的解法,得:n n b )32(23-= ∴n n n n n b a )31(2)21(32-== (5)递推式为21n n n a pa qa ++=+

数列全部题型归纳(非常全面-经典!)(新)

数列百通 通项公式求法 (一)转化为等差与等比 1、已知数列{}n a 满足11a =,n a =,n N *∈2≤n ≤8),则它的通项公式n a 什么 2.已知{}n a 是首项为2的数列,并且112n n n n a a a a ---=,则它的通项公式n a 是什么 3.首项为2的数列,并且23 1n n a a -=,则它的通项公式n a 是什么 4、已知数列{}n a 中,10a =,112n n a a += -,* N n ∈.

求证:11n a ?? ??-?? 是等差数列;并求数列{}n a 的通项公式; 5.已知数列{}n a 中,13a =,1222n n a a n +=-+,如果2n n b a n =-,求数列{}n a 的通项公式 (二)含有n S 的递推处理方法 1)知数列{a n }的前n 项和S n 满足log 2(S n +1)=n +1,求数列{a n }的通项公式.

2.)若数列{}n a 的前n 项和n S 满足,2 (2)8 n n a S +=则,数列n a 3 4)1a +求数列a (三) 累加与累乘 (1)如果数列{}n a 中111,2n n n a a a -=-=(2)n ≥求数列n a

(2)已知数列}{n a 满足31=a ,)2() 1(1 1≥-+=-n n n a a n n ,求此数列的通项公式 (3) 1a = (4 (四)一次函数的递推形式 1. 若数列{}n a 满足111 1,12 n n a a a -==+(2)n ≥,数列n a

2 .若数列{}n a 满足111 1,22 n n n a a a -==+ (2)n ≥,数列n a (1 (2 (六)求周期 16 (1) 121,41n n n a a a a ++==-,求数列2004a

平方根典型例题及练习

平方根练习题 1、平方根:一般地,如果一个数x 的平方等于a,即x 2=a 那么这个数x 就叫做a 的平方根(也叫做二次方根式),算术平方根 2、平方根的性质:(1)一个正数有 个平方根,它们 (2)0的平方根是 ;(3) 没有平方根. 3、重要公式: (1)=2 )( a (2) { ==a a 2 4、平方表: 5.正数有_____________个立方根, 0有__________个立方根,负数有__________个立方根,立方根也叫做_______________. 6.一个正方体的棱长扩大3倍,则它的体积扩大_____________. 7.若一个数的立方根等于数的算术平方根,则这个数是_____________. 8. 0的立方根是___________.(-1)2005的立方根是______________.1827 26 的立方根是________. 例1、判断下列说确的个数为( ) ① -5是-25的算术平方根; ② 6是()26-的算术平方根; ③ 0的算术平方根是0; ④ 0.01是0.1的算术平方根;

⑤ 一个正方形的边长就是这个正方形的面积的算术平方根. A .0 个 B .1个 C .2个 D .3个 例2、 36的平方根是( ) A 、6 B 、6± C 、 6 D 、 6± 例3、下列各式中,哪些有意义? (1) 5 (2)2- (3) 4 - (4) 2 )3(- (5) 310- 例4、一个自然数的算术平方根是a ,则下一个自然数的算术平方根是( ) A .()1+a B .()1+±a C .1 2+a D .12+± a 强化训练 一、选择题 1.下列说法中正确的是( ) A .9的平方根是3 B 2 C. 4 D. 2 2. 4的平方的倒数的算术平方根是( ) A .4 B .18 C .-14 D .14 3.下列结论正确的是( ) A 6)6(2-=-- B 9)3(2=- C 16)16(2±=- D 25 1625162 =???? ? ? - - 4.以下语句及写成式子正确的是( ) A 、7是49的算术平方根,即749±= B 、7是2)7(-的平方根,即 7)7(2=- C 、7±是49的平方根,即7 49=± D 、7±是49的平方根,即749±= 5.下列说法:(1)3±是9的平方根;(2)9的平方根是3±;(3)3是9的平方根; (4)9的平方根是3,其中正确的有( ) A .3个 B .2个 C .1个 D .4个 6.下列说确的是( ) A .任何数的平方根都有两个 B .只有正数才有平方根 C .一个正数的平方根的平方仍是这个数 D .2a 的平方根是a ±

数列必会常见题型归纳

数列必会基础题型 题型一:求值类的计算题(多关于等差等比数列) A )根据基本量求解(方程的思想) 1、已知n S 为等差数列{}n a 的前n 项和,63,6,994=-==n S a a ,求n ; 2、等差数列{}n a 中,410a =且3610a a a ,,成等比数列,求数列{}n a 前20项的和20S . 3、设{}n a 是公比为正数的等比数列,若16,151==a a ,求数列{}n a 前7项的和. 4、已知四个实数,前三个数成等差数列,后三个数成等比数列,首末两数之和为37, 中间两数之和为36,求这四个数. 5在等差数列{a n }中, (1)已知a 15=10,a 45=90,求a 60; (2)已知S 12=84,S 20=460,求S 28; (3)已知a 6=10,S 5=5,求a 8和S 8. 6、有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12,求这四个数. 7、已知△ABC 中,三内角A 、B 、C 的度数成等差数列,边a 、b 、c 依次成等比数列.求证:△ABC 是等边三角形. B )根据数列的性质求解(整体思想) 1、已知n S 为等差数列{}n a 的前n 项和,1006=a ,则=11S ; 2、设n S 、n T 分别是等差数列{}n a 、 {}n a 的前n 项和,327++=n n T S n n ,则=5 5b a . 3、设n S 是等差数列{}n a 的前n 项和,若 ==5 935,95S S a a 则( ) 4、等差数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,若231n n S n T n =+,则n n a b =( ) 5、已知n S 为等差数列{}n a 的前n 项和,)(,m n n S m S m n ≠==,则=+n m S .. 6、已知等比数列{a n }中,a 1·a 9=64,a 3+a 7=20,则a 11= .

数列常见题型总结经典(超级经典)

数列常见题型总结经典(超 级经典) -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

高中数学《数列》常见、常考题型总结 题型一 数列通项公式的求法 1.前n 项和法(知n S 求n a )???-=-11n n n S S S a ) 2()1(≥=n n 例1、已知数列}{n a 的前n 项和212n n S n -=,求数列|}{|n a 的前n 项和n T 1、若数列}{n a 的前n 项和n n S 2=,求该数列的通项公式。 2、若数列}{n a 的前n 项和32 3-= n n a S ,求该数列的通项公式。 3、设数列}{n a 的前n 项和为n S ,数列}{n S 的前n 项和为n T ,满足22n S T n n -=, 求数列}{n a 的通项公式。 2.形如)(1n f a a n n =-+型(累加法) (1)若f(n)为常数,即:d a a n n =-+1,此时数列为等差数列,则n a =d n a )1(1-+. (2)若f(n)为n 的函数时,用累加法.

例 1. 已知数列{a n }满足)2(3,1111≥+==--n a a a n n n ,证明2 13-=n n a 1. 已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式. 2. 已知数列}{n a 满足31=a ,)2() 1(11≥-+=-n n n a a n n ,求此数列的通项公式. 3.形如)(1n f a a n n =+型(累乘法) (1)当f(n)为常数,即:q a a n n =+1(其中q 是不为0的常数),此数列为等比且n a =11-?n q a . (2)当f(n)为n 的函数时,用累乘法. 例1、在数列}{n a 中111 ,1-+==n n a n n a a )2(≥n ,求数列的通项公式。 1、在数列}{n a 中111 1,1-+-==n n a n n a a )2(≥n ,求n n S a 与。

《平方根》典型例题及练习

《平方根》典型例题及练习

平方根练习题 1、平方根:一般地,如果一个数x 的平方等于a,即x 2=a 那么这个数x 就叫做a 的平方根(也叫做二次方根式),算术平方根 2、平方根的性质:(1)一个正数有 个平方根,它们 (2)0的平方根 是 ;(3) 没有平方根. 3、重要公式: (1)=2 )( a (2){==a a 2 4、平方表: 5.正数有_____________个立方根, 0有__________个立方根,负数有__________个立方根,立方根也叫做_______________. 6.一个正方体的棱长扩大3倍,则它的体积扩大_____________. 7.若一个数的立方根等于数的算术平方根,则这个数是_____________. 8. 0的立方根是___________.(-1)2005的立方根是______________.1827 26 的立方根是________. 例1、判断下列说法正确的个数为( ) ① -5是-25的算术平方根; ② 6是()26-的算术平方根; ③ 0的算术平方根是0;

④ 0.01是0.1的算术平方根; ⑤ 一个正方形的边长就是这个正方形的面积的算术平方根. A .0 个 B .1个 C .2个 D .3个 例2、 36的平方根是( ) A 、6 B 、6± C 、 6 D 、 6± 例3、下列各式中,哪些有意义? (1) 5 (2)2- (3)4- (4) 2 )3(- (5) 310- 例4、一个自然数的算术平方根是a ,则下一个自然数的算术平方根是( ) A .()1+a B .()1+±a C .1 2+a D .12+± a 强化训练 一、选择题 1.下列说法中正确的是( ) A .9的平方根是3 B 4 2 2. 4的平方的倒数的算术平方根是( ) A .4 B .18 C .-14 D .14 3.下列结论正确的是( ) A 6)6(2-=-- B 9)3(2=- C 16)16(2±=- D 25 1625162 =? ?? ? ? ?-- 4.以下语句及写成式子正确的是( ) A 、7是49的算术平方根,即749±= B 、 7是2 )7(-的平方根,即 7)7(2=- C 、7±是49的平方根, 即7 49=± D 、7±是49的平方根,即749±= 5.下列说法:(1)3±是9的平方根;(2)9的平方根是3±;(3)3是9的平方根; (4)9的平方根是3,其中正确的有( ) A .3个 B .2个 C .1个 D .4个 6.下列说法正确的是( ) A .任何数的平方根都有两个 B .只有正数才有平方根

数列常见题型分析与方法总结

数列常见题型分析与做法 一、等差、等比数列的概念与性质 1、已知等比数列432,,,}{a a a a n 中分别是某等差数列的第5项、第3项、第2项,且1,641≠=q a 公比,求n a ; (I )依题意032),(32244342=+--+=a a a a a a a 即 03213131=+-∴q a q a q a 2 1101322 = =?=+-∴q q q q 或2 11= ∴≠q q 1)2 1 (64-?=n n a 故 二、求数列的通项 类型1 )(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例:已知数列{}n a 满足2 11=a ,n n a a n n ++ =+2 11,求n a 答案:n n a n 12 3112 1- = - += ∴ 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为)(1n f a a n n =+,利用累乘法(逐商相乘法)求解。 例:已知数列{}n a 满足321= a ,n n a n n a 1 1+= +,求n a 答案:n a n 32= ∴ 类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。 解法(待定系数法):把原递推公式转化为:)(1t a p t a n n -=-+,其中p q t -=1,再利用换元 法转化为等比数列求解。 例:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a . 提示:)3(231+=++n n a a 答案:321-=+n n a . 类型4 递推公式为n S 与n a 的关系式。(或()n n S f a =) 解法:这种类型一般利用???≥???????-=????????????????=-) 2() 1(11n S S n S a n n n 与)()(11---=-=n n n n n a f a f S S a 消去n S )2(≥n 或与)(1--=n n n S S f S )2(≥n 消去n a 进行求解。 例:已知数列{}n a 前n 项和2 2 14---=n n n a S . (1)求1+n a 与n a 的关系;(2)求通项公式n a . 解:(1)由2 2 14-- -=n n n a S 得:1 112 14-++- -=n n n a S 于是) 2 12 1( )(1 2 11--++- +-=-n n n n n n a a S S 所以1 112 1 -+++ -=n n n n a a a n n n a a 2 12 11+ = ?+.

数列全部题型归纳(非常全面-经典!)讲解学习

数列全部题型归纳(非常全面-经典!)

数列百通 通项公式求法 (一)转化为等差与等比 1、已知数列{}n a 满足11a =,n a =,n N *∈2≤n ≤8),则它的通项公式n a 什么 2.已知{}n a 是首项为2的数列,并且112n n n n a a a a ---=,则它的通项公式n a 是什么 3.首项为2的数列,并且231n n a a -=,则它的通项公式n a 是什么 4、已知数列{}n a 中,10a =,112n n a a +=-,*N n ∈.

求证:11n a ????-?? 是等差数列;并求数列{}n a 的通项公式; 5.已知数列{}n a 中,13a =,1222n n a a n +=-+,如果2n n b a n =-,求数列{}n a 的通项公式 (二)含有n S 的递推处理方法 1)知数列{a n }的前n 项和S n 满足log 2(S n +1)=n +1,求数列{a n }的通项公式.

2.)若数列{}n a 的前n 项和n S 满足,2 (2) 8n n a S +=则,数列n a 3)若数列{}n a 的前n 项和n S 满足,111 ,0,4n n n n a S S a a -=-≠=则,数列 n a 4)12323...(1)(2)n a a a na n n n +++=++ 求数列n a (三) 累加与累乘 (1)如果数列{}n a 中111,2n n n a a a -=-=(2)n ≥求数列n a

(2)已知数列}{n a 满足31=a ,)2() 1(11≥-+ =-n n n a a n n ,求此数列的通项公式 (3) 12+211,2,=32n n n a a a a a +==-,求此数列的通项公式. (4)若数列{}n a 的前n 项和n S 满足,211,2 n n S n a a ==则,数列n a (四)一次函数的递推形式 1. 若数列{}n a 满足1111,12 n n a a a -== +(2)n ≥,数列n a

数的开方精选练习题

] 数的开方单元试题(华东师大版) 考试总分:120分 考试时间:90分钟 姓名: 得分: 一、选择题(共8题24分,每题3分) 1、4的算术平方根是( ) A 、4- B 、4 C 、2- D 、2 2、“9的平方根是3±”的表达式正确的是( ) A 、39±=± B 、39= 、 C 、39±= D 、39=- 3、若式子5+x 在实数范围内有意义,则x 的取值范围是( ) A 、5->x B 、5- 10、=81 ,=±25 16 ,=-31 11、若2 (1) 0a b -+=则a=_________b=__________ 12、若一个正数的平方根是2a ﹣1和﹣a+2,则a= _______,这个正数是 ______ . 13、若一个数的平方根为±8,则这个数的立方根为 _________ . 14、已知a 、b 为两个连续整数,且b a <<17,则=+b a 15、如果23-x 和65+x 是一个数的平方根,那么这个数是 16、若252 =a ,3=b ,则b a +的值是 — 三、计算(共2题8分,每题4分) (1)、3 801.04 1 --+ (2)、33331804.01044.1----+ } 四、解方程(本题共2个小题8分,每题3分) (1)、049162 =-x (2)、25)1(2 =-x | 五、解答题(本题共6个小题48分,每题8分) (1)、已知12-a 的立方根是3,13--b a 的平方根是4±,求b a 2+的平方根 》 (2)、已知x 是的整数部分,y 是的小数部分,求的平方根. · (3)、)已知x ,y 为实数,且,求 的值.

最新初三数学三角形知识点总结归纳复习过程

三角形的定义 三角形是多边形中边数最少的一种。它的定义是:由不在同一条直线上的三条线段首尾顺次相接组成的图形叫做三角形。 三条线段不在同一条直线上的条件,如果三条线段在同一条直线上,我们认为三角形就不存在。另外三条线段必须首尾顺次相接,这说明三角形这个图形一定是封闭的。三角形中有三条边,三个角,三个顶点。 三角形中的主要线段 三角形中的主要线段有:三角形的角平分线、中线和高线。 这三条线段必须在理解和掌握它的定义的基础上,通过作图加以熟练掌握。并且对这三条线段必须明确三点: (1)三角形的角平分线、中线、高线均是线段,不是直线,也不是射线。 (2)三角形的角平分线、中线、高线都有三条,角平分线、中线,都在三角形内部。而三角形的高线在当△ABC是锐角三角形时,三条高都是在三角形内部,钝角三角形的高线中有两个垂足落在边的延长线上,这两条高在三角形的外部,直角三角形中有两条高恰好是它的两条直角边。 (3)在画三角形的三条角平分线、中线、高时可发现它们都交于一点。在以后我们可以给出具体证明。今后我们把三角形三条角平分线的交点叫做三角形的内心,三条中线的交点叫做三角形的重心,三条高的交点叫做三角形的垂心。 三角形的按边分类 三角形的三条边,有的各不相等,有的有两条边相等,有的三条边都相等。所以三角形按的相等关系分类如下: 等边三角形是等腰三角形的一种特例。 判定三条边能否构成三角形的依据 △ABC的三边长分别是a、b、c,根据公理“连接两点的所有线中,线段最短”。可知: △③a+b>c,①a+c>b,②b+c>a △定理:三角形任意两边的和大于第三边。 △由②、③得b―a<c,且b―a>―c △故|a―b|<c,同理可得|b―c|<a,|a―c|<b。 从而得到推论: 三角形任意两边的差小于第三边。 上述定理和推论实际上是一个问题的两种叙述方法,定理包含了推论,推论也可以代替定理。另外,定理和推论是判定三条线段能否构成三角形的依据。如:三条线段的长分别是5、4、3便能构成三角形,而三条线段的长度分别是5、3、1,就不能构成三角形。 判定三条边能否构成三角形 对于某一条边来说,如一边a,只要满足|b-c|<a<b+c,则可构成三角形。这是因为|b-c|<a,即b-c<a,且b-c>-a.也就是a+c>b且a+b>c,再加上b+c>a,便满足任意两边之和大于第三边的条件。反过来,只要a、b、c三条线段满足能构成三角形的条件,则一定有|b-c|<a<b+c。 在特殊情况下,如果已知线段a最大,只要满足b+c>a就可判定a、b、c三条线段能够构成三角形。同时如果已知线段a最小,只要满足|b-c|<a,就能判定三条线段a、b、c构成三角形。 证明三角形的内角和定理 除了课本上给出的证明方法外还有多种证法,这里再介绍两种证法的思路: 方法1 如图,过顶点A作DE‖BC,

数列题型及解题方法归纳总结

知识框架 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常 数) 例1、已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解∵a n+1-a n =2为常数∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1)即a n =2n-1 例2、已知{}n a 满足11 2n n a a +=,而12a =,求 n a =? (2)递推式为a n+1=a n +f (n ) 例3、已知{}n a 中112 a = ,12 141 n n a a n +=+ -,求n a . 解:由已知可知 )12)(12(11-+= -+n n a a n n )1 21 121(21+--=n n 令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1) ★ 说明只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代入,可得n-1个等式累加而求a n 。 (3)递推式为a n+1=pa n +q (p ,q 为常数) 例4、{}n a 中,11a =,对于n >1(n ∈N )有 132n n a a -=+,求n a . 解法一:由已知递推式得a n+1=3a n +2,a n =3a n-1+2。两式相减:a n+1-a n =3(a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为a 2-a 1=(3×1+2)-1=4 ∴a n+1-a n =4·3n-1∵a n+1=3a n +2∴3a n +2-a n =4·3n-1 即a n =2·3n-1-1 解法二:上法得{a n+1-a n }是公比为3的等比数列,于是有:a 2-a 1=4,a 3-a 2=4·3,a 4-a 3=4·32,…,a n -a n-1=4·3n-2, 把n-1个等式累加得:∴an=2·3n-1-1 (4)递推式为a n+1=pa n +qn (p ,q 为常数) )(3 2 11-+-=-n n n n b b b b 由上题的解法, 得:n n b )3 2(23-=∴ n n n n n b a )31(2)21(32 -== (5)递推式为21n n n a pa qa ++=+ 思路:设21n n n a pa qa ++=+,可以变形为: 211()n n n n a a a a αβα+++-=-, 想 于是{a n+1-αa n }是公比为β的等比数列,就转化 为前面的类型。 求n a 。 (6)递推式为S n 与a n 的关系式 系;(2)试用n 表示a n 。 ∴)2121( )(1 2 11 --++- +-=-n n n n n n a a S S ∴1 11 2 1 -+++ -=n n n n a a a ∴ n n n a a 2 1 211+= + 上式两边同乘以2n+1得2n+1a n+1=2n a n +2则{2n a n }是公差为2的等差数列。 ∴2n a n =2+(n-1)·2=2n 数列求和的常用方法: 1、拆项分组法:即把每一项拆成几项,重新组合分成几组,转化为特殊数列求和。

数列常见题型总结经典

高中数学《数列》常见、常考题型总结 题型一 数列通项公式的求法 1.前n项和法(知n S 求n a )?? ?-=-11 n n n S S S a ) 2()1(≥=n n 例1、已知数列}{n a 的前n 项和2 12n n S n -=,求数列|}{|n a 的前n 项和n T 变式:已知数列}{n a 的前n 项和n n S n 122 -=,求数列|}{|n a 的前n项和n T 练习: 1、若数列}{n a 的前n 项和n n S 2=,求该数列的通项公式。答案:???=-12 2n n a )2() 1(≥=n n 2、若数列}{n a 的前n 项和32 3-=n n a S ,求该数列的通项公式。答案:n n a 32?= 3、设数列}{n a 的前n项和为n S ,数列}{n S 的前n 项和为n T ,满足2 2n S T n n -=, 求数列}{n a 的通项公式. 4.n S 为{n a }的前n 项和,n S =3(n a -1),求n a (n ∈N +) 5、设数列{}n a 满足2 *12333()3 n n a a a a n N +++= ∈n-1 …+3,求数列{}n a 的通项公式(作差法) 2。形如)(1n f a a n n =-+型(累加法) (1)若f(n)为常数,即:d a a n n =-+1,此时数列为等差数列,则n a =d n a )1(1-+。 (2)若f(n)为n 的函数时,用累加法. 例 1. 已知数列{a n }满足)2(3,111 1≥+==--n a a a n n n ,证明2 1 3-=n n a 例2.已知数列{}n a 的首项为1,且* 12()n n a a n n N +=+∈写出数列{}n a 的通项公式. 例3.已知数列}{n a 满足31=a ,)2() 1(1 1≥-+ =-n n n a a n n ,求此数列的通项公式。 3。形如 )(1 n f a a n n =+型(累乘法) (1)当f(n)为常数,即:q a a n n =+1(其中q 是不为0的常数),此数列为等比且n a =1 1-?n q a 。 (2)当f(n )为n 的函数时,用累乘法. 例1、在数列}{n a 中111 ,1-+==n n a n n a a )2(≥n ,求数列的通项公式.答案:12+=n a n 练习: 1、在数列}{n a 中111 1,1-+-==n n a n n a a )2(≥n ,求n n S a 与。答案:)1(2 +=n n a n 2、求数列)2(1 232,111 ≥+-==-n a n n a a n n 的通项公式。 4。形如s ra pa a n n n += --11 型(取倒数法) 例1. 已知数列{}n a 中,21=a ,)2(1 211 ≥+=--n a a a n n n ,求通项公式n a

数的开方知识点练习题

第十 一章:数 的 开 方 一、平方根、算术平方根的概念及性质 1、如果一个数的 等于a ,那么这个数叫做a 的平方根,正数的平方根有 个,它们的关系是 ,0的平方根是 ,负数 正数a 的 叫做a 的算术平方根。121的平方根是±11的数学表达式是 2、________的平方等于25,所以25的平方根是________16的平方根是________算术平方根是______;(-4)2的平方根是 3、若一个正数的平方根是2a -1和-a +2,则a =________这个数是 ;若4a +1的算术平方根是3,则a 的值 4、若2 16a =,则a =________;若 1.2a =,则a =________ 5、若054=-++-y x x ,则=x ________,=y ________ 6、在小于或等于100的非负整数中,其平方根是整数的共有 个 7、若42-x 有意义,则x . 当x = 时,有29x -最大值,最大值 是 8、88的整数部分是 ;若a<570 B.a ≥0 C.a<0 D.a ≤0 二、立方根的概念及性质 1、如果一个数的 等于a ,那么这个数就叫做a 的立方根,正数有 的立方根,负数有 的立方根,0的立方根为 2、64的立方根的平方根是 若033=+y x ,则x 与y 的关系是 3、若式子3112a a -+-有意义,则a 的取值范围为 4、如果 68.28,868.26.233 3 ==x ,那么x= 5、若x 3=216,则x= ;若x 3=729,则x = ; 6、若519x +的立方根为4,则27x +的平方根是______. 7、由下列等式: 3 333332233442 2,33,44,7726266363 ===…… 所揭示的规律,可得出一般的结论是 三、实数、相反数、绝对值、数轴 1、有理数包括整数和 ;有理数可以用 小数和 小数表示; 叫无理数;无限 小数包括无限循环小数和 ,其中 是有理数, 是无理数; 2、下列各数:23 ,-3π,3.1415926,25,191,3 8-,3.101001000……,9-,? ? 9641.3中,无理数有 个,有理数有 个,负数有 个,整数有 个. 3、下列说法中正确的是( ) A 、有限小数是有理数 B 、无限小数是无理数 C 、数轴上的点与有理数一一对应 D 、无理数就是带根号的数 4、下列说法正确的是( ) A、两个正无理数之和一定还是正无理数B、两个无理数之间没有有理数 C、无理数分为正无理数、负无理数和零D、无理数可以用数轴上的点表示

(经典)高中数学最全数列总结及题型精选

高中数学:数列及最全总结和题型精选 一、数列的概念 (1)数列定义:按一定次序排列的一列数叫做数列; 数列中的每个数都叫这个数列的项。记作n a ,在数列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,……,序号为n 的项叫第n 项(也叫通项)记作n a ; 数列的一般形式:1a ,2a ,3a ,……,n a ,……,简记作 {}n a 。 (2)通项公式的定义:如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就叫 这个数列的通项公式。 例如:①:1 ,2 ,3 ,4, 5 ,… ②:5 14131211,,,,… 说明: ①{}n a 表示数列,n a 表示数列中的第n 项,n a = ()f n 表示数列的通项公式; ② 同一个数列的通项公式的形式不一定唯一。例如,n a = (1)n -=1,21 ()1,2n k k Z n k -=-?∈? +=?; ③不是每个数列都有通项公式。例如,1,1.4,1.41,1.414,…… (3)数列的函数特征与图象表示: 从函数观点看,数列实质上是定义域为正整数集N +(或它的有限子集)的函数()f n 当自变量n 从1开始 依次取值时对应的一系列函数值(1),(2),(3),f f f ……,()f n ,…….通常用n a 来代替()f n ,其图象是一群孤立点。 (4)数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关系分:递增数列、递减数列、常数列和摆动数列。 例:下列的数列,哪些是递增数列、递减数列、常数列、摆动数列? (1)1,2,3,4,5,6,… (2)10, 9, 8, 7, 6, 5, … (3) 1, 0, 1, 0, 1, 0, … (4)a, a, a, a, a,… (5)数列{n a }的前n 项和n S 与通项n a 的关系:1 1(1)(2) n n n S n a S S n -=?=? -?≥ 二、等差数列 (一)、等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。用递推公式表示为1(2)n n a a d n --=≥或1(1)n n a a d n +-=≥ 例:等差数列12-=n a n ,=--1n n a a (二)、等差数列的通项公式:1(1)n a a n d =+-; 说明:等差数列(通常可称为A P 数列)的单调性:d 0>为递增数列,0d =为常数列,0d < 为递减数列。 例:1.已知等差数列{}n a 中,12497116 a a a a ,则,==+等于( ) A .15 B .30 C .31 D .64 2.{}n a 是首项11a =,公差3d =的等差数列,如果2005n a =,则序号n 等于 (A )667 (B )668 (C )669 (D )670 3.等差数列12,12+-=-=n b n a n n ,则n a 为 n b 为 (填“递增数列”或“递减数列”) (三)、等差中项的概念:

数的开方练习题集

数的开方练习题集 数的开方小测试题(1) 追求卓越 肩负天下 1.计算: ()()2332481----- - 2.计算: ()91645232--+ ?- 3.计算: 313221---+ - 4.计算: (1)04.010363 2972+-; (2)()323832164---???? ??-+-. 5.计算: 4 128253+-- 6.已知y x ,为实数,且499+---=x x y ,求y x + 的值. 7.已知0276433=-++b a ,求()b b a -的立方根. 8.计算: (1)()()()11122++--x x x x ; (2)()()[]y x y x x y y x x 232223÷--.

数的开方小测试题(2) 追求卓越 肩负天下 1.计算: (1)()572243+-?-÷-; (2)()328235---+ -. 2.解下列方程: (1)()64122=-x ; (2)()6412273 -=--x . 3.求下列代数式的值: (1)若b a ,42=的算术平方根为3,求b a +的值; (2)已知x 是25的平方根,y 是16的算术平方根,且y x <,求y x -的值. 4.已知12-a 的平方根是3±,124++b a 的平方根是5±,求b a 2-得平方根. 5.已知b a ,互为倒数,d c ,互为相反数,求13+++d c ab 的值. 6.计算: 2 2341312764949??? ??+??? ??+--. 数的开方小测试题(3)

追求卓越 肩负天下 1.若322=+-+-y x x ,求y x 的值 2.一个正数a 的两个平方根分别是2+x 和82-x ,求a 的值. 3.若321x -与353-x 互为相反数,求x -1的值. 4.已知43=x ,且()03122 =-++-z z y ,求333z y x ++的值. 5.计算: ()4121813162 3÷??? ??---+

知识点26 等腰三角形与等边三角形2019

一、选择题 12.(2019·烟台)如图,AB 是O e 的直径,直线DE 与O e 相切于点C ,过点A ,B 分别作AD DE ⊥,BE DE ⊥, 垂足为点D ,E ,连接AC ,BC .若AD = 3CE =,则?AC 的长为( ). A B C D 【答案】D 【解题过程】连接OC , 因为AD DE ⊥,BE DE ⊥, 所以90ADC CEB ∠=∠=? 所以90DAC ACD ∠+∠=? 因为AB 是O e 的直径, 所以90ACB ∠=?, 所以90BCE ACD ∠+∠=?, 所以BCE DAC ∠=∠, 在△ADC 与△CED , 因为90ADC CEB ∠=∠=?,BCE DAC ∠=∠ 所以△ADC ∽△CED , 所以 BC CE AC AD ===在Rt △ACB 中,sin BC BAC AC ∠= = 所以60BAC ∠=?, 又因为OA OC =, 所以△AOC 是等边三角形, 所以60ACO ∠=?, 因为直线DE 与 O e 相切于点C , 所以OC DE ⊥, 因为AD DE ⊥,OC DE ⊥, 所以AD//OC , 所以60DAC ACO ∠=∠=?, 所以9030ACD DAC ∠=?-∠=?, 所以2AC AD ==, 所以△AOC 是等边三角形, 所以OA AC ==,60AOC ∠=?, O D E B A

所以? AC 的长为602323 ππ??=. 8.(2019·娄底)如图(2),边长为23的等边△ABC 的内切圆的半径为( ) A. 1 B . 3 C . 2 D . 23 【答案】A 【解析】由等边三角形的内心即为中线,底边高,角平分线的交点,则在直角三角形OCD 中,从而解得. 如图(2-1),设D 为⊙O 与AC 的切点,连接OA 和OD , ∵等边三角形的内心即为中线,底边高,角平分线的交点, ∴OD ⊥AC ,∠OAD =30°,OD 即为圆的半径. 又∵23AC =, ∴11 23322 AD AC = =?= ∴在直角三角形OAD 中, 3 tan tan 303 OD OAD AD ∠=?= ==, 代入解得:OD =1. 故答案为 1. 1.(2019·潍坊)如图已知∠AOB ,按照以下步骤作图: ①以点O 为圆心,以适当的长为半径作弧,分别交∠AOB 的两边于C ,D 两点,连接CD . ②分别以点C ,D 为圆心,以大于线段OC 的长为半径作弧,两弧在∠AOB 内交于点E ,连接CE ,DE . ③连接OE 交CD 于点M . 下列结论中错误的是() A .∠CEO =∠DEO B .CM =MD C .∠OC D =∠ECD D .S 四边形OCED = 1 2 CD ·OE

相关主题
文本预览
相关文档 最新文档