当前位置:文档之家› 安卓进程android process media一直占用CPU、发热问题解决方法

安卓进程android process media一直占用CPU、发热问题解决方法

安卓进程android process media一直占用CPU、发热问题解决方法
安卓进程android process media一直占用CPU、发热问题解决方法

关于安卓系统android.process.media进程一直占用CPU、消耗电池电量、手机发热、异常停止等的解决方案

一、现象:

手机开机一段长时间后,操作反应仍然巨慢,近似死机。

平时1分钟内完全开机,尔后操作会很顺畅,偶尔会有小卡,但不会完全卡死。开启“设置->开发者选项->监控->显示CPU使用情况”后,发现android.process.media一直在占用cpu。

通过Watchdog Task Manager和SystemTuner查看其CPU占用率,维持在60%以上。即使重启也一样卡死。(android 4.1.2)

二、分析:

1.“受DRM保护的内容的存储、下载管理器、下载内容、媒体存储”在同一个进程中,即android.process.media。开机后,进程android.process.media会运行一段时间后停止并转为后台(扫描时间因数据量而定,我的11G数据要扫描10分钟左右才停止,不过优先级比较低),其服务是一个MediaScannerService。android.process.media包括“受DRM保护的内容的存储、下载管理器、下载内容、媒体存储”等软件包。

2.系统升级、刷机后或数据出错,很容易出现android.process.media异常停止或一直占用CPU的情况。

3.某些程序开机启动,对系统进行扫描动作。

三、解决方案:

1.如果出现android.process.media一直占用CPU的情况,在“系统设置->应用->全部->下载管理器”中选择“清除数据”。

2.如果出现“andrioid.proces.media已停止”,在“设置->应用程序->管理应用程序->全部->媒体储存”中,选择“清除数据”。

3.有Root的手机,尽量安装管理软件,禁止一些不必要开机启动的软件。

PS:在保留用户数据而进行升级或刷机时,一些软件会出现异常停止的情况,也可以先尝试进入“管理应用”清除其数据。

操作系统实验-进程控制

实验一、进程控制实验 1.1 实验目的 加深对于进程并发执行概念的理解。实践并发进程的创建和控制方法。观察和体验进程的动态特性。进一步理解进程生命期期间创建、变换、撤销状态变换的过程。掌握进程控制的方法,了解父子进程间的控制和协作关系。练习Linux 系统中进程创建与控制有关的系统调用的编程和调试技术。 1.2 实验说明 1)与进程创建、执行有关的系统调用说明进程可以通过系统调用fork()创建子进程并和其子进程并发执行.子进程初始的执行映像是父进程的一个复本.子进程可以通过exec()系统调用族装入一个新的执行程序。父进程可以使用wait()或waitpid()系统调用等待子进程的结束并负责收集和清理子进程的退出状态。 fork()系统调用语法: #include pid_t fork(void); fork 成功创建子进程后将返回子进程的进程号,不成功会返回-1. exec 系统调用有一组6 个函数,其中示例实验中引用了execve 系统调用语法: #include int execve(const char *path, const char *argv[], const char * envp[]); path 要装入 的新的执行文件的绝对路径名字符串. argv[] 要传递给新执行程序的完整的命令参数列表(可以为空). envp[] 要传递给新执行程序的完整的环境变量参数列表(可以为空).

Exec 执行成功后将用一个新的程序代替原进程,但进程号不变,它绝不会再返回到调用进程了。如果exec 调用失败,它会返回-1。 wait() 系统调用语法: #include #include pid_t wait(int *status); pid_t waitpid(pid_t pid,int *status,int option); status 用 于保留子进程的退出状态 pid 可以为以下可能值: -1 等待所有PGID 等于PID 的绝对值的子进程 1 等待所有子进程 0 等待所有PGID 等于调用进程的子进程 >0 等待PID 等于pid 的子进程option 规 定了调用waitpid 进程的行为: WNOHANG 没有子进程时立即返回 WUNTRACED 没有报告状态的进程时返回 wait 和waitpid 执行成功将返回终止的子进程的进程号,不成功返回-1。 getpid()系统调用语法: #include #include pid_t getpid(void); pid_t getppid(void); getpid 返回当前进程的进程号,getppid 返回当前进程父进程的进程号 2)与进程控制有关的系统调用说明可以通过信号向一个进程发送消息以控制进程的 行为。信号是由中断或异常事件引发的,如:键盘中断、定时器中断、非法内存引

LINUX中限制CPU和内存占用率方法

查看cpu占用 在命令行中输入 top 即可启动 top top 的全屏对话模式可分为3部分:系统信息栏、命令输入栏、进程列表栏。 使用top查看系统负荷 top命令可以动态监视系统负荷,包括CPU、内存的使用率和占用资源较多的进程详情等。 动态查看系统负荷(占用一个终端) top 显示后退出 top -n 1 以文本方式输出,以备其它程序使用 top -b 好了,我们现在来看限制CPU和内存占用率方法 脚本内容: 代码如下 #!/bin/sh UPID=`top -bn 1 | grep ^ *[1-9] | awk '{ if($9 ; 20 || $10 ; 25 && id -u $2 ; 500) print $1}'` for PID in $UPID do renice +10 $PID echo renice +10 $PID done

我对上面的脚本进行了修改,可以让其针对整个服务器的进程进行限制. 修改后的脚本: 代码如下 #!/bin/sh UPID=`top -bn 1 | grep ^ *[1-9] | awk '{ if($9 ; 50 || $10 ; 25 ) print $1}'` for PID in $UPID do renice +10 $PID echo renice +10 $PID done 可以将这个脚本放到cron中运行,让其每分钟检查一次: 代码如下 chmod +x limit.sh vi /etc/crontab */1 * * * * /bin/sh /root/soft_shell/limit.sh

Android系统进程间通信Binder机制在应用程序框架层的Java接口源代码分析

在前面几篇文章中,我们详细介绍了Android系统进程间通信机制Binder的原理,并且深入分析了系统提供的Binder运行库和驱动程序的源代码。细心的读者会发现,这几篇文章分析的Binder接口都是基于C/C++语言来实现的,但是我们在编写应用程序都是基于Java语言的,那么,我们如何使用Java语言来使用系统的Binder机制来进行进程间通信呢?这就是本文要介绍的Android系统应用程序框架层的用Java语言来实现的Binder接口了。 熟悉Android系统的读者,应该能想到应用程序框架中的基于Java语言的Binder接口是通过JNI来调用基于C/C++语言的Binder运行库来为Java应用程序提供进程间通信服务的了。JNI在Android系统中用得相当普遍,SDK中的Java 接口API很多只是简单地通过JNI来调用底层的C/C++运行库从而为应用程序服务的。 这里,我们仍然是通过具体的例子来说明Binder机制在应用程序框架层中的Java接口,主要就是Service Manager、Server和Client这三个角色的实现了。通常,在应用程序中,我们都是把Server实现为Service的形式,并且通过IServiceManager.addService接口来把这个Service添加到Service Manager,Client也是通过IServiceManager.getService接口来获得Service接口,接着就可以使用这个Service提供的功能了,这个与运行时库的Binder接口是一致的。 前面我们学习Android硬件抽象层时,曾经在应用程序框架层中提供了一个硬件访问服务HelloService,这个Service运行在一个独立的进程中充当Server的角色,使用这个Service的Client运行在另一个进程中,它们之间就是通过Binder机制来通信的了。这里,我们就使用HelloService这个例子来分析Android系统进程间通信Binder机制在应用程序框架层的Java接口源代码。所以希望读者在阅读下面的内容之前,先了解一下前面在Ubuntu上为Android系统的Application Frameworks层增加硬件访问服务这篇文章。 这篇文章通过五个情景来学习Android系统进程间通信Binder机制在应用程序框架层的Java接口:1. 获取Service Manager的Java远程接口的过程;2. HelloService接口的定义;3. HelloService的启动过程;4. Client获取HelloService 的Java远程接口的过程;5. Client通过HelloService的Java远程接口来使用HelloService提供的服务的过程。 一. 获取Service Manager的Java远程接口

操作系统实验报告--实验一--进程管理

实验一进程管理 一、目的 进程调度是处理机管理的核心内容。本实验要求编写和调试一个简单的进程调度程序。通过本实验加深理解有关进程控制块、进程队列的概念,并体会和了解进程调度算法的具体实施办法。 二、实验内容及要求 1、设计进程控制块PCB的结构(PCB结构通常包括以下信息:进程名(进程ID)、进程优先数、轮转时间片、进程所占用的CPU时间、进程的状态、当前队列指针等。可根据实验的不同,PCB结构的内容可以作适当的增删)。为了便于处理,程序中的某进程运行时间以时间片为单位计算。各进程的轮转时间数以及进程需运行的时间片数的初始值均由用户给定。 2、系统资源(r1…r w),共有w类,每类数目为r1…r w。随机产生n进程P i(id,s(j,k),t),0<=i<=n,0<=j<=m,0<=k<=dt为总运行时间,在运行过程中,会随机申请新的资源。 3、每个进程可有三个状态(即就绪状态W、运行状态R、等待或阻塞状态B),并假设初始状态为就绪状态。建立进程就绪队列。 4、编制进程调度算法:时间片轮转调度算法 本程序用该算法对n个进程进行调度,进程每执行一次,CPU时间片数加1,进程还需要的时间片数减1。在调度算法中,采用固定时间片(即:每执行一次进程,该进程的执行时间片数为已执行了1个单位),这时,CPU时间片数加1,进程还需要的时间片数减1,并排列到就绪队列的尾上。 三、实验环境 操作系统环境:Windows系统。 编程语言:C#。 四、实验思路和设计 1、程序流程图

2、主要程序代码 //PCB结构体 struct pcb { public int id; //进程ID public int ra; //所需资源A的数量 public int rb; //所需资源B的数量 public int rc; //所需资源C的数量 public int ntime; //所需的时间片个数 public int rtime; //已经运行的时间片个数 public char state; //进程状态,W(等待)、R(运行)、B(阻塞) //public int next; } ArrayList hready = new ArrayList(); ArrayList hblock = new ArrayList(); Random random = new Random(); //ArrayList p = new ArrayList(); int m, n, r, a,a1, b,b1, c,c1, h = 0, i = 1, time1Inteval;//m为要模拟的进程个数,n为初始化进程个数 //r为可随机产生的进程数(r=m-n) //a,b,c分别为A,B,C三类资源的总量 //i为进城计数,i=1…n //h为运行的时间片次数,time1Inteval为时间片大小(毫秒) //对进程进行初始化,建立就绪数组、阻塞数组。 public void input()//对进程进行初始化,建立就绪队列、阻塞队列 { m = int.Parse(textBox4.Text); n = int.Parse(textBox5.Text); a = int.Parse(textBox6.Text); b = int.Parse(textBox7.Text); c = int.Parse(textBox8.Text); a1 = a; b1 = b; c1 = c; r = m - n; time1Inteval = int.Parse(textBox9.Text); timer1.Interval = time1Inteval; for (i = 1; i <= n; i++) { pcb jincheng = new pcb(); jincheng.id = i; jincheng.ra = (random.Next(a) + 1); jincheng.rb = (random.Next(b) + 1); jincheng.rc = (random.Next(c) + 1); jincheng.ntime = (random.Next(1, 5)); jincheng.rtime = 0;

Linux下使用cpulimit限制进程的cpu使用率

Linux下使用cpulimit限制进程的cpu使用率 很用Linux时可能大家经常发现莫名其妙就变的非常慢,这时多半是后台进程使用的cpu和内存太多了。如何限制每个进程的cpu使用资源呢? 可以使用cpulimit限制每个进程的cpu使用率,使用率用百分百来表示。 安装cpulimit 使用源码安装 # cd /tmp # wget '网址http://' 网址:https://www.doczj.com/doc/665328226.html,/cpulimit/cpulimit-1.1.tar.gz # tar cpulimit-1.1.tar.gz # cd cpulimit-1.1 # make # cp cpulimit /usr/local/sbin/ # rm -rf cpulimit* Debian / Ubuntu 用户 使用apt-get更方便的安装 $ sudo apt - get update $ sudo apt - get install cpulimit 如何使用cpulimit? 限制firefox使用30% cpu利用率 # cpulimit -e firefox -l 30 限制进程号1313的程序使用30% cpu利用率 # cpulimit -p 1313 -l 30 根据进程名找出pid的方法 # ps aux | less # ps aux | grep firefox # pgrep -u vivek php-cgi # pgrep lighttpd 可以使用绝对路径限制进程的cpu利用率 # cpulimit -P /opt/firefox/firebox -l 30 单核cpu和多核cpu 单核cpu的使用率范围为0%-100%,四核cpu的使用率范围为0%-400%.

Android 杀掉自己进程的方法

Android 杀掉自己进程的方法 Process.killProcess(Process.myPid()); 代码如下 protected void quit() { int size = activityManager.activityStackCount(); for(int i =size-1 ; i > 0 ;i--) { Activity activity = activityManager.allT askActivity().get(i); activityManager.popActivity(activity); } activityManager = null; getActivity().finish(); //目前最为通用的关闭进程的方法以后的版本使用 Intent startMain = new Intent(Intent.ACTION_MAIN); startMain.addCategory(Intent.CATEGORY_HOME); startMain.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK); startActivity(startMain); android.os.Process.killProcess(android.os.Process.myPid()); } android.os.Process.killProcess(appProcessInfo.pid);只能杀死自己所创建的进程,其它进程是杀不掉的,要用到另外一个方法 activityManager.killBackgroundProcesses(processName);,同是权限也要加上 以下是我的测试代码 public class ListViewActivity extends Activity { /** Called when the activity is first created. */ private Button button; @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState);

Android下Camera框架解析

Android 下Camera 构架分析 一. Android Camera 层次结构 Android 下Camera 子系统从上到下可以分为应用层、框架层、运行库层及内核层,其结构如下图所示。从整体上看,它还是属于Android 下典型的client/service 的结构,运行在两个进程中,一个是client 进程,主要包括JA V A 代码与一些Native c/c++代码;另一个是service 进程,属于服务端,是native c/c++代码,并且,camera service 属于Android 系统的一个native 服务,用native c/c++代码实现,主要负责和Linux kernel 中的Camera Driver 交互,搜集Linux kernel 中Camera Driver 上传的数据,并交给显示系统(surface)显示。 client 进程与service 进程通过Binder 机制通信,client 端通过调用service 端的接口实现各个具体的功能。但真正的preview 数据不会通过Binder IPC 机制从service 端复制到client 端,而是通过回调函数与消息的机制将preview 数据buffer 的地址传到client 端,最终可在Java 应用中操作处理这个preview 数据。 android_hardware.camera Camera Apps Libandroid_runtime.so (android_hardware_Camera.cpp) libcamera_client.so (Camara.cpp) 应用层框架层运行库层 硬件层 Libcamera.so (HAL)libcameraservice.so (CameraService.cpp)Linux 内核层 V4L2 Kernel Driver Camera Hardware BinderIPC JNI Client Service 二. Android Camera 的代码结构 1)应用层 Camera 的应用层在Android 上表现为直接调用SDK API 开发的一个

操作系统期末试题及答案

《操作系统》期末试卷 姓名 一、选择题(15*2分=30分) 1、在操作系统中,JCB是指(A ) A.作业控制块B.进程控制块C.文件控制块D.程序控制块 2、并发进程之间(D) A.彼此无关 B.必须同步 C.必须互斥 D.可能需要同步或互斥 3 A 4 ?A 5、(D A 6 A 7 A. 8 A. C. 9、设有。 A.2 10 A. 11 A 12、() A C 13 A 14、(B A.固定分区 B.分段 C.分页 D.可变分区 15、在进程管理中,当()时,进程从阻塞状态变为就绪状态。 A.进程被进程调度程序选中B.等待某一事件C.等待的事件发生D.时间片用完 二、填空题(20*1分=20分) 1、在单用户环境下,用户独占全机,此时程序的执行具有_封闭性______和_可再现性_。 2、对于信号量,在执行一次P操作时信号量-1_;当其值为__<0__时,进程应阻塞。在执行V操作时信号量的值应当_信号量+1_; 当其值为__<=0__时,应唤醒阻塞队列中的进程。 3、进程的三种基本状态分别是、进程的三种基本状态分别是__运行______,_就绪_和__阻塞(等待)__。 4、多道程序环境下的各道程序,宏观上它们是_并行__运行,微观上是_串行_运行。 5、在单CPU系统中有(n>1)个进程,在任一时刻处于就绪的进程最多是__n-1__个,最少是___0____个。

6、分区管理方案不能实现虚存的原因是_作业地址空间不能大于存储空间_。 7、段页式存储管理中,是将作业分_段__,__段_____内分___页____。分配以__页_____为单位。在不考虑使用联想存储器快表 的情况下,每条访问内存的指令需要____3___访问内存。其中第_2___次是查作业的页表。 三、简答题(4*5分=20分) (2) ????????????进程A???????????????????????????????进程B ???????????...??????????????????????????????????... ????????P(mutex);????????????????????????????P(mutex);

linux c程序获取cpu使用率及内存使用情况

想获取一下目标机运行时linux系统的硬件占用情况,写了这几个小程序,以后直接用了。方法就是读取proc下的文件来获取了。cpu使用率:/proc/stat ,内存使用情 况:/proc/meminfo 看程序: /*************************************************************** * @file: statusinfo.c * * @brief: 从linux系统获取cpu及内存使用情况 * * @version 1.0 * * @author 抹黑 * * @date 2009年3月17日 * ***************************************************************/ typedef struct PACKED //定义一个cpu occupy的结构体 { char name[20]; //定义一个char类型的数组名name有20个元素 unsigned int user; //定义一个无符号的int类型的user unsigned int nice; //定义一个无符号的int类型的nice unsigned int system;//定义一个无符号的int类型的system unsigned int idle; //定义一个无符号的int类型的idle }CPU_OCCUPY; typedef struct PACKED //定义一个mem occupy的结构体 { char name[20]; //定义一个char类型的数组名name有20个元素 unsigned long total; char name2[20]; unsigned long free; }MEM_OCCUPY; get_memoccupy (MEM_OCCUPY *mem) //对无类型get函数含有一个形参结构体类弄的指针O

Linux查看CPU和内存使用情况

Linux 查看CPU 和内存使用情况 在系统维护的过程中,随时可能有需要查看CPU 使用率,并根据相应信息分析系统状况的需要。在CentOS 中 可以通过top 命令来查看CPU 使用状况。运行top 命令后,CPU 使用状态会以全屏的方式显示,并且会处在对话的模式-- 用基于top 的命令,可以控制显示方式等等。退出 top 的命令为q (在top 运行中敲q 键一次)。 top 命令是Linux 下常用的性能分析工具,能够实时显示系统中各个进程的资源占用状况,类似于Windows 的任务管理器 可以直接使用top 命令后,查看%MEM 的内容。可以选 择按进程查看或者按用户查看,如想查看oracle 用户的进程内存使用情况的话可以使用如下的命令: $ top -u oracle 内容解释: PID :进程的ID USER :进程所有者 PR:进程的优先级别,越小越优先被执行 NInice :值 VIRT :进程占用的虚拟内存 RES:进程占用的物理内存

SHR :进程使用的共享内存 僵死状态, N 表示该进程优先值为负数 %CPU :进程占用CPU 的使用率 %MEM :进程使用的物理内存和总内存的百分比 TIME+ :该进程启动后占用的总的 CPU 时间,即占用 CPU 使用时间的累加值。 COMMAND :进程启动命令名称 操作实例 : 即可启动 top top 的全屏对话模式可分为 3 部分:系统信息栏、命令 输入栏、进程列表栏。 第一部分 -- 最上部的 系统信息栏 第一行( top ): 00:11:04”为系统当前时刻; 3:35”为系统启动后到现在的运作时间; “2 users ”为当前登录到系统的用户,更确切的说 是登录到用户的终端数 -- 同一个用户同一时间对系统多个 终端的连接将被视为多个用户连接到系统,这里的用户数也 将表现为终端的数目; S :进程的状态。 S 表示休眠, R 表示正在运行, Z 表示 在命令行中输入 “- ” top ”

最新第二章-操作系统进程(练习题答案)

第二章进程管理 1.操作系统主要是对计算机系统全部 (1) 进行管理,以方便用户、提高计算机使 用效率的一种系统软件。它的主要功能有:处理机管理、存储管理、文件管理、 (2) 管 理和设备管理等。Windows和Unix是最常用的两类操作系统。前者是一个具有图形界面的 窗口式的 (3) 系统软件,后者是一个基本上采用 (4) 语言编制而成的 的系统软件。在 (5) 操作系统控制下,计算机能及时处理由过程控制反馈的信息 并作出响应。 供选答案: (1): A. 应用软件 B. 系统软硬件 C. 资源 D. 设备 (2): A. 数据 B. 作业 C. 中断 D. I/O (3): A. 分时 B. 多任务 C. 多用户 D. 实时 (4): A. PASCAL B. 宏 C. 汇编 D. C (5): A. 网络 B. 分时 C. 批处理 D. 实时 答案:CBBDD 2.操作系统是对计算机资源进行的 (1) 系统软件,是 (2) 的接口。 在处理机管理中,进程是一个重要的概念,它由程序块、 (3) 和数据块三部 分组成,它有3种基本状态,不可能发生的状态转换是 (4) 。 虚拟存储器的作用是允许程序直接访问比内存更大的地址空间,它通常使用 (5) 作为它的一个主要组成部分。 供选答案: (1): A. 输入和输出 B. 键盘操作 C. 管理和控制 D. 汇编和执行 (2): A. 软件和硬件 B. 主机和外设 C. 高级语言和机器语言 D. 用户和计算机 (3): A. 进程控制块 B. 作业控制块 C. 文件控制块 D. 设备控制块 (4): A. 运行态转换为就绪态 B. 就绪态转换为运行态 C. 运行态转换为等待态 D. 等待态转换为运行态 (5): A. 软盘 B. 硬盘 C. CDROM D. 寄存器 答案:CDADB 3.在计算机系统中,允许多个程序同时进入内存并运行,这种方法称为 D。 A. Spodling技术 B. 虚拟存储技术 C. 缓冲技术 D. 多道程序设计技术 4.分时系统追求的目标是 C。 A. 高吞吐率 B. 充分利用内存 C. 快速响应 D. 减少系统开销 5.引入多道程序的目的是 D。

Linux查看CPU和内存使用情况

Linux查看CPU和内存使用情况 在系统维护的过程中,随时可能有需要查看CPU 使用率,并根据相应信息分析系统状况的需要。在Ce ntOS 中,可以通过top 命令来查看CPU 使用状况。运行top 命令后,CPU 使用状态会以全屏的方式显示,并且会处在对话的模式-- 用基于top 的命令,可以控制显示方式等等。退出top 的命令为q (在top 运行中敲q 键一次)。 操作实例: 在命令行中输入“top” 即可启动top top 的全屏对话模式可分为3部分:系统信息栏、命令输入栏、进程列表栏。 第一部分-- 最上部的系统信息栏: 第一行(top): “00:11:04”为系统当前时刻; “3:35”为系统启动后到现在的运作时间; “2 users”为当前登录到系统的用户,更确切的说是登录到用户的终端数-- 同一个用户同一时间对系统多个终端的连接将被视为多个用户连接到系统,这里的用户数也将表现为终端的数目; “load average”为当前系统负载的平均值,后面的三个值分别为1分钟前、5分钟前、15分钟前进程的平均数,一般的可以认为这个数值超过CPU 数目时,CPU 将比较吃力的负载当前系统所包含的进程; 第二行(Tasks): “59 total”为当前系统进程总数; “1 running”为当前运行中的进程数; “58 sleeping”为当前处于等待状态中的进程数; “0 stoped”为被停止的系统进程数; “0 zombie”为被复原的进程数; 第三行(Cpus): 分别表示了CPU 当前的使用率; 第四行(Mem): 分别表示了内存总量、当前使用量、空闲内存量、以及缓冲使用中的内存量; 第五行(Swap): 表示类别同第四行(Mem),但此处反映着交换分区(Swap)的使用情况。通常,交换分区(S wap)被频繁使用的情况,将被视作物理内存不足而造成的。 第二部分-- 中间部分的内部命令提示栏: top 运行中可以通过top 的内部命令对进程的显示方式进行控制。内部命令如下表: s - 改变画面更新频率 l - 关闭或开启第一部分第一行top 信息的表示

操作系统复习-进程管理

2.1 进程与线程 进程是指令的集合(错,程序是指令的集合,进程是程序的一次执行过程) 优先级是进程调度的重要依据,一旦确定就不能改变(错) 在单CPU的系统中,任意时刻都有一个进程处于运行状态(错,可以空转) 进程申请CPU得不到满足时,其状态变为阻塞(错!等待CPU的进程处于就绪状态) 进程获得CPU运行是通过调度得到的(对) 线程是一种特殊的进程(对) 进程是程序在一个数据集合上运行的过程,是系统进行资源分配和调度的独立单位(对)进程是PCB结构、程序和数据的集合(对) 撤销父进程时,应同时撤销子进程(错!进程撤销可采用两种策略,一种是只撤销指定进程,另一种是撤销指定进程和其子孙进程) 线程的切换,可能会引起进程的切换(对) 引入线程后,处理机只在线程中切换(错!!) 线程是比进程更小的能独立运行的基本单位(错,这句话的成立需要一定的前提条件) 线程的引入增加了程序执行的时空开销(错,应为减少) 一个进程一定包含多个线程(错) 一个进程创建的若干线程共享该进程的程序段和数据段,但是它们有各自的运行栈区(对)中断是进程切换的必要条件,而不是充分条件。(对) 进程的基本特点:动态性,并发性,独立性,异步性,结构性。 在多道程序设计环境下,操作系统分配资源以进程为基本单位 在引入线程的操作系统中,资源分配的基本单位是进程,CPU分配的基本单位是线程。 在引入线程的操作系统中,进程是资源分配的基本单位,线程是调度的基本单位 从运行状态到就绪状态是由于时间片用完或出现了比现在进程优先级更高的进程(调度程序决定) 从就绪状态到运行状态是调度程序决定的 从阻塞状态到就绪状态是协作程序决定的 从运行状态到阻塞状态是进程自身决定的(只有这个是主动的) 对进程的管理和控制使用原语。(原语包括创建原语,撤销原语,阻塞原语,唤醒原语等)一个进程被唤醒意味着进程变为就绪状态(该进程可能重新占用CPU)。(唤醒原语的功能是将被被唤醒进程从阻塞队列中移到就绪队列中) 降低进程优先级的合理时机是进程的时间片用完。 进程调度主要负责选一个进程占有CPU。 建立多线程的主要目的是提高CPU的利用率。 进程调度的方式有抢占式,非抢占式两种。 (?)以下 C 不会引起进程创建。A.用户登录 B.作业调度 C.设备分配 D.应用请求 进程与程序的联系与区别: 联系:进程是程序的一次执行过程,没有程序就没有进程 区别: 1.进程是程序的执行,所以进程属于动态概念,程序是一组指令的有序集合,是静态的概念 2.进程的存在是暂时的,程序的存在是永久的(相对而言)

Android SERVICE后台服务进程的自启动和保持

Android SERVICE后台服务进程的自启动和保持 Service组件在android开发中经常遇到,其经常作为后台服务,需要始终保持运行,负责处理一些必要(见不得人)的任务。而一些安全软件,如360等,会有结束 进程的功能,如果不做Service的保持,就会被其杀掉。 在早些时候,我们可以通过在 1. service中重写onStartCommand方法,这个方法有三个返回值, START_STICKY 是service被kill掉后自动 public int onStartCommand(Intent intent, int flags, int startId) { return START_STICKY; } 2. 配置android:persistent="true" 3. setForeground(true); 4. android:process=”com.xxx.xxxservice”配置到单独的进程中 以上的方法要么只是提升service优先级或者存活率, 并不能解决被安全软件强行 杀死的问题。要么像第四种单独的进程运行service在360老的版本是可以的,但是在360的比较新的版本中仍然会被杀死. 如何保持Service的运行状态是现在要说明的,核心就是利用ANDROID的系统广播,触发自己的程序检查Service的运行状态,如果被杀掉,就再起来。 常用的有开机广播,解锁屏幕的广播,电量变化等等,其中解屏的广播算比较频 繁的了,但是也并不能保证一定的频率,尤其是在特定的时间里(比如用户睡觉的时候,用户并不进行解锁操作).而我们仍要做一些操作的时候,就没有办法了。 因此,我采用了一种别的方案. 另外再加上两个类似一守护进程的Service,分别检查Service的运行状态,注册响应的广播,对其进行守护,一旦发现没有运行就将其 启动. 我利用的系统广播是:Intent.ACTION_TIME_TICK。这个广播每分钟发送一次, 我们可以每分钟检查一次Service的运行状态,如果已经被结束了,就重新启动Service。它的优点就是间隔时间短而且非常稳定, 而其他的广播并不能保证这一点,当然,在具体的应用中还是要根据需求使用, 结合其他广播来保证自己的service一定会 被重启。毕竟现在安全软件是越来越厉害了,更新得也是非常频繁. 有时间还是要看下还有没有其他的方法,综合几种来使用.

基于Android平台的手机通讯录管理系统

第一章绪论 1.1 项目研究背景 经过多年的发展,随着第三代网络的使用及四代网络的即将来了呢,移动终 端不再仅是通讯网络的终端,还将成为互联网的终端。因此,移动终端的应用 软件和需要的服务将会有很大的发展空间。Google与包括HTC、摩托罗拉、三星、联想等在内的三十多家技术和无线应用的领军企业组成的开发联盟为此于2007年11月退出了一份专为移动设备设计的软件平台——Android OS。 Android 是一套真正意义上的移动性设备综合平台,它包括操作系统、中间 件和一些关键的平台应用。Android的Java程序运行环境包含一组Java核心函数库及Dalvik虚拟机,它们有效地优化额Java程序的运行过程。Android 系统平台基于优化了的Linux内核,它提供诸如内存管理、进程管理、设备驱动等服务,同时也是手机硬件的连接层。 Abdroid平台的开放性等特点既能促进技术(包括平台本身)的创新,又有 助于降低开发成本,还可以是运营商能非常方便地制定特色化的产品,因此, 它具有很大的市场发展潜力。 1.2 项目研究的目的及意义 随着3G网络的使用,移动终端不再仅是通讯网络的终端,还将成为互联网的终端。因此,移动终端的应用软件和需要的服务将会有很大的发展空间。在Google和Android手机联盟的共同推动下,Android在众多手机操作系统中脱颖而出,受到广大消费者的欢迎。 手机通讯录作为手机的基本功能之一,每天我们都在频繁地使用着。根据手 机功能的不断加强与完善,手机通讯录对于人们的意义,已经不仅仅像记事簿 一样显示通讯地址,而是向着个性化、人性化的方向发展。通讯录从无到有, 从英文到中文,经过了十几年的发展历程,今后的发展趋势就是从通讯录发展 为名片夹,也就是一个人名下,可以储存座机、手机、单位、地址、电子邮箱 等内容,这种名片夹在电话薄的基础上,大大丰富了内容,同时结构也发生了 革命性的的变化,而且随着手机的发展,相信更优秀的通讯录会越来越受到社 会各层认识的喜爱。 1.3系统主要内容与实现方式

操作系统实验二(进程管理)

操作系统进程管理实验 实验题目: (1)进程的创建编写一段程序,使用系统调用fork( )创建两个子进程。当此程序运行时,在系统中有一个父进程和两个子进程活动。让每一个进程在屏幕上显示一个字符:父进程显示字符“a”;子进程分别显示字符“b”和字符“c”。试观察记录屏幕上的显示结果,并分析原因。 (2)进程的控制修改已编写的程序,将每个进程输出一个字符改为每个进程输出一句话,在观察程序执行时屏幕上出现的现象,并分析原因。 (3)编制一段程序,使其实现进程的软中断通信。要求:使用系统调用fork( )创建两个子进程,再用系统调用signal( )让父进程捕捉键盘上来的中断信号(即按Del键);当捕捉到中断信号后,父进程调用系统调用kill( )向两个子进程发出信号,子进程捕捉到信号后分别输出下列信息后终止:Child process 1 is killed by parent! Child process 2 is killed by parent! 父进程等待两个子进程终止后,输出如下的信息后终止:Parent process is killed! 在上面的程序中增加语句signal(SIGINT, SIG_IGN)和signal(SIGQUIT, SIG_IGN),观察执行结果,并分析原因。 (4)进程的管道通信编制一段程序,实现进程的管道通信。使用系统调用pipe( )建立一条管道线;两个进程P1和P2分别向管道各写一句话:Child 1 is sending a message! Child 2 is sending a message! 而父进程则从管道中读出来自于两个子进程的信息,显示在屏幕上。要求父进程先接收子进程P1发来的消息,然后再接收子进程P2发来的消息。 实验源程序及报告: (1)、进程的创建 #include int main(int argc, char *argv[]) { int pid1,pid2; /*fork first child process*/ if ( ( pid1=fork() ) < 0 ) { printf( "ProcessCreate Failed!"); exit(-1); }

在Linux系统中使用w命令和uptime命令查看系统负载

在Linux系统中使用w命令和uptime命令查看系统负载 在Linux系统中查询系统CPU和内存的负载(使用率)时,我们通常习惯于使用top或者atop命令,这篇文章将要给大家介绍如何使用w命令和uptime命令来查看系统的负载情况,对于uptime命令,相信大家比较熟悉了,它主要是用来查询系统最近一次启动后运行了多长时间,而w命令则相对就冷门一些了,下面就详细介绍如何使用这两个命令: 1. w命令 [root@tektea ~]# w 14:44:27 up 62 days, 3 min, 2 users, load average: 0.00, 0.01, 0.00 USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT root pts/0 218.18.74.196 13:38 1:01m 0.00s 0.00s -bash root pts/1 218.18.74.196 14:43 0.00s 0.00s 0.00s w 使用man w查询的Linux对该命令的介绍是“Show who is logged on and what they are doing.”,w命令可查询登录当前系统的用户信息,以及这些用户目前正在做什么操作,这些信息对于Linux系统管理员来说都是价值的,另外其中的load average后面的三个数字则显示了系统最近1分钟、5分钟、15分钟的系统平均负载情况。 2. uptime命令 [root@tektea ~]# uptime 14:51:15 up 62 days, 10 min, 2 users, load average: 0.02, 0.01, 0.00 uptime命令回显中的load average所表示的意思和w命令相似,都是表示过去的1分钟、5分钟和15分钟内进程队列中的平均进程数量。 这里需要注意的是load average这个输出值,这三个值的大小一般不能大于系统逻辑CPU的个数,例如,本输出中系统有4个逻辑CPU,如果load average的三个值长期大于4时,说明CPU很繁忙,负载很高,可能会影响系统性能,但是偶尔大于4时,倒不用担心,一般不会影响系统性能。相反,如果load average的输出值小于CPU的个数,则表示CPU还有空闲,比如本例中的输出,CPU是比较空闲的。

小议Android多进程以致Application多次初始化

小议Android多进程以致Application多次初始化 最近遇到一个bug,当应用加了多进程后,比如总共进程数为N,会出现在startService()时onStartCommand()方法会被重复调用(N-1)次的奇怪现象。 祸起 最近遇到两个模块互不相干却受到影响的奇怪问题,一个push模块和一个DaemonProcess模块在一起后,会出现如下现像的问题当DaemonProcess为应用加了多进程后,比如总共进程数为N,会出现push模块在startService()时onStartCommand()方法会被重复调用(N-1)次的奇怪现象。 寻踪 ?因为我们用的是Jpush的原因,一开始以为是Jpush,但最后发现是因为引用多进程的原因 ?再寻找下去发现调用一次startService()时onStartCommand()运行多次 ?而这两者有何关系呢 举证 Demo测试: 首先在Application中申明四个service,其中ServiceA和ServiceC都各自另开一个进程,ServiceB和ServiceD都在主进程中,AndroidManifest.xml如下:

此时在Application中启动四个Service startService(new Intent(this, ServiceA.class)); startService(new Intent(this, ServiceB.class)); startService(new Intent(this, ServiceC.class)); startService(new Intent(this, ServiceD.class)); 同时各Service打下如下log: public static final String TAG = ServiceB.class.getSimpleName(); @Override public void onCreate() { super.onCreate();Log.i(TAG,"onCreate" + "pid:" + android.os.Process.myPid()); } @Override public int onStartCommand(Intent intent, int flags, int startId) { Log.i(TAG,"onStartCommand" + "pid:" + android.os.Process.myPid()); return super.onStartCommand(intent, flags, startId);

相关主题
文本预览
相关文档 最新文档